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Abstract. This paper introduces a rolling horizon algorithm to plan the delivery of vehicles 

to automotive dealers by a heterogeneous fleet of auto-carriers. The problem consists in 

scheduling the deliveries over a multiple-day planning horizon during which requests for 

transportation arrive dynamically. In addition, the routing of the auto-carriers must take 

into account constraints related to the loading of the vehicles on the carriers. The objective 

is to minimize the sum of traveled distances, fixed costs for auto-carrier operation, service 

costs, and penalties for late deliveries. The problem is solved by a heuristic that first 

selects the vehicles to be delivered in the next few days and then optimizes the deliveries 

by an iterated local search procedure. A branch-and-bound search is used to check the 

feasibility of the loading. To handle the dynamic nature of the problem, the complete 

algorithm is applied repeatedly in a rolling horizon framework. Computational results on 

data from a major European logistics service provider show that the heuristic is fast and 

yields significant improvements compared to the sequential solution of independent daily 

problems. 
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1 Introduction

In 2012 the global demand for cars, light commercial vehicles, and trucks amounted to approxi-
matively 82 million vehicles, with an increase of about 5% with respect to 2011 (see, e.g., ANFIA
[4]). The majority of the new vehicles sold every year are first delivered by the manufacturers to
third-party logistics providers (3PLs). The vehicles are then delivered by these 3PLs to the dealers
who sold them, where they can be collected by the final customers. The delivery to the 3PLs is
often performed via rail, as it involves a large number of vehicles, a single origin, and a single
destination. Delivery to the dealers is instead performed via auto-carriers, as it typically involves a
small number of vehicles and several destinations.

Auto-carriers are special trucks, usually composed by a tractor and perhaps a trailer, both
equipped with loading platforms. These platforms are used to load the vehicles at the 3PL and
unload them at the dealers. The vehicles are not simply loaded straight, but they can be lifted
and rotated in several ways by means of special loading equipments. This is done to increase the
number of vehicles that can be transported at the same time, thus improving the efficiency of the
distribution process. An example of a modern auto-carrier equipped with four loading platforms,
two in the tractor and two in the trailer, and carrying eleven vehicles is depicted in Figure 1.

Figure 1: An example of an auto-carrier carrying eleven vehicles (source: Rolfo Spa, Italy).

Once a vehicle is sold by a dealer, the 3PL has a certain range of days, i.e., a time window, in
which it is supposed to deliver the vehicle to the dealer. If the company fails to perform the delivery
within the given time window, it incurs a penalty cost, which is determined by the contract signed
between the company and the manufacturer. Some vehicles are sold customized to the customer
preferences. In this case the dealer sends an order to the manufacturer, which in turn produces the
vehicle and then sends it to the 3PL. As soon as the 3PL receives the vehicle, it contacts the dealer
to organize the delivery. Other vehicles are instead sold turnkey, and in this case they are usually
already available at the 3PL when the dealer places the order. In any case, the company has to
organize the distribution plan for a few days ahead, taking care of demands that arrive dynamically
on a daily basis and have to be served soon, possibly by the next day.

Companies operating auto-carriers are obviously interested in optimizing their distribution as
this can clearly result in large cost savings. The problem they face is, however, very complex
because it involves several constraints and objectives. Typical constraints derive from the fact that
an auto-carrier has a limited traveling distance per day and, of course, the vehicles it carries should
be feasibly loaded on its platforms. A Last-In First-Out (LIFO) policy (also known as sequential
loading policy, see, e.g., Cordeau et al. [9]) is usually imposed on the loading, i.e., when visiting a
dealer, the vehicles it requires should be unloaded without moving vehicles destined to other dealers.

We note that the fleet that can be used for the deliveries is typically heterogenous, as it involves
auto-carriers having different costs and loading capacities. Furthermore, due to the fact that long-
distance routes may last more than one day, the size and composition of the available fleet varies
day by day, depending on the deliveries carried out on previous days. We also note that typical
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objective functions include fixed costs for using the auto-carriers, traveling costs for performing the
deliveries, service costs for visiting the dealers, and penalties for violations of the time windows.

Because of their importance in many markets, auto-carrier distribution problems have received
a good level of attention in the past. Agbegha [1] and Agbegha, Ballou and Mathur [2] focused
on the subproblem of loading vehicles in the auto-carrier. They divided the auto-carrier in a fixed
number of slots, and modeled it by using a loading network where each vertex corresponds to a
slot. The same model was computationally evaluated on a set of random instances by Lin [18].

Tadei, Perboli and Della Croce [24] studied the maximization of profits over a multiple-day
horizon for an Italian distribution company. They proposed a heuristic based on an integer lin-
ear programming formulation, in which the routing problem was relaxed by grouping all possible
destinations into clusters. They also relaxed the loading problem as follows: (i) they computed
for each auto-carrier an equivalent auto-carrier length, taking into account the auto-carrier loading
equipments; (ii) they computed for each vehicle an equivalent vehicle length, taking into account
the vehicle shape; (iii) they modeled the loading as a single capacity constraint, imposing the sum
of the equivalent vehicle lengths to be no larger than the equivalent auto-carrier length. A similar
heuristic was used by Cuadrado and Griffin [10] to solve a distribution case in Venezuela.

Miller [20] proposed a greedy heuristic and some simple local search procedures for a case arising
in the USA market. He modeled the auto-carrier as two flat loading platforms and loaded the
vehicles straight on the platforms. He studied the single-day distribution and used simple heuristics
to design the routes. The USA market was also studied by Jin et al. [17], who developed a business
scheme to evaluate and compare the transportation costs via roads and via railway.

The most recent approach, as far as we know, was developed by Dell’Amico, Falavigna and Iori
[11], who proposed a heuristic algorithm for a real-world distribution case arising in the Italian
market. They developed a branch-and-bound algorithm for the loading subproblem and an iterated
local search (ILS) heuristic for the overall problem. Their ILS starts with a greedy heuristic solution
which is iteratively perturbed and improved by the use of local search operators. The branch-and-
bound is invoked to check the feasibility of the loadings considered during the ILS process.

The algorithm of Dell’Amico, Falavigna and Iori [11] is the first one that simultaneously provides
detailed solutions of both the loading and routing components of the auto-carrier transportation
problem, but it can only solve a static, single-day problem. In this paper we build upon this algo-
rithm, but extend it to the more realistic case of multiple-day distribution and dynamic demands,
also including new operational constraints and additional cost components in the objective function.
More precisely, we introduce a heuristic algorithm that, given partial information on the demands,
plans not only the routes and loadings for the first day, but also those for the next few days. The
distribution plan for the first day is then implemented: vehicles scheduled for delivery are loaded
on the auto-carriers, which are then sent to perform their routes. On the next day, the availability
of the fleet of auto-carriers is updated, the new dynamically revealed demands are added to those
that have not been served yet, and the process is iterated in a so-called rolling horizon fashion.

The problem is motivated by the activity of Gruppo Mercurio, a large 3PL that delivers cars,
commercial vehicles, and trucks for almost all of the major manufacturers. It operates in the
Italian market, where it is the leading company, and in the European market, with a large fleet of
auto-carriers.

The main contributions of this paper are the following:

• we introduce a new optimization problem that models an important real-world distribution
process;

• we adapt the ILS from [11], developed for the static single-day problem, to the new, more

3

A Rolling Horizon Algorithm for Auto-Carrier Transportation

CIRRELT-2014-27



realistic, dynamic, multiple-day problem, obtaining a heuristic that is more suitable for the
solution of real-world auto-carrier transportation;

• we develop new local search procedures, and propose new algorithms to balance demands and
vehicle usage, so as to obtain the best possible solutions in a dynamic setting;

• we present extensive computational tests on a set of instances derived from the real-world
distribution case faced by Gruppo Mercurio in Italy;

• we perform a large computational sensitivity analysis, obtaining interesting insights in the
performance of the algorithm and in the difficulty of the problem.

The remainder of the paper is organized as follows. In Section 2 we give a formal description of
the problem that we are addressing. In Section 3 we describe the ILS heuristic, paying particular
attention to the dynamic part and to the mechanisms required to run the algorithm in a rolling
horizon environment. In Section 4 we present computational results, and finally in Section 5 we
draw some conclusions. For the sake of clarity, we note that in the next sections we will use vehicle
to denote an item to be transported (e.g., a car, a truck, or a van), auto-carrier to denote a truck
used to transport the vehicles, and dealer to denote a customer requiring the delivery of one or
more vehicles.

2 Problem Description

We are given a complete graph G = (N,E), where the set of vertices N = {0, 1, . . . , n} is partitioned
into vertex 0, corresponding to the depot, and vertices {1, 2, . . . , n}, corresponding to the n dealers
to be served. Every edge (i, j) ∈ E is associated with a traveling cost cij, measured in kilometers
(km). We study a distribution process that involves a sequence of D days denoted by 1, 2, . . . , D.
As usual in dynamic contexts, not all the demands are known in advance, but they are instead
revealed day after day. New demands received until the beginning of day d may be served either
on day d or on the following days. We denote by M the total set of demands (i.e., vehicles to be
delivered) known at the time when the problem is solved. Each dealer i ∈ N \ {0} demands a set
Mi of vehicles. Each vehicle k ∈ Mi is associated with a weight wk, a certain vehicle model (i.e., it
has a known shape, used to determine a feasible loading in the way described below), and a time
window [sk, ek] specifying the interval of days during which the delivery of k should be performed.

The company cannot deliver vehicle k before sk, and pays a penalty if it delivers the vehicle
after ek. The penalty cost increases when the delay gets larger, according to a policy that depends
on a commercial agreement. We use Tk = max{0, d − ek} to denote the tardiness of the delivery,
i.e., the delay of a route that reaches the dealer i on day d, and π(Tk), for Tk > 0, to denote the
resulting penalty cost for the vehicle incurring the delay.

Note that in the case where several vehicles are demanded by the same dealer, it could be
impossible or inconvenient to deliver all vehicles by means of a single truck. Consequently, the
problem that we study allows to split a dealer demand into more than one route. However, a service
cost σ is associated with each visit to a dealer, and this tends to lower the overall number of visits.

To perform the deliveries, a heterogeneous fleet of auto-carriers is available. The fleet is composed
by a set T of auto-carrier types, where each type t ∈ T has a maximum weight capacity Wt, a given
loading space (see below for details), and a fixed cost Ct. All auto-carriers may perform at most one
route per day and may travel for at most L km per day. At the beginning of day 1, Kt auto-carriers
are available at the depot for each type t, but this number may vary in the following days, due to
the fact that the routes may last more than one day.
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We use 〈R, S, t, d〉 to define a route, where: R ⊆ N \ {0} denotes the sequence of dealers to be
visited; Si ⊆ Mi gives the set of vehicles to be delivered to each dealer i ∈ R, and S = ∪i∈RSi is the
complete set of vehicles loaded in the auto-carrier; t is the type of auto-carrier used; and d is the
day on which the route starts. A route 〈R, S, t, d〉 thus starts from the depot on day d, visits the
dealers in the order specified by R, performing the deliveries of the vehicles in S, and returns empty
to the depot on day d or later. The length of a route is simply given by the sum of the cij values
associated with the edges traveled by the route. A route having length ℓ lasts for d = ⌈ℓ/L⌉ days.
An auto-carrier leaving the depot on day d to perform a route that lasts d days will be available
again to perform another route on day d+ d.

A route 〈R, S, t, d〉 is said to be load-feasible if
∑

k∈S wk ≤ Wt and there exists a feasible loading
of the vehicles in S on auto-carrier t. The latter constraint means that vehicles must be completely
supported by the loading platforms, should be completely contained within maximum cargo length
and height (specified by the regulation), and the LIFO unloading policy is respected: when visiting
dealer i, all vehicles in Si can be unloaded directly from the auto-carrier, without moving vehicles
destined to dealers to be visited later. To check the loading constraint we make use of the method
developed in [11]. This algorithm considers the shapes of the vehicle models and the equipments of
the auto-carrier to compute, respectively, the equivalent vehicle lengths and the equivalent platform
capacities. This approximation is accurate in practice and allows to solve all the real life instances
that we tested with the operators of the 3PL. Then, it constructs an enumeration tree that attempts
to assign the vehicles one at a time to the platforms of the auto-carrier without violating capacities,
until a feasible loading is found, if any. Lower bounds are used to speed up the process. The
resulting algorithm is a branch-and-bound search that is very fast and provides solutions that are
accurate in practice.

The objective function that we aim to minimize is given by

ztot = zkm + zfix + zser + zpen, (1)

where: zkm is the sum of the lengths of the performed routes, computed as the sum of the cij
values on the selected edges; zfix is the sum of the fixed costs Ct associated with the use of the
auto-carriers; zser is the total service cost computed by multiplying σ by the total number of visits
to dealers; and zpen is the penalty cost computed by summing all the π(Tk) penalties for the late
deliveries.

The Dynamic Multi-Period Auto-Carrier Transportation Problem (DMPACTP) calls for the
determination of a set of load-feasible routes to be performed on each of the D days of the planning
horizon, with the aim of minimizing the total cost given by (1).

The DMPACTP belongs to the family of combined routing and loading problems, for which we
refer the interested reader to the surveys of Iori and Martello [14, 15]. The problem is also related
to the periodic VRP in which a multiple-day planning horizon is considered and each customer
must receive one or several visits on different days (see, e.g., Francis and Smilowitz [12]). With
respect to the problem studied in [11], we introduce the complicating aspects of dynamic demands
and multi-period rolling horizon optimization.

In a rolling horizon framework, the problem is solved repeatedly on a reduced planning horizon
that shifts forward each time the algorithm is applied. This approach is popular in dynamic vehicle
routing problems, where new information becomes available while the vehicle routes are being
executed (see, e.g., Mitrović-Minić, Krishnamurti, and Laporte [21], Pillac et al. [22], and Psaraftis
[23]). Our problem differs from most other dynamic vehicle routing problems in the sense that
vehicle routes cannot be changed as new requests are received. The problem is nevertheless dynamic
because some information, i.e., future demands, is unknown when making the initial transportation
plan.
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Our problem is in fact closely related to the Dynamic Multiperiod Vehicle Routing Problem
(DMVRP), first introduced by Angelelli, Speranza, and Savelsbergh [6], in which service requests
received at the beginning of a time period must be served either in that period or in the next
one. The authors have performed a competitive analysis for simple decision rules in the case of a
single vehicle. A generalization of this problem to the case of multiple vehicles was later studied
by Angelelli et al. [5] who also considered on-line requests that can arrive while the vehicles are
traveling. Wen et al. [25] have studied another variant where the number of periods during which
a request can be served can vary between customers. They have introduced a three-phase rolling
horizon heuristic in which the first phase consists in selecting the customers to be visited in the next
τ days, where τ is the length of the rolling horizon. The second phase then constructs vehicle routes
for each day by solving a periodic vehicle routing problem. Finally, the routes to be implemented
on the first day are further improved by a tabu search heuristic in the third phase. Very recently,
Albareda-Sambola, Fernández, and Laporte [3] have studied a DMVRP in which some probabilistic
information regarding future demands is available. The authors have introduced an adaptive service
policy to estimate the best time period to serve each request by solving a prize collecting VRP.

Rolling horizon algorithms are also popular in the field of inventory routing, where vehicle
routing and inventory decisions must be made concurrently to minimize the cost of distributing
products to customers over a multiple-period planning horizon (see, e.g., Bard et al. [7] and Jaillet
et al. [16]). Finally, a rolling horizon heuristic was also developed by Bostel et al. [8] for the routing
and scheduling of technicians visiting customers for maintenance or service activities.

3 A Rolling Horizon Iterated Local Search

The sketch of the approach that we use to optimize the DMPACTP is given in Algorithm 1. At the
beginning of the period, the set M of known demands (vehicles to be delivered) is given, and an
initial auto-carrier fleet is available at the depot. On day d, M is updated by including the demands
dynamically revealed at the beginning of that day. Then, the algorithm performs two main steps.
First, it selects the subset of vehicles to be delivered in the next ∆ days (d, d + 1, . . . , d +∆ − 1),
denoted by M ′(∆). Second, it optimizes the routing plans for the corresponding days by invoking
a meta-heuristic algorithm, namely an ILS.

The solution returned by the meta-heuristic contains detailed routing plans for each of the
∆ days. The routing plan for day d is then implemented, and, consequently, the set of vehicles
scheduled for delivery on day d is removed from M , and the available auto-carrier fleet for the
next days is updated. The process is repeated for each day in the planning horizon. In practice, a
company using this approach would run the steps 3-8 of Algorithm 1 at the beginning of each day.
In the following, we give the details of each step in the approach.

Algorithm 1 Rolling Horizon Iterated Local Search

1: Input: set M of known demands and initial auto-carrier fleet
2: for (each day d) do
3: Include in M the demands revealed at the beginning of day d
4: Select the set M ′(∆) of vehicles to be delivered in days d, d+ 1, . . . , d+∆− 1
5: Optimize deliveries of M ′(∆) by Iterated Local Search
6: Implement solution for day d
7: Remove from M the vehicles scheduled for delivery on day d
8: Update auto-carrier fleet availability for next days
9: end for
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Algorithm 2 Vehicle Selection

1: Input: the current set of vehicles M
2: Output: a set M ′(∆) of vehicles to be delivered in days d, d+ 1, . . . , d+∆− 1
3: Initialize M ′(∆) = ∅ and M = M
4: for (k = 1, 2, . . . ,∆) do
5: Move from M to M ′(∆) the murg most urgent orders, if any
6: Let Iurg be the set of dealers requiring the murg orders
7: Move from M to M ′(∆) at most m orders for each dealer in Iurg
8: Let Iprox be the set of dealers close to those in Iurg
9: repeat

10: Randomly select a dealer i ∈ Iprox, if any
11: Move from M to M ′(∆) at most m orders required by i
12: until (k ·mmax ≤ |M ′(∆)| ≤ k ·mmax · (1 + ρ) or Iprox = ∅)
13: if M = ∅ then break
14: end for

The procedure used to select the vehicles to be delivered (step 4 of Algorithm 1) is given in
Algorithm 2. This procedure should select a subset of vehicles whose deliveries are geographically
correlated, so as to facilitate solutions with low costs, but it should also ensure that the distribution
effort is evenly spread over the entire horizon, so as to avoid peaks of deliveries that could result
in high costs and unnecessary penalties. To this aim we make use of a series of parameters. In
particular, we denote by mmax the number of vehicles that we aim to deliver in a day and by ρ an
acceptable tolerance for possibly exceeding mmax. We also define a minimum threshold distance cmin

and fixed parameters murg ≤ mmax and m ≤ mmax. Finally, we let M denote the set M \M ′(∆).
The procedure first selects themurg vehicles having the lowest value of ek, breaking ties randomly,

and moves them from M to M ′(∆). It then builds Iurg as the set of dealers that requested at least
one of the murg selected vehicles. It considers the dealers in Iurg one at a time, in random order,
and for each of them it selects up to m unscheduled vehicles and moves them from M to M ′(∆).
It then builds the set Iprox of dealers that are geographically close to those in Iurg, by setting
Iprox = {i ∈ N \ Iurg : minj∈Iurg cij ≤ cmin}. It randomly selects a dealer ı in Iprox requiring one or

more of the vehicles in M , and moves up to m vehicles required by ı from M to M ′(∆). The process
is repeated by checking the size of the set being constructed. After processing any step aimed at
filling M ′(∆) with vehicles, the procedure checks if M ′(∆) reached the desired cardinality. At a
given iteration k, it stops as soon as k ·mmax ≤ |M ′(∆)| ≤ k ·mmax · (1 + ρ). At the last iteration,
we thus try to obtain a set whose cardinality satisfies ∆ · mmax ≤ |M ′(∆)| ≤ ∆ · mmax · (1 + ρ).
Obviously, the procedure also stops if no more vehicles have to be delivered, i.e., if M is empty. In
this case, the cardinality of M ′(∆) would be smaller.

On the basis of preliminary computational experiments, we have set murg = 10, m = 50, cmin =
15 km, and ρ = 0.02. The value of mmax was set to the average number of vehicles delivered daily by
the company that provided us with the data (namely, 774). The reason for using the tolerance ρ is
the following: to obtain solutions with a low travel distance, it could appear appropriate to include
all vehicles requested by a selected dealer i in M ′(∆), even in case of a large demand. However,
this could result in a too large number of daily deliveries, and thus in an unbalanced distribution
plan for the period. For this reason we include vehicles from i in M ′(∆) even if this results in an
excess of mmax, but we only accept a slight excess limited by ρ.

The meta-heuristic algorithm that we adopted to optimize the routing plan is a classical ILS (see,
e.g., Lourenço, Martin, and Stützle [19]), and its pseudo-code is given in Algorithm 3. It receives
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as input the set of deliveries to be scheduled in the first ∆ days and the available auto-carrier fleet,
and returns a detailed distribution plan.

Algorithm 3 Iterated Local Search

1: Input: the set M ′(∆) of vehicles and the available auto-carrier fleet
2: Output: a routing plan for days d, d+ 1, . . . , d+∆− 1
3: Initialize the incumbent solution by a greedy heuristic and local search procedures
4: while (time limit not reached) do
5: Perturb the incumbent solution
6: Optimize the perturbed solution using local search procedures
7: Possibly update the incumbent solution
8: end while

The search starts by generating an initial heuristic solution by means of a quick greedy heuristic
that operates as follows. We choose the first day d in the period, randomly select an auto-carrier t
available on day d and a dealer i whose demand set Mi contains one or more vehicles that can be
delivered in d. We load t with the unserved vehicles from Mi, one at a time, as long as the load
remains feasible. If all vehicles from Mi are loaded, then we look for the dealer nearest to i and
re-iterate in the same way until the auto-carrier is fully loaded. We then re-iterate with a new route
until all auto-carriers have been used or mmax · (1 + ρ) vehicles have been scheduled for delivery on
day d. We then proceed to the next day and re-iterate. Note that, because of the limited number
of available auto-carriers, the greedy heuristic may return a solution that does not deliver all the
vehicles in M ′(∆). Such a solution is passed anyway to the local search procedures, which try to
load the unscheduled vehicles as soon as an auto-carrier is available. In this sense our approach
generalizes the one in [11], which only accepts full-delivery solutions.

Several local search procedures are then invoked, one after the other, to improve the solution.
Each of them operates in a first-improvement fashion. The use of the first improvement policy leads
to a small number of calls to the load feasibility checking procedure, hence making the search less
computationally demanding. When no improvement is found, the next procedure is executed, and
the process terminates when none of the procedures finds an improvement. In the literature, this
is also sometimes referred to as variable neighborhood descent (see, e.g., Hansen, Mladenović, and
Moreno Pérez [13]). Every time a local search finds a profitable move, then the feasibility of the
loads of the routes involved in the move is checked using the branch-and-bound algorithm of [11].
The following ten local search procedures have been implemented:

• intra-route move: select a dealer and change its order of visit in its current route;

• 1-0 dealer-move: select a dealer i in route 〈Ra, Sa, ta, da〉 and move its subset Sa
i of vehicles

in the lowest-cost position of another route;

• 1-1 dealer-swap: select i1 in 〈Ra, Sa, ta, da〉 and i2 in 〈Rb, Sb, tb, db〉, and swap Sa
i1 with Sb

i2;

• 2-1 dealer-swap: select two dealers i1 and i2 in 〈Ra, Sa, ta, da〉 and another dealer i3 in
〈Rb, Sb, tb, db〉, and swap Sa

i1 ∪ Sa
i2 with Sb

i3;

• 1-1 model-swap: consider two dealers i1 in 〈Ra, Sa, ta, da〉 and i2 in 〈Rb, Sb, tb, db〉, select a
subset Qa

i1 ⊆ Sa
i1 made by vehicles of the same model, and swap Qa

i1 with Sb
i2;

• 2-1 model-swap: consider i1 and i2 in 〈Ra, Sa, ta, da〉 and i3 in 〈Rb, Sb, tb, db〉, select subsets
Qa

i1 ⊆ Sa
i1 and Qa

i2 ⊆ Sa
i2 made by vehicles of the same model, and swap Qa

i1 ∪Qa
i2 with Sb

i3;
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• auto-carrier interchange: consider a route 〈Ra, Sa, ta, da〉 visiting a dealer i whose demand Mi

is currently split into two or more routes, and select an auto-carrier tb having capacity larger
than that of ta, if any. Replace ta by tb, and load tb with Sa and the other subsets of Mi

belonging to other routes, one at a time, as long as the load is feasible;

• route addition: select a dealer i whose demand Mi is currently split. Initialize a new route,
remove the subsets of Mi from their current routes and load them in the new route, one at a
time, as long as the load is feasible;

• route swap: select two routes 〈Ra, Sa, ta, da〉 and 〈Rb, Sb, tb, db〉 with da 6= db, and exchange da

with db;

• route insertion: if some orders in M ′(∆) are not scheduled yet, select an available auto-carrier,
if any, and compute the first day in the interval in which i) the auto-carrier is available at the
depot, and ii) a delivery of the unscheduled vehicles could happen. Create a new route by
loading the unscheduled vehicles in the auto-carrier using the greedy heuristic already used
at step 3 of Algorithm 3.

The first eight procedures are derived from [11], but generalized to take into consideration the
time windows for the deliveries, the penalty costs for the late deliveries, and the fixed costs for
using the auto-carriers. The last two procedures are new. With the exception of intra-route move
and route insertion, all procedures involve the optimization of two or more routes at a time. Some
of them, such as 1-1 model-swap and 2-1 model-swap, may increase the number of split deliveries,
while others, such as auto-carrier interchange and route addition, attempt to reduce this number.
Procedure route swap does not affect the traveling costs, but has the purpose of reducing the total
cost of penalties. Procedure route insertion increases the number of auto-carriers used, and hence
the resulting auto-carrier usage cost. It is, however, very important to obtain feasible solutions. In
our tests the initial greedy sometimes failed to load the entire set of vehicles in the available auto-
carriers but, after some iterations, the local search procedures managed to obtain more compact
loads and consequently free some auto-carriers for one or more of the ∆ days. These auto-carriers
are thus used by route insertion to try to obtain a solution that delivers all the vehicles in M ′(∆).

The perturbation method adopted in our ILS (step 5 of Algorithm 3) is obtained by randomly
selecting a dealer i, finding all dealers whose distance from i is not larger than a given threshold γ,
and then removing all routes currently serving these dealers. Then, we invoke the greedy heuristic
again to assign the removed demands to the available auto-carriers. The perturbed solution is then
given to the set of local search algorithms. If a feasible solution of lower cost is found, then the
incumbent is updated. The value of γ was set to 200 km on the basis of preliminary tests.

After a certain time limit is reached, the ILS is halted and the incumbent solution that it found
is returned to the outer rolling horizon loop. The ILS optimizes costs, but may return solutions in
which some routes carry a small load of vehicles. Thus, the routes scheduled for day d are quickly
checked, and, if their load is smaller than 80% of their loading capacity, they are rejected. The
routes that are not rejected are implemented for the day (step 6 of Algorithm 1). Consequently,
the vehicles to be delivered are erased from M and the auto-carrier fleet available in the next days
is updated.

The effectiveness of the proposed algorithm is assessed by extensive computational experiments
described in the next section.
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4 Computational Results

The algorithm was coded in C++ and run on a 2.7 Ghz Pentium Dual-Core processor with 2 GB
RAM, under the Windows XP operating system. It was tested on a benchmark set of instances
based on the actual vehicle deliveries performed by Gruppo Mercurio during the 23 working days of
July 2009. These instances contain 17,804 vehicles to be delivered, corresponding to 723 standard
vehicle models from several car manufacturers. They involve a fleet composed by two auto-carrier
types, the first having four loading platforms and a weight capacity of 15.1 tons, and the second
having two loading platforms and a weight capacity of 6 tons. The depot is located near the city
of Parma, in northern Italy.

The instances are publicly available at www.or.unimore.it/A-CTP, and were already used to
test the ILS in [11]. This ILS operates without a rolling horizon perspective, sequentially solving
one instance after the other, and is used, in Section 4.1, as a comparison basis to evaluate the new
algorithm described in this paper. In the available instances, all vehicles are assigned to a given
day (the day on which the delivery was actually performed by the company) and, unfortunately,
the information on the original time window in which the delivery could take place has not been
stored by the company. For this reason we adapted the instances to fit the DMPACTP definition
by generating the missing information in a way that mimics what happens in real-world operations.
Let dk be the day on which vehicle k was delivered, and recall that [sk, ek] denotes the time window
in which the delivery of k should be performed. We set sk = dk with 40% of probability, sk = dk−1
with 30%, sk = dk − 2 with 20%, and sk = dk − 3 with 10%. We then set ek = sk + 3 if the dealer
requiring vehicle k is located in the northern part of Italy, ek = sk + 4 if it is in the central part of
Italy, and ek = sk +5 if it is in the southern part. Note that in this way dk ∈ [sk, ek], so the original
delivery day would incur no penalty in the modified instances. In the first day of the planning
horizon, the fleet is composed of 130 auto-carriers of type 1 and seven auto-carriers of type 2. All
auto-carriers can travel for at most L = 560 km per day.

For the objective function components, the costs cij are set to the minimum travel distance in
km on the real road network. The other costs derive directly from the activity of Gruppo Mercurio,
and are converted into km so as to obtain a uniform evaluation. In particular, the fixed auto-carrier
costs are set to C1 = 200 for the larger auto-carriers and C2 = 150 for the smaller ones. The service
cost σ for each visit to a dealer is set to 30. For delay penalties, recall that Tk = max{0; d − ek}
denotes the delay of the delivery of vehicle k performed on day d. The penalty function π(Tk), to
be paid for each vehicle k delivered late, follows this scheme: π(Tk) = 9 if Tk ≤ 2, π(Tk) = 13 if
3 ≤ Tk ≤ 5, and π(Tk) = 20 if Tk ≥ 6.

In Section 4.1, to compare with the existing literature, we run our algorithm with a limited
objective function that takes into consideration only travel distance and penalties, whereas in Section
4.2 we consider the complete objective function. In both cases we perform a large series of sensitivity
analyses to gain insight in the computational behavior of the proposed algorithm.

4.1 Comparison with the Sequential Solution Approach

In the following we use RH-ILS to denote the rolling horizon algorithm described in Section 3, and
Seq-ILS to denote the sequential ILS introduced in [11]. The two algorithms have been run on the
same computer. The tests for Seq-ILS involved the minimization of just the traveling costs zkm (see
the objective function (1)), by assuming that each vehicle is delivered on the same day as in the
original schedule. To have a fair comparison, we considered in this section a version of the RH-ILS
that disregards zfix (fixed auto-carrier costs) and zser (service costs). We kept zpen (penalty costs
for late deliveries) because otherwise the algorithm would completely disregard the time windows,
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obtaining solutions that are very convenient for zkm but unrealistic with respect to the original
delivery dates. Nevertheless, penalty costs are not included in the figures reported below.

We ran our ILS algorithm several times, by varying the number ∆ of days that are considered at
every iteration. On the one hand, large ∆ values allow a deeper evaluation of the solution space but
impose a larger computational burden for the local search procedures. On the other hand, small
∆ values require less computing effort, but reduce the number of potential solutions explored. For
this reason it is important to perform a sensitivity analysis that combines ∆ and the computational
time limit (denoted by tl) given to the ILS.

The ILS has been run by considering five values of ∆ (namely, 1, 2, 3, 4, and 5) and five values
of tl (namely, 1, 3, 5, 10, and 25 minutes of CPU time). A time limit of, say, one minute means
that the ILS runs for one minute on each of the 23 days in the planning horizon. The results of this
test are depicted in Figure 2. The graph in the top part of the figure gives on the y-axis the average
zkm value over the 23 instances, and on the x-axis the adopted ∆ value. The graph in the bottom
part reports the same values, but with a different emphasis: on the y-axis the average zkm value,
and on the x-axis the adopted time limit. The five versions of our RH-ILS are compared with the
average result obtained by the original Seq-ILS.
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Figure 2: Comparison of the average zkm values obtained by the Seq-ILS in [11] and the new RH-ILS,
related to ∆ (above) or time limit (below).

Figure 2 shows that only the ILS configuration with tl = 1 and ∆ = 1 is worse on average than
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the original Seq-ILS, whereas all other configurations produce improvements in the value of zkm.
For the ILS with tl = 1, the case with ∆ = 4 is the one giving the best result, showing that ∆ = 5
is too large for such a small time limit. For all other time limits, the use of ∆ = 5 is slightly better
than ∆ = 4 and ∆ = 3, which in turn are much better than ∆ = 2 and ∆ = 1. We can conclude
that the rolling horizon algorithm is much more effective than the sequential one, because it allows
to obtain better quality solutions with a much smaller computational effort. The best configuration,
i.e., the one having tl = 25 minutes and ∆ = 5, improves the average zkm value by about 900 km
per day, leading to savings of more than 20,000 km for the full planning horizon.

Figure 3 provides a possible explanation for this good performance, comparing the best RH-ILS
configuration against Seq-ILS and showing results for each day. The top part of the figure presents
the number nac of auto-carriers used for each day in the best solutions found by the two algorithms.
Seq-ILS uses a large number of auto-carriers at the beginning of the period (117 on Jul-02) and
decreases this number consistently towards the end (just 30 on Jul-31). Conversely, the RH-ILS
uses between 68 and 103 auto-carriers, obtaining a more balanced distribution and a better use of
the available fleet.

The middle part of Figure 3 gives the number ndel of vehicles delivered to dealers for each
algorithm and each day. The behavior is similar to that noted for the number of auto-carriers,
with the Seq-ILS delivering between 272 and 1139 vehicles per day, and the RH-ILS between 650
and 989. The bottom part of the figure shows the number nvis of visits to dealers. The difference
between the two algorithms is in this case even more substantial. The Seq-ILS performs on average
240 visits (between 104 and 297 per day), whereas the RH-ILS only 189 (between 151 and 228). It
is obvious that the rolling horizon algorithm is capable of reducing the number of split demands,
delivering the same number of vehicles with fewer visits to dealers, thus obtaining a lower cost and
a better service to the dealers.

4.2 Evaluation of the Rolling Horizon Algorithm

In this section we evaluate our RH-ILS algorithm by using the complete objective function defined
in (1), and again testing different values for the time limit tl and for ∆. In Figure 4 we show the
evolution of the average objective function values obtained by the attempted RH-ILS configurations,
related to the value of ∆ (above) and that of tl (below).

In the top part of Figure 4 we can notice that the values obtained with ∆ = 1 are pretty high,
being always above 66,000. They then decrease consistently with ∆ = 2 and even more with ∆ = 3.
The best average value is obtained with ∆ = 3 for tl = 1 but with ∆ = 4 for tl = 3, 5, or 10 minutes.
The configuration with ∆ = 5 is the best only when the RH-ILS is allowed to run for 25 minutes.
By comparing with Figure 2, we can conclude that the use of the complete objective function (ztot
instead of zkm) increases the complexity of the problem and imposes a higher computational effort
to the local search algorithms. We can also conclude that ∆ = 4 is a good value for this set of
instances when only moderate CPU times are allowed.

Similar observations apply to the bottom part of Figure 4. The configuration with ∆ = 1 has
quite poor results, and the one with ∆ = 2 is slightly better. The ones with ∆ = 3, 4, or 5 are again
better and quite similar among them. Note that when ∆ = 1 or ∆ = 2 the RH-ILS can obtain
better average ztot values with smaller tl values than with larger ones. This is due to the fact that
finding a low cost solution for a certain day could increase the solution costs for the next days, thus
yielding a higher overall cost. The algorithm behavior appears thus quite myopic for small values of
∆. The myopic behavior then disappears for larger values of ∆, which are thus preferable. The case
with ∆ = 4 is better than ∆ = 5 for all attempted time limits except 25 minutes. Overall, a time
limit of 10 minutes seems to be a good compromise between solution quality and computational
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Figure 3: Difference in terms of used auto-carriers (nac), delivered vehicles (ndel), and visits to
dealers (nvis) between the Seq-ILS in [11] and the new RH-ILS.
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Figure 4: Average ztot values obtained by RH-ILS, by varying ∆ (above) or time limit (below).

effort, because the improvements obtained by allowing 25 minutes are very limited.
Table 1 shows some average values, over the 23 working days, for the 25 attempted RH-ILS

configurations. Apart from the values of ∆, tl, and ztot, the table provides some insight in the
behavior of the algorithm by reporting the impact of the different components of the objective
function. The percentage values in the table are obtained by setting %zkm = 100 · zkm/ztot, %zfix =
100 · zfix/ztot, etc. The table also shows the average number of CPU seconds and ILS iterations
required to find the lowest cost solution, secz and itz, respectively, and the average number of ILS
iterations performed when reaching the time limit, ittot.

The percentage impacts of the four components of the objective function are quite stable. The
traveling costs, zkm, take about two thirds of ztot, whereas the auto-carrier fixed costs, zfix, amount
to roughly 25% of ztot. The service costs, zser, usually amount to less than 8%, and the penalty
costs for delays, zdel, are negligible. It is worth noting that zdel are on average 1.35% when ∆=1,
but then decrease to below 1% for larger ∆ values, showing again that ∆=1 is not advisable. The
values taken by secz are roughly 75% of the allowed time limits. Similarly, itz is about 75% of
ittot. The total number of ILS iterations increases quite rapidly when ∆ = 1, reaching almost 2700
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∆ tl(min.) ztot %zkm %zfix %zser %zdel secz itz ittot

1 1 66459 65.9% 25.2% 7.6% 1.3% 41 74 107
3 66165 66.0% 25.2% 7.6% 1.3% 131 251 334
5 66239 66.0% 25.2% 7.6% 1.3% 218 396 530
10 66261 65.9% 25.1% 7.6% 1.4% 439 804 1092
25 66248 65.8% 25.1% 7.6% 1.4% 1050 1914 2682

2 1 65663 66.5% 25.4% 7.9% 0.2% 44 20 29
3 65476 66.4% 25.4% 7.9% 0.2% 113 58 89
5 65464 66.4% 25.4% 7.9% 0.2% 218 104 141
10 65274 66.4% 25.5% 7.9% 0.2% 471 240 305
25 65356 66.4% 25.4% 7.9% 0.3% 986 512 761

3 1 65268 66.3% 25.5% 8.0% 0.2% 51 13 17
3 65267 66.4% 25.5% 8.0% 0.1% 119 41 54
5 65088 66.4% 25.5% 7.9% 0.1% 221 62 79
10 65098 66.3% 25.6% 8.0% 0.1% 451 126 158
25 64860 66.3% 25.6% 8.0% 0.1% 1068 287 392

4 1 65283 66.4% 25.5% 8.0% 0.1% 50 15 18
3 65178 66.3% 25.5% 8.0% 0.1% 138 39 47
5 65027 66.3% 25.6% 8.0% 0.2% 229 50 66
10 64863 66.3% 25.6% 8.0% 0.1% 406 95 151
25 64831 66.3% 25.6% 8.1% 0.1% 1152 298 367

5 1 65327 66.4% 25.5% 8.0% 0.1% 41 11 16
3 65211 66.3% 25.6% 8.0% 0.1% 111 27 47
5 65141 66.4% 25.6% 8.0% 0.1% 242 65 76
10 64912 66.3% 25.6% 8.0% 0.2% 359 109 154
25 64716 66.2% 25.6% 7.8% 0.4% 967 256 333

Table 1: Evaluation of the average objective function components and algorithmic performances
for the 25 attempted RH-ILS configurations.

iterations when tl=25 minutes. For the larger values of ∆, ittot increases less sharply, and never
reaches 1000 iterations, proving again that the value of ∆ has a strong influence on the ILS.

Table 2 shows detailed solution values for the RH-ILS having ∆ = 4 and running for tl=10
minutes, which we consider to be, on the basis of the above comments, a good configuration for our
algorithm. The first three columns report the name of the instance, and the number n (respectively
m) of dealer requests (respectively vehicle requests) that have been revealed at the beginning of
that day. Then, nac gives the number of used auto-carriers, ndel the number of delivered vehicles,
and nvis the number of visits to dealers. The remaining columns are the same as those previously
discussed in Table 1, but refer to single working days. For each column we also report, at the
bottom of the table, minimum, average, and maximum values.

Despite the fact that the number of vehicle requests has some important peaks (for example for
Jul-01, Jul-02, and Jul-10), the behavior of the RH-ILS is quite stable. On a daily basis, it uses
on average 83 auto-carriers to deliver 774 vehicles to 172 dealers. It provides solutions where all
deliveries are performed on time for the first 11 days, before some limited penalties are incurred.
The fleet of auto-carriers travels for about 65,000 km per day, with a peak on Jul-22, where it

15

A Rolling Horizon Algorithm for Auto-Carrier Transportation

CIRRELT-2014-27



name n m nac nvis ndel ztot %zkm %zfix %zser %zdel secz itz ittot

Jul-01 387 1778 85 198 803 58744 61.0% 28.9% 10.1% 0.0% 356.5 81 144
Jul-02 190 1081 83 193 794 63048 64.5% 26.3% 9.2% 0.0% 102.9 20 132
Jul-03 183 824 79 166 739 74531 72.1% 21.2% 6.7% 0.0% 260.7 58 136
Jul-06 183 856 78 165 740 66717 69.3% 23.3% 7.4% 0.0% 374.3 73 115
Jul-07 170 779 84 157 793 61250 64.9% 27.4% 7.7% 0.0% 114.9 25 114
Jul-08 187 739 75 144 714 54245 64.4% 27.7% 8.0% 0.0% 305.5 51 99
Jul-09 182 882 93 201 892 69486 64.5% 26.8% 8.7% 0.0% 260.0 44 105
Jul-10 204 1031 78 158 725 64805 68.6% 24.1% 7.3% 0.0% 535.2 97 109
Jul-13 181 860 88 182 815 67763 66.0% 26.0% 8.1% 0.0% 575.0 85 89
Jul-14 202 872 75 126 682 51714 63.7% 29.0% 7.3% 0.0% 543.8 73 81
Jul-15 179 903 100 185 951 75414 66.1% 26.5% 7.4% 0.0% 553.6 58 63
Jul-16 198 663 74 137 720 60707 68.7% 24.4% 6.8% 0.1% 541.0 50 55
Jul-17 197 890 78 143 714 52102 61.7% 29.9% 8.2% 0.1% 514.4 49 57
Jul-20 173 744 95 173 890 73256 66.7% 25.9% 7.1% 0.3% 581.4 60 62
Jul-21 187 764 89 200 831 77416 68.9% 22.9% 7.8% 0.5% 359.6 43 74
Jul-22 189 643 99 188 895 80630 68.2% 24.6% 7.0% 0.2% 560.6 66 71
Jul-23 187 728 91 177 843 67854 65.0% 26.8% 7.8% 0.4% 544.7 74 82
Jul-24 173 748 83 170 742 65007 66.4% 25.5% 7.8% 0.2% 237.5 40 102
Jul-27 158 511 80 199 755 67593 67.4% 23.7% 8.8% 0.1% 575.4 136 143
Jul-28 159 532 70 150 652 54937 66.3% 25.5% 8.2% 0.1% 154.6 45 179
Jul-29 173 555 65 126 576 46977 64.1% 27.7% 8.0% 0.2% 379.8 125 194
Jul-30 101 275 85 196 752 57673 60.1% 29.4% 10.2% 0.3% 559.5 241 257
Jul-31 42 146 85 229 786 79983 70.1% 21.3% 8.6% 0.0% 341.0 583 1020

min 42 146 65 126 576 46977 60.1% 21.2% 6.7% 0.0% 102.9 20 55
avg 182 774 83 172 774 64863 66.0% 25.9% 8.0% 0.1% 405.7 95 151
max 387 1778 100 229 951 80630 72.1% 29.9% 10.2% 0.5% 581.4 583 1020

Table 2: Detailed results for RH-ILS with ∆ = 4 and 10 CPU minutes of time limit.

travels for slightly more than 80,000 km. The number of elapsed iterations is quite small with the
exception of Jul-31, where the number of revealed requests is very small. The algorithm requires
on average 400 seconds to reach the best solution, but in some cases it uses almost the entire time
limit (as for Jul-13 and Jul-20) showing that there is still some room for finding improved values.

5 Conclusions

We have introduced a new algorithm to plan the delivery of vehicles to dealers by auto-carriers over a
multiple-day planning horizon. This algorithm can handle a dynamic demand, a heterogeneous fleet
of vehicles, and operational constraints related to the loading of the vehicles on the auto-carriers. It
also considers a realistic objective function comprising terms related to traveled distances, vehicle
fixed costs, service costs, and penalties for late deliveries. The algorithm is based on a previously
proposed iterated local search heuristic which is embedded into a rolling horizon framework. Two
new operators have been introduced to deal with the multiple-day planning horizon. The algorithm
also incorporates a mechanism to balance demand and vehicle usage in a dynamic setting.

Computational results on data from a major logistics service provider show that considering a
planning horizon of 3 to 5 days within a rolling horizon is far superior to the sequential solution of
independent daily problems as it leads to a significant decrease in traveled distance. This behavior
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is explained by a more balanced workload and by a reduced number of visits to the dealers which
are made possible by the less myopic approach. This improved performance of the rolling horizon
algorithm is also accompanied by a decrease in total computing time compared with the sequential
approach. Experiments with the full objective function show that a rolling horizon of 3 to 5 days
usually leads to a significant improvement with respect to shorter horizons of just one or two days.
Finally, the algorithm is not too sensitive to the computing time limit and usually produces very
good results within just 10 minutes of computing time per day. An interesting extension to this
work would consist in taking advantage of stochastic information on future demands to further
improve transportation planning.
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