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Abstract. The two-echelon vehicle routing problem (2E-VRP) consists in making 

deliveries to a set of customers using two distinct fleets of vehicles. First-level vehicles 

pick up requests at a distribution center and bring them to intermediate sites. At these 

locations, the requests are transferred to second-level vehicles, which deliver them. This 

paper addresses a variant of the 2E-VRP that integrates constraints arising in City 

Logistics such as time window constraints, synchronization constraints, and multiple trips 

at the second level. The corresponding problem is called the two-echelon multiple-trip 

vehicle routing problem with satellite synchronization (2E-MTVRP-SS). We propose an 

adaptive large neighborhood search to solve this problem. Custom destruction and repair 

heuristics and an efficient feasibility check for moves have been designed and evaluated 

on modified benchmarks for the VRP with time windows.  
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1 Introduction
The two-echelon vehicle routing problem (2E-VRP) consists in routing freight from a central depot
to customers through a set of intermediate sites. The depot is an intermodal logistics site called the
distribution center (DC). It has some storage capacity, and it is where consolidation takes place.
Intermediate sites, usually called satellites, have little or no storage capacity but are located closer to
customers. Two fleets of vehicles are involved: first-level vehicles carry requests from the DC to the
satellites, and second-level vehicles carry requests from the satellites to the customers. First-level
vehicles are usually significantly larger than second-level vehicles.

Over the last few years freight transportation in urban areas has received much attention [7].
Indeed, because of increasing traffic congestion, environmental issues, and low average truckloads,
new policies (e.g., London Congestion Charges, Monaco UDC) and initiatives (Amsterdam City
Cargo) have emerged to ban large trucks from city centers. This movement is known as City Logistics
and represents a move from independent direct shipping strategies toward integrated logistics systems.
In this context, multi-echelon distribution systems and particularly two-tiered systems are often
proposed as an alternative to current distribution systems [8].

Several specific constraints arise in the urban context: time windows, multiple use of vehicles,
and synchronization. Delivery hours are often restricted because of customer requirements or city
regulations. Moreover, second-level vehicles are usually small in order to access every street, so even
a full load does not represent an entire work-day. Finally, operating a satellite in a city is expensive,
because of labor costs and high rent. More and more cities are allowing transporters to use dedicated
or existing infrastructure (reserved parking spaces, bus depots) to unload [7]. No storage capacity is
normally available at these locations, thus requiring a synchronization of the two levels.

The contribution of this paper is a solution methodology for a 2E-VRP that integrates constraints
that have not yet been addressed in the literature: time windows, synchronization, and multiple
trips. Similar problems have been discussed in [19] under the name two-echelon vehicle routing
problem with satellite synchronization (2E-VRP-SS) and modeled in [8] under the name two-echelon,
synchronized, scheduled, multidepot, multiple-tour, heterogeneous VRPTW (2SS-MDMT-VRPTW).
However, to the best of our knowledge, no implementation has been reported.

Related work includes models for City Logistics, multi-echelon vehicle routing problems with
multiple routes and transfer or synchronization constraints. A general model for City Logistics
systems is presented by Crainic et al. in [8], while Mancini focuses on multi-echelon systems [13]. The
2E-VRP was introduced by Gonzalez-Feliu and Perboli [10], who proposed a mathematical model.
Since then several algorithms have been developed: math-based heuristics [19, 18], clustering-based
heuristics [3], GRASP [5, 4, 30], and adaptive large neighborhood search (ALNS) [11]. Exact methods
include [12, 22, 24, 25]. Crainic et al. [6] study the impact of satellite location on the cost of a
2E-VRP solution compared to that of a VRP. A similar problem is the two-echelon location routing
problem (2E-LRP) [17]. Our problem also integrates some multiple-trip aspects [29] that have been
solved with tabu search [16] and ALNS [1]. See [9] for a detailed survey of synchronization in vehicle
routing problems. Recent papers on vehicle routing with transfers include [14, 15, 21] for the pickup
and delivery problem with transfers.

The remainder of this paper is organized as follows. Section 2 presents a formulation of the
problem, and Sections 3 and 4 are devoted to the solution method with a special focus on efficiently
solving the timing subproblem. Computational results are presented in Section 5.
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2 Problem formulation
In this section we define the problem and discuss the synchronization model at satellites. The
complete model is presented in A.

2.1 Problem statement

We introduce the two-echelon multiple-trip vehicle routing problem with satellite synchronization
(2E-MTVRP-SS). We consider a city distribution center (CDC), a set of satellites Vs, a set of requests
R, and two homogenous fleets of vehicles K1 and K2 of capacity q1 and q2, based at o1 and o2. Each
request r is located at the CDC at the beginning of the time horizon and must be delivered within
the time window [er, lr] to a customer denoted by dr (the set of customers is denoted by Vc). The
quantity associated with r is qr. No direct shipping from the CDC is allowed. Second-level vehicles
can perform multiple trips, which may start at different satellites. Satellites have no storage capacity,
thus requiring an exact synchronization between the vehicles of the two levels.

The 2E-MTVRP-SS is defined on a directed graph G = (V,A), which reflects the two-level
system. The first level is defined by G1 = (V1, A1) with V1 = {o1} ∪ {CDC} ∪ Vs and A1 =
{(o1, CDC)} ∪ {(CDC, i)|i ∈ Vs} ∪ {(i, j)|i, j ∈ Vs} ∪ {(i, o1)|i ∈ Vs}. The second level is defined by
G2 = (V2, A2) with V2 = {o2}∪Vc∪Vs and A2 = {(o2, i)|i ∈ Vs}∪{(i, j)|i ∈ Vs, j ∈ Vc}∪{(i, j)|i, j ∈
Vc}∪{(i, j)|i ∈ Vc, j ∈ Vs}∪{(i, o2)|i ∈ Vc}. With each arc (i, j) ∈ A = A1∪A2 is associated a travel
time ti,j and a travel cost ci,j . Each node i has a known service time si. Solving the 2E-MTVRP-SS
involves finding |K1| first-level routes and |K2| second-level routes, and a schedule for them, such
that the capacity and time-related constraints are satisfied.

2.2 Transfer and synchronization at satellites

We define a transfer as the operation during which a first-level vehicle transmits one or more requests
to a second-level vehicle at a satellite. Given the time windows on the customer requests and the lack
of storage capacity at the satellites, the two vehicles must be at the satellite at the same time. Thus,
the first and second levels must be synchronized. Figure 1 illustrates the temporal aspects of a transfer.

tt1 t2 t3 t4

sR sT sL

First-level vehicle:

Second-level vehicle:

Figure 1: Time chart for a transfer

sR [t1, t2] : The first-level vehicle arrives at t1 and gets ready to transfer. The second-level vehicle is
not involved.
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sT [t2, t3] : Time in common for the vehicles of both levels. For a transfer to occur, the two vehicles
should spend at least this time together at the satellite.

sL [t3, t4] : The first-level vehicle is not involved. The second-level vehicle loads the requests that
were transferred. The time does not depend on the transferred quantity.

If t2 ≥ t1 + sR, the first-level vehicle must wait. Conversely, if t2 ≤ t1 + sR the second-level vehicle
must wait for the first-level vehicle. If the first-level vehicle transfers requests to several second-level
vehicles, it cannot leave before maxi∈K2 ti+ sT . sR, sT , and sL can be integrated into the travel time
from and to the satellites, to simplify the model. Thus, we later consider that all the transfer-related
periods (sR, sT , sL) are equal to zero. If a second-level vehicle returns several times to pick up
requests from the same first-level vehicle at the same satellite, each visit corresponds to a different
transfer.

3 An ALNS for the 2E-MTVRP-SS
In this section we describe the destruction and repair methods used in our ALNS for the 2E-MTVRP-
SS. ALNS was created by Ropke and Pisinger [23] as an extension of the large neighborhood search
introduced by Shaw [27], which iteratively destroys and repairs the current solution using heuristics.
ALNS adds an adaptive layer that chooses among several heuristics based on scores that depend on
past successes. ALNS has been widely used to solve vehicle routing problems (see for example [20]);
see [23, 20] for an extensive description of the method. In the following, we focus on the components
of our method.

3.1 Destruction methods

When partially destroying a solution we select a method and a percentage p of the total number of
requests to remove. Unless stated otherwise, this method is reused until p is reached. Following Azi
et al. [1], we use three levels of destruction methods: workday, route, and customer.

3.1.1 Workday level

The following operators are used for first- and second-level vehicles.
Random Vehicle Removal: We randomly remove a vehicle.
Least Used Vehicle Removal: We remove the vehicle with the smallest load. For the second level, the
total load of a vehicle is defined as the sum of the load of each trip.

3.1.2 Route level

Random Trip Removal: We randomly remove a trip from the solution.
First-level Stop Removal: We randomly remove a first-level stop from the solution. The trips that
contain this stop are removed.
Trip Related Removal: This method is similar to that of Azi et al. [1]. Trips are removed based on a
proximity measure: we start by randomly selecting a trip and removing it. We then find the trip
that contains the nearest customer to any customer in the trip just removed, and we remove that
trip.
Synchronization-Based Trip Removal: Intuitively, a good synchronization occurs when the vehicles
involved arrive at approximately the same time. If a second-level vehicle arrives a long time before
(or after) the first-level vehicle there will be a long waiting time; this should be avoided. This method
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removes the trip for which the time between the arrival of the second-level vehicle and the arrival of
the first-level vehicle is maximum.

3.1.3 Customer level

Random Customer Removal: We randomly remove a customer.
Related Removal Heuristics: These methods aim to remove related requests. Let the relatedness
of requests i and j be R(i, j). We use two distinct relatedness measures: distance and time. The
distance measure is the distance between the delivery points of i and j. The time measure is the sum
of the absolute gap between their earliest delivery times and the absolute gap between their latest
delivery times. Each measure is normalized by dividing it by the longest distance (resp. travel time)
between two customers. In both cases a lower R(i, j) value indicates a great degree of relatedness.

We ran preliminary tests to compare these two measures with that of Shaw [27], which groups
time and distance into a single measure. The methods give similar results, but we have chosen time
and distance because they do not require parameter tuning.
History-Based Removal: This is inspired by [14] and removes requests that seem poorly placed in
the current solution with regard to the best-known solutions. For requests r and r′, let ξr,r′ be the
number of solutions among the 50 best-known in which r′ is a direct successor of r. For request r
and satellite s, let χs,r be the number of solutions in which r is delivered via a transfer at s. For
each request r, delivered in the current solution via a transfer at s, we define a score φ as follows:

φr = ξδ−(r),r + ξr,δ+(r) + χs,r.

Then we remove the p requests with the lowest scores.

3.2 Repair methods

In this section we describe the methods used to repair a solution. We first describe the three different
ways to insert a given customer into a given second-level route, and then we describe the repair
methods.

3.2.1 Three insertion operators

In the VRP, the insertion of a customer c into a partially built solution is fully described by giving
the route and the position for the insertion. Thus, all possible insertions can be described by the
unique set {(v, p) : v ∈ Vehicles, 0 ≤ p ≤ |route(v)|+ 1}. Given the multiple-trip and two-echelon
characteristics of the 2E-MTVRP-SS, there are three distinct ways of inserting a customer into a
solution. We call them insertion operators and describe them below.

Insertion into an existing trip: The customer is inserted into an existing trip.
Insertion by creation of a new trip: A new trip is created for the customer. This new trip can be

connected either to an existing stop or to a newly created stop of a first-level vehicle.
Insertion by trip split: Before inserting c into trip t, we split t into two trips, t1 and t2. Trip t1

is still connected to the same first-level stop as t, but t2 is connected either to an existing stop or to
a newly created stop of a first-level vehicle. This vehicle can be different from that involved in t1.
Then c is inserted into one of the two resulting trips. Figure 2 illustrates the use of a split trip operator.
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βp

d1 d2 ... dn−1 dn

βp+1Transfers:

Deliveries:

(a) Example of a second-level trip; β is a transfer and di is a delivery
point.

βp

d1 ... dk−1 d̃ dk ... dl−1

β̃

dl ... dn

βp+1

(b) Insertion into the first trip

Figure 2: Example of the use of a trip split operator with insertion of the request into the first
resulting trip.

3.2.2 Reducing the size of the neighborhoods

The insertion of a request corresponds to two decisions: one at the first level and one at the second
level. Thus, the neighborhoods generated by the insertion operators are huge. For example, to test
every possible insertion of a request r with the trip split operator, we have to test for each pair
(insertion position, split position) in each trip of second-level vehicles, each existing stop of first-level
vehicles, and each creation of a stop (i.e., each satellite at each position). To ensure a reasonable
runtime, we have created restricted neighborhoods.

For the trip split we have introduced two variants: existing stops and customer first. In the
existing stops variant, we try to connect t2 with an existing stop of a first-level vehicle. In the
customer first variant, we first select the insertion position that leads to the smallest increase in the
cost of the global solution. Then we select the best possible way to split t into feasible trips t1 and
t2, trying both existing and newly created first-level stops.

When we create a new first-level stop to be connected to a second-level trip, it is likely that the
best choice for the satellite will be close to the second vehicle. At the beginning of our algorithm
we sort the satellites in order of distance for every pair of customers. When creating a new trip
connected to a new first-level stop, we consider only the s satellites closest to the pair (predecessor
of the trip, first customer in the trip). This is used for the trip creation and the variants of the trip
split operator.

As shown in Section 5.3.4, using these restricted neighborhoods makes our algorithm about 3.3
times faster while maintaining the quality of the solution.

3.2.3 Repair methods

All the unplanned requests are stored in a request bank.
Best insertion: From the requests in the request bank, we insert the one with the cheapest

insertion cost considering all possible insertion operators.
K-Regret: For each request in the request bank, let δir represent the gap between the insertion

of r at its best position in its best trip and the insertion at its best position in its ith best trip.
We select the request where

∑k
i=2 δ

i
r is maximum. In other words, we maximize the sum of the

differences of the cost of inserting request r into its best trip and its ith best trip. To control the
computational time, we use small values of k (generally less than 5).
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3.2.4 First-level routes

Inserting a request r by moving a first-level vehicle to a new satellite generates a large increase in
the routing cost compared to transferring the request at a transfer point. Thus, it is rare for repair
methods to choose such insertions. However, subsequent insertions may benefit from a new transfer
point, because the second-level vehicle may have a smaller distance to travel. Therefore, when an
insertion operator creates a new stop, we consider the following biased cost:

Biased cost = second-level insertion cost

+ first-level insertion cost×max
(
α,

load in second-level trip
second-level vehicle capacity

)
. (1)

In this biased cost, we acknowledge that if there is some room in the second-level trip, then it is
likely that we will later use it for a customer. For our instances, after some tuning, we have used
α = 0.7 for the trip creation operator and α = 0 for the trip split operator and its variants.

3.3 Initial solution

We designed a two-phase constructive algorithm to obtain the initial solution. First, we schedule the
second level using a best insertion algorithm for a multiple-trip multiple-depot problem. Then we
create the first-level routing that corresponds to visits to the satellites created by the second-level.

As shown in the experiments (see Section 5.3.1), although this method creates initial solutions
with more vehicles than those obtained by applying a best insertion at both levels, it is a better
starting point for the fleet reduction because on average we are able to find better solutions later in
the search process.

4 Route scheduling and feasibility algorithm
In this section we describe an efficient way to schedule the routes of a given solution and to test if
an insertion is feasible with respect to the time and precedence constraints. We use the notation in
Table 1.

Notation Definition
ψu,v ordered set of vertices on path (u, . . . , v)
δ+(i) direct successors (resp. predecessors) of a vertex

i
Γ+(i) set of all successors of i
Ωu,v set of paths from u to v

Table 1: Notation in the temporal graph

4.1 Modeling of precedence and synchronization constraints

Given the routes in a solution of the 2E-MTVRP-SS, we can represent the time constraints as a
directed acyclic graph, Gt. This precedence graph is built as follows: for every operation except
transfers, we create a node and add an arc to each of its successors in the given route. Each arc (u, v)
has a weight that corresponds to tu,v. For a transfer we create three nodes: a transfer entrance node
Te, a transfer exit node Tx for the first-level vehicle, and a pick-up node β for the second-level vehicle.
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We create three arcs (Te, Tx), (Te, β), (β, Tx) with weight 0. If the first-level vehicle transfers its
load to several second-level vehicles, we create only one pair (Te, Tx). We assume that transfers to
second-level vehicles can occur simultaneously. Figure 3 illustrates this transformation.

(a) First-level stop with two transfers

... Te Tx ...

... β1 ...

... β2 ...

First-level vehicle:

Second-level vehicle 1:

Second-level vehicle 2:

(b) Precedence graph representation.

Figure 3: A first-level stop with two transfers and its precedence graph representation.

4.2 Route scheduling

Gt corresponds to a PERT chart. As mentioned in [2] (p. 657), scheduling tasks in such a diagram
can be performed using a shortest-path algorithm, with linear complexity. Furthermore, in an
as-early-as-possible schedule, after a change, only the downstream operations have to be rescheduled,
thus reducing the number of modifications to be performed.

4.3 Efficient feasibility testing for insertion of requests

When evaluating an insertion of an unplanned request into a feasible solution, we need to ensure that
the solution will remain feasible after the insertion. With the insertion operators of Section 3.2.1,
infeasibility can occur in three ways: by exceeding the capacity of a vehicle, violating a time window,
or creating a cycle of precedence constraints. In the following section we will discuss our method to
efficiently check if an insertion violates a time window or creates a cycle in the precedence graph.

4.3.1 Extension of forward time slacks [26]

Inserting a request into a feasible solution of a VRP may postpone several deliveries, thus leading to
the violation of a time window. To avoid rescheduling a route for each insertion attempt, which has
linear complexity, Savelsbergh introduced a method [26] that checks in constant time if an insertion
generates a time-window violation. It is based on the computation of so-called forward time slacks
(FTSs), which correspond to the maximum possible forward shift of an operation that does not lead
to a time-window violation later in the route.
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Let the total waiting time on path (u, . . . , v) be TWTψu,v =
∑

i∈ψδ+(u),v

wi. The FTS at node u is

Fu = min
i∈{u}∪Γ+(u)

{TWTψu,i + li − hi}.

As pointed out by Drexl [9], there is an interdependence problem relating to synchronization. A
change in one route may have effects on other routes, potentially making them infeasible. For
example, in the pickup and delivery problem with transfers (PDPT), if a vehicle A has to collect a
request at a transfer point, then a vehicle B collected the request at its pickup location. Thus, a
delay of B will affect A. Masson et al. [15] extended FTS to the PDPT. We present below their
main results.

First, the notion of slack time is introduced. It is a generalization of the total waiting time
between two nodes:

STu,v = min
w∈Ωu,v

TWTw.

Then in the case of the PDPT, the FTS at node u becomes:

Fu = min
i∈{u}∪Γ+(u)

{STu,i + li − hi}.

Masson et al. proved the above result for a precedence graph modeling a PDPT. These results are
valid for any precedence graph.

The constant-time feasibility tests provided by FTS come at the expense of recomputing FTS
every time an insertion is performed. However, since a local-search-based algorithm usually tests
many more insertions than it actually performs, this trade-off is efficient. In contrast to Masson et
al., we recompute FTS using the Floyd–Warshall algorithm ([2], p. 693), which is faster in our case
than the suggested shortest path method.

4.3.2 Feasibility check for precedence constraints

Some insertion operators create new transfers, which may lead to infeasible precedence relations (see
Figure 4 for an illustration). We extend the method of Masson et al. [15] for detecting cycles in
constant time.

... ... β ...

... Te Tx ... ...

β̃

T̃e T̃x

Figure 4: Infeasible insertion: it creates a cycle in the precedence graph.

Proposition 1. Synchronizing a first-level stop T and a second-level trip (β → d1 . . . dn) creates a
cycle in the precedence graph if and only if

Te ∈ Γ+(β) or β ∈ Γ+(Tx).
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Proof. ⇒ With the synchronization, only two arcs are created (Te → β) and (β → Tx). One of them
is responsible for the cycle. If it is (Te → β), previously Te ∈ Γ+(β). If it is (β → Tx), previously
β ∈ Γ+(Tx).
⇐ If Te ∈ Γ+(β), since β ∈ δ+(Te) by definition, a cycle is created. If β ∈ Γ+(Tx), since β ∈ Γ+(Tx)
by definition, a cycle is created.

Corollary 1. Synchronizing a new first-level stop inserted after node i and a new second-level trip
inserted after node j creates a cycle in Gt if and only if

i ∈ Γ+(j) or j ∈ Γ+(i).

By maintaining a list of successors for each point in the precedence graph, we can check if an
insertion violates a precedence constraint.

4.3.3 Efficiency of the method

We compare the running time of the FTS extension versus a check based on an incremental PERT:
on average, performing 25,000 iterations of the ALNS in the cost optimization phase is approximately
12 times faster with the FTS extension than with the PERT (see Section 5.3.2).

5 Computational experiments
In this section we first describe the adaptation of some well-known VRPTW instances to the
2E-MTVRP-SS. The parameter configuration is discussed in Section 5.2. In Section 5.3 we show
that our custom heuristics are efficient, and we present our results.

5.1 Instances

Since the 2E-MTVRP-SS is a new problem, there are no instances for it. We adapt the well-known
Solomon’s instances for the VRPTW [28]. We used a subset of these instances to tune our algorithm:
the first two of every type, for a total of 12 tuning instances.

5.1.1 Geographical configuration

The customer requests are unchanged. The depot (node 0) is the base of second-level vehicles; the
first-level vehicles are based at the CDC.
We adopt the following X/Y/M/N notation to describe the position of the CDC and the satellites.
X and Y give the position of the CDC expressed as a percentage of the size of the map. M and
N describe the number of rows (resp. columns) of a grid. We locate a satellite at each exterior
intersection of the grid. Figure 5 illustrates a -50 / 50 / 3 / 3 configuration.

According to [6], the maximum benefit of the 2E-VRP compared to the VRP occurs when the
CDC is external (outside the customer’s zone), thus saving travel from the depot to the customers
and back, and when the satellites are between the CDC and the customers. The appropriate satellite
number is between 7 and 10 for instances with between 100 and 200 customers. In all the benchmarks
we use a 50 / 150 / 3 / 3 configuration.
Because the CDC is situated farther from the customers than the depot, some orders may be
impossible to deliver. We therefore add an offset δ to each time window, with δ = dtCDC,Depote.
Hence, a time window [ei, li] in a Solomon instance becomes [ei + δ, li + δ].
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25%50%

50%S1 S2 S3

S4 S5

S6 S7 S8

CDC

Figure 5: Geometrical layout -50 / 50 / 3 / 3.

5.1.2 Vehicle configuration

According to Savelsbergh, the instances labeled with a 1 (R1, C1, RC1) have short scheduling
horizons, whereas instances labeled with a 2 have long scheduling horizons. Thus, the former are
more time-constrained, and the latter are more capacity-constrained. To preserve this idea we use
the following ratios for first-level vehicles/second-level vehicles: 4/0.5 ratio for instances 1; 2/0.25
ratio for instances 2.

5.1.3 Objective function

The number of vehicles is not fixed, so we consider the following hierarchical objective: (1) number
of first-level vehicles, (2) number of second-level vehicles, (3) routing cost.

5.2 Parameter configuration

In this section we discuss the parameters used in our algorithm.

5.2.1 Parameters for fleet optimization phase

We use a sequential optimization scheme to reduce the number of vehicles. We start by reducing
the number of first-level vehicles and then we reduce the number of second-level vehicles. When we
find a feasible solution with n+ 1 vehicles, we start looking for a feasible solution with n vehicles
by calling the least-used-vehicle removal heuristic. LB1 = d

∑
r∈R dr/q1e is a lower bound on the

number of first-level vehicles. If we reach it, we switch to the reduction of the number of second-level
vehicles. Overall, we perform 25,000 iterations with no more than half of them dedicated to the
reduction of the first-level fleet. We use an LNS (without the adaptive layer) in this phase.

5.2.2 Parameters for cost optimization phase

In the cost optimization phase we use the following parameters (w, c, σ1, σ2, σ3, r, ρmin, ρmax)=(0.05,
0.99975, 33, 9, 13, 0.1, 10%, 40%). The notation is that of Ropke and Pisinger [23]. We again
perform 25,000 iterations, since this gives a compromise between runtime and solution quality.
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5.2.3 Heuristics

For both the fleet optimization phase and the cost reduction phase, we use the following heuristics.
Destruction heuristics: random vehicle removal, least-used-vehicle removal, random trip removal,
first-level stop removal, trip-related removal, synchronization-based trip removal, random customer
removal, distance-related removal, time-related removal, history-based removal.
Repair heuristics: best insertion, 3-Regret, 4-Regret, 5-Regret. Each was used in three variants:
without split, existing stops, and customer first (see Section 3.2.2).

5.3 Results

The algorithm was coded in C++, and the experiments were conducted using a single core of an
Intel Xeon X5675 @ 3.07GHz under Linux. We report figures for a subset of 12 instances, and the
best and average solutions found for all instances.

5.3.1 Impact of two-phase initialization

For the initial solution, using the two-phase best insertion creates more vehicles than applying a
best insertion at both levels. However, as shown in Table 2, after the fleet optimization phase, it
gives better results. We therefore use it as a starting point.

Average initial solution Average solution after fleet opt. Best solution after fleet opt.
Best Insertion Two Phase Best Insertion Two Phase Best Insertion Two Phase

Instance FL SL FL SL FL SL FL SL FL SL FL SL
c101 3.0 13.0 3.16 13.0 3.0 11.32 3.0 11.28 3 11 3 11
c102 3.0 13.0 3.04 12.0 3.0 10.0 3.0 10.0 3 10 3 10
c201 2.0 4.0 2.0 4.0 2.0 4.0 2.0 3.72 2 4 2 3
c202 2.0 4.0 2.0 4.0 2.0 3.24 2.0 3.04 2 3 2 3
r101 2.0 22.0 2.84 22.0 2.0 19.72 2.0 19.64 2 19 2 19
r102 2.0 21.0 2.88 20.0 2.0 18.08 2.0 18.00 2 18 2 18
r201 1.0 5.0 2.0 5.0 1.0 4.0 1.0 4.0 1 4 1 4
r202 1.0 5.0 2.43 5.0 1.0 3.88 1.0 3.90 1 3 1 3
rc101 3.0 21.0 4.28 20.0 3.0 16.48 3.0 16.56 3 16 3 16
rc102 3.0 18.0 5.24 17.0 3.0 14.4 3.0 14.2 3 14 3 14
rc201 1.0 6.0 3.0 5.0 1.0 4.0 1.0 4.0 1 4 1 4
rc202 1.0 5.0 2.0 5.0 1.0 4.0 1.0 4.0 1 4 1 4

Table 2: Comparison of the results of the fleet optimization phase, using best insertion or two-phase
best insertion as initialization methods. The FL (resp. SL) columns indicate the number of

first-level (resp. second-level) vehicles. Bold figures indicate best known solution; italics indicate
best average solution.

5.3.2 Time spent in each part of algorithm

On average the repair heuristics are far more time consuming than the destruction heuristics (96.1%
versus 1.1% of the total runtime). This is because our destruction methods reschedule the entire
solution only when p customers have been removed from the current solution, and not after each
removal. This reduces the computational effort necessary.

5.3.3 Impact of FTS on reduction of runtime

Using the extended FTS instead of an incremental PERT to check the feasibility of an insertion is
key to reducing the computational effort, as shown in Table 3: with FTS our algorithm is 91.9%
faster. Moreover, this gain is almost independent of the instance. In the cost optimization phase,
about 16.6% of the runtime is spent updating the FTSs, while 21.1% of the runtime is spent checking
if an insertion is feasible timewise.
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Instance c101 c102 c201 c202 r101 r102 r201 r202 rc101 rc102 rc201 rc202
PERT (in min) 529.2 527.1 768.1 912.0 330.9 270.4 499.0 937.5 403.0 522.0 687.8 1599.0
FTS (in min) 42.4 56.2 55.4 77.9 26.0 32.8 42.6 72.9 26.2 42.8 50.6 63.5
Difference (in %) -92.0 -89.3 -92.8 -91.5 -92.1 -87.7 -91.5 -92.2 -93.5 -91.8 -92.6 -96.0

Table 3: Computational time for incremental PERT versus FTS for 25,000 iterations in the cost
optimization phase

5.3.4 Impact of reduced neighborhoods on solution quality and runtime

Table 4 shows the impact of the reduced neighborhoods on the solution quality and the runtime. We
observe that using these neighborhoods has a limited impact on the solution quality (less than 0.20%),
but the runtimes are significantly reduced (by 70%). The runtime reduction is larger for type-2
instances, which are capacity constrained, than for type-1 instances, which are time constrained. This
is expected, because the tighter the time constraint the smaller the number of reachable satellites.
Based on these results we have chosen the following configuration (neighborhood 4 in Table 4): we
use customer first and existing stops instead of the full trip split operator, and we limit the number
of satellites explored to three when creating a new stop for a first-level vehicle.

Neighborhood 1 Neighborhood 2 Neighborhood 3 Neighborhood 4 Neighborhood 5
Instance avg. cost avg. time avg. cost avg. time avg. cost avg. time avg. cost avg. time avg. cost avg. time
c101 2049.70 82.6 2045.41 64.2 2057.80 39.4 2056.84 41.0 2059.46 49.2
c102 1976.38 255.6 1981.15 87.2 1978.91 48.3 1976.26 54.8 1974.45 65.8
c201 1415.90 273.8 1416.55 78.9 1413.75 50.8 1414.83 55.6 1416.24 66.9
c202 1331.92 692.7 1351.76 103.0 1340.33 70.0 1335.16 77.3 1340.37 87.3
r101 2354.25 38.6 2342.03 36.8 2348.75 22.2 2347.57 23.5 2351.79 29.6
r102 2150.24 82.9 2156.62 47.7 2154.83 27.8 2157.93 32.3 2158.27 39.6
r201 1608.31 196.6 1620.73 54.0 1611.62 37.9 1606.58 42.7 1612.29 48.0
r202 1612.91 697.6 1614.86 94.6 1598.76 68.1 1611.59 73.0 1598.96 79.8
rc101 2625.63 46.7 2607.49 40.6 2626.38 24.5 2613.35 26.2 2641.05 31.8
rc102 2474.25 130.3 2499.48 61.6 2467.24 35.4 2461.66 38.7 2497.12 48.6
rc201 1827.67 221.9 1827.07 66.9 1823.43 42.3 1819.67 45.9 1830.01 56.1
rc202 1882.10 991.7 1869.90 127.7 1903.28 95.1 1890.92 99.2 1893.47 120.2
Dev. from Neigh. 1 - - 0.16% -56.1% 0.08% -73.0% -0.05% -70.8% 0.24% -64.5%

Table 4: Comparison of the average cost and runtime over 10 runs for 5 different neighborhood
configurations. Configuration 1 uses the entire split trip neighborhood. In configuration 2 the split
trip operator is replaced by its variants customer first and existing stops. In configurations 3 to 5
the number of satellites explored when creating a new first-level stop is limited to s, with s = 2 in
neighborhood 3, s = 3 in neighborhood 4, and s = 4 in neighborhood 5. Bold figures indicate best

values.

5.3.5 Impact of custom destruction and repair methods on cost optimization phase

We now focus on the contribution of our new heuristics to the solution of the 2E-MTVRP-SS. Figure 6
shows the evolution of the solution cost in the cost optimization phase for four different configurations:
with every heuristic, without the synchronization-based removal heuristic, without the split-recreate
heuristics, and without biased cost (see Section 3.2.4). Not using synchronization-based removal
leads to solutions that are 0.74% more expensive on average (0.62% for the best known solution).
Not using split-recreate heuristics is 0.42% more expensive on average (0.65% for the best known
solution). Not using biased cost is 0.19% more expensive on average (0.42% for the best known
solution). Considering how hard it is to move within the space of feasible solutions because of the
interdependence problem, these figures, although small, show that the custom heuristics are effective.

5.3.6 Solutions

In Table 5, we report the best and average results found based on 10 runs for each instance. In the
fleet optimization phase, we observe that the number of first-level vehicles is always equal to LB1
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Figure 6: Comparison of the evolution of the average solution quality for 4 different ALNS
configurations; 10 runs were performed for each instance. The results have been normalized, with

100 representing the final cost of the best configuration in each case.

and thus optimal. In the cost optimization phase, there is an average gap of 3.75% between the best
solution and the average results. In Table 6, we evaluate the impact of the instance characteristics
on the routing network used by the vehicles. We notice that there are on average more trips in
second-level routes for type-2 instances (capacity-constrained), and that more satellites are used in
instances with clustering.

6 Conclusion
We have presented an extension of the well-known 2E-VRP that takes into account constraints
arising in City Logistics (time window constraints, synchronization constraints, and multiple trips for
some vehicles). We have developed an ALNS to solve the 2E-MTVRP-SS, which has both custom
destruction and repair heuristics and an efficient way to check if an insertion is feasible. These
contributions help to find good solutions in a reasonable time, thus making it possible to consider
this algorithm for other vehicle routing problems with synchronization constraints.

Appendix A Mathematical formulation
We present a mixed integer linear programming formulation for the 2E-MTVRP-SS. In the model,
to represent the transfer of one request at one satellite, for each request r and satellite s we create a
node vs,r, and we denote by Ṽs = {vi,r|vi ∈ Vs, r ∈ R} all the satellites. For each vehicle k we create
a start node ok and an end node o′k (Õk = ∪kok, Õ′k = ∪ko′k).

The mathematical formulation is defined on a graph Gmath = (V math, Amath). The first level
is Gmath

1 = (V math
1 , Amath

1 ) with V math
1 = Õ1 ∪ Õ′1 ∪ Ṽs and Amath

1 = {(o, i)|o ∈ Õ1, i ∈ Ṽs} ∪
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Average Best Known Solution
Instance FL SL T1 (min) Cost T2 (min) FL SL T1 (min) Cost T2 (min)
c101 3.0 11.7 26.2 2035.3 42.4 3 11 27.1 2013.7 44.2
c102 3.0 10.0 36.8 1978.4 56.2 3 10 32.7 1947.3 63.3
c103 3.0 9.0 50.6 1942.7 70.4 3 9 46.1 1893.5 71.9
c104 3.0 9.0 57.9 1848.1 77.8 3 9 62.4 1812.8 73.0
c105 3.0 10.9 28.6 1945.3 46.6 3 10 32.9 1934.0 47.4
c106 3.0 10.8 30.2 1987.7 52.0 3 10 33.4 1968.7 53.1
c107 3.0 10.0 31.9 1905.4 49.4 3 10 27.9 1898.5 41.6
c108 3.0 10.0 37.0 1907.6 48.8 3 10 41.3 1888.7 48.9
c109 3.0 9.1 43.9 1961.7 64.1 3 9 40.4 1920.5 59.9
c201 2.0 3.5 27.8 1417.7 55.4 2 3 19.4 1417.5 50.8
c202 2.0 3.0 35.9 1311.3 77.9 2 3 40.9 1305.0 77.9
c203 2.0 3.0 49.9 1280.2 98.0 2 3 56.8 1272.7 86.1
c204 2.0 3.0 56.7 1270.6 106.1 2 3 47.2 1238.2 101.2
c205 2.0 3.0 27.7 1318.9 50.8 2 3 28.3 1312.1 50.0
c206 2.0 3.0 33.9 1304.3 58.8 2 3 29.4 1292.2 56.9
c207 2.0 3.1 34.4 1304.1 65.4 2 3 32.4 1280.7 61.1
c208 2.0 3.1 38.2 1317.1 61.9 2 3 37.1 1278.5 60.8
r101 2.0 19.7 20.5 2349.5 26.0 2 19 19.3 2335.3 24.5
r102 2.0 18.0 27.6 2153.0 32.8 2 18 23.8 2136.9 30.4
r103 2.0 13.9 40.3 1975.2 46.3 2 13 38.0 1949.6 39.9
r104 2.0 10.9 53.7 1785.2 71.3 2 10 51.8 1764.0 64.7
r105 2.0 15.2 22.3 2094.5 24.4 2 15 16.9 2075.0 25.2
r106 2.0 12.9 35.0 2065.4 38.8 2 12 32.8 2030.1 43.3
r107 2.0 11.2 45.4 1819.8 46.7 2 11 56.0 1796.3 39.5
r108 2.0 10.3 49.9 1709.1 61.5 2 10 56.2 1655.1 51.6
r109 2.0 12.9 30.1 1967.6 32.4 2 12 27.6 1915.6 31.2
r110 2.0 12.0 41.1 1891.3 49.2 2 12 43.9 1835.2 39.4
r111 2.0 12.0 42.7 1832.0 49.3 2 12 34.0 1773.5 38.1
r112 2.0 11.1 51.4 1823.8 57.9 2 11 45.9 1790.8 61.0
r201 1.0 4.0 43.2 1615.6 42.6 1 4 37.6 1594.0 45.4
r202 1.0 3.6 59.7 1606.5 72.9 1 3 59.6 1540.1 77.1
r203 1.0 3.0 80.2 1279.1 85.0 1 3 90.2 1270.8 81.9
r204 1.0 2.9 96.0 1192.5 81.7 1 2 33.3 1184.0 73.1
r205 1.0 3.0 56.4 1355.6 52.8 1 3 47.5 1319.0 54.3
r206 1.0 3.0 74.8 1253.0 72.0 1 3 78.2 1232.8 78.0
r207 1.0 3.0 94.2 1157.5 87.6 1 3 100.1 1143.3 68.7
r208 1.0 2.0 31.0 1081.7 86.5 1 2 37.6 1067.1 80.8
r209 1.0 3.0 77.8 1270.5 69.3 1 3 66.3 1263.0 76.2
r210 1.0 3.0 74.1 1300.7 79.5 1 3 75.5 1279.8 80.3
r211 1.0 3.0 103.9 1146.4 90.7 1 3 89.4 1114.4 84.2
rc101 3.0 16.4 18.7 2626.0 26.2 3 16 16.2 2577.0 24.1
rc102 3.0 14.3 28.9 2451.6 42.8 3 14 29.1 2420.5 49.4
rc103 3.0 12.0 41.7 2530.3 115.3 3 11 48.6 2479.8 120.0
rc104 3.0 11.1 55.3 2167.1 72.6 3 11 64.2 2103.9 63.2
rc105 3.0 15.6 24.3 2595.5 39.3 3 15 22.5 2565.3 39.1
rc106 3.0 13.9 27.4 2601.4 59.8 3 13 36.0 2517.5 49.4
rc107 3.0 13.1 36.2 2335.0 49.9 3 13 29.8 2267.8 48.4
rc108 3.0 12.2 46.3 2258.7 60.1 3 12 48.0 2222.3 49.0
rc201 1.0 4.0 40.5 1831.8 50.6 1 4 41.5 1803.0 50.9
rc202 1.0 4.0 70.6 1546.1 63.5 1 4 55.5 1516.1 71.2
rc203 1.0 3.0 62.7 1462.8 94.2 1 3 69.4 1454.1 103.2
rc204 1.0 3.0 80.5 1228.6 99.6 1 3 71.6 1203.7 116.8
rc205 1.0 4.0 58.2 1706.5 57.8 1 4 63.0 1687.1 51.8
rc206 1.0 3.3 56.6 1636.8 72.5 1 3 48.3 1579.4 66.8
rc207 1.0 3.1 64.3 1510.0 100.3 1 3 60.4 1487.2 96.2
rc208 1.0 3.0 84.7 1310.1 102.2 1 3 75.6 1278.8 86.0

Table 5: Average and best solutions. FL (resp. SL) columns indicate the number of first-level (resp.
second-level) vehicles. T1 (resp. T2) is the time spent in the fleet optimization (resp. cost

optimization) phase. Bold figures indicate optimal values. Italics indicate that the average value is
equal to its equivalent in the best known solution.

Type avg. no. stops in FL routes avg. no. trips in SL routes no. of satellites used
C1 2.6 2.5 6.1
C2 2.7 4.8 5.2
R1 2.2 1.5 3.5
R2 2.7 2.7 2.3
RC1 2.6 1.8 5.6
RC2 3.8 2.7 3.3

Table 6: Comparison of the number of stops in first-level routes, the number of trips in second-level
routes, and the number of satellites used for each type of instance.
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{(i, j)|i, j ∈ Ṽs} ∪ {(i, o′)|i ∈ Ṽs, o
′ ∈ Õ′1}. The second level is Gmath

2 = (V math
2 , Amath

2 ) with
V math

2 = Õ2 ∪ Õ′2 ∪ Vc ∪ Ṽs and Amath
2 = {(o, i)|o ∈ Õ2, i ∈ Ṽs} ∪ {(i, j)|i ∈ Ṽs, j ∈ Vc} ∪ {(i, j)|i, j ∈

Vc} ∪ {(i, j)|i ∈ Vc, j ∈ Ṽs} ∪ {(i, o′)|i ∈ Vc, o′ ∈ Õ′2}. We introduce the following variables:

xki,j =
{

1 if vehicle k travels from node i to node j
0 otherwise

hi = service time at node i
ui = load of the second-level vehicle after serving i.

We introduce two constants: Mh corresponds to the end of the planning horizon, and Mu is the sum
of all the ordered quantities.

min
∑
k∈K1

∑
(i,j)∈Amath

1

xki,jci,j +
∑
k∈K2

∑
(i,j)∈Amath

2

xki,jci,j (2)

s.t. ∑
(ok,j)∈Amath

e

xkok,j =
∑

(j,o′
k
)∈Amath

e

xkj,o′
k

= 1 ∀e ∈ {1, 2}, ∀k ∈ Ke (3)

∑
(i,j)∈Amath

e

xki,j =
∑

(i,j)∈Amath
e

xkj,i ∀e ∈ {1, 2},∀k ∈ Ke,∀i ∈ V math
e \ (Õe ∪ Õ′e) (4)

∑
k∈K2

∑
(j,dr)∈Amath

2

xkj,dr = 1 ∀r ∈ R (5)

∑
k∈Ke

∑
j∈Vs,r

∑
(i,j)∈Amath

e

xki,j = 1 ∀e ∈ {1, 2},∀r ∈ R (6)

∑
k∈K1

∑
(i,vs,r)∈Amath

1

xki,j =
∑
k∈K2

∑
(i,vs,r)∈Amath

2

xki,j ∀v ∈ Vs,∀r ∈ R (7)

∑
v∈Vs,r

∑
(i,v)∈Amath

2

xkj,v =
∑

(j,dr)∈Amath
2

xkj,dr ∀r ∈ R,∀k ∈ K2 (8)

hj ≥ hi + sj + ti,j −Mh × (1−
∑
k∈Ke

xki,j) ∀e ∈ {1, 2},∀(i, j) ∈ Amath
e (9)

hok ≥ 0 ∀k ∈ K (10)
ei ≤ hi ≤ li ∀i ∈ Vc (11)
ho′

k
≤Mh ∀k ∈ K (12)∑

r∈R
qr ×

∑
j∈Vs

∑
(i,j)∈Amath

1

xki,jr ≤ q1 ∀k ∈ K1 (13)

uj ≥ ui + qi −Mu × (1−
∑
k∈K2

∑
(i,j)∈Amath

2

xki,j) ∀i ∈ V2 \O2 (14)

uj ≤Mu × (1−
∑
k∈K2

∑
i∈V math

2 \Ṽs

xki,v) ∀v ∈ Ṽs (15)

0 ≤ ui ≤ q2 ∀i ∈ V math
2 (16)

xki,j ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Amath (17)
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The objective function (2) minimizes the travel costs. Constraints (3) state that each vehicle must
start and end its route at its base. Constraints (4) are flow conservation constraints. Constraints
(5) ensure that each request is delivered. Constraints (6) ensure for each request that only one
transfer node is used, and (7) ensure that it is visited by both a first- and a second-level vehicle.
Constraints (8) ensure for each request that the second-level vehicle that visits the transfer node is
the one that delivers the request. Constraints (9) compute the travel time between two nodes if they
are visited consecutively by the same vehicle, and constraints (10) handle the special case of bases
for which there is no predecessor. Constraints (11) ensure that each request is delivered within its
time window. Constraints (12) ensure that each vehicle has completed its route within the time
horizon. Constraints (13) (resp. (16)) ensure for each first-level (second-level) vehicle that the load
does not exceed the vehicle capacity. Constraints (14) ensure for each second-level vehicle that the
load after visiting a node is equal to the load before plus (or minus) the quantity that has been
loaded (unloaded). Constraints (15) ensure that each second-level vehicle is empty when arriving at
a satellite.
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