

A Cycle-Based Evolutionary
Algorithm for the Fixed-Charge
Capacitated Multi-Commodity
Network Design Problem

Dimitris C. Paraskevopoulos
Tolga Bektas
Teodor Gabriel Crainic
Chris N. Potts

July 2014

 CIRRELT-2014-36

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge
Capacitated Multi-Commodity Network Design Problem†

Dimitris C. Paraskevopoulos1, Tolga Bektaş2, Teodor Gabriel Crainic3,*,

Chris N. Potts2

1 School of Management, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
2 School of Management,Centre for Operational Research, Management Science and Information

systems (CORMSIS), University of Southampton, Southampton, SO17 1BJ, United Kingdom
3 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)

and Department of Management and Technology, Université du Québec à Montréal, P.O. Box
8888, Station Centre-Ville, Montréal, Canada H3C 3P8

Abstract. This paper presents an evolutionary algorithm for the fixed-charge
multicommodity network design problem (MCNDP), which concerns routing multiple
commodities from origins to destinations by designing a network through selecting arcs,
with an objective of minimizing the fixed costs of the selected arcs plus the variable costs
of the flows on each arc. The proposed algorithm evolves a pool of solutions using
principles of scatter search, interlinked with an iterated local search as an improvement
method. New cycle-based neighbourhood operators are presented which enable complete
or partial re-routing of multiple commodities. An efficient perturbation strategy, inspired by
ejection chains, is introduced to perform local compound cycle-based moves to explore
different parts of the solution space. The algorithm also allows infeasible solutions
violating arc capacities while forming the “ejection cycles”, and subsequently restores
feasibility by systematically applying correction moves. Computational experiments on
benchmark MCNDP instances show that the proposed solution method consistently
produces high-quality solutions in reasonable computational times.

Keywords: Multi-commodity network design, scatter search, evolutionary algorithms,
ejection chains, iterated local search.

Acknowledgements. The authors gratefully acknowledge the following sources of
funding for this project: the Engineering and Physical Sciences Research Council
(EPSRC), the Rail Safety and Standards Board (RSSB) and Department of Transport, UK,
the Natural Sciences and Engineering Research Council of Canada (NSERC) through its
Discovery Grant programs, the Faculty Strategic Research Fund provided by the Faculty
of Business and Law at the University of Southampton, and the Fonds de recherche du
Québec, Canada for their infrastructure grants.

†Revised version of the CIRRELT-2013-08.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: TeodorGabriel.Crainic@cirrelt.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec

Bibliothèque et Archives Canada, 2014

© Paraskevopoulos, Bektaş, Crainic, Potts and CIRRELT, 2014

1 Introduction

The fixed-charge capacitated multi-commodity network design problem (MCNDP) con-
sists of designing a network on a given graph by selecting arcs to route a given set of
commodities between origin-destination pairs. Each arc has a predefined capacity speci-
fying the maximum flow that the arc can accommodate. Also, associated with each arc
are fixed and variable costs, where the fixed cost is incurred only if the arc is selected,
and the variable cost is a cost per unit of flow along the arc. Each commodity is defined
by an origin and a destination node and the amount to be transported. The objective is
to minimize the total cost of establishing the arcs and routing the flows.

The MCNDP has attracted much attention in the literature due to both its complex-
ity (the problem is NP-hard in the strong sense), and a wide variety of applications in
the areas of telecommunications, logistics, production and transportation systems (Bal-
akrishnan et al., 1997; Magnanti and Wong, 1986; Minoux, 1986). Despite the significant
efforts devoted to the development of exact methodologies for the MCNDP (Crainic
et al., 2001; Hewitt et al., 2010), the literature still favours heuristic approaches when
large-scale problem instances are involved. One of the most successful local search strate-
gies for the MCNDP is proposed by Ghamlouche et al. (2003), where new cycle-based
neighbourhood operators are incorporated in a tabu search framework. The cycle-based
operators are subsequently used within a path-relinking algorithm (Ghamlouche et al.,
2004), a multilevel cooperative framework (Crainic et al., 2006), and a scatter search
(SS) (Crainic and Gendreau, 2007). In the latter paper, the authors conclude that the
proposed SS failed to meet their expectations and further research is needed to realize
the full potential of SS.

Inspired and motivated by the advances in the heuristic approaches for the MCNDP,
this paper contributes to the existing body of work by: (i) proposing an efficient iterated
local search (ILS) that utilizes new and enhanced cycle-based neighbourhood operators,
long and short term memory structures, and an innovative perturbation strategy based on
ejection chains (Glover, 1996) that aims at guiding the search towards unexplored regions
of the solution space; (ii) introducing an efficient SS that considers the search history and
“solvency-based” measures to produce offspring; (iii) presenting results of computational
experiments conducted on benchmark instances using an algorithm incorporating the
various elements described above. The majority of the heuristics for the MCNDP utilize
a trajectory-based or an evolutionary framework to select arcs for inclusion in the design,
and subsequently call a commercial optimizer (e.g., CPLEX) to solve the corresponding
flow subproblem. As the flow subproblems become larger, the solution time for repeatedly
finding minimum cost flows might become significant, even though linear programming
optimizers are relatively efficient. Towards this end, we call the linear programming
(LP) solver as few times as possible in the proposed algorithm in order to reduce its
computational requirements.

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

The remainder of this paper is organized as follows. Section 2 provides a brief review
of the recent literature on the MCNDP. Section 3 presents our evolutionary algorithm
and all of its components, namely the initialization phase, the SS, and the ILS. In Section
4, we describe details of our computational experiments, and we also present results of
applying the proposed algorithm to benchmark MCNDP instances from the literature.
Conclusions are given in Section 5, where future research directions are also presented.

2 Literature

A number of efficient algorithms have appeared in the literature to address the inherent
complexity of solving the MCNDP. In this section, we provide a brief review of the
available methods but focus on heuristic, as opposed to exact, solution algorithms for
reasons stated earlier.

Crainic et al. (2000) propose a simplex-based tabu search method for the MCNDP
using a path-flow based formulation of the problem. Their method combines column gen-
eration with pivot-like moves of single commodity flows to define the path flow variables.
In a similar fashion, Ghamlouche et al. (2003) describe cycle-based neighbourhoods for
use in metaheuristics aimed at solving MCNDPs. The main idea of the cycle-based local
moves is to redirect commodity flows around cycles in order to remove existing arcs from
the network and replace them with new arcs. They use the proposed neighbourhood
structures in a tabu search algorithm, where a commodity flow subproblem is solved to
optimality at each iteration.

Ghamlouche et al. (2004) propose an evolutionary algorithm for the MCNDP. Their
solution framework is based on path relinking, in which cycle-based neighbourhoods are
used to generate an elite candidate set of solutions in a tabu search algorithm and for
moving from the initial to the guiding solution. When updating the pool of solutions,
the dissimilarity of solutions is considered as an additional component in calculating the
solution value. Alvarez et al. (2005) describe an SS algorithm for the MCNDP. They
use GRASP, originally proposed by Feo and Resende (1995), to produce a diversified
initial set of solutions. Each commodity path is subject to an improvement process.
The solutions are combined by choosing the best path for each commodity among the
solutions that are being combined. A feasibility restoration mechanism is also available
for solutions that are infeasible. In contrast to the recombination process of Alvarez
et al. (2005), our SS does not consider commodity paths to build a solution; instead,
independent arcs are combined to create offspring. We believe that the latter enhances
the SS algorithm’s capabilities, as more combinations can occur when arcs instead of
paths are combined together, leading to a rich pool of offspring.

A parallel cooperative strategy is described by Crainic and Gendreau (2002) using

2

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

tabu search and various communication strategies. In a similar fashion, Crainic et al.
(2006) propose a multilevel cooperative search on the basis of local interactions among
cooperative searches and controlled information gathering and diffusion. The focus of
their algorithm is on the specification of the problem instance solved at each level and
the definition of the cooperation operators.

Katayama et al. (2009) propose a column and row generation heuristic for solving
the MCNDP. The authors relax the arcs’ capacity constraints, while a column and row
generation technique is developed to solve the relaxed problem. Using similar ideas,
Yaghini et al. (2013) present a hybrid simulated annealing (SA) and column generation
(CG) algorithm for solving the MCNDP. The SA is used to define the open and closed
arcs, wherein the flow subproblem is solved via CG.

A local branching technique for the MCNDP is proposed by Rodŕıguez-Mart́ın and
Salazar-González (2010). Even though the method, originally proposed by Fischetti and
Lodi (2003), is exact by nature, high quality heuristic solutions can be produced using an
MIP solver as a “black box”. A solution framework that employs a combination of mathe-
matical programming algorithms and heuristic search techniques is introduced by Hewitt
et al. (2010). Their methodology uses very large neighbourhood search in combination
with an IP solver on an arc-based formulation of the MCNDP, and a linear programming
relaxation of the path-based formulation using cuts discovered during the neighbourhood
search. A follow-up study by Hewitt et al. (2012) introduces a generic branch-and-price
guided algorithm for integer programs with an application to the MCNDP.

3 Solution Methodology

In this section, we first present a formal definition of the problem including the notation
that will be used in the rest of the paper and then describe in detail the components of
the main algorithm.

3.1 Problem definition

The MCNDP is defined on a graph G = (N ,A), where N is the set of nodes and A
is the set of arcs. Each arc (i, j) ∈ A has an associated fixed cost fij that is incurred
if it is selected for inclusion in the network, has a cost per unit of flow cij, and has a
capacity uij. A set of commodities denoted by P is given, where each commodity has an
origin, a destination, and a quantity to be shipped from origin to destination. Problems
with more than one origin or destination per commodity can be modelled by splitting
commodities (see Holmberg and Yuan, 2000).

3

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

The goal of the problem is to select a subset of arcs that are to be included in the
final design of the network along with the commodity flows on these arcs, to minimize
the total cost of the selected arcs and the flow distribution on the resulting network. For
simplicity, we will refer to the arcs that are included in the final design of the network
as open arcs; otherwise, the arcs should be considered as closed. Binary variables yij are
used, where yij = 1 if the arc (i, j) ∈ A is open, and yij = 0 otherwise. The flow on
each arc (i, j) ∈ A that is used for shipping each commodity p ∈ P from its origin to its
destination is denoted by xp

ij. Conservation of flow constraints must be satisfied at each
node, and there are capacity constraints of the form

∑
p∈P xp

ij ≤ uij for each (i, j) ∈ A.
The cost f(s) of a solution s that is defined by variables xp

ij and yij for (i, j) ∈ A and
p ∈ P is computed using

f(s) =
∑

(i,j)∈A

∑
p∈P

cijx
p
ij +

∑
(i,j)∈A

fijyij. (1)

We adopt the convention that f(s) =∞ if solution s is infeasible.

Two types of mathematical formulations for the problem appear in the literature; an
arc-based and a path-based formulation. We refer to Gendron et al. (1998), Frangioni and
Gendron (2001) and Hewitt et al. (2010) for details of these mathematical formulations.

3.2 Evolutionary algorithm

Our proposed solution methodology is an evolutionary algorithm that evolves a popu-
lation of solutions using the principles of SS and applies ILS (Lourenço et al., 2002) as
an improvement method. Following the basic template of the SS framework, our so-
lution approach is composed of three distinct phases: (i) an Initialization phase where
a population of good and diverse solutions is produced and a Reference Set (set R) is
initialized; (ii) a Scatter Search phase where a recombination process takes place to pro-
duce offspring; and (iii) an Education phase where these offspring (hosted in set C) are
“educated” by attempting to improve their quality via the proposed ILS. Computational
time is used as the termination criterion. The framework is given in Algorithm 1.

4

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

Algorithm 1: Evolutionary Algorithm

Input: λ (initial population size), µ (Reference Set size), where λ ≥ µ, δ (number
of local search iterations without an improvement), κ (Candidate Set size),
ϑmax (number of LP solver calls within local search without an
improvement)

Output: R, sbest ∈ R
1. Initialization phase
R← ConstructionHeur(λ, µ);

while termination conditions do
2. Scatter Search phase
C ← SolutionCombination(κ, µ);

3. Education phase
for individual s of C do

s′ ← ILS(s, δ, ϑmax);
UpdateRefSet(R, s′);

Details of the three phases of Algorithm 1 are explained in the subsections below.
Prior to this, however, we describe a flow routing procedure that is used in each phase
of our algorithm.

3.3 Routing/re-routing procedure

In the Initialization phase of Algorithm 1, solutions are created by successively adding
flow to an existing partial solution by selecting a commodity and routing its required
flow from origin to destination. A similar solution creation method is used in some
iterations of the Scatter Search phase where some open arcs are selected by the solution
recombination method but more are needed to create a feasible flow. Finally, when
applying Iterated Local Search within the Education phase, re-routing of flow is applied
both in the process for creating neighbours of the current solution and in the procedure
for perturbing the current solution. In each of these phases, the routing or re-routing is
determined from the solution of a shortest path problem that is obtained by applying
Dijkstra’s algorithm. We now provide details of how these shortest path problems are
defined.

Consider a partial solution defined by yij = ȳij and xp
ij = x̄p

ij for each arc (i, j) ∈ A
and each commodity p ∈ P . Thus, ȳij = 1 for each arc (i, j) that is open in the partial
solution, uij −

∑
p∈P x̄p

ij is the remaining capacity in each arc (i, j). The aim is to route
wp units of flow of some commodity p from node ip to node jp, for appropriately defined
wp and nodes ip and jp.

5

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

There are two alternative shortest path problems that we define. For a single-path
routing, a path from ip to jp is required such that each of arc of the path has a remaining
capacity of at least wp, thereby allowing all of the desired wp units of flow to be routed
along this path. On the other hand, for multiple-path routing, it is sufficient to find a
path where each of its arcs has a non-zero remaining capacity. For both types of routing,
we define a shortest path problem on the original graph G with a cost c̄ij for each arc
(i, j) ∈ A, for suitably defined values of c̄ij.

For single-path routing, we define for each arc (i, j) ∈ A

c̄ij =

{
wpcij + fij(1− ȳij) if wp ≤ uij −

∑
p∈P x̄p

ij,

∞ otherwise.

Thus, only arcs that can accommodate an additional wp units of flow have a finite cost.
For an arc (i, j) that can accommodate this additional flow, c̄ij is the cost of that flow
in arc (i, j) plus any additional cost of opening arc (i, j) if it is not already open in the
current partial solution.

For multiple-path routing, we similarly define for each arc (i, j) ∈ A

c̄ij =

{
min{uij −

∑
p∈P x̄p

ij, w
p}cij + fij(1− ȳij) if

∑
p∈P x̄p

ij < uij,

∞ otherwise.

In this case, arc (i, j) can be used for an additional min{uij−
∑

p∈P x̄p
ij, w

p} units of flow.
If this value is strictly positive, then c̄ij is the is the cost of that flow in arc (i, j) plus
any additional cost of opening arc (i, j); otherwise, arc (i, j) cannot accommodate any
additional flow and therefore the value of c̄ij is set to infinity.

For both types of routing, Dijkstra’s algorithm is applied to find the shortest path
from node ip to node jp. If the shortest path length is not finite, then no routing of
flow is possible. Otherwise, in the case of single-path routing, a flow augmentation
process adds wp units of flow to all arcs of the shortest path from node ip to node jp.
Analogously, in the case of multiple-path routing, if P is the shortest path from ip to jp,
then min{min(i,j)∈P{uij −

∑
p∈P x̄p

ij}, wp} units of flow are added to all arcs of P .

3.4 Initialization phase

In the Initialization phase, each iteration of the construction heuristic selects an unrouted
or partially routed commodity p at random. Then, a random choice is made as to whether
a single-path or multiple-path routing is to be attempted with an equal probability for
each choice.

6

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

For a single-path routing, wp is amount of flow for commodity p that is to be routed,
and ip and jp are the origin and destinations nodes for this flow. If the shortest path
computation, as described in Section 3.3, provides a solution with a finite shortest path
length, then the flow is augmented. After removing commodity p from the set of unrouted
or partially routed commodities and updating the variables ȳij and x̄p

ij, the heuristic
proceeds to the next iteration. Otherwise, no single-path routing of the chosen commodity
exists, and this iteration is repeated using multiple-path routing.

For a multiple-path routing, wp, ip and jp are defined as above. Following the shortest
path computation described in Section 3.3, the flow is augmented and the values of w̄p,
ȳij and x̄p

ij are updated (with commodity p removed from the list of unrouted or partially
routed commodities if wp is reduced to zero), and the heuristic proceeds to the next
iteration.

The construction heuristic is applied repeatedly until λ different solutions are created,
among which µ are selected to build the Reference Set. Details about the creation of the
initial Reference Set are given in Section 3.5.1.

3.5 Scatter Search

The SS phase evolves the Reference Set of solutions using an efficient recombination
method as follows. A subset generation method selects κ solutions from the Reference Set,
which form the Candidate Set (CS), and a solution combination method is then applied
to produce one solution. This procedure is repeated until 2µ offspring are produced,
which is double the number of parent solutions in the Reference Set. We choose µ best
solutions, in terms of the solution cost, out of the 2µ offspring to proceed to the next
phase. Other strategies were also tested, such as randomly choosing µ of 2µ solutions, but
the algorithm performs better by choosing µ best solutions. The offspring are checked
as to whether they meet the criteria to be inserted into the Reference Set or not, before
proceeding to the Education phase. In the Education phase, ILS is used to improve the
quality of each offspring, before these offspring are checked again for insertion into the
Reference Set according to elitist criteria. These procedures are explained further in the
following subsections.

3.5.1 Reference Set

The goal of using a Reference Set R is to maintain a balance between quality and diversity
of solutions, and to avoid a premature convergence of the algorithm. An obvious measure
of the quality of a solution s is its cost f(s). An alternative quality measure that becomes

7

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

relevant after the evolutionary process has started is the Solvency Ratio, defined by

SR(s) = neo(s)/hits(s), (2)

where hits(s) denotes the number of times that solution s has participated in the re-
combination process to produce an offspring, and neo(s) denotes the number of educated
offspring of s, which is the number of times that an offspring of s has been educated
and included in R. The smaller the Solvency Ratio, the lower the value of the particular
solution s is to the evolution process. In this way, a higher cost solution with respect
to the usual objective function f may be beneficial to the search if it produces well-
educated offspring. Our diversity measure uses the Hamming distance between pairs of
solutions, D(s, s′) =

∑
(i,j)∈A |ysij − ys

′
ij |, for two solutions s and s′. The total dissimilarity

for Reference Set R is then defined by

TD(R) =
∑
s,s′∈R

D(s, s′), (3)

where the sum is over all µ(µ− 1)/2 pairs of solutions in set R.

The creation of the initial Reference Set proceeds as follows. The first µ solutions
among the λ generated within the Initialization phase are inserted into R. The remaining
λ−µ solutions are then considered sequentially for replacing a solution in R. Specifically,
if such a solution s satisfies the condition f(s) < f(sbest), where sbest is a least cost
solution in R, or if there is a solution r ∈ R for which f(s) < f(r) and D(r, sbest) <
D(s, sbest), then s is inserted into R. Otherwise, s is not included in R. When s is
inserted, solution sworst ∈ R, where sworst has the largest cost among solutions in R, is
removed from R.

At each SS iteration of the evolutionary process, 2µ offspring are generated, and a
sequence of decisions is made on whether to replace a solution in R with the offspring
under consideration. In the later stages of the evolutionary process, this decision depends
on the value of the SR obtained from (2), but a different process is used at the start of
the evolutionary process when SR cannot be meaningfully computed. Specifically, let
scand ∈ R be the candidate for removal from the reference set R, where scand = sworst
for the first two iterations of the evolutionary process, and scand is the solution in R
having the smallest Solvency Ratio from the third iteration onwards. An offspring s
replaces scand in the Reference Set R if either f(s) < f(sbest), or if f(s) < f(scand) and
TD(R) < TD(R \ {scand} ∪ {s}). This procedure differs from other studies where the
usual practice is always to remove the worst-cost solution sworst from R without taking
into account any effect it might have on the evolution.

8

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

3.5.2 Solution combination method

In this section, we discuss how our proposed solution combination method generates each
offspring.

Each offspring is generated from the candidate set (CS) comprising κ solutions from
the Reference Set R. The solutions in CS are chosen probabilistically with a bias towards
promising parents as determined by their Solvency Ratios. Specifically, the probability
of a solution s being included in the candidate set is proportional to SR(s). In this way, a
solution s with a low SR(s) is gradually neglected, and the focus is on new solutions that
produce well-educated offspring. Because the Solvency Ratio changes while SS iterations
are being performed, the scatter search phase has a dynamic character, and premature
convergence is typically averted. Furthermore, to enable diversification, a penalty (as
expressed by the term αhits(s) in equations (4) and (5) below) is used to weaken the
impact of a frequently selected parent and thereby enable diversification.

The arcs of the solutions in CS are combined to produce an offspring. For a given
solution s, each arc (i, j) is either open if ysij = 1 or closed if ysij = 0. We associate a
value f(s) + αhits(s) with solution s, where f(s) and hits(s) are previously defined, and
α is a scaling parameter. We now introduce a scoring procedure to determine whether
an arc (i, j) will be open or closed in the offspring, according to the following scores:

Opij =
∑
s∈CS

ysij
f(s) + αhits(s)

∀(i, j) ∈ A (4)

Clij =
∑
s∈CS

1− ysij
f(s) + αhits(s)

∀(i, j) ∈ A. (5)

Opij and Clij are the scores for arc (i, j) being open and closed, respectively, and if
Opij > Clij, the preferred arc status is open; otherwise its preferred status is closed.

The preferred status of open or closed for each arc (i, j) is our starting point for
creating a new solution from the solutions in the CS. We first assume that the open and
closed arcs correspond to their preferred status, which implies that the values of the yij
variables are fixed. To determine values of the xp

ij variables or conclude that there is no
feasible solution with the fixed yij variables, the associated capacitated multicommodity
network flow problem is solved using an LP optimizer. If a feasible solution is obtained,
then this is the offspring obtained from the candidate set (but with any open arc having
a zero flow having its status changed to closed).

If the multicommodity network flow problem is infeasible, then the offspring is created
using similar methodology to that of the Initialization phase as described in Section 3.4.
Specifically, for each arc (i, j) with a preferred status of open, we temporarily change the
fixed cost to fij/M and the cost per unit of flow to cij/M , where M is a large constant.

9

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

With these updated costs, the construction heuristic is applied, and the resulting solution
is the offspring obtained from the CS. The low costs associated with the arcs having a
preferred status of open encourages Dijkstra’s algorithm to find shortest paths containing
some of these arcs, which results in a large proportion of such arcs being open in the
offspring solution.

3.6 Education phase: the ILS heuristic

The µ elite offspring, chosen among the 2µ produced by the SS phase, are individually
“educated” (i.e., improved) using ILS. The components of the ILS are shown in Algorithm
2.

Algorithm 2: Iterated Local Search

Input: s (current offspring), δ (number of local search iterations without an
improvement), ϑmax (number of LP solver calls without an improvement)

Output: sILSBest (the best solution found by ILS)

ϑ = 0; h⃗← 1; sILSBest ← s;
while ϑ < ϑmax do

g⃗ ← 0; iter = 0; s′ ← s;
while iter < δ do

(s′′, g⃗)← NeighbourhoodSearch(s′, g⃗);
if f(s′′) ≤ f(s) then

s← s′′; g⃗ ← 0;

else
iter = iter + 1;

s′ ← s′′;

s′ ← LPsolver(s);
if f(s′) ≥ f(sILSBest) then

s∗ ← EjectionCycles(s′ ,⃗h);
s← s∗; ϑ = ϑ+ 1;

else
ϑ = 0; s← s′; sILSBest ← s′;

The proposed ILS has two main components, namely a local search and a perturbation
strategy. The proposed local search uses new neighbourhood operators and short term
memory (represented by memory structure g⃗) to avoid cycling. The perturbation strategy,
namely Ejection Cycles, partially modifies the current solution according to information
gathered during the search (long-term memory depicted by h⃗) in the spirit of Ejection
Chains (Glover 1996).

10

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

3.6.1 Neighbourhoods and moves

Our ILS neighbourhood is based on the cycle-based operator, as originally proposed
by Ghamlouche et al. (2003). Their approach is to select a pair of nodes containing a
positive flow and then re-route the flows of the individual commodities between these
nodes. In this paper, we design a more efficient and effective approach based on the
notion of inefficient arcs and inefficient chains, as described below. Further, we allow a
partial re-routing of flow that maintains flow feasibility. In contrast, Ghamlouche et al.
(2003) remove all flow between the two selected nodes, and if the new flows do not result
in a feasible solution, then a feasibility restoring routine is applied.

Consider a solution defined by the variables xp
ij and yij for each arc (i, j) ∈ A and

each commodity p ∈ P . For each open arc (i, j), where yij = 1 and xp
ij > 0 for at least

one commodity p, we define the inefficiency ratio as

Iij =

∑
p∈P cijx

p
ij + fij∑

p∈P xp
ij

, (6)

which is a measure of the average cost per unit of flow that is sent along arc (i, j). The
lower the value of Iij, the more efficient we regard arc (i, j) for accommodating flows.
The average inefficiency ratio is defined as Ī =

∑
(i,j)∈A Iijyij/

∑
(i,j)∈A yij, and we define

a set of inefficient arcs as AI = {(i, j)|yij = 1, Iij > Ī}, so that (i, j) ∈ AI if arc (i, j) has
an inefficiency ratio that is higher than the average. Our aim is to create neighbourhood
moves that remove flows from some of the inefficient arcs in set AI .

We now describe how our inefficient chains are constructed from a subset of the
inefficient arcs. First, an arc is randomly chosen from the set AI of inefficient arcs to
form a component of the first inefficient chain. If the current partial inefficient chain
extends from node i to node j, then an arc (h, i) ∈ AI or (j, k) ∈ AI is added to the
current chain (where nodes h and k are not included in the current chain). The arc added
is chosen such that it has an inefficiency ratio that is as large as possible. Whenever an
arc is included in a chain, it is deleted from AI . The process of extending the current
chain continues until no further extension is possible. Unless AI is empty or contains a
single arc, the process iterates with a random arc chosen to start a new chain. When the
process ends, any chains containing a single arc are discarded. The latter are likely to
be included in inefficient chains in a subsequent ILS iteration, since inefficient chains are
reconstructed from scratch at each ILS iteration.

Having constructed a set of inefficient chains, we now describe how our neighbour-
hood is formed. Each neighbour is based on a sub-chain of an inefficient chain and
is defined by the starting node i and the ending node j of the sub-chain. If a chain
comprises nodes n1 − n2 − · · · − nm, then the (i, j) values are considered in the order
(n1, n2), (n1, n3),. . . , (n1, nm), (n2, n3), (n2, n4), . . . , (n2, nm), . . . , (nm−1, nm). On the ba-
sis of our initial computational tests, we restrict our attention to sub-chains between i

11

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

and j comprising at most ζ arcs, which helps to reduce computation times but, at the
same time, does not significantly restrict the diversity of potential neighbourhood moves.

The key aspect of our neighbourhood is the re-routing of flow from arcs of the sub-
chain to other arcs of the network. An initial random decision is made as to whether a
full re-routing or a partial re-routing is to be attempted for this sub-chain, with an equal
probability for each choice. First, a list PI of commodities is formed that have a positive
flow through at least one arc of the sub-chain. To obtain a neighbour solution, the list
of commodities is scanned and a re-routing of flow is attempted for each commodity p of
PI in turn. Suppose that the flow enters the sub-chain at node ip, leaves the sub-chain
at node jp and the amount of flow is wp.

Dijkstra’s algorithm is applied to find a shortest path from node ip to node jp with
the goal of finding a suitable path for the re-routing of flow. The shortest path problem
is created according to the description given in Section 3.3, but with c̄ij = ∞ for each
arc between ip and jp in the selected chain. For the case of full re-routing, the method
for single path routing of Section 3.3 is used, while for partial re-routing the multiple-
path routing method is used. If the resulting shortest path length is not finite, then the
flow remains unchanged in the trail solution being constructed. Otherwise the flow is
augmented as described in Section 3.3, and a corresponding reduction is made to the
flows in the sub-chain. When all of the commodities of PI are considered, the trial
solution is a potential candidate for being selected as the neighbour defining the next
move. Additional trial solutions are created by removing the first element of list PI

and repeating the process, again starting with a random decision as to whether a full
or partial re-routing is to be attempted, until PI is empty. The completed procedure is
executed for every possible sub-chain.

Figure 1: A typical inefficient chain and flow re-routing

We illustrate the idea of re-routing flows by an example shown in Figure 1. The
example shows three commodities each with a different line pattern, and a graph where
origin node 3 and destination node 8 define a part of the inefficient chain. The re-routing
of the flows between nodes 3 and 8 causes individual commodity flow disconnections.
The flow re-routings take place independently for each different commodity between its
origin and destination nodes, i.e., the commodity shown with the solid black line must
travel from node 4 to node 7, the dotted one must travel from node 6 to node 8, and the

12

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

dashed one from node 3 to node 8. The grey lines depict possible alternative re-routing
paths within the network. All three flow re-routings, for this particular example, result
in one single neighbour.

Another important component of our ILS is a frequency-based memory feature adopted
by Paraskevopoulos et al. (2012) that penalizes potential moves that alter flows that have
been changed frequently in previous iterations of the search. A vector g⃗ of size |A| is used
to store each value gij, which is the number of times that the value of xp

ij is changed for
some p ∈ P . After an improvement in the current solution is observed, g⃗ is reinitialized
to the zero vector.

The following equation defines the local move cost from solution s to a trial solution
s′ as

∆fmove(s, s
′) = f(s′)− f(s) + β

∑
(i,j)∈A

bijgij, (7)

where β is a scaling parameter, and bij has a value equal to 1 if the arc (i, j) partici-
pates in the current local move from s to s′, and a value 0 otherwise. The component
β
∑

(i,j)∈A bijgij is added to the cost of the local move to penalize moves that involve
frequently selected arcs.

Trial solutions with smaller values of ∆fmove are generally preferred. However, it may
be that this number is large enough to prevent the search from selecting a high-quality
neighbour s′. To avert such cases, an aspiration criterion is used: if f(s′) < f(sILSbest),
the penalty component is ignored so that ∆fmove = f(s′) − f(s). The neighbourhood
search procedure is shown in Algorithm 3.

Algorithm 3: neighbourhood Search

Input: s′ (current solution), M a large number
Output: s′′ (best neighbour)
min = M ;
for All inefficient chains k of s′ and for all combinations of nodes i, j in k do
PI ← IdentifyDifferentCommodities(k, i, j);
while PI is not empty do

if isFeasible(k, i, j,PI) then
s∗ ← CreateNeighbour(k, i, j,PI);

else
RemoveFirstElement(PI);Continue;

if ∆fmove(s, s
∗) < min then

s′′ ← s∗ ; min = ∆fmove(s, s
∗) ;

RemoveFirstElement(PI);

In Algorithm 3 the function IdentifyDifferentCommodities forms the list PI by identi-

13

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

fying the different commodities that have positive flows between the nodes i and j of an
inefficient chain k. CreateNeighbour creates a neighbouring solution of s′, and Remove-
FirstElement removes the first element of the list. Finally, the isFeasible is a boolean
function that returns “true” if a particular combination (k, i, j) leads to some re-routing
of flow.

3.6.2 Ejection Cycles

A major component of the ILS is its perturbation strategy (Lourenço, Martin and Stützle
2002). The goal is to partially rebuild the current local optimum solution, such that the
new diversified solution preserves some information from the local optimum. The pro-
posed perturbation strategy in this paper, namely Ejection Cycles (EC), applies multiple
cycle-based moves in the spirit of ejection chains (Glover 1996). The main idea of the
ejection-chains strategy is to apply a compound move consisting of a series of consecutive
local moves. Adopting this idea, our EC comprise a series of consecutive cycle moves of
the type described in Section 3.6.1. The aim of EC is to perturb the structure of the
current solution to achieve diversification, and also to remove some of the inefficient arcs
from the solution.

The are two phases to creating the sequence of local moves. The first phase creates
inefficient chains to re-route flow using similar ideas to Section 3.6.1, but considers the
previous usage of arcs in local moves instead of cost and also allows flows in arcs to
violate capacity constraints. The second phase attempts to remove infeasibility by doing
further flow re-routing, again using arc usage in determining the path.

We now present more precise details of how our sequence of local moves is determined.
In the first phase, we first find a set of inefficient chains and focus on sub-chains containing
at most ζ arcs. For a given sub-chain, the list PI is formed, and ip, jp and wp are
computed. The list of commodities is scanned and a re-routing of flow is performed for
each commodity p of PI in turn. However, in this re-routing, feasibility with respect to arc
capacities is not enforced, as the second phase essentially operates a repair mechanism
to restore feasibility. The first phase employs a full re-routing by applying Dijkstra’s
algorithm to find a shortest path from ip to jp, where cost for each arc (i, j) ∈ A is

c̄ij =

{
cijhij + fij(1− ȳij) if (i, j)/∈ F ,
∞ otherwise,

(8)

where hij − 1 is the number of times that arc (i, j) has participated in a local move,
and initialization sets hij = 1 for all (i, j) ∈ A, and F is a set of forbidden arcs that
initially comprises all arcs between ip and jp in the subchain. The hij values have a
similar purpose to the gij values of Section 3.6.1 except that the method of initialization

14

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

is different. Also, the re-initialisation for gij is replaced by a scaling process for the hij.
Specifically, to avoid hij become very large for some arcs (i, j), we periodically divide hij

by hmin for all (i, j) ∈ A, where hmin = min(i,j)∈A hij. If Dijkstra’s algorithm returns a
shortest path length of infinity, then the current sub-chain is not considered further and
another one is selected. Otherwise, a flow of value wp is added to each arc of the shortest
path in the perturbed solution and removed from each arc of the sub-chain.

When re-routing of flow between nodes ip and jp of the sub-chain is complete for
each p ∈ PI , we check if any arc has a flow that violates its capacity constraint. If
there is no violation, then a new feasible solution is found and the EC terminates with a
perturbed solution. When some flows violate arc capacities, we proceed as follows. Let
AV denote the set of arcs having a capacity violation. For all arcs (i, j) ∈ AV , a set of
commodities P ′

I is selected whose removal from (i, j) restores feasibility but keeps the
capacity utilisation of the arc as high as possible. Specifically, the process of repeatedly
selecting a commodity p with the largest flow xp

ij in (i, j) is inserted in P ′
I and the flow

in (i, j) is reduced by xp
ij is applied until the flow in (i, j) is reduced to exactly uij or

the next selection would cause the flow in (i, j) to become strictly less than uij. In the
latter case, the final commodity p selected for insertion into P ′

I is chosen to have minimal
flow in (i, j) from among those commodities where the removal of their flow from (i, j)
reduces the total flow in (i, j) to be less than or equal to uij. Having formed P ′

I , the
respective ip, jp and wp are computed, and infeasibility chains that are formed in the
same way as for inefficient chains, as described in Section 3.6.1.

Having formed the infeasibility chains, the aim is to re-route the flow in the chain
using the method described above. More precisely, Dijkstra’s algorithm to find a shortest
path from the the starting node ip of the sub-chain to the ending node jp, where all arcs
between ip and jp of the sub-chain are added to the set F and costs for the shortest
path problem are defined by (8). If a suitable path for re-routing is found, then the
trial solution s∗ is updated. The process of re-routing flow in other infeasibility chains
continues until no capacity violations occur or no further re-routing is possible due to the
constraints imposed by set F . If the former case, the EC terminates with a perturbed
solution. In the latter case, the EC returns to the initial feasible solution s′, the first
commodity of set PI is deleted and EC is applied on the remaining commodities in the set.
As in Section 3.6.1, additional trial solutions are created by removing the first element of
list PI and repeating the process until PI is empty. The complete procedure is applied
to all sub-chains, and terminates when the first feasible perturbed solution is found. The
pseudo code of the EC is given in Algorithm 4.

IdentifyViolatedArcs identifies the set of violated arcs AV . The function NeighbourEx-
ists is a boolean function that returns “true” if there exist an alternative path that the
flow can be re-routed, regardless the capacity constraints at arcs. If no alternative paths
are found (in case all neighbouring arcs have been assigned a cost of infinity), then Neigh-
bourExists returns “false”. The function UpdateV iolatedArcs identifies which of the arcs

15

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

Algorithm 4: Ejection Cycles

Input: s′ (current solution)
Output: s∗ (best neighbour)
for All inefficient chains k of s′ and for all combinations of nodes i, j do
PI ← IdentifyDifferentCommodities(k, i, j);
while PI ̸= ∅ do

First EC Iteration
AV ← IdentifyViolatedArcs(k, i, j);
if AV = ∅ then

EndAlgorithm;

else
P ′

I ← IdentifyExcessCommodities(AV);

Next EC Iterations
while P ′

I ̸= ∅ do
if NeighbourExists(P ′

I) then
s∗ ← CreateNeighbour′(P ′

I);
AV ← UpdateViolatedArcs(k, i, j);
if AV = ∅ then

EndAlgorithm;

else
P ′

I ← UpdateExcessCommodities(AV);

else
RemoveFirstElement(PI); P ′

I ← ∅;

of the re-routed paths are violated in terms of capacity constraints and updates the set of
violated arcs AV . The function IdentifyExcessCommodities identifies the excess com-
modities that need to be removed from the violated arcs to restore capacity feasibility,
while similarly UpdateExcessCommodities updates the excess commodities in the next
iterations.

4 Computational Results

This section presents the computational analyses conducted to evaluate the performance
of the proposed algorithm and comparisons with the state-of-the-art. The section is
structured as follows: In Section 4.1, we describe the data sets used in the experiments,
followed by Section 4.2 which explains the way that the algorithm parameters are cali-
brated. Sections 4.3 and 4.4 look at the effect of the network efficiency and the various
strategies used on the performance of the algorithm. The way in which the components

16

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

of the proposed algorithm effect the solution quality is tested in Section 4.5. Finally,
Section 4.6 presents extensive comparison results with state-of-the-art algorithms that
have been proposed for the problem.

4.1 Data sets

To evaluate the performance of the proposed algorithm, computational experiments are
conducted on the C and C+ benchmark instances described in Crainic et al. (2000).
These sets include instances with 25, 30 and 100 nodes, 10 to 400 commodities and 100
to 700 arcs, and have been widely used in the literature. These instances differ from one
another with respect to the nature of the arc capacities, which are either loose (L) or tight
(T), and with respect to the relative importance of fixed costs (F) and the variable flow
costs (V) per unit of flow. There also exist benchmark instances described by Alvarez
et al. (2005) defined on an undirected graph using edges as opposed to a directed graph
using arcs. These define a different problem than the one we address in this paper, as is
discussed by Crainic et al. (2000), and is the reason why this set is not considered here.

The proposed algorithm was implemented in a Visual Studio 2010 environment using
the C++ programming language, and all runs were performed on a single core Xeon
E5507 2.27 GHz using CPLEX 12.1 as the optimizer.

4.2 Calibration

The algorithm uses five parameters; the number λ of initial solutions examined to produce
the Reference Set R, the cardinality µ of R, the cardinality κ of CS, the maximum
number δ of local search iterations without an improvement in the solution quality, and
the maximum number ϑmax of CPLEX calls for which an improvement in the current
solution is not observed. The termination criterion is the computational time. Most of
the best solutions were derived in the first two hours, although our algorithm was allowed
to run for up to 20000 seconds.

The scaling parameters α and β are self-calculated during the solution process,
and are equal to the average cost of an arc in the current best solution found, i.e.,
α=β=f(sbest)/

∑
(i,j)∈A ysbestij . The parameter λ does not appear to have a significant

impact to the quality of the solutions; however, to have an adequate initial population
size, we set it to 1500. Another parameter that seemed not to have significant impact is
the size ζ of the sub-chains where local search takes place (see Section 3.6.1 for details).
Parameter ζ was set equal to 4, which means that local search attempts to re-route the
flows of a maximum of four arcs of a sub-chain. Larger values led to infeasibilities in the
neighbouring solutions, either in the connectivity of the paths or the capacity of arcs.

17

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

We set κ = 3 to preserve the SS character of the proposed algorithm. Parameter κ
needs to be larger than 2 to enhance the recombination process, but should be relatively
small to ensure that a large number of possible combinations among the solutions of the
Reference Set is considered. We tried 4 and 5 which resulted in a poor variety of offspring,
due to the limited number of combinations. The latter problem was more prominent in
the later SS iterations, when convergence is close and the need for different offspring is
more apparent.

Parameters δ and ϑmax are interrelated as they typically control the total number of
local search iterations. In particular, ϑ tracks CPLEX iterations; it is initialized to 1
and is incremented by one unit until ϑmax is reached. At each iteration, the number δ
of local search iterations is set equal to 10ϑ. Initially, when ϑ is small, the local search
resembles a steepest descent method, while as the search fails to improve the solution
quality (close to large values of ϑ) more iterations are employed and “hill climbing” is
typically enabled. Our experiments indicate that values of ϑmax equal to 6, 7, and 8 are
appropriate, with values below 6 resulting in deterioration in the solution quality, and
values greater than 8 slowing down the process without yielding any significant gain in
the solution quality.

Table 1 shows the computational experiments conducted to investigate on the algo-
rithm’s behaviour with respect to different sets of parameters. Different parameter sets
were used for different groups of problems. For large-scale problems, the Reference Set
was of relatively small sizes and δ was assigned high values, whereas opposite settings
were used for small to medium scale problems, for reasons described above. Table 1
shows the C and C+ benchmark instances classified into 6 groups according to their size.
The label for each group is a vector depicting the number of nodes, the number of arcs
and the number of commodities. The problem instances within each group differ in the
tightness of the arc capacity constraints and the relative importance of the fixed costs
and the costs of per unit of flow. The calibration was conducted by using one problem
instance from each group, shown in the headings of the six main columns of Table 1. For
each instance, ten runs, each with a run time of two hours, were conducted to retrieve
the best solution values for each instance shown under the second column for each group.
The parameter set that produces the best result for each group is fixed and used to solve
the rest of the instances in that group, again with ten runs and each run with a time
limit of 20000 seconds.

As Table 1 shows, the effect of the parameters of CEA varies according to the size of
the problem solved. In small to medium scale instances, the evolutionary strategy had
more impact than local search, since the cardinality of the neighbourhood is relatively
small and local search is unable to adequately explore the search space. In contrast, the
solution neighbourhood is enriched with more solutions and the impact of the local search
is more significant in the solution process as the size of the problem instance increases.
Driven by these observations, the size µ of the Reference Set takes larger values for small

18

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

Table 1: Calibration of the algorithm’s parameters

Group 25-100-(10,30) 20-(230,300)-40 20-(230,300)-200
ϑmax, µ 25-100-30FT ϑmax, µ 20,230,40FT ϑmax, µ 20,230,200VT
6,30 86102 6,30 644180 6,30 98767
6,40 85969 6,40 644995 6,40 98338
6,80 85530 6,80 643187 6,80 98486

Parameter 7,30 85996 7,30 644413 7,30 98584
Sets 7,40 85948 7,40 644265 7,40 98209

7,80 86089 7,80 643253 7,80 98945
8,30 86059 8,30 644085 8,30 98451
8,40 85932 8,40 643649 8,40 98767
8,80 85535 8,80 643538 8,80 98807

Best 7,80 85530 7,80 643187 7,40 98209

Group 100-400-(10,30) 30-(520,720)-100 30-(520,720)-400
ϑmax, µ 100-400-30FT ϑmax, µ 30,700,100FL ϑmax, µ 30,700,400FT
6,20 139661 6,20 61085 6,20 133822
6,30 139805 6,30 61106 6,30 133889
6,40 140503 6,40 61089 6,40 133861

Parameter 7,20 139995 7,20 60596 7,20 133245
Sets 7,30 140878 7,30 61054 7,30 133478

7,40 140976 7,40 61188 7,40 133966
8,20 140878 8,20 61284 8,20 133596
8,30 139943 8,30 61266 8,30 133954
8,40 140760 8,40 61176 8,40 133870

Best 7,40 139661 7,30 60596 7,30 133245

to medium scale problems, and relatively small values for the larger scale instances.

4.3 Network efficiency vs total cost

To illustrate the impact of the network efficiency on the solution cost, we have conducted
analyses to shed light into the behaviour of the search on two problem instances, namely
20,230,200VT and 30,700,400VL. The network efficiency is defined with respect to either
the maximum arc inefficiency or the average arc inefficiency, where the inefficiency mea-
sure is as defined in Section 3.6. The results are given in Figure 2, which shows how
the two efficiency measures and the total cost change as the search progresses over time,
separately for instance 20,230,200VT on the left and for instance 30,700,400VL on the
right.

Figures 2(a) and 2(b) respectively show the changes observed in the value of the best
solutions found for the 20,230,200VT and 30,700,400VL problem instances over time.
Similarly, Figures 2(c) and 2(d) show the maximum inefficiency of an open arc for different
solutions found over time. We observe that as the algorithm iterates, the maximum arc
inefficiency is dramatically reduced and follows a logarithmic trend. Conversely, Figures
2(e) and 2(f) show an increase in the average efficiency of the arcs as the search progresses,
which is indicative of an increase in the overall efficiency of the network as the solution
quality is improved.

19

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

(a) Total cost vs time (b) Total cost vs time

(c) Maximum arc inefficiency vs time (d) Maximum arc inefficiency vs time

(e) Average arc efficiency vs time (f) Average arc efficiency vs time

Figure 2: Arc efficiency and total cost tracked over time for instances 20,230,200VT (left)
and 30,700,400VL (right)

20

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

4.4 Solvency Ratio vs random parent selection

To illustrate the effectiveness of the Solvency Ratio, tests were conducted on two in-
stances, namely 100-400-30-FT and 20,300,200FT, for the reason that these two instances
typically present the general behaviour of the algorithm using solvency-based and random
parent selection strategies.

Figure 3 presents the comparisons between the two strategies. The first two SS
iterations are used as a warm up for the solvency strategy, which is enabled from the
third SS iteration onwards as is apparent from the figures. Figures 3(a) and 3(b) show
how the best solution values evolve over time. For 100,400,40FT, it is easily seen that
solutions obtained by the random-based strategy are quickly trapped in a local optimum,
whereas the solvency-based strategy is slower to improve the best solution initially, but
displays a gradual yet continual reduction in the overall cost as the generations evolve,
and terminates with a better overall solution. Instance 20,300,200FT exhibits a similar
pattern, i.e., the solvency strategy provides a large improvement in the early SS iterations
and then follows a less steep drop as the algorithm continues to improve the total cost.
The random strategy is again trapped in a local optimum at iteration 12. Figures 3(c)
and 3(d) show the changes in the average solution cost in the Reference Set over the SS
iterations. The main observations on the behaviour of the solvency-bases strategy are
similar to the first two figures.

A “healthy” evolutionary process should typically produce a decent number of ed-
ucated offspring at each SS iteration. Figures 4(e) and 4(f) show that this is also the
case in the proposed algorithm. In particular, the figures show that the random strat-
egy has difficulties in producing educated offspring and therefore results in premature
convergence. In contrast, the solvency strategy is able to update the Reference Set with
educated offspring even near termination.

4.5 The impact of the CEA’s main components on the solution
quality

Experimentation was conducted on different versions of the proposed CEA to investigate
the effect of various components on the final solution quality. Three versions of CEA
were thus considered: (i) Version “\EC” is where a random perturbation strategy is used
instead of EC. According to this random strategy, 25% of the commodities are selected
at random, which are then removed and re-routed via the construction mechanism as
discussed in Section 3.4. (ii) Version“\SolvR” replaces the Solvency ratio strategy with a
random strategy for the parent selection and the Reference Set updating criteria. Accord-
ing to the random strategy, the parents that comprise the Candidate Set are selected at
random and the elitist updating criteria described in 3.5.1 are used. (iii) Version “\Ineff”,

21

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

(a) Total cost: 100-400-30FT (b) Total cost: 20,300,200FT

(c) Average cost for R: 100-400-30FT (d) Average cost for R: 20,300,200FT

(e) Educated offspring: 100-400-30FT (f) Educated offspring: 20-300-200FT

Figure 3: Solvency-based vs random-based strategies for instances 100-400-30FT (left)
and 20,300,200FT (right)

22

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

Table 2: Results from different versions of CEA on the benchmark instances of Crainic
et al. (2000)

Instances CEA
% Deviations

Instances CEA
% Deviations

\EC \SolvR \Ineff \EC \SolvR \Ineff
25,100,10VL 14712 0.00 0.00 0.00 100,400,10FL 23949 −1.23 −0.98 −3.54
25,100,10FL 14941 0.00 −0.64 −1.91 100,400,10FT 66240 −6.34 −4.87 −10.79
25,100,10FT 49899 0.00 −1.78 −2.08 100,400,30VT 385163 −0.20 −0.83 −1.05
25,100,30VT 365272 0.00 −1.09 0.00 100,400,30FL 49577 −3.01 −3.06 −4.48
25,100,30FL 37324 −0.98 −4.47 −3.38 100,400,30FT 139661 −1.78 −3.64 −2.33
25,100,30FT 85530 −0.65 −0.84 −0.79 30,520,100VL 54109 −0.99 −1.01 −0.99
20,230,40VL 423848 −0.05 −0.19 −0.19 30,520,100FL 95302 −0.14 −2.13 −2.76
20,230,40VT 371475 −1.18 −0.09 −0.09 30,520,100VT 52284 −0.49 −1.30 −1.32
20,230,40FT 643187 −0.22 −0.33 −0.30 30,520,100FT 98525 −0.64 −1.76 −3.58
20,300,40VL 429398 −0.29 0.00 0.00 30,700,100VL 47619 −0.60 −0.84 −0.64
20,300,40FL 586077 −0.49 −0.99 −0.76 30,700,100FL 60596 −1.27 −3.38 −3.32
20,300,40VT 464509 −0.53 −0.32 0.00 30,700,100VT 46084 −1.08 −1.25 −1.64
20,300,40FT 604198 −0.28 −0.01 0.00 30,700,100FT 55271 −1.24 −1.92 −2.50
20,230,200VL 94468 −0.75 −1.23 −4.76 30,520,400VL 113694 −1.42 −1.06 −1.50
20,230,200FL 139002 −1.89 −0.96 −6.13 30,520,400FL 151688 −1.87 −1.10 −5.04
20,230,200VT 98209 −1.10 −0.66 −4.60 30,520,400VT 116322 −0.70 −1.24 −1.86
20,230,200FT 137131 −3.62 −0.46 −5.69 30,520,400FT 154425 −1.90 −2.58 −2.74
20,300,200VL 75288 −1.21 −0.98 −4.03 30,700,400VL 99222 −0.68 −1.19 −2.36
20,300,200FL 117320 −0.84 −0.04 −2.25 30,700,400FL 137112 −2.05 −4.12 −6.26
20,300,200VT 75607 −0.99 −0.93 −1.65 30,700,400VT 96388 −1.48 −1.42 −2.54
20,300,200FT 108459 −0.28 −2.60 −6.28 30,700,400FT 133245 −1.08 −0.32 −2.43
100,400,10VL 28426 −0.18 −1.31 −0.55

performs local moves on chains composed by all arcs of the network, disregarding any
preference given to inefficient chains.

The results of the experiments are reported in Table 2. In this table, column “CEA”
shows the best results of these experiments, derived from 10 runs for each problem
instance, where the computational time of each run is limited to two hours. The values
under column “% Deviations” in Table 2 show the percent deviations of the solution
values obtained by the three versions of the CEA from those of the best solution value.
In particular, the deviations are calculated as 100(v(CEA) − v(Alg))/v(CEA), where
v(Alg) is the solution value obtained by one of the three versions of CEA.

From Table 2, it can be easily observed that the impact of the EC in the quality of
the final solution is significant, and can yield reductions of up to 6.34% in total cost. The
maximum improvements afforded by the Solvency Ratio and the Inefficiency Measures are
4.87% and 10.79%, respectively. A negative deviation value in this table indicates that
the solution found by the CEA is better. On average, the most significant impact comes
from the Inefficiency Measures component with an average deviation of −2.54%. The
same statistics for the Solvency Ratio and the EC are −1.39% and −1.06%, respectively.

23

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

4.6 Comparative analysis

In this section, we report comparative computational results of the proposed algorithm
with the Cycle-based Tabu Search (CTS) of Ghamlouche et al. (2003), Path Relinking
(PR) by Ghamlouche et al. (2004), Multilevel Cooperative Algorithm (MCA) by Crainic
et al. (2006), Capacity Scaling Heuristic (CSH) by Katayama et al. (2009), IP Search
(IPS) by Hewitt et al. (2010), the two algorithms based on Simulated Annealing and
Column Generation (SACG1 and SACG2) described by Yaghini et al. (2013) the results
for which are reported with time limits 600 and a 18000 seconds, respectively, and Local
Branching (LocalB) by Rodŕıguez-Mart́ın and Salazar-González (2010). The algorithm
described by Alvarez et al. (2005) could not be included in the comparisons as the authors
do not report any results with the instances tested here; instead they use their own
benchmark instances. The reason for not being able to test our algorithm on the Alvarez
et al. (2005) benchmark set is that these instances are based on an undirected graph and
work with edges, whereas the problem we solve is on a directed graph and our algorithm
has been developed to operate on arcs.

Table 3 shows the comparison results where the first column shows the name of the
instance as characterized by the number of nodes, the number of arcs and the number of
commodities. The solution values obtained by the proposed algorithm are reported under
column “CEA”. The remaining five columns report the relative percentage deviations of
the solution values found by the CEA from those reported by the papers quoted above,
and is calculated as 100(v(CEA)− v(Alg))/v(CEA), where v(Alg) indicates the solution
value produced by the corresponding algorithm and v(CEA) the solution value produced
by the CEA. A negative value indicates that the solution found by the CEA is better.

The first seven rows describe, to the best that we were able to extract, the com-
putational resources used to run the algorithms. The row titled “T.Lim.(sec)” reports
the time limit used by the authors of the corresponding algorithm, whereas the “Used
Cores” row indicates how many cores from the original configuration of the CPU were
used to run the algorithm. It is assumed that the computational power increases lin-
early with the number of cores used. Due to different computing facilities, we have
normalized the computational times using the approach described in Dongarra (2013)
and data from http://www.cpubenchmark.net/. All comparisons were made according
to the Passmark CPU Score (PCPUS). As we were unable to find PCPUS for Sun sys-
tems on http://www.cpubenchmark.net/, we used the Dongarra (2013) list, and selected
an Intel equivalent. The final scores are reported in the row titled “PCPU Score”. The
running times were normalized by using CEA as the reference point, i.e., Norm.TL(Alg)=
PCPUS(Alg)TL(Alg)/PCPUS(CEA).

The table also reports some summary statistics in the last six rows, including the
median and the average of the deviations. The p-value is the result of a T-test with a
double tail conducted to test whether the differences between the results are statistically

24

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

significant. The “MaxImpr.” row shows the maximum improvement afforded by the CEA.
The lower this value is, the better the performance of the algorithm. The LeastGap row
shows the maximum deviation over instances for which CEA did not find a better solution.
Finally, the row named “Impr./43” shows the number of instances out of the total 43
tested, where CEA yielded the same or better results over the algorithm it is compared
with.

As the results shown in Table 3 indicate, the CEA is competitive with the state-
of-the-art. In particular, CEA is able to produce optimal solutions for the 25,100,10,
20,300,40 sets of instances as well as for the large scale problem instances 100,400,10FL
and 30,700,100VL. Furthermore, the CEA finds optimal solutions for 25,100,30FT and
20,230,40VL which could not be found by any of the heuristics used for comparisons with
the exception of the ones described by Yaghini et al. (2013). The maximum deviations of
the CEA are−8.75% compared with CTS,−8.46% compared with PR,−5.32% compared
with MCA, −12.21% compared with CSH, −11.28% compared with IPS,−17.07% and
−1.06% compared with SACG1 and SACG2, respectively, and −23.81% compared with
LocalB.

Noteworthy is the fact that on large-scale problem instances 20,300,200FT, 100,400,30FT
and 30,520,100FT, new best solutions were obtained with values 107546, 139535 and
97856, respectively. These instances have up to 100 nodes, 520 arcs and 200 commodities,
and the new best solutions deviate by −0.29%, −1.06% and −0.70% over the previous
best known solutions, respectively.

On average measures, CEA outperforms CTS, PR and MCA by achieving average
improvements of −3.49%, −3.11%, and −2.44%, respectively. Compared with the rest,
the CEA still remains competitive with average deviations sitting at −0.37% from CHS,
−0.72% from IPS, −1.07% from SACG1, 0.15% from SACG2 and −1.81% from LocalB.
The improvements are statistically significant as the p-value indicates (with a reference of
0.05) over CTS, PR, MCA, IPS, SACG1 and LocalB. Compared with CHS, the proposed
algorithm produces better results by −0.37% on average, however the improvement is not
statistically significant as the p-Value is equal to 0.28(>0.05). Similarly, although SACG2
produces results that are better by 0.15% the difference is not statistically significant as
the p-Value is equal to 0.75. We also note that we are unable to consider the result of
SACG2 for instance 30,520,400FT as this value is lower than the lower bound 150009
reported by Katayama et al. (2009), and any comparison for this instance would therefore
be misleading.

The above comparisons are based on the results derived by using the running time
limits imposed by the original authors. Even though our time limit was 20000 sec, the
CEA was able to discover the best solution in less than two hours for most problem
instances. For very large-scale instances, improvements were observed in later SS itera-
tions which necessitated additional running time. The latter observation is as one would

25

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

T
ab

le
3:

C
om

p
ar
is
on

s
to

th
e
st
at
e-
of
-t
h
e-
ar
t
al
go
ri
th
m
s
on

th
e
C

an
d
C
+

se
ts

of
b
en
ch
m
ar
k
in
st
an

ce
s
of

C
ra
in
ic

et
al
.

(2
00
0)

I
n
s
t
a
n
c
e
s

O
P
T
/
L
B

C
E
A

%
D

e
v
ia

t
io

n
C
T
S

P
R

M
C
A

S
C
H

IP
S

S
A
C
G
1

S
A
C
G
2

L
o
c
a
lB

T
.L

im
(s
e
c
)

2
0
0
0
0

3
6
0
0
0

3
6
0
0
0

1
8
0
0
0

2
6
1
0

9
0
0

6
0
0

1
8
0
0
0

6
0
0

C
P
U

X
e
o
n

S
u
n

U
.

S
u
n

E
n
.

S
u
n

E
n
.

P
e
n
ti
u
m

8
x
X
e
o
n

C
o
re

2
D
u
o

C
o
re

2
D
u
o

C
o
re

2
D
u
o

E
5
5
0
7

6
0
/
2
3
0
0

1
0
0
0
0

1
0
0
0
0

E
5
8
0
0

E
6
8
5
0

E
6
8
5
0

E
4
6
0
0

G
H
z

2
.2
7

0
.4

0
.4

0
.4

3
.2

2
.6
6

3
.0
0

3
.0
0

2
.4

U
se

d
C
o
re

s
1

1
1
.0
0

6
4

2
8
x
1

2
2

2
P
C
P
U

S
c
o
re

3
2
1
2
/
4

2
3
8

1
4
5

6
4
x
2
3
8

1
6
6
4

4
3
5
x
8

1
9
8
5

1
9
8
5

1
3
7
9

N
o
rm

.
T
L

2
0
0
0
0

2
3
5
3

1
4
3
4

4
5
8
7
7

5
4
0
8

3
9
0
0

1
4
8
3

4
4
4
9
6

1
0
3
0

2
5
,1
0
0
,1
0
V
L

1
4
7
1
2

O
1
4
7
1
2

0
.0
0

0
.0
0

0
.0
0

0
.0
0

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,1
0
F
L

1
4
9
4
1

O
1
4
9
4
1

0
.0
0

0
.0
0

0
.0
0

−
0
.6
4

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,1
0
F
T

4
9
8
9
9

O
4
9
8
9
9

0
.0
0

0
.0
0

−
0
.0
8

−
1
.7
5

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,3
0
V
T

3
6
5
2
7
2

O
3
6
5
2
7
2

−
0
.0
3

−
0
.0
3

−
0
.0
3

0
.0
0

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,3
0
F
L

3
7
0
5
5

O
3
7
3
2
4

−
0
.6
9

−
0
.8
8

−
0
.7
6

−
0
.3
9

n
/
a

0
.7
1

0
.7
1

−
0
.0
1

2
5
,1
0
0
,3
0
F
T

8
5
5
3
0

O
8
5
5
3
0

−
0
.9
0

−
1
.0
5

−
1
.0
9

−
0
.3
2

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,4
0
V
L

4
2
3
8
4
8

O
4
2
3
8
4
8

−
0
.2
2

−
0
.1
3

−
0
.6
7

−
0
.0
5

−
0
.1
3

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,4
0
V
T

3
7
1
4
7
5

O
3
7
1
4
7
5

−
0
.1
1

−
0
.0
9

0
.0
0

−
0
.1
2

−
0
.0
8

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,4
0
F
T

6
4
3
0
3
6

O
6
4
3
1
8
7

−
0
.4
1

−
0
.3
7

−
1
.5
1

−
0
.2
0

0
.0
0

0
.0
2

0
.0
2

0
.0
2

2
0
,3
0
0
,4
0
V
L

4
2
9
3
9
8

O
4
2
9
3
9
8

−
0
.0
3

0
.0
0

−
0
.1
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
0
,3
0
0
,4
0
F
L

5
8
6
0
7
7

O
5
8
6
0
7
7

−
1
.2
4

−
0
.7
4

−
1
.2
7

−
0
.2
9

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
0
,3
0
0
,4
0
V
T

4
6
4
5
0
9

O
4
6
4
5
0
9

−
0
.0
5

0
.0
0

−
0
.3
2

−
0
.0
1

0
.0
0

−
0
.0
3

−
0
.0
3

0
.0
0

2
0
,3
0
0
,4
0
F
T

6
0
4
1
9
8

O
6
0
4
1
9
8

−
0
.4
8

−
0
.9
6

−
2
.4
8

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,2
0
0
V
L

9
2
5
9
8

L
9
4
4
6
8

−
4
.7
9

−
6
.2
8

−
4
.3
5

0
.2
3

−
0
.6
7

−
0
.8
8

0
.2
0

−
0
.8
8

2
0
,2
3
0
,2
0
0
F
L

1
3
3
5
1
2

L
1
3
8
9
5
4

−
5
.4
6

−
6
.5
0

−
3
.0
2

0
.9
4

−
1
.6
5

−
0
.5
8

0
.8
0

−
3
.2
3

2
0
,2
3
0
,2
0
0
V
T

9
7
3
4
4

L
9
8
2
0
9

−
6
.6
6

−
6
.6
0

−
3
.8
9

0
.2
5

−
1
.2
2

0
.2
3

0
.3
0

0
.1
7

2
0
,2
3
0
,2
0
0
F
T

1
3
2
4
3
2

L
1
3
7
1
3
1

−
7
.4
8

−
7
.6
0

−
2
.9
6

0
.7
3

−
2
.2
9

−
2
.6
5

0
.0
4

−
2
.9
1

2
0
,3
0
0
,2
0
0
V
L

7
3
7
5
9

L
7
5
2
7
9

−
7
.3
6

−
3
.8
6

−
3
.8
9

0
.4
9

−
0
.0
5

−
0
.9
6

0
.5
0

−
1
.4
6

2
0
,3
0
0
,2
0
0
F
L

1
1
1
6
5
5

L
1
1
6
8
0
1

−
5
.6
0

−
5
.7
2

−
4
.4
1

0
.8
7

−
0
.6
3

−
0
.9
8

0
.3
2

−
2
0
.0
0

2
0
,3
0
0
,2
0
0
V
T

7
4
9
9
1

O
7
5
4
4
4

−
5
.5
3

−
4
.5
4

−
2
.4
0

0
.1
9

−
1
.0
0

0
.0
3

0
.6
0

−
0
.9
6

2
0
,3
0
0
,2
0
0
F
T

1
0
4
3
3
4

L
1
0
7
5
4
6

−
6
.4
5

−
5
.6
1

−
3
.3
7

−
0
.2
9

−
2
.6
0

−
2
.0
1

−
1
.0
2

−
2
.1
0

1
0
0
,4
0
0
,1
0
V
L

2
8
4
2
3

O
2
8
4
2
3

−
0
.8
9

−
0
.2
2

−
0
.4
6

−
0
.0
1

0
.0
0

0
.0
0

0
.0
0

0
.0
0

1
0
0
,4
0
0
,1
0
F
L

2
3
9
4
9

O
2
3
9
4
9

0
.0
0

−
0
.3
0

−
0
.3
0

−
2
.1
3

0
.0
0

0
.0
0

0
.0
0

−
3
.0
9

1
0
0
,4
0
0
,1
0
F
T

5
9
4
7
0

L
6
5
5
6
3

−
2
.2
1

0
.4
3

−
1
.1
0

−
1
2
.2
1

−
0
.4
9

0
.6
0

0
.6
0

−
2
.7
4

1
0
0
,4
0
0
,3
0
V
T

3
8
4
5
6
0

L
3
8
4
9
9
9

−
0
.1
3

0
.0
2

−
0
.0
7

0
.0
3

0
.0
4

0
.0
5

0
.0
5

0
.0
5

1
0
0
,4
0
0
,3
0
F
L

4
7
4
5
9

L
4
9
4
6
6

−
4
.2
2

−
3
.7
6

−
2
.0
0

−
5
.0
3

−
0
.4
6

−
0
.3
5

0
.4
0

−
0
.8
2

1
0
0
,4
0
0
,3
0
F
T

1
2
7
8
2
5

L
1
3
9
5
3
5

−
4
.0
2

−
1
.3
1

−
4
.4
3

−
3
.4
2

−
1
.3
1

−
1
.4
4

−
1
.0
6

−
1
.5
0

3
0
,5
2
0
,1
0
0
V
L

5
3
9
5
8

L
5
4
0
9
9

−
1
.5
9

−
1
.4
9

−
3
.0
6

0
.0
2

−
0
.0
3

0
.2
1

0
.2
1

0
.1
3

3
0
,5
2
0
,1
0
0
F
L

9
1
2
8
5

L
9
5
1
4
2

−
4
.6
7

−
7
.2
6

−
4
.9
1

0
.3
6

0
.7
9

0
.8
8

1
.1
3

−
1
.1
7

3
0
,5
2
0
,1
0
0
V
T

5
1
8
2
5

L
5
2
1
8
2

−
1
.5
4

−
1
.6
0

−
2
.5
5

−
0
.1
9

0
.0
2

−
0
.4
0

−
0
.1
2

0
.1
0

3
0
,5
2
0
,1
0
0
F
T

9
4
6
4
6

L
9
7
8
5
6

−
7
.8
3

−
8
.4
6

−
4
.7
2

−
1
.0
0

−
1
.0
5

−
2
.3
8

−
0
.7
0

−
3
.3
2

3
0
,7
0
0
,1
0
0
V
L

4
7
6
0
3

O
4
7
6
0
3

−
1
.6
7

−
2
.3
5

−
2
.6
6

−
0
.0
7

−
0
.0
2

−
0
.8
3

0
.0
0

0
.0
0

3
0
,7
0
0
,1
0
0
F
L

5
8
7
7
2

L
6
0
5
3
8

−
3
.1
9

−
4
.2
2

−
5
.3
2

0
.5
7

−
0
.2
7

−
0
.0
7

0
.2
4

0
.4
4

3
0
,7
0
0
,1
0
0
V
T

4
5
5
5
2

L
4
6
0
8
2

−
2
.0
5

−
2
.4
5

−
2
.9
8

−
0
.1
9

0
.0
8

−
0
.1
4

0
.2
7

0
.3
8

3
0
,7
0
0
,1
0
0
F
T

5
4
2
3
3

L
5
5
1
3
5

−
4
.9
9

−
2
.6
1

−
3
.2
2

−
0
.4
1

−
0
.8
6

0
.2
2

0
.2
9

0
.0
6

3
0
,5
2
0
,4
0
0
V
L

1
1
1
9
9
2

L
1
1
3
1
9
3

−
6
.5
9

−
5
.5
0

−
2
.1
9

0
.3
1

−
0
.7
5

−
0
.8
9

−
0
.4
7

−
1
.0
4

3
0
,5
2
0
,4
0
0
F
L

1
4
6
8
0
9

L
1
5
1
1
4
5

−
6
.5
9

−
7
.9
2

−
3
.6
1

1
.1
2

−
2
.0
3

−
3
.1
0

0
.0
9

−
4
.3
5

3
0
,5
2
0
,4
0
0
V
T

1
1
4
2
3
7

L
1
1
5
6
9
7

−
5
.0
9

−
3
.8
7

−
4
.5
7

0
.9
1

0
.6
7

0
.0
7

0
.1
0

0
.4
0

3
0
,5
2
0
,4
0
0
F
T

1
5
0
0
0
9

L
1
5
4
4
2
5

−
8
.7
5

−
5
.9
9

−
3
.7
5

1
.0
9

−
0
.1
2

−
3
.5
9

n
/
a

−
9
.1
5

3
0
,7
0
0
,4
0
0
V
L

9
6
7
4
1

L
9
8
7
2
9

−
8
.1
5

−
6
.4
7

−
3
.9
5

0
.7
7

0
.0
1

−
3
.0
4

−
0
.5
9

−
5
.1
2

3
0
,7
0
0
,4
0
0
F
L

1
3
0
7
2
4

L
1
3
7
1
1
2

−
8
.6
3

−
5
.7
7

−
5
.0
1

1
.4
9

−
1
1
.2
8

−
1
7
.0
7

2
.2
9

−
2
3
.8
1

3
0
,7
0
0
,4
0
0
V
T

9
4
1
1
8

L
9
6
1
3
0

−
5
.7
7

−
5
.2
9

−
3
.1
9

0
.8
6

−
0
.0
4

−
0
.9
5

0
.6
2

−
0
.5
7

3
0
,7
0
0
,4
0
0
F
T

1
2
7
6
6
6

L
1
3
2
4
2
5

−
7
.8
2

−
6
.4
9

−
4
.4
1

1
.7
2

0
.6
0

−
6
.8
5

0
.7
2

−
9
.4
4

M
e
d
ia
n

−
3
.1
9

−
2
.4
5

−
2
.6
6

0
.0
0

−
0
.0
8

0
.0
0

0
.0
3

0
.0
0

A
v
g

−
3
.4
9

−
3
.1
1

−
2
.4
4

−
0
.3
7

−
0
.7
2

−
1
.0
7

0
.1
5

−
1
.8
1

p
−
v
a
lu

e
0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.2
8
0

0
.0
2
9

0
.0
1
9

0
.0
7
5

0
.0
0
6

M
a
x
Im

p
r.

−
8
.7
5

−
8
.4
6

−
5
.3
2

−
1
2
.2
1

−
1
1
.2
8

−
1
7
.0
7

−
1
.0
6

−
2
3
.8
1

L
e
a
st
G
a
p

0
.0
0

0
.4
3

0
.0
0

1
.7
2

0
.7
9

0
.8
8

2
.2
9

0
.4
4

Im
p
r.
/
4
3

4
3

4
1

4
3

2
4

3
0

3
3

2
0

3
4

26

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

Table 4: Computational times (in sec) and comparisons with the state-of-the-art

Instances CTS PR MCA CSH SACG2 IP CEA
CPU score 238 145 238x64 371 1985 3480 803
25,100,10VL 14.5 2.3 118.6 2.7 291.7 n/a 12.2
25,100,10FL 15.9 2.5 133.7 14.7 954.2 n/a 32.2
25,100,10FT 15.2 4.4 228.6 7.7 415.3 n/a 1240.0
25,100,30VT 66.3 18.3 961.7 6.6 6081.1 n/a 148.0
25,100,30FL 63.8 13.6 713.2 30.5 2719.2 n/a 1408.0
25,100,30FT 66.6 17.5 920 20.7 5811.6 n/a 55.0
20,230,40VL 109.8 26.9 1411.3 6.2 3087.5 151.7 1726.0
20,230,40VT 129.1 28.3 1488.1 6.8 487 39.0 142.0
20,230,40FT 125.5 31.1 1633.2 7.9 699.6 3523.3 1410.0
20,300,40VL 181.2 40.6 2133 6.6 274.4 1430.1 132.0
20,300,40FL 172.5 41.2 2165.3 12.8 454.8 3839.7 652.0
20,300,40VT 174.8 44.8 2351.2 7.9 7326.9 3848.4 6974.0
20,300,40FT 166.1 38.7 2033.5 9.1 2585.7 17.3 468.0
20,230,200VL 789.3 450.5 23662.7 916.1 9942.3 177.7 5242.0
20,230,200FL 805.7 519.7 27299 3435.8 6145.3 195.0 7805.0
20,230,200VT 760.4 399.2 20969.1 1084.8 3391.6 3562.3 4690.0
20,230,200FT 924.8 611.4 32112.4 4028.0 2294.0 2994.6 6246.0
20,300,200VL 1211.3 643.9 33821.5 720.5 22561.8 3558 7152.0
20,300,200FL 1294.6 724.6 38057.2 2673.0 2491.8 676.1 7042.0
20,300,200VT 1128.6 708.6 37218.8 888.4 31898.4 82.3 12351.3
20,300,200FT 1380.4 696.5 36582.4 3567.8 24054.8 125.7 11294.9
100,400,10VL 99.7 16.1 846 12 44495.6 104.0 130.0
100,400,10FL 90.9 15 786.3 193.3 23103.1 294.7 724.0
100,400,10FT 185.7 37.9 1990.8 115.2 14295.5 3475.7 5280.0
100,400,30VT 585.5 89 4673.9 36.9 9868.1 2973.0 2776.0
100,400,30FL 385.5 56.9 2987.6 1287.9 10384.8 1681.5 6890.0
100,400,30FT 554.2 86.8 4561.1 318.9 16918.2 1716.2 16683.2
30,520,100VL 994.7 215.6 11325.4 55.7 44495.6 944.8 19087.1
30,520,100FL 1195.2 263.6 13847.3 842.4 34563.2 979.4 1700.0
30,520,100VT 1031.8 273.3 14356.6 77.3 44495.6 1971.9 18058.5
30,520,100FT 1164 275 14441.9 413.8 35314.7 3532.0 17771.9
30,700,100VL 1303 336 17646.7 79.8 61.8 1707.5 14069.3
30,700,100FL 1409.3 331.8 17427.6 237.3 42 3250.3 16934.5
30,700,100VT 1351.6 342 17964.5 95.9 71.7 2691.3 7202.0
30,700,100FT 1442.3 308.1 16181.4 200.6 160.7 2019.5 15875.0
30,520,400VL 10827.3 4961.7 260607.6 1177 182.9 138.7 19865.6
30,520,400FL 12723.8 6621.5 347787.5 5409.3 496.9 3211.3 18390.1
30,520,400VT 8362.3 4169.3 218987 476.6 402.9 1607.8 19622.8
30,520,400FT 11858.8 9421.1 494833.2 3468.7 479.6 1677.2 7042.0
30,700,400VL 7355.4 4029.4 211643.2 983.9 417.8 962.1 10307.3
30,700,400FL 20610.9 13663 717638.7 3694.6 1058 3727.0 7202.0
30,700,400VT 10366.2 4385.9 230366.5 1552.3 2316.2 1581.8 15041.7
30,700,400FT 15376 8114.3 426196.3 3081.6 2983.7 975.1 19992.1
Avg 2764.4 1466.9 77049.1 959.7 9780.9 1768.8 7834.1

expect with evolutionary algorithms, i.e., a number of SS iterations are needed in order
that the initial population of solutions can be evolved such that high quality solutions
can be produced.

The final set of comparisons relate to the computation times needed by the CEA and
other state-of-the-art algorithms to obtain the best solutions, which are shown in Table
4. The times for the latter group have been adjusted using the PCPUSs introduced in
Table 3, such that an objective comparison can be made. As CEA outperforms CTS, PR
and MCA in terms of the solution quality, the main focus will be on comparisons with
CSH, SACG2 and IP. As the table shows, CEA needs 25% less running time than SACG2
on average, for producing solutions that deviate by 0.15% from the ones produced by
SACG2. It is worth noting that the MCNDP is a planning problem at strategic/tactical
level of decision making and it is not unreasonable to devote more time in solving it.

27

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

5 Conclusions and Further Research

This paper presented an evolutionary algorithm for the Fixed Charge Capacitated Multi-
Commodity Network Design Problem. The proposed methodology evolves a pool of
solutions using Scatter Search principles, and includes an Iterated Local Search as an
improvement method. The latter introduces new cycle-based neighbourhood structures,
short and long term memory structures for guiding the search, and an efficient per-
turbation strategy, inspired by Ejection Chains, to enable the search escape from local
optima. An efficient recombination strategy is introduced which dynamically adjusts the
preferences for inherited solutions based on the search history.

Computational experiments on the benchmark instances of Crainic et al. (2000) show
that the proposed CEA is highly competitive compared to state-of-the-art approaches. In
particular, CEA is able to reproduce the 13 out of 17 optimum solutions for 17 problem
instances previously solved by exact algorithms. CEA was also able to produce three new
best solutions, in large-scale problem instances. In general terms, CEA’s performance is
strong, thus placing it among the most efficient algorithms for the MCNDP.

In terms of further research, a promising research direction is the use of a knowledge
base where favourable paths for the commodities would be stored not only for speeding up
the algorithm but also for guiding the algorithm towards producing unexplored solution
structures. Another direction is to look at decomposition techniques to solve the flow
subproblems with a view to reducing the computational times. Finally, it is worthwhile
to explore the proposed evolutionary algorithm for solving other variants of the MCNDP
or even to other problems that share common features with MCNDP.

Acknowledgements

The authors gratefully acknowledge the following sources of funding for this project:
the Engineering and Physical Sciences Research Council (EPSRC), the Rail Safety and
Standards Board (RSSB) and Department of Transport, UK, the Natural Sciences and
Engineering Council of Canada (NSERC) through its Discovery Grant programs, the
Faculty Strategic Research Fund provided by the Faculty of Business and Law at the
University of Southampton, Fonds de recherche du Québec, Canada for their infrastruc-
ture grants.

28

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

References

Alvarez, AM, JL González-Velarde, K De-Alba. 2005. Scatter search for network design
problem. Annals Oper. Res. 138 159–178.

Balakrishnan, A, TL Magnanti, P Mirchandani. 1997. Network design. F Dell’Amico,
M Maffioli, S Martello, eds., Bibliographies in Combinatorial Optimization. John Wiley
and Sons, 311–334.

Crainic, TG, M Gendreau, J Farvolden. 2000. A simplex-based tabu search for capaci-
tated network design. INFORMS J. Comput. 12 223–236.

Crainic, TG, A Frangioni, B Gendron. 2001. Bundle-based relaxation methods for multi-
commodity capacitated fixed charge network design. Discrete Appl. Math. 112 73–99.

Crainic, TG, M Gendreau. 2002. Cooperative parallel tabu search for capacitated network
design. J. Heur. 8 601–627.

Crainic, TG, M Gendreau. 2007. A scatter search heuristic for the fixed-charged capaci-
tated network design problem. Doerner, KF, M Gendreau, P Greistorfer, WJ Gutjahr,
RF Hartl and M Reimann, ed., Metaheuristics - Progress in Complex Systems Opti-
mization. Springer, 25–40.

Dongarra JJ. 2013. Performance of Various Computers Using Standard Linear Equations
Software. CS - 89 - 85, University of Manchester .

Crainic, TG, Y Li, M Toulouse. 2006. A first multilevel cooperative algorithm for capac-
itated multicommodity network design. Comput. Oper. Res. 33 2602–2622.

Feo, TA, MGC Resende. 1995. Greedy Randomized Adaptive Search Procedures. J.
Global Optim. 6(2) 109–133.

Fischetti M, Lodi A. 2003. Local branching. Math. Programming 98 23–47.

Frangioni, A, B Gendron. 2001. 0–1 Reformulations of the multicommodity network
design problem. Discrete Appl. Math. 112 73–99.

Gendron B, TG Crainic, A Frangioni. 1998. Multicommodity capacitated network design.
P Soriano, B Sanso, eds., Telecommunications Network Planning . Kluwer, 1–19.

Ghamlouche, I, TG Crainic, M Gendreau. 2003. Cycle-based neighbourhoods for fixed-
charge capacitated multicommodity network design. Oper. Res. 51 655–667.

Ghamlouche, I, TG Crainic, M Gendreau. 2004. Path relinking, cycle-based neighbour-
hoods and capacitated multicommodity network design. Annals Oper. Res. 131 109–
134.

29

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

Glover, F. 1996. Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Appl. Math. 65 223–253.

Hewitt M, GL Nemhauser, MWP Savelsbergh. 2010. Combining exact and heuristic ap-
proaches for the capacitated fixed-charge network flow problem. INFORMS J. Comput.
22(2) 314–325.

Hewitt M, GL Nemhauser, MWP Savelsbergh. 2012. Branch and price guided search
for integer programs with an application to the multicommodity fixed-charge network
flow problem. INFORMS J. Comput. Articles in advance 1–15.

Holmberg, K, D Yuan. 2000. A Lagrangian heuristic based branch-and-bound approach
for the capacitated network design problem. Oper. Res. 48 461–481.

Katayama, N, M Chen, M Kubo. 2009. A capacity scaling heuristic for the multicom-
modity capacitated network design problem. J. Comput. Appl. Math. 232 90–101.

Lourenço, HR, O Martin, T Stützle. 2002. Iterated local search. Dorigo M Corne D,
Glover F, eds., Handbook of Metaheuristics: International Series in Operations Re-
search & Management Science. Kluwer, 321–353.

Magnanti, TL, RT Wong. 1986. Network design and transportation planning: models
and algorithms. Transportation Sci. 1 1–55.

Minoux, M. 1986. Network synthesis and optimum network design problems: models,
solution methods and applications. Networks 19 313–360.

Paraskevopoulos DC, CD Tarantilis, G Ioannou. 2012. Solving Project Scheduling Prob-
lems with Resource Constraints via an Event List-based Evolutionary Algorithm. Ex-
pert Systems Appl. 39(4) 3983–3994.

Rodŕıguez-Mart́ın I, Salazar-González JJ. 2010. A local branching heuristic for the ca-
pacitated fixed-charge network design problem. Comput. Oper. Res. 37(3) 575–581.

Yaghini M, M Rahbar, M Karimi. 2013. A hybrid simulated annealing and column
generation approach for capacitated multicommodity network design. J. Oper. Res.
Soc. 64 1010–1020.

30

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2014-36

