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Abstract. Recently, Fosgerau et al. (2013) proposed a route choice model called 

recursive logit (RL) model that can be consistently estimated based on revealed 

preference data and used for prediction without sampling any choice sets of paths. They 

show that the RL model is equivalent to a logit model and hence it exhibits the 

independence from irrelevant alternatives (IIA) property although it is reasonable to 

assume that it does not hold in a route choice context. This paper presents the nested 

recursive logit (NRL) model that relaxes the IIA assumption by allowing scale parameters 

to be link specific while keeping the advantages of the RL model. The key challenge lies in 

the computation of the expected maximum utility from a position in the network to a 

destination (value functions). In the RL model the value functions can be efficiently 

computed by solving a system of linear equations. In the case of NRL they are the solution 

to a system of non-linear equations which is considerably more difficult to deal with. We 

propose an iterative method with dynamic accuracy that makes it possible to estimate and 

apply the NRL efficiently in real networks. We report estimation results and a prediction 

study for a network composed of more than 3000 nodes and 7000 links. The results show 

that the NRL model has sensible parameter estimates and the bit is remarkably better 

than the RL model. They are more similar in the prediction performance. 
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1 Introduction

Discrete choice models are generally used for analyzing path choices in real
networks based on revealed preference (RP) data. There are two main mod-
elling issues associated with consistently estimating such models and sub-
sequently using them for prediction. First, the choice sets are unknown to
the analyst and the set of all feasible paths for a given origin-destination
pair cannot be enumerated. Second, path utilities may be correlated, for
instance, due to physical overlap in the network. There is no state-of-the-
art path choice model that can be both consistently estimated and used for
prediction while addressing the two aforementioned issues. The objective of
this paper is to fill this gap in the literature by proposing a new model that
we call nested recursive logit.

Most of the existing path choice models are based on choice sets of paths
that need to be sampled before estimating or applying the model. Many dif-
ferent algorithms exist for sampling choice sets (for reviews, see e.g. Frejinger
et al., 2009, Prato, 2009) and they all correspond to importance sampling
protocols where paths have non-equal probabilities of being sampled. Fre-
jinger et al. (2009) argue that utilities need to be corrected for the sampling
of alternatives which implies that only algorithms that allow to compute
path sampling probabilities can be used. Frejinger et al. (2009) use the logit
(MNL) model but other types of generalized extreme value (GEV) models
can be used (Guevara and Ben-Akiva, 2013) although it has not yet been
done for path choice. It is important to note that the sampling approach can
be used to consistently estimate a path choice model but it is still unknown
how to use the model for prediction.

A number of models in the literature allow to model the correlation struc-
ture of path utilities. A few examples are the link-nested logit (Vovsha and
Bekhor, 1998), mixed logit with error components (Bekhor et al., 2001, Fre-
jinger and Bierlaire, 2007) and paired combinatorial logit (Chu, 1989). These
models are based on sampled choice sets without correcting the utilities for
the sampling protocol. Hence, the parameter estimates are conditional on
the choice sets and may have significantly different values if some paths are
added or removed from the choice sets. This is problematic since the true
choice sets are unknown. As mentioned earlier, the GEV models (e.g. link-
nested logit) can be corrected, while it is unclear how to do it for the mixed
logit models.

Recently, Fosgerau et al. (2013) proposed the recursive logit (RL) model
where path choice is modelled as a sequence of link choices using a dynamic
discrete choice framework. The RL model can be consistently estimated and
used for prediction without sampling choice sets of paths. It is however
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equivalent to a MNL model over the set of all feasible paths and even though
a correction attribute called link size, similar to path size, is proposed, it
cannot properly model correlated path utilities.

In this paper we propose an extension of the RL model that allows to
model correlated path utilities in a fashion similar to nested logit (Ben-Akiva,
1973) where links can have different scale parameters. The key challenge lie
in the computation of the expected maximum utility from a current position
in the network until the destination (value functions). The strength of the
RL model is that the value functions can be computed by solving a system of
linear equations, which is fast and easy to do. In the case of the nested RL
(NRL), the value functions are a solution to a system of non-linear equations
which is substantially more difficult to deal with. We propose an iterative
method with dynamic accuracy to efficiently solve this system.

This paper makes a number of contributions. First we propose a model
that can be consistently estimated and used for prediction without sampling
choice sets while allowing to model correlated path utilities. Second, we
provide illustrative examples and discuss the resulting substitution patters.
Third, we propose an iterative method to solve the value functions and derive
the analytical gradient of the log-likelihood function for the case that the
scales are functions of model parameters so that the NRL model can be
efficiently estimated. Fourth, we present estimation results based on real
data for a network with 3000 nodes and 7000 links. Finally, the estimation
code is implemented in MATLAB and is freely available upon request.

The paper is structured as follows. Section 2 presents the NRL model.
Section 3 discusses substitution patterns by illustrative examples and Section
4 provide a method to compute the value functions. Section 5 derives an
analytical formula for the first order derivative of the log-likelihood function.
Specifications, estimation and prediction results are presented in Section 6
and finally Section 7 concludes.

2 The nested recursive logit model

The RL model is recently proposed by Fosgerau et al. (2013) where the path
choice problem is formulated as a sequence of link choices and modeled in
a dynamic discrete choice framework. They consider the case where the
random terms are independently and identically distributed (i.i.d.) extreme
value type I with zero mean so that the model is equivalent to MNL. In
this section we present the NRL model which relaxes the independence of
irrelevant alternatives (IIA) property of MNL by assuming that the scales of
random terms are different over links. In the following we derive the model
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using the same notation as Fosgerau et al. (2013). Even though the derivation
is similar to the RL case, the resulting path and link choice probabilities are
different.

A directed connected graph (not assumed acyclic) G = (A;V) is consid-
ered, where A,V are the set of links and nodes, respectively. For each link
k ∈ A, we denote the set of outgoing links from the sink node of k by A(k).
Moreover we associate an absorbing state with each destination by extend-
ing the network with dummy links (see Figure 1). The set of all links is
Ã = A ∪ {d} and the corresponding deterministic utility is v(d|k) = 0 for
all k that have destination d as sink node. Given two links a, k ∈ Ã, the
following instantaneous utility is associated with action a ∈ A(k)

u(a|k; β) = v(a|k; β) + µkε(a)

where β is a vector of parameters, µk is a strictly positive scale parameter
and ε(a) are i.i.d extreme value type I with zero mean. The deterministic
term v(a|k; β) is assumed negative for all links except the dummy link d. We
emphasize the difference with the original RL model where scale parameters
are assumed equal (µk = µ ∀k ∈ A).

D
d

k

a1

a|A(k)|

V d(a1)

··
· A(k)

Figure 1: Illustration of notation (Fosgerau et al., 2013)

The expected maximum utility from the sink node of a link k to the des-
tination is the value function V d(k; β). The superscript d indicates that the
value functions are destination specific and they also depend on parameters
β. V d(k; β) is recursively defined by Bellman’s equation

V d(k; β) = E
[

max
a∈A(k)

(
v(a|k; β) + V d(a; β) + µkε(a)

)]
∀k ∈ A (1)

or equivalently

1

µk
V d(k; β) = E

[
max
a∈A(k)

( 1

µk
(v(a|k; β) + V d(a; β)) + ε(a)

)]
∀k ∈ A. (2)
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For notational simplicity we omit from now on β from the value functions V (.)
and the utilities v(.). For the same reason, we omit an index for individual
n but note that utilities u(a|k) can be individual specific.

Given these assumptions the probability of choosing a given state k is
given by the MNL model

P d(a|k) = δ(a|k)
e

1
µk

(v(a|k)+V d(a))∑
a′∈A(k) e

1
µk

(v(a′|k)+V d(a′))

= δ(a|k)e
1
µk

(v(a|k)+V d(a)−V d(k)) ∀k, a ∈ Ã

(3)

where δ(a|k) = 1 if a ∈ A(k) and zero otherwise. The value functions in this
case are given by the logsum

1

µk
V d(k) = ln

( ∑
a∈A(k)

e
1
µk

(v(a|k)+V d(a))
)
∀k ∈ A (4)

and V d(d) = 0 by assumption. Similar to Fosgerau et al. (2013) we can write
Equation (4) as

e
1
µk
V d(k)

=

{∑
a∈A δ(a|k)e

(v(a|k)+V d(a))
µk ∀k ∈ A

1 k = d
(5)

and define a matrix Md(|Ã| × |Ã|) and a vector zd(|Ã| × 1) with entries

Md
ka = δ(a|k)e

v(a|k)
µk , zdk = e

V (k)
µk , k, a ∈ Ã. (6)

The key issue here compared to the RL model is that we do not end
up with a system of linear equations. Indeed, the value functions are the
solutions to the following system of non-linear equations

zdk =

{∑
a∈AM

d
ka(z

d
a)
µa/µk ∀k ∈ A

1 k = d.
(7)

Moreover the probability of a path σ defined by a sequence of links σ =
[k0, k1, . . . , kI ] has also a slightly more complicated expression than the RL
path probability because link specific value functions do not cancel due to
the scale parameters

P (σ) =
I−1∏
i=0

e
1
µki

(v(ki+1|ki)+V d(ki+1)−V d(ki))
. (8)
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Finally we note that the IIA property does not hold. Consider the ratio of
the choice probabilities of two paths σ1 = [k1, . . . , kI1 ] and σ2 = [h1, . . . , hI2 ]
connecting a same origin-destination pair

P (σ1)

P (σ2)
=

∏I1−1
i=1 e

1
µki

(v(ki+1|ki)+V d(ki+1)−V d(ki))∏I2−1
i=1 e

1
µhi

(v(hi+1|hi)+V d(hi+1)−V d(hi))
. (9)

When the scales µk = µ ∀k ∈ A, the value functions cancel out and the
ratio (9) only depends on the utilities of two considered paths. For the NRL
model, the ratio (9) depends on several values functions, which are evaluated
based on the whole network and therefore the IIA property does not hold.
In the following section be discuss the resulting substitution pattern in more
depth using two illustrative examples.

3 Illustrative examples and substitution pat-

terns

First we consider the small network shown in Figure 2 which is designed so
that each path in the network belong to exactly one nest when defined by
physical overlap (the nesting structure is shown in the figure). There are 4
nodes A,B,C,D and 9 links (link o is the origin and link d is a dummy link).
Moreover, there are 6 possible paths from o to d: [o, a, a1, d], [o, a, a2, d],
[o, a, a3, d], [o, b, b1, d], [o, b, b2, d] and [o, b, b3, d] and we number these paths
as 1, 2, 3, 4, 5 and 6, respectively. The only attribute in the instantaneous
utility is link length and the values are given in the parentheses on each arc.
In order to compute path probabilities we choose a length parameter β̃ = −1.

For the RL model the IIA property holds meaning that if we remove
links in the network, the probabilities of feasible paths will increase by the
same proportions (for example if we remove link a2, the probabilities of path
[o, a, a3, d] and path [o, b, b3, d] increase but they are still equal). For the NRL
model, the scales of random terms are assigned different values. To evaluate
the impact of the scales on the path probabilities we assign a scale of 0.5 for
links a, a scale of 0.8 for links b and a scale of 1.0 for the others. Similar to
an example in Train (2003), we illustrate substitution patterns by removing
in turn links a1, a2, b1, b2 and present changes in probabilities in Table 1.

We note that the changes in probabilities for paths [o, a, a1, d], [o, a, a2, d],
[o, a, a3, d] rise by the same proportions whenever one link is removed from
the network. This is also the case for the three paths [o, b, b1, d], [o, b, b2, d]
and [o, b, b2, d]. As expected, the IIA property holds between paths within
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A

B

C

D

a(1)

b(2)

a1(1)

a2(2)

a3(3)

b1(2)

b2(1.5)

b3(1)

d(0)o(1) N1 N2

1 2 3 4 5 6

paths

nests

Figure 2: Illustrative network

Probabilities with link removed
Paths Original a1 a2 b1 b2
1 : [o, a, a1, d] 0.54 - 0.65(+20%) 0.55(+1%) 0.56(+4%)
2 : [o, a, a2, d] 0.15 0.38(+151%) - 0.16(+1%) 0.16(+4%)
3 : [o, a, a3, d] 0.04 0.11(+151%) 0.05(+20%) 0.05(+1%) 0.05(+4%)
4 : [o, b, b1, d] 0.02 0.05(+93%) 0.03(+15%) - 0.03(+19%)
5 : [o, b, b2, d] 0.06 0.12(+93%) 0.07(+15%) 0.17(+6%) -
6 : [o, b, b3, d] 0.17 0.33(+93%) 0.20(+15%) 0.18(+6%) 0.21(+19%)

Table 1: Change in probability when link is removed

the same nest but not for paths in different nests. For example, when link
a1 is removed, path [o, a, a1, d] is also removed and the probabilities of the
paths in the first nest rise by 151% while the paths in the second nest rise
by 93%.

A

B

C

DE

a(1)

b(2)

a1(1)

a2(2)

a3(2)

f(2)

b1(1)

b2(1.5)

b3(1)

e(1)
d(0)o(1) N1 N2

1 2 3 4 5 6

paths

nests

Figure 3: Illustrative network

The network in Figure 2 is designed so that the paths can naturally
be divided into separate nests. In the next example shown in Figure 3 we
slightly modify the network so that paths can be divided into a cross-nested
structure (shown in the same figure). More precisely, we add a node E
that separates links a3 and b1 into two links. The lengths of the considered
paths in the new network do not change but the structure of the network is
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different since apart from the origin and destination, two paths [o, a, a3, e, d]
and [o, a, b1, e, d] share link e. There is a new link f going from node E to
node A so that the expected maximum utilities from link a3 and b1 depend
on the whole network and not only on the dummy link and link e.

We consider 6 main paths without loops: [o, a, a1, d], [o, a, a2, d], [o, a, a3, e, d],
[o, b, b1, e, d], [o, b, b2, d], [o, b, b3, d], which are numbered as 1, 2, 3, 4, 5 and 6,
respectively. We keep the same scales as in the first example (i.e. µa = 0.5,
µb = 0.8 and the scale parameters are equal to one) in order to illustrate how
the NRL model relaxes the IIA property when the network becomes more
complicated. In Table 2 we report the changes in probabilities of the six paths
when we remove in turn links a3, b1 and f . We note that the substitution
patterns are different than in the previous example since the probabilities of
paths 3 and 4 no longer change by the same proportion as the other paths
in their respective nest.

Probabilities with link removed
Paths Original a1 b3 f
1 : [o, a, a1, d] 0.54 - 0.60(+12%) 0.54(+0.7%)
2 : [o, a, a2, d] 0.15 0.38(+150%) 0.17(+12%) 0.15(+0.7%)
3 : [o, a, a3, e, d] 0.05 0.11(+148%) 0.05(+11%) 0.04(-1.3%)
4 : [o, b, b1, e, d] 0.03 0.05(+86%) 0.05(+90%) 0.02(-6.7%)
5 : [o, b, b2, d] 0.06 0.12(+93%) 0.12(+91%) 0.06(+1.4%)
6 : [o, b, b3, d] 0.17 0.33(+93%) - 0.17(+1.4%)

Table 2: Change in probability when link is removed

In order to compare the results with path based models we report prob-
abilities given by the nested logit, cross-nested logit and link-nested logit
(Vovsha and Bekhor, 1998) models in Table 3. For all models, the nesting
parameters take the same values as in the NRL mode, namely 0.8 for nest
N1 and 0.5 for nest N2. In the cross-nested logit model the inclusion coef-
ficients αij define to which degree path i belong to nest j. We assign values
so that the probabilities are as close as possibly to the NRL model (α31 = 1,
α32 = 0, α41 = 0.4, α42 = 0.6). The cross-nested logit structure in Figure 3
is slightly different compared to the link-nested logit model, which is shown
in Figure 4. The results show that for this example probabilities of the
link-nested logit are slightly different from NRL. Moreover, the cross-nested
logit probabilities can be very close to NRL for some values of the inclusion
coefficients. Finally we note that the sum of the path probabilities for RL
and NRL in the second example are numerically close but not exactly one.
This is due to the cycle in the network.

In summary, the IIA property can be relaxed by assuming different scales.
The resulting substitution pattern depends on the network structure but for
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simple networks the model can be interpreted as a nested logit over paths.

ba a1 a2 a3 b1 b2 b3 e

1 2 3 4 5 6

links

paths

Figure 4: Cross-nested structure from the Link-nested logit model

Example 1 Example 2
Paths MNL NRL Nested MNL NRL Cross Link

logit nested logit nested logit
1 0.449 0.541 0.541 0.443 0.537 0.537 0.501
2 0.165 0.155 0.155 0.163 0.154 0.154 0.150
3 0.061 0.044 0.044 0.060 0.045 0.044 0.051
4 0.061 0.023 0.023 0.060 0.025 0.023 0.043
5 0.100 0.064 0.064 0.099 0.063 0.065 0.085
6 0.165 0.173 0.173 0.163 0.170 0.177 0.171

Table 3: Path probabilities comparison

4 Computation of the value functions

The main challenge associated with the NRL model is to efficiently solve
system of system of non-linear equations (5). In the following we propose
a solution method based on (i) value iterations with a good initial solution
and (ii) dynamic accuracy.

We define a matrix X(z) with entries

X(z)ka = zµa/µka ∀k, a ∈ Ã (10)

so that the Bellman equations (7) can be written as

z = [M ◦X(z)]e+ b. (11)

b is a vector of size (|Ã| × 1) with zero values for all states except for the
destination that equals 1, e is a vector of size (|Ã| × 1) with value one for all
states and ◦ is the element-by-element product.
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Value iterations consist of solving Equation (11) repeatedly. We start
with an initial vector z0 and then for each iteration i we compute a new
vector

zi+1 ← [M ◦X(zi)]e+ b. (12)

and iterate until a fixed point is found using ||zi+1 − zi||2 < γ for a given
threshold γ > 0 as stopping criteria. 1 It can be shown that if the Bell-
man equation has a solution, this method converges after a finite number
of iterations. The choice of initial vector is however important for the rate
of convergence. We use the solution of the system of linear equations corre-
sponding to the RL model (µk = µ ∀k ∈ A) which is very fast to compute.

Since the value functions depend on the parameter values they need to
be solved repeatedly when searching over the parameter space (maximum
likelihood estimation). In order to speed up we use dynamic accuracy. More
precisely, we update the threshold γ in the iterations of the non-linear op-
timization algorithm so that higher accuracy is required close to optimum
(γ decreases as the number of iterations of the non-linear optimization algo-
rithm increases). In the following section we discuss the maximum likelihood
estimation in detail.

5 Maximum likelihood estimation

There are several different ways of estimating a dynamic discrete choice model
(Aguirregabiria and Mira, 2010), we adopt the nested fixed point algorithm
of Rust (1987). This algorithm combines an outer iterative non-linear op-
timization algorithm for searching over the parameter space with an inner
algorithm for solving the value functions.2 The latter was the focus of the
previous section and we now turn our attention to the definition of the log-
likelihood (LL) function and the derivation of its gradient which allows us to
use classic Hessian approximation such as BHHH and BFGS (see for instance
Berndt et al., 1974, Nocedal and Wright, 2006).

The path probabilities are defined by (8) and contain scale parameters
µk ∀k ∈ A as well as the parameters β associated with the attributes of

1The value functions can also be used in the stopping criteria i.e. the iteration stops
when

∑
k∈Ã(V i+1(k)−V i(k))2 < γ′. The value functions have however larger magnitudes

than z.
2An other option is the swapped nested fixed point algorithm of Aguirregabiria and

Mira (2002). The idea is to swap the order of the outer and inner algorithms so that the
outer algorithm solves the value functions and the inner algorithm maximizes the pseudo-
likelihood function. This is very useful if the value functions are costly to evaluate which
is not the case of the NRL model. Indeed, for NRL it is more costly to maximize the
log-likelihood function than solving the value functions.
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the instantaneous utilities. Clearly, it is not possible for a real network
to estimate all link-specific scale parameters so we assume, without loss of
generality, that they are a function of parameters β to be estimated µk(β).
(We refer the reader to the numerical results, Section 6, for an example.) In
the following we simplify the notation for the instantaneous utilities v(k|a),
value functions V (k) and scale parameters µk (instead of v(a|k; β), V (k; β)
and µk(β), respectively) but we emphasize that they depend on the vector
of parameters β.

The LL function defined over the set of path observations n = 1, . . . , N
is

LL(β) =
N∑
n=1

lnP (σn, β) =
N∑
n=1

In∑
t=0

1

µkt
(vn(kt+1|kt) + V n(kt+1)− V n(kt))

(13)
and is very similar to the LL function of the RL model except that the value
functions for each state do not cancel out. Assuming a linear-in-parameters
formation of the instantaneous utilities, the gradient with respect to a given
parameter βi is

∂LL(β)

βi
=

1

N

N∑
n=1

In−1∑
t=1

1

µkt

(
∂vn(kt+1|kt)

∂βi
+
∂V n(kt+1)

∂βi
− ∂V n(kt)

∂βi

)
− ∂µkt
µ2
kt
∂βi

(vn(kt+1|kt) + V n(kt+1) + V n(kt))

.

and hence requires the first derivative of the value functions V n(k), ∀k ∈ Ã
with respect to βi. We define φka = µa/µk and take the derivative of a given
value function zk as defined by Equation (7) (without using the superscription
for destination d) and obtain

∂zk
∂βi

=
∑
a∈A

(
∂Mka

∂βi
zφkaa +Mkaz

φka
a

(
φka
za

∂za
∂βi

+
∂φka
∂βi

ln za

))
=
∑
a∈A

(
∂Mka

∂βi
zφkaa +Mkaz

φka
a

∂φka
∂βi

ln za

)
+
∑
a∈A

(
Mkaz

φka
a

φka
za

∂za
∂βi

)
.

(14)
We note that when the scales µk contains some model parameters, the deriva-
tive of each element of matrix M(β) with respect to a given parameter βi
is

∂Mka

∂βi
= δ(a|k)e

v(a|k)
µk

(
∂v(a|k)

µk∂βi
− v(a|k)

∂µk
µ2
k∂βi

)
, k, a ∈ Ã
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We introduce two matrices, Gi and K of size |Ã| × |Ã|, which have the two
sums of Equation (14) as entries

Gi
ka =

∂Mka

∂βi
zφkaa +Mkaz

φka
a

∂φka
∂βi

ln za

Kka = Mkaz
φka
a

φka
za
, ∀k, a ∈ Ã. (15)

This allows us to define the Jacobian of vector z as a system of linear equa-
tions

∂z

∂βi
= Gie+K

∂z

∂βi
⇒ ∂z

∂βi
= (I −K)−1Gie. (16)

which in theory can be solved very efficiently. In the other hand, it is possible
to use the fact that V (k) = µk ln zk ∀k ∈ Ã and derive the Jacobian of V
instead of z. In this case the gradient of V (k) with respect to a given βi is

∂V (k)

∂βi
=
∂µk
∂βi

ln zk +
µk
zk

∂zk
∂βi

. (17)

Using (14) we get

∂V (k)

∂βi
=
∑
a∈A

Sika +
∑
a∈A

Hka
∂V (a)

∂βi
+ hk (18)

where

Sika = µk
∂Mka

∂βi

zφkaa

zk
+ µkMka ln(za)

zφkaa

zk

∂φka
∂βi

−Mka ln(za)
zφkaa

zk

∂µa
∂βi

and

Hka = Mka
zφkaa

zk
and hk =

∂µk
∂βi

ln zk.

We denote Si, H be two matrices of size |Ã|× |Ã| and h, V be two vectors of
size |Ã|× 1 with entries Sika, Hka, hk, V (k) for all k, a ∈ Ã, respectively. The
Jacobian of vector V can then be written as a system of linear equations

∂V

∂βi
= (I −H)−1(Sie+ h) (19)

Theoretically, two formulas (16) and (19) can be used to compute the
gradient of the value functions. To explain further the properties of these
approaches we consdier the definitions of the matrix K and H in formulas
(16) and (19). We note that za, a ∈ Ã are exponential functions of the value
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functions which are negative based on the assumption of the NRL model.
The value of za may therefore be very close to zero. Since the elements of
matrix K can be written as Kka = φkaMkaz

φka−1
a (∀k, a ∈ Ã) if φka < 1, the

value of Kka can be very large and otherwise if φka > 1, Kka can be very
close to zero. The gaps between elements in matrix K (and also in matrix
I−K) can lead to inaccurate solutions when solving the system (16). Based
on equation (7), each element of matrix H can be written as

Hka =
Mkaz

φka
a∑

a′∈A(k)Mka′z
φka′
a′

=
1

1 +
∑

a′∈A(k),a′ 6=a
Mka′z

φka′
a′

Mkaz
φka
a

∀k, a ∈ Ã, a ∈ A(k)

so that 0 < Hka < 1, meaning that the gaps between elements of matrix H
are smaller, compared to matrix K. This is helpful to avoid numerical issues
when solving the system of linear equations. Therefore using formula (19)
to compute the gradient of LL function is better than (16). In summary,
the analytical gradient of the LL function has a complicated for but can be
efficiently computed by solving systems of linear equations.

6 Numerical results

In this section we present estimation and prediction results for four different
models: the RL model with and without link size (LS) attribute and the
NRL model, also with and without LS attribute. We use the same data
as Fosgerau et al. (2013) (also used in Frejinger and Bierlaire, 2007, Mai
et al., 2014) which has been collected in Borlänge, Sweden. The network is
composed of 3077 nodes and 7459 links and is uncongested so travel times
can be assumed static and deterministic. The sample consists of 1832 trips
corresponding to simple paths with a minimum of five links. Moreover, there
are 466 destinations, 1420 different origin-destination (OD) pairs and more
than 37,000 link choices in this sample.

6.1 Model specifications

The same five attributes as Fosgerau et al. (2013) are used in the instanta-
neous utilities. First, link travel time TT (a) of action a. Second, a left turn
dummy LT (a|k) that equals one if the turn angle from k to a is larger than
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40 degrees and less than 177 degrees. Third, a u-turn dummy UT (a|k) that
equals one if the turn angle is larger than 177. Fourth, a link constant LC(a).
The fifth attribute is LS(a) (for a detailed description see Fosgerau et al.,
2013) and it has been computed using a linear in parameters formulation of
the aforementioned four attributes using parameters β̃TT = −2.5, β̃LT = −1,
β̃LC = 0.4, β̃UT = −4.

There are over 7000 links in the network and it is hence not possible to
estimate a link specific scale parameter. Instead, we define µk > 0 to be an
exponential function of link specific attributes. In order to make it easier
to interpret the results, we use ω instead of β to denote the scale related
parameters. The scales µk therefore can be written as µk(ω) = eλ(ω). This
assumption ensures that (i) the estimation problem is unconstrained and (ii)
we can use the analytical gradient (17). Note that if all the parameters of
the function λk(.) are zero, the scales are equal to one for all links k ∈ Ã,
meaning that the NRL model becomes the RL model.

For the numerical results presented in this paper we use the two link
specific attributes available, travel time and LS, so λk(ω) is

λk(ω) = ωTTTT (k) + ωLSLS(k). (20)

We also note that we do not use link constant since it has the same value
for all links. The rationale behind using it in the instantaneous utility is to
penalize paths with many crossings (links).

To summarize, the deterministic utilities for four different model specifi-
cations with respect to link a given link k are

vRL(a|k) = vNRL(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k)

vRL-LS(a|k) = vNRL-LS(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k) + βLSLS(a)

and the instantaneous utilities are

uRL(a|k; β) = vRL(a|k; β) + µε(a)

uRL-LS(a|k; β) = vRL-LS(a|k; β) + µε(a)

uNRL(a|k; β, ω) = vNRL(a|k; β) + eλk(ω)ε(a)

uNRL-LS(a|k; β, ω) = vNRL-LS(a|k; β) + eλk(ω)ε(a).

6.2 Estimation results

We report the estimation results for four specifications in Table 4. The β
estimates have their expected signs and they are highly significant. Moreover,
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their magnitudes are similar across the different models and the results are
comparable to the ones previously published on the same data. ω̂TT is not
significantly different from zero while ω̂LS is highly significant and negative.
The LS attribute corresponds to expected normalized flows and takes positive
values but is numerically close to zero for a majority of the links in the
network. ω̂LS shows that the scales are inversely related to flow so that links
with more flow have larger variance of error terms than links with less flow.

There is remarkable improvement in final log-likelihood values when adding
the LS attribute, which is also pointed in previous work (Fosgerau et al., 2013,
Mai et al., 2014). The best model in terms of fit is NRL-LS.

Before comparing prediction results in the following section we make some
remarks concerning the estimation. We use a basic trust region algorithm
with the BHHH method for approximating the Hessian and the code is im-
plemented in MATLAB (and available upon request). We use the iterative
method with dynamic accuracy for the computation of the value functions
(see Section 4). We note that if we use an initial vector as a solution of the
system of linear equations, circa 100 iterations is enough for a high precision
(γ′ = 10−8) but we need circa 200 iterations for the same precision when the
initial vector is the unit vector (all the elements are equal to one). Moreover,
using only 50 iterations in the beginning of the optimization (corresponding
to a precision γ′ ∈ [1, 10]) and switching to the high precision γ′ = 10−8 when
the norm of the gradient of the log-likelihood function is less than 10−3 we
observe a speed up of two times can be achieved.

6.3 Prediction results

In this section we focus on comparing the prediction performance of the
different models. In this context, the predicted log-likelihood (PLL) values
for holdout samples can be used as a performance measure. We use a cross
validation approach where the sample of observations is divided into two sets.
The set is used for estimation and consists of 80% of the path observations
which are drawn randomly (uniform distribution). The second set (20% of
the observations) is the holdout and the estimated model is used to evaluate
the corresponding probabilities. We generate 40 holdout samples of the same
size by reshuffling the real sample. More precisely, for each holdout sample i,
0 ≤ i ≤ 40 we estimate the parameters β̂i based on the training sample and
this vector of parameters is used to compute the PLL value (PLLi) for the
prediction sample. So basically PLLi is conditional on the holdout sample
i. In order to have unconditional PLL values we compute the average of the
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Parameters RL NRL RL-LS NRL-LS

β̂TT -2.494 -2.572 -3.060 -3.008
Rob. Std. Err. 0.098 0.099 0.103 0.103
Rob. t-test(0) -25.45 -25.98 - 27.709 -29.204

β̂LT -0.933 -0.904 -1.057 -1.014
Rob. Std. Err. 0.030 0.030 -0.029 0.031
Rob. t-test(0) -31.10 -30.13 -36.448 -32.710

β̂LC -0.411 -0.344 -0.353 -0.305
Rob. Std. Err. 0.013 0.014 0.011 0.013
Rob. t-test(0) -31.62 -24.57 -32.091 -23.461

β̂UT -4.459 -4.442 -4.531 -4.468
Rob. Std. Err. 0.114 0.133 0.126 0.144
Rob. t-test(0) -39.11 -33.40 - 35.960 -32.028

β̂LS - - -0.227 -0.212
Rob. Std. Err. - - -0.013 0.013
Rob. t-test(0) - - -17.462 -16.308

ω̂TT - 0.307 - 0.114
Rob. Std. Err. - 0.276 - 0.311
Rob. t-test(0) - 1.11 - 0.367

ω̂LS - -0.946 - -0.856
Rob. Std. Err. - 0.088 - 0.087
Rob. t-test(0) - -10.75 - -9.839

LL(β̂) -6303.9 -6212.3 -6045.6 -5976.0

Table 4: Estimation results

PLL values over samples as follows

PLLp =
1

p

p∑
i=1

PLLi ∀1 ≤ p ≤ 40 (21)

The values of PLLp, 1 ≤ p ≤ 40 are plotted in Figure 5 and Table (5) reports
the average of the PLL values over 40 samples given by the RL, RL-LS, NRL,
NRL-LS models. For each model the value of PLLp become more stable as
p increases. The prediction results show that models including LS perform
better than those without. Even though the model fit is significantly better
for NRL-LS than RL-LS the prediction results are similar.

Readers can refer to the Appendix for the details of the average of the
PLL values estimated by 40 holdout samples.
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RL NRL RL-LS NRL-LS
-1241.54 -1240.00 -1190.36 -1189.52

Table 5: Average of PLL values over 40 holdout samples
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Figure 5: Average of the PLL values over holdout samples

7 Conclusion

This paper presents the NRL model that relaxes the IIA assumption of the
RL model by allowing scale parameters to be link specific while keeping the
advantages of the RL model. We propose an efficient way for estimating the
model solving the value functions using an iterative method with dynamic
accuracy. Moreover, we derive the gradient of the log-likelihood function
which can be computed by solving systems of linear equations.

We provide numerical results using real data. The parameter estimates
are sensible and the NRL model has remarkably better fit than the RL model.
The LS attribute plays an important role and the best model in terms of fit is
NRL combined with a LS attribute (NRL-LS). We provide a cross-validation
study that shows that NRL-LS and RL-LS are the best models for prediction
and their performance is very similar, unlike the model fit.

In future research we plan to further investigate further the importance
of the LS attribute and its definition with a sensitivity analysis. Moreover,
there are quite few attributes available in the data set used in this paper.
We would like to test the model on other data sets to further study possible
functional forms of the scale parameters.
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Appendix

PLLp

Sample RL NRL RL-LS NRL-LS
1 -1246.56 -1244.41 -1184.87 -1183.56
2 -1254.74 -1252.56 -1193.44 -1192.06
3 -1252.09 -1249.66 -1196.61 -1195.05
4 -1241.10 -1239.09 -1191.43 -1190.20
5 -1229.88 -1228.13 -1185.43 -1184.34
6 -1245.17 -1243.63 -1202.04 -1201.05
7 -1255.99 -1254.46 -1212.61 -1211.68
8 -1259.84 -1258.11 -1213.70 -1212.63
9 -1247.43 -1245.77 -1202.31 -1201.25
10 -1244.75 -1242.94 -1198.56 -1197.44
11 -1244.36 -1242.39 -1197.83 -1196.61
12 -1245.07 -1243.24 -1198.18 -1197.06
13 -1244.53 -1242.76 -1197.99 -1196.88
14 -1239.35 -1237.50 -1193.45 -1192.27
15 -1237.55 -1235.67 -1192.25 -1191.04
16 -1230.43 -1228.66 -1183.98 -1182.90
17 -1249.51 -1247.74 -1201.62 -1200.55
18 -1245.44 -1243.57 -1197.24 -1196.13
19 -1242.70 -1240.87 -1195.23 -1194.13
20 -1239.73 -1237.90 -1192.48 -1191.34
21 -1233.83 -1236.78 -1186.99 -1185.96
22 -1233.02 -1231.30 -1186.86 -1185.91
23 -1234.65 -1230.69 -1188.85 -1187.85
24 -1237.97 -1232.21 -1191.12 -1190.11
25 -1236.66 -1235.40 -1189.67 -1188.63
26 -1238.11 -1234.13 -1190.16 -1189.25
27 -1240.30 -1235.68 -1192.12 -1191.16
28 -1241.72 -1237.77 -1193.54 -1192.64
29 -1242.21 -1239.26 -1192.78 -1191.92
30 -1245.08 -1239.78 -1195.39 -1194.54
31 -1245.85 -1242.59 -1195.33 -1194.55
32 -1248.45 -1243.44 -1197.78 -1196.97
33 -1252.83 -1245.97 -1200.97 -1200.14
34 -1252.09 -1250.20 -1200.15 -1199.30
35 -1250.31 -1249.49 -1198.63 -1197.78
36 -1247.90 -1247.82 -1196.45 -1195.59
37 -1244.89 -1245.48 -1193.53 -1192.70
38 -1243.23 -1242.61 -1191.71 -1190.91
39 -1242.58 -1241.02 -1191.10 -1190.26
40 -1241.54 -1240.00 -1190.36 -1189.52

Table 6: Prediction results
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