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Abstract.  Project scheduling has received a growing attention from researchers for the 

last decades in order to propose models and methods to tackle scheduling problems for 

real-size projects. In this paper, we consider the resource-constrained project scheduling 

problem (RCPSP), which consists in scheduling the activities in order to minimize the 

project duration in presence of precedence and resource constraints. As this problem is 

NP-hard, we propose a hybrid metaheuristic based on scatter search that involves 

forward-backward improvement and reversing the project network at each iteration of the 

scatter search. A bidirectional path relinking method with a new move is used as 

combination method. An advanced parameter tuning method based on local search is 

employed. The proposed method is applied on the standard benchmark projects of size 

30, 60 and 120 activities from the PSPLIB library and compared with the state-of-the-art 

heuristics of the literature. The computational results show that the proposed hybrid 

scatter search produces high-quality solutions in reasonable computational time and is 

among the best performing metaheuristics. 
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1. Introduction 

Project scheduling consists in determining the start and end times of the project activities in 

presence of scarce resources and precedence relations. Since the early 1960’s, this problem has 

attracted both researchers and practitioners. For the latter, scheduling serves major functions and 

is often supported in practice by a project planning software which models the project, solves the 

scheduling problem and provides representations for communication. For researchers, project 

scheduling is very attractive because the models are rich, have a variety of applications and are 

difficult to solve (Brucker et al., 1999). The standard project scheduling problem is the resource-

constrained project scheduling problem (RCPSP), which involves the determination of a 

precedence- and resource-feasible schedule that minimizes the project duration. Even though the 

assumptions of this problem do not cover all the situations that occur in practice, many more 

general models, variants and extensions have been developed, often using the RCPSP as 

starting point. For more details on the research on RCPSP, the reader is referred to the following 

surveys: Özdamar and Ulusoy (1995) Herroelen et al. (1998), Brucker et al. (1999), Kolisch and 

Hartmann (1999, 2006), Hartmann and Kolisch (2000), Kolisch and Padman (2001), Tavares 

(2002), Herroelen (2005), Hartmann and Briskorn (2010).  

The RCPSP belongs to the class of NP-hard optimization problems, and hence, is one of the 

most intractable problems in operations research (Blazevicz et al., 1983). Whereas surveys 

presented in Icmeli-Tukel and Rom (1998), Liberatore et al. (2001), Liberatore and Pollack-

Johnson (2003) show that more than half of projects in practice have a size larger than one 

hundred activities, Herroelen (2005) pointed that exact procedures have only the capability to 

solve small scale projects with at most sixty activities and slight resource constraints in 

acceptable computation effort. This limitation has motivated a growing number of academics to 

develop heuristic procedures able to find good-quality schedules in reasonable computation effort 

for larger projects usually encountered in practical cases. In their experimental investigation of the 

best heuristics for the RCPSP, Hartmann and Kolisch (2000) presented the computational results 

of thirteen heuristics. In the updated version of Kolisch and Hartmann (2006), thirty-seven 

heuristics were compared. From 2006 to 2013, we identified more than forty additional heuristics 

for the RCPSP in the literature. The current best performing heuristics are metaheuristics, which 

are capable of learning. The most efficient of them do not follow classical paradigms but combine 

concepts of different classical metaheuristics into hybrid approaches and use advanced 

mechanisms such as the forward-backward improvement (FBI), the path relinking (PR) and 

specific representations (Herroelen, 2005; Kolisch and Hartmann, 2006). 

In the last years, several researchers have proposed hybrid metaheuristics based on the scatter 

search framework. Conceptualized by Glover (1977), scatter search (SS) is an evolutionary 
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method inspired from the principle that systematic designs and methods for creating new 

solutions afford significant benefits beyond those derived from recourse to randomization. The 

first application of SS for the RCPSP can be found in Valls et al. (2004), who presented a 

population-based approach that alternates between a forward and backward scheduling 

procedure to improve the resource utilization and a blend of SS and PR strategies to combine 

and evolve the population of solutions. Debels et al. (2006) proposed a hybrid SS that 

incorporates a combination method based on the principles of electromagnetism and uses FBI as 

improvement method. Ranjbar et al. (2009) used the same SS backbone as in Debels et al. 

(2006), but reversed the project network at each population generation and combined solution 

using PR. Mobini et al. (2009) derived an enhanced SS that employs FBI as improvement method 

and combines solutions with a two point cross-over operator, a PR strategy and a permutation-

based operator. Chen et al. (2010) proposed an ant colony optimization that uses SS as 

improvement method and the resource utilization improvement procedure developed by Valls et 

al. (2004). Finally, Paraskevopoulos et al. (2012) developed a hybrid SS that combines solutions 

using a linear combination method based on events’ starting times, and improves them with an 

adaptive iterative local search. Based on the experimental results on the PSPLIB benchmark 

(Kolisch and Sprecher, 1996), these SS based algorithms have been identified as being among 

the current best heuristics. 

This paper is motivated by the attractive results obtained with SS for the RCPSP and contributes 

to the long-term objective of developing efficient metaheuristics that can handle large-sized 

projects and that can be adapted for more complex scheduling problems. We propose a new 

hybrid metaheuristic that relies on a SS skeleton inspired from Debels et al. (2006), Ranjbar et al. 

(2009) and Mobini et al. (2009). In particular, this metaheuristic involves FBI and reversing the 

project network at each iteration. Moreover, the proposed combination method presents two 

distinctive features. It is based on a bidirectional PR, which has been identified as a promising 

approach for combination in SS by Glover et al. (1995), Marti et al. (2006) and Resende et al. 

(2010). This PR generates solutions by exploring a path build by gradual moves between two 

solutions to be combined. Also, we introduce a new move that consists in moving the most distant 

activity from the guiding solution in the current solution of the path to its place in the guiding 

solution. The computational results show that the proposed hybrid scatter search produces high-

quality solutions in reasonable computational time and is among the best performing 

metaheuristics. 

The remainder of this paper is organized as follows. Section 2 introduces the definition of the 

RCPSP and the notations. Section 3 provides a description of the proposed hybrid SS. In Section 

4, an advanced parameter tuning method based on local search is proposed and computational 

results are presented, including a comparison with the state-of-the-art heuristics from the 
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literature. Finally, we conclude by summarizing the main results and by highlighting possible 

directions for further research in Section 5. 

2. Resource-Constraint Project Scheduling Problem definition 

The RCPSP problem can be defined as follows. A single project is composed of a set N of n 

activities labeled j = 1,...,n, and two dummy activities 0 and n+1, which are the project start and 

project end, respectively. We denote by dj the duration of activity j. The activities have to be 

performed without preemption. Technological reasons imply that some activities must finish 

before others can start. These precedence relations are denoted by i→j. Pj and Sj represent the 

set of immediate predecessors and successors of activity j, respectively. Each activity requires 

constant amounts of renewable resources to be performed. These resources are called 

renewable because they are fully available at each period. There are K resource types and we 

denote by rik the usage of resource kK per period by activity jN. The constant capacity of each 

resource type is represented by Rk. The two dummy activities have zero duration and no resource 

usage. All information is assumed to be deterministic and known in advance. The parameters are 

assumed to be nonnegative and integer-valued.  

A schedule is defined as an assignment of start times sj and finish times fj to activities jN. A 

schedule is called precedence-feasible if sj  fi for each precedence constraint i→j, and resource-

feasible if the consumption of resources does not exceed the resource capacity for each time 

period and each resource type. The RCPSP consists in determining a precedence and resource-

feasible schedule so as to minimize the project duration (project makespan). 

3. Hybrid Scatter Search Algorithm 

Introduced by Glover (1977), SS is an evolutionary algorithm that generates new solutions by 

combining preserved ones. SS is composed of the following basic methods (Marti et al., 2006): 

- diversification generation method: to generate an initial population of trial solutions; 

- improvement: to transform a trial solution into enhanced solutions; 

- reference set update method: to build and maintain a reference set of the best solutions, 

that is often partitioned into a set of high-quality solutions and a set of diversified solutions; 

- subset generation method: to produce subsets of solutions of the reference set. The 

common method is to generate pairs of reference solutions; 

- solution combination method: to transform a given subset of solutions produced by the 

subset generation method into one or more combined solutions. 
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SS is a very flexible methodology since each element can be implemented with different degree 

of sophistication. It uses strategies for intensification and diversification that have been proved 

effective in a variety of optimization problems (Marti et al., 2006).  

 

depicted in Figure 1. An initial population of size InitPop is first generated. A reference set RefSet 

composed of two distinct sets of high-quality and diversified solutions is build from the population 

of solutions. These reference solutions will be evolved to form a new population. This new 

population is first initialized with the best current solution. The reference solutions are afterwards 

paired to form subsets that are combined with PR to generate new solutions. These solutions are 

evaluated and either directly added to the new population or first improved by FBI depending on 

their quality. The algorithm stops when the number of generated schedules reaches 

NSched_limit. At each iteration, the scheduling direction and the project network are reversed. 

The solution representation and decoding, and the details of each step are described below.  

3.1. Solution representation and decoding 

Usually, metaheuristic approaches for the RCPSP operate on representations of schedules rather 

than directly on schedules themselves (Kolisch and Hartmann, 1999). A schedule generation 

scheme (SGS), is then required to transform a representation into a feasible schedule. Two 

different SGSs are usually considered in the literature: the serial and the parallel SGS. The 

Initial population generation 

Reverse the type of schedule 

Generate RefSet 

Generate Subsets from RefSet 

Create new solutions with Path Relinking on 
each Subset 

Forward-Backward Improvement 

Add Solution to the New Population 

Initiate the New Population with the Best 
Solution 

Output the results 

yes 

no 

yes 

no 

NSched < NSched_limit 

Makespan  Best Makesan 

Figure 1 Flow Chart of the proposed Scatter Search algorithm 
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dominant representations are the activity list and the random key. Experimental investigations 

have shown that the best metaheuristics employ the serial SGS combined with the activity list 

representation (Hartmann and Kolisch, 2000; Kolisch and Hartmann, 2006). We consequently 

choose this combination of methods for the proposed SS. 

The serial SGS starts from scratch and builds a feasible schedule by stepwise extension of a 

partial schedule. At each stage, an activity is selected from the eligible set and scheduled at the 

earliest precedence- and resource-feasible start time. The eligible set comprises all the activities 

whose predecessors are already scheduled. A representation of schedules is required to drive 

the selection of activities. The activity list representation makes use of a sequence of all activities 

AL = (a1,…, an) in which the position of an activity determines its relative priority with the other 

activities for being selected. We also define the vector P = (p1,..., pn) to represent the position of 

each activity in AL. If i = ah, the activity i is in position pi = h. As defined, an AL may not be 

precedence-feasible. In the literature, most authors use precedence-feasible activity lists in which 

each activity is placed in the list after all of its predecessors. Hartmann and Kolisch (2000) noted 

that such lists are faster to decode, since the construction of the eligible set and the selection of 

an activity do not need to be computed during the serial SGS procedure. Indeed, the serial SGS 

simply selects at each stage j the activity aj of the precedence-feasible activity list. Consequently, 

any AL will be considered as precedence-feasible for the rest of the paper.  

A major problem with AL representations is that a single schedule can be represented by more 

than one activity list. This is caused by timing anomalies and activities with identical starting 

times, as explained in Debels et al. (2006). Consequently, the solution space is filled with useless 

replications of representations, and thus, the search efficiency is typically reduced 

(Paraskevopoulos et al., 2012). To tackle these issues, Valls et al. (2003) introduced the 

topological order (TO) representation, which is an activity list that satisfies: si < sj implies pi < pj. 

Ties are broken by the activity index:  si = sj and i < j implies pi < pj. The TO representation can be 

obtained from an activity list by decoding it through a serial SGS, and then ordering the activities 

according to the obtained start times to satisfy the conditions of the TO representation. If TO(S) is 

the TO representation of a schedule S, then S(TO(S)) = S. In other words, this guarantees that 

any TO representation is uniquely associated with a schedule. We adopt a modified version of the 

TO representation, explained in the next section. 

3.2. Direct and Reverse network 

Ranjbar et al. (2009) proposed a SS that alternates at each iteration between direct and reverse 

project networks in order to explore a different solution space. They define the direct project 

network as the network in which the arrows represent the original precedence relations. The 

reverse project network is obtained by reversing the directions of all the arrows such that the end 
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(start) activity becomes the start (end) activity and each precedence relation i→j becomes j→i. 

Any feasible schedule for the direct (reverse) network is called a direct (reverse) schedule. As 

they obtained promising results, the same mechanism is used in the proposed SS.  

In order to embed the TO representation into the reversing of the project network, Ranjbar et al. 

(2009) adapted the TO representation of Valls et al. (2003) to generate reverse (direct) children 

from direct (reverse) solutions. A direct (reverse) activity list is first decoded with the serial SGS to 

obtain the finish times of the activities based on the direct (reverse) project network. The activity 

list is then reordered based on the non-increasing order of their finish times: fi > fj implies pi < pj, 

while fi = fj and i > j implies pi < pj. The obtained topological order activity list (TOAL) 

representation is precedence-feasible for the reverse (direct) network. 

3.3. Initial population generation 

Regret-biased random sampling (RBRS) with the minimum latest finish time (LFT) is used to 

generate an initial population of size InitPop with the direct project network. Previous studies 

showed the superiority of random sampling over deterministic approaches (Kolisch 1996). 

Random sampling generates schedules by biasing a priority rule through a random device. 

Among these methods, RBRS with LFT is one of the most powerful (Kolisch, 1996; Tormos and 

Lova, 2001; Valls, 2005). Each activity list is iteratively created by randomly selecting an activity 

of the decision set Dk according to the following probability to be placed at position k: 

 

 







kDj

j

ii
1

1
)(




 , with   ij

Dj
i LFLF

k



max , kDi  

(1) 

where LFi denotes the latest finish time of activity i calculated by the Critical Path Method (CPM), 

and the decision set Dk represents the eligible set at stage k. The serial SGS is then applied to 

decode the generated activity lists into schedules and to evaluate their makespan. 

3.4. Reverse the type of schedule 

Once a new population have been generated, the direction of the project network and the 

associated type of schedule are reversed from direct (reverse) to reverse (direct) at the beginning 

of a new SS iteration. As each direct (reverse) activity list of the population has been decoded 

with the serial SGS, the finish times are used to obtain the TO representation that can be used for 

scheduling with the reverse (direct) network (see section 3.2). 

3.5. RefSet Update  

The SS algorithm builds and maintains a subset RefSet of high-quality and diverse solutions 

found during the search. According to the SS terminology proposed in Marti et al. (2006), we use 
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the so-called static Refset Update mechanism. It is applied on the new population during the 

process once all the subsets have been combined. The reference set RefSet is divided into two 

disjoint subsets RefSet1 and RefSet2 of size b1 and b2, respectively. Each solution of RefSet1 

should have a distance of at least t1 with other solutions of RefSet1, while each solution of 

RefSet2 should have a distance of at least t2 (with t2 > t1) with any solution of RefSet1 or RefSet2. 

The distance measure between two solutions represented by AL1 and AL2 is defined as followed: 

  






ni

i

ii p p
n

,ALAL

1

2121  -
1

 Distance  (2) 

where pi1 and pi2 are the position of activity i in the activity lists AL1 and AL2, respectively. The 

construction of RefSet1 and RefSet2 starts by sorting the new population New_Pop according to 

the lowest makespan. The following function is considered in case of tie: 
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(3) 

Introduced by Paraskevopoulos et al. (2012), this function depicts for each activity i the deviation 

of the finish time (fi) from the earliest finish time (EFi) and the latest start time (LSi) calculated by 

the CPM. This expression is weighted with the activity duration and the sum of the resource 

consumption. Assuming that high quality solutions have the least deviations from the earliest 

finish times (latest finish times) in direct (reverse) schedules, it can be expected that the lower 

this function, the better the quality of the solution. 

RefSet1 is initialized with the best solution. The next best solutions of New_Pop are scanned and 

added to RefSet1 if the minimal distance with the current members of RefSet1 is superior or equal 

to t1. In a second phase, an improvement algorithm is applied to check if any solutions of 

New_Pop \ RefSet1 can be added or can replace a member of RefSet1 to increase the size of 

RefSet1 (if inferior to b1), or to improve the quality (average makespan) or the diversity (average 

distance with the other members of the set) of RefSet1. RefSet2 is similarly built from the 

remaining solutions New_Pop \ RefSet1. Depending on the values of b1, b2, t1 and t2, there may 

not be enough qualified solutions to complete RefSet1 and RefSet2. If this situation arises when 

the RefSet Update mechanism is applied on the initial population, we complete the refsets with 

the best remaining solutions without checking the threshold conditions. Otherwise, a 

diversification strategy involving a frequency-based memory is used to complete the refsets with 

new diversified activity lists. We maintain for this purpose a matrix M during the search, where 

each element mij tracks the number of time activity i has been placed directly before activity j in all 
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previously generated solutions. A new activity list is built step by step by adding at each stage k 

the activity j of the decision set Dk that has the least been placed directly after the activity ak-1 at 

position (k-1) in the list under construction:  ra
Dr

ja k
k

k
mm

11
min




 . 

3.6. Generate the subsets from Refsets 

The subsets generation block forms the subsets of solutions that will be used as basis for 

creating the combined solutions. In its typical form, the combination method of a SS consists in 

combining pairs of elements of RefSet1 and RefSet2 (Marti et al., 2006). This method is applied to 

generate all pairs of solutions in RefSet1, and all combination of one solution from RefSet1 and 

another one from RefSet2. Therefore, the total number of pairs to be combined is 21
11

2

)1(
bb

bb



. 

3.7. Combination method - Path Relinking 

PR is used as combination method to generate the next new population from the subsets of 

solutions. This evolutionary method was originally designed in the context of tabu search to 

integrate intensification and diversification strategies, and was later suggested as combination 

method for SS (Marti et al., 2006; Resende et al., 2010). PR generates new solutions by 

exploring trajectories that connect high-quality solutions, starting from one solution (the initiating 

solution) and building a path in the neighborhood space that leads towards other solutions (the 

guiding solutions). This is accomplished by gradual moves that introduce attributes contained in 

the guiding solutions. 

In our SS algorithm, PR is applied on each pair, which constitutes the initiating and guiding 

solutions. The moves are performed on the activity list representation of the solutions, AL1 and 

AL2. The proposed PR is a bidirectional PR that swaps the initiating and guiding solutions at each 

step of the path construction. This advanced type of PR was identified as a promising approach 

by Glover et al. (1995), Marti et al. (2006) and Resende et al. (2010). Second, we propose a new 

move that consists in moving the most distant activity from the guiding solution in the current 

solution of the path to its place in the guiding solution. We initialize the PR by setting the initiating 

and guiding solutions with ALguid = AL1, and ALinit = AL2, such that the makespan of AL1 is better 

than the makespan of AL2. We consider ALguid = (a1,guid,…, an,guid) and ALinit = (a1,init,…, an,init), 

where ai,guid and ai,init represent the activity at position i in the activity lists ALguid and ALinit, 

respectively. We denote by PR_set the set of activity lists that will be created during the PR 

process. We introduce the following distance measure for each activity: 

   -Distance ,, guidjinitj p pj  ,  nj ,..,1  (4) 
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where pj,init and pj,guid represent the position of activity j in the initiating and guiding activity lists, 

respectively. Let q be the most distant activity between ALinit and ALguid, pinit be the position of q in 

ALinit ( qa initpinit
, ), and pguid be the position of q in ALguid ( qa guidpguid

, ). From ALinit, the current 

activity list ALcu is built by moving activity q at position pguid as follows: 

1) If pinit < pguid, then 






  initninitpinitpinitpinitpinitpinitcu aaaqaaaaAL

guidguidguidinitinit ,),1(,),1(),1(),1(,1 ,...,,,,,...,,,..., ; 

2) if pinit > pguid, then 






  initninitpinitpinitpinitpinitpinitcu aaaaaqaaAL

initinitguidguidguid ,),1(),1(),1(,),1(,1 ,...,,,...,,,,,..., . 

If the current activity list is not precedence-feasible, the following repair mechanism is used:  

1) If pinit < pguid, then for direct (reverse) schedules all successors (predecessors) of q 

between positions pinit and pguid - 1 in ALcu are moved right after q in the same order; 

2) If pinit > pguid, then for direct (reverse) schedules all predecessors (successors) of q 

between position pguid +1  and pinit in ALcu are moved right before q in the same order. 

The resulting ALcu is added to PR_set. We then set ALinit = ALguid and ALguid = ALcu and repeat the 

process until ALcu = ALguid, thus connecting AL1 and AL2 with a single path composed of all the 

activity lists stored in PR_set. Only a subset of PR_set will be selected for evaluation with the 

serial SGS. Let npr be the number of activity lists to be selected for evaluation. The activity lists in 

PR_set are numbered from 1 to |PR_set| and placed in npr subsets of size |PR_set| / npr. One AL 

from each subset is randomly selected and evaluated to find its schedule and its makespan. 

3.8. Improvement strategy - FBI 

Search intensification is typically achieved in SS with the execution of an improvement method 

applied on the new solutions found during the combination process. As pointed by Marti et al. 

(2006), an important issue in SS design is how to allocate the computational effort between 

improving current solutions and generating new ones. In the existing literature on SS applied to 

RCPSP, authors have given various levels of priority to improvement. At the one extreme, 

Ranjbar et al. (2009) did not apply any improvement method. At the other extreme, 

Paraskevopoulos et al. (2012) introduced a local search and a perturbation strategy based on a 

long-term memory, while Valls et al. (2004) and Chen et al. (2010) applied a procedure that 

improves the local resource utilization until no further improvement can be produced. In between, 

Debels et al. (2006) and Mobini et al. (2009) applied the well-known FBI procedure. Introduced by 

Li and Willis (1992) and popularized by Tormos and Lova (2001) and Valls et al. (2005), FBI 

iteratively applies forward and backward passes until no further improvement can be produced. In 

the forward (backward) pass, the activities are scheduled as early as possible (as late as 
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possible). As this simple technique produces notable improvements in schedules quality with a 

small computation effort (Valls et al. 2005), it is introduced in the proposed SS.  

In the first phase of the FBI, the backward is done by applying the transformation from a AL to a 

TOAL to obtain a reverse (direct) TOAL from a direct (reverse) AL, reversing the project network 

from direct (reverse) to a reverse (direct) network, and then scheduling the TOAL with the reverse 

(direct) network. In the second phase, the forward pass is applied in the same manner to obtain a 

direct (reverse) schedule in the initial direct (reverse) network direction. As proved in Valls et al. 

(2005), the makespan of the schedule after an iteration of FBI is inferior or equal to the initial 

makespan. This process is repeated if the makespan has been improved. In the proposed SS, 

FBI is first applied on the best solutions of the initial population, and then only on high-quality 

solutions that match or improve the best makespan found so far during the process. 

3.9. New Population generation 

The new population is first initialized with the best solution found so far. In case of tie, the rule 

proposed in section 3.5 is considered. For each subset, npr activity lists are generated with PR, 

scheduled with the serial SGS and possibly improved by FBI. This constitutes the new population 

for the next SS iteration, thus composed of 1
2

)1(
21

11















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4. Computational analysis 

This section presents an evaluation of the proposed SS on the PSPLIB data sets proposed in 

Kolisch and Sprecher (1996), and a comparison with the state-of-the-art heuristics developed for 

the RCPSP. The input parameters of the SS algorithm are first determined empirically by 

parameter tuning. The experiments were conducted on a personal computer with an Intel Core I5 

2.53 GHz processor and 4 GB RAM under Windows 7 Professional. The algorithm was 

implemented in Matlab R2011b. 

4.1. PSPLIB data sets and test design 

As test instances, we use the standard J30, J60 and J120 sets of the PSPLIB library, which have 

been generated using PROGEN (Kolisch et al. 1992, 1995). The J30 and J60 sets consist of 480 

projects of 30 and 60 activities, respectively. The J120 set is composed of 600 projects of 120 

activities. For more details on how the projects data are generated, the reader is referred to 

Kolisch et al. (1992, 1995). The complete data are available from the project scheduling library 

PSPLIB on the internet. Even though other benchmark instances exist in the literature, such as 

the Patterson instances (Patterson, 1984), the PSPLIB library is the most widely used for 

experimental comparison of heuristics for the RCPSP.  
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An experimental protocol for testing the heuristics with the PSPLIB instances has been proposed 

by Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006). Three stopping criteria are 

considered: 1000, 5000 and 50000 generated schedules. Since the speed of computers has 

increased and since some researchers have observed significant improvement in the results with 

larger schedule limits, our method is also tested with 500000 schedules for J60 and J120. A 

schedule-based stopping criterion is used because the corresponding computational effort is 

independent from the evolution of the speed of computers, the operating systems, the compilers 

and the implementational skills and is then quite similar for all the tested heuristics (Kolisch and 

Hartmann, 2006). The heuristics are then compared according to the average deviation from the 

optimal solutions (for J30) or from the well-known critical path-based lower bound (for J60 and 

J120). 

4.2. Impact of randomness on the performance 

As for most metaheuristic approaches used to solve the RCPSP, many parts of the proposed SS 

are based on random devices. In our algorithm, randomness is involved in the initial population 

generation, the selection of the npr activity lists from PR_set, and the diversification to complete 

RefSet1 and RefSet2 when required. Each execution for the same problem instance would 

provide different results when random devices are used. However, most papers on metaheuristic 

approaches for the RCPSP do not indicate if multiple executions are conducted. In Hartmann and 

Kolisch (2000), Kolisch and Hartmann (2006) and in the papers published afterwards, the 

performance measure used for sorting the metaheuristics is the average deviation measured with 

a single figure in percentage with a two-digit precision. However, the value of the schedule limits 

were arbitrarily set in order to provide a unified base of comparison of the performances of 

heuristics, but they do not guarantee a convergence of the results and a margin of errors due to 

randomness in accordance with a two-digit precision. In order to take into account the effect of 

randomness in our experiments, each instance is solved ten times and the average results of the 

ten replications, as well as the 95% confidence interval, are provided.  

4.3. Parameter tuning 

The proposed SS is based on six input parameters: InitPop, b1, b2, t1, t2 and npr. Preliminary tests 

showed that the performances of the SS are highly sensitive to the values of these parameters. 

Thus, their values have to be carefully set with parameter tuning. Among the method used for 

varying the parameters in the literature, most authors used full factorial or Taguchi designs of 

experiment, or elementary trial and error strategies. Tuning is usually performed on the whole 

standard sets, or a subset of instances or a new sample of instances. Finally, fine tuning can be 

conducted for each instance size, for each schedule limit or each combination of schedule limit 

and project size. Based on preliminary tests, we noted that the promising combinations had 
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different parameters values depending on the schedule limit and the project size. Therefore, fine 

tuning was independently performed on each combination of schedule limit and project size. We 

also observed that a full factorial design with six parameters would not be efficient to explore the 

space of combinations and would be time consuming, unless the subsets used for tuning are very 

small or unless the number of repetitions is reduced. However, a weak correlation was observed 

between the performances for very small subsets of instances or for few repetitions and the 

performances on the whole standard sets with ten repetitions.  

Consequently, we propose a new approach for parameter tuning that consists in a basic local 

search process which moves from a combination of parameters to another. Starting from an initial 

combination of parameters, each parameter is changed to a higher or a lower value with a 

predefined step, one at a time. The combination with the lowest average deviation in this 

neighborhood is used as starting combination for the next iteration. To avoid being trapped in 

local optima, we authorize non-improving iterations. Visited combinations are memorized to avoid 

cycling and to restart the process from the best not selected combinations after a number of non-

improving iterations. The local search is stopped after a number of non-improving iterations, 

sometimes after several hundreds of tested combinations. 

This method is applied to find the best combinations of parameters for each standard set (J30, 

J60, J120) and each schedule limit (1000, 5000, 50000, 500000 schedules). The local search is 

applied on the whole standard sets and ten independent runs are conducted, except for the J60 

set with 500000 schedules and for the J120 set with 50000 and 500000 schedules. For these 

combinations, the number of instances and the number of independent runs are reduced. For 

instance, only five independent runs are conducted on a subset of the hardest instances for J120 

with 50000 schedules (i.e., the instances with a deviation higher than 4% between the makespan 

obtained with 5000 schedules and the best known makespan in literature). Table 1 presents the 

best combinations of parameters for each instance set and each schedule limit. 

 

Instance set  J30  J60  J120 
schedule limit  1000 5000 50000  1000 5000 50000 500000  1000 5000 50000 500000 
initPop  100 100 1000  100 200 1500 7500  100 100 1100 3000 
b1  8 15 35  7 10 27 75  5 9 17 40 
b2  4 16 29  4 9 21 65  4 7 17 40 
t1  0.8 0.6 0.5  0.8 0.9 1.3 1.2  0.8 1.7 2.2 2.3 
t2  1.5 1.5 1.4  1.6 1.8 2.1 2.3  1.9 2.7 3.8 3.7 
npr  1 1 1  1 1 1 1  1 1 1 1 

Table 1 Parameter tuning 
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4.4. Detailed results of the scatter search algorithm 

The detailed experimental results are presented in Table 2. The row labeled “Sum” gives the 

average sum of the makespans of all the instances of the set with ten independent runs. The row 

labeled “Avg. dev. CPM”, “Avg. dev. LB” and “Avg. dev. best” indicate the average deviation from  

Instance set  J30  J60  J120 
schedule limit  1000 5000 50000  1000 5000 50000 500000  1000 5000 50000 500000 
Sum  28354 28324 28316  38647 38495 38374 38333  76125 75205 74437 74001 
Avg. dev. CPM  13.53% 13.40% 13.37%  11.38% 10.93% 10.58% 10.45%  34.13% 32.52% 31.16% 30.39% 
Avg. dev. LB  0.10% 0.02% 0.00%  1.33% 1.02% 0.77% 0.68%  6.27% 5.18% 4.29% 3.78% 
Avg. dev. best  0.10% 0.02% 0.00%  0.68% 0.38% 0.13% 0.05%  3.09% 2.06% 1.22% 0.74% 
No. of instances  480 480 480  480 480 480 480  600 600 600 600 
Avg. No. of best  452 474 480  371 392 427 454  206 230 260 301 
Avg. CPU (s)  0.27 0.80 3.50  0.90 3.24 34.66 735.60  4.62 21.04 198.14 2976.53 
Max. CPU (s)  2.80 15.19 191.02  5.32 26.42 369.89 12800.24  10.69 83.93 647.67 14179.8

7 Avg. No. sched.  100 248 760  176 610 4578 26979  457 1917 15699 117526 

Table 2 Detailed experimental results for ten repetitions 

 

the critical path lower bound, the best known lower bound and the current best known makespan, 

respectively. For the latter value, the reader is referred to the PSPLIB website which indicates for 

each instance the best known makespan and the author who found the solution. The results 

available on January 1, 2014 were used. “No. of instances” represents the number of instances in 

the set, while “Av. No. of best” is the number of instances for which the makespan obtained with 

the proposed method is as good as the current best known makespan. “Avg. CPU” and “Max. 

CPU” indicate the average and maximum computation times to reach the best solution, 

respectively. “Avg. No. sched.” represents the average number of generated schedules to reach 

the best solution. 

Table 2 highlights that the algorithm is able to find all the optimal solutions of J30 with 50000 

schedules in reasonable computation times. Near-optimal solutions can even be found with 1000 

and 5000 schedules for J30 in very small computation times. For J60, our method provides an 

average deviation of 0.05 % with the best known makespans for 500000 schedules, and reaches 

the best solutions in 454 instances out of 480. Similarly, we obtain for J120 and 500000 

schedules an average deviation of 0.74% with the best known makespans, reaching the best 

solutions in 301 instances out of 600. This is remarkable as the best known makespans have 

been obtained with any stopping criterion and any existing heuristic in the literature, and as there 

is currently no unique method that can reach all the best known solutions for J60 and J120. In 

addition, the proposed SS is able to find attractive solutions with lower schedule limits. For 

instance, we obtain an average deviation of only 0.68% with the best known makespans for J60 

with 1000 schedules in less than 1 second.  
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Table 3 summarizes the detailed results for each repetition (“Dev. (%) rep.”), as well as the 

average deviation for ten repetitions (“Avg. Dev. (%)”), the minimum and maximum deviation 

observed (“Min. Dev. (%)” and (“Max. Dev. (%)”, resp.) and the 95% confidence interval (“95% 

Conf. int. (%)”). It reveals that the larger the size of the project or the lower the schedule limit, the 

wider the 95 % confidence interval.  

Instance set  J30  J60  J120 
schedule limit  1000 5000 50000  1000 5000 50000 500000  1000 5000 50000 500000 
Dev. (%) rep. 1  0.11 0.02 0.00  11.39 10.94 10.57 10.46  34.16 32.50 31.15 30.37 
Dev. (%) rep. 2  0.11 0.02 0.00  11.39 10.93 10.58 10.45  34.25 32.51 31.12 30.37 
Dev. (%) rep. 3  0.09 0.03 0.00  11.43 10.95 10.60 10.46  34.15 32.54 31.15 30.36 
Dev. (%) rep. 4  0.09 0.02 0.00  11.43 10.95 10.59 10.46  34.14 32.54 31.16 30.40 
Dev. (%) rep. 5  0.11 0.01 0.00  11.34 10.89 10.58 10.45  34.07 32.46 31.19 30.39 
Dev. (%) rep. 6  0.10 0.02 0.00  11.34 10.89 10.57 10.45  34.13 32.53 31.16 30.44 
Dev. (%) rep. 7  0.10 0.01 0.00  11.36 10.96 10.57 10.45  34.14 32.51 31.20 30.39 
Dev. (%) rep. 8  0.10 0.02 0.00  11.44 10.96 10.56 10.46  34.09 32.48 31.14 30.44 
Dev. (%) rep. 9  0.11 0.03 0.00  11.36 10.92 10.56 10.45  34.03 32.56 31.17 30.39 
Dev. (%) rep. 10  0.12 0.02 0.00  11.38 10.95 10.58 10.44  34.19 32.54 31.19 30.40 
Avg. Dev. (%)  0.10 0.02 0.00  11.38 10.93 10.58 10.45  34.13 32.52 31.16 30.39 
Min. Dev. (%)  0.09 0.01 0.00  11.34 10.89 10.56 10.44  34.03 32.46 31.12 30.36 
Max. Dev. (%)  0.12 0.03 0.00  11.44 10.96 10.60 10.46  34.25 32.56 31.20 30.44 

95% Conf. int. (%)  [0.10; 
0.11] 

[0.02; 
0.02] 

[0.00; 
0.00] 

 [11.36; 
11.41] 

[10.92; 
10.95] 

[10.57; 
10.58] 

[10.45; 
10.46] 

 [34.10; 
34;17] 

[32.50; 
32.54] 

[31.15; 
31.18] 

[30.38; 
30.41] 

Width of the 95% 
Conf. int. (%) 

 0.01 0.01 0.00  0.05 0.03 0.02 0.01  0.08 0.04 0.03 0.04 

Table 3 Overview of the average deviation for ten repetitions 

4.5. Comparative analysis with the best metaheuristic approaches 

The comparative analysis is divided into two sections. In the first section, the results of the 

proposed approach are compared with the best heuristics that provided results following the 

experimental protocol summarized in section 4.1. In the second section, we compare the results 

of the heuristics that do not use any schedule limit. 

4.5.1. Comparative analysis with schedule limits 

For reasons of space, the comparison is limited to the twenty best heuristics with 50000 

schedules for either J30, J60 or J120. From the state-of-the-art heuristics surveyed in Kolisch and 

Hartmann (2006), only the heuristics proposed by Kochetov and Stolyar (2003), Alcaraz et al. 

(2004), Valls et al. (2005) and Debels et al. (2006), which were all identified as the best heuristics 

at this time, are still currently in this list. This highlights how fruitful the recent developments in 

heuristics for the RCPSP are. The computational results of the selected heuristics can be found in 

Tables 4, 5 and 6 for the instance sets J30, J60, and J120, respectively. All these methods are 

metaheuristics. As explained before, most of these metaheuristics are stochastic, leading to 

different results at each execution. However, most authors did not indicate if their results were 

obtained with a single run, or with several runs, and, in the latter case, if their results were the 

A Path Relinking-Based Scatter Search for the Resource-Constrained Project Scheduling Problem

14 CIRRELT-2014-50



 

 

best or the average among several runs. In order to compare our results, the average deviation 

observed with ten independent runs of the proposed SS algorithm is considered. 

The first column of Tables 4–6 briefly describes each heuristic with the abbreviations used by 

their authors or commonly used in literature: GA for Genetic Algorithm, SAILS for Scatter Search 

 

Algorithm SGS Authors 
Average Deviation (%) >50000 

1000 5000 50000 Avg. 
dev. (%) 

No. of 
 sched. 

Best known makespans — — 0   

SAILS Serial Paraskevopoulos et al. (2012) 0.03 0.01 0   
SS—FBI Serial This study 0.10 0.02 0   

Artificial Immune Algo.—FBI Serial Mobini et al. (2011) 0.05 0.03 0   
SS—FBI Serial Ranjbar et al. (2009) 0.10 0.03 0   
GA, TS—PR   Both Kochetov and Stolyar (2003) 0.10 0.04 0   
GA—FBI Both Wang et al. (2010) 0.14 0.04 0   
GA Both Zamani (2013) 0.14 0.04 0   
Bees Algo. — Sadeghi et al. (2011) 0.15 0.09 0   
ESS Both Mobini et al. (2009) 0.05 0.02 0.01   
GA Both Mendes et al. (2009) 0.06 0.02 0.01   
GA—FBI Serial Gonçalves et al. (2011) 0.32 0.02 0.01 0.01 499860 
GA—DP Both Cervantes et al. (2008) 0.16 0.04 0.01   
PSO—HH Serial Koulinas et al. (2014) 0.26 0.04 0.01   
DABC Serial Nouri et al. (2013) 0.21 0.05 —   
ACOSS Both Chen et al. (2010) 0.14 0.06 0.01   
Cooling Process—GA—FBI Serial Lim et al. (2013) 0.21 0.07 0.01 0.00 500000 
SS—FBI   Serial Debels et al. (2006)   0.27 0.11 0.01 0.01 500000 
GA—FBI Serial Debels and Vanhoucke (2007) 0.15 0.04 0.02   
GA—hybrid, FBI   Serial Valls et al. (2008)   0.27 0.06 0.02   
Memetic Algo. —FBI Serial Carlier et al. (2009) 0.32 0.11 0.02   
GA—FBI   Serial Valls et al. (2005)   0.34 0.20 0.02   
GA—FBI   Both Alcaraz et al. (2004)  0.25 0.06 0.03   
SFLA—FBI Serial Fang and Wang (2012) 0.36 0.21 0.18   
GANS Serial Proon and Jin (2011) 1.83 1.27 0.71   

Table 4 Computational comparison with schedule limits - J30 

 

with Adaptive Iterated Local Search, ESS for enhanced Scatter Search, TS for Tabu Search,  

PSO-HH for Particle Swarm Optimization based Hyper-Heuristic algorithm, DABC for Discrete 

Artificial Bee Colony algorithm, ACOSS for Ant Colony Optimization and SS, SFLA for Shuffled 

Frog-leaping Algorithm, GANS for GA with Neighborhood Search. The first line “Best known 

makespans” provides the average deviation based on the current best known makespans 

obtained with any heuristic and any stopping criterion (see section 4.4). The next column 

indicates the type of SGS employed. The average deviations for 1000, 5000 and 50000 

schedules appears in the fourth, fifth and sixth columns, respectively. For each instance set, the 

heuristics are sorted in ascending order according to the average deviation with 50000 

schedules. In case of tie, the results for 5000 and then 1000 schedules are considered. The 
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seventh and eighth columns indicate the average deviation and the schedule limit for the 

heuristics tested with more than 50000 schedules. 

As highlighted in Table 4, the proposed SS is only slightly outperformed for J30 by the method of 

Paraskevopoulos et al. (2012). Our approach belongs to the metaheuristics able to reach all the 

optimal solutions with 50000 schedules. If we consider the best algorithms with 5000 or 50000  

 

Algorithm SGS Authors 
Average Deviation (%) >50000 

1000 5000 50000 Avg. 
dev. (%) 

No. of 
sched. 

Best known makespans — — 10.37   
GANS Serial Proon and Jin (2011) 11.35 10.53 10.52   
SAILS Serial Paraskevopoulos et al. (2012) 11.05 10.72 10.54 10.46 70000 
Artificial Immune Algo.—FBI Serial Mobini et al. (2011) 11.17 10.80 10.55   
ESS Both Mobini et al. (2009) 11.12 10.74 10.57   
GA—FBI Both Wang et al. (2010) 11.55 10.96 10.57   
GA—FBI Serial Gonçalves et al. (2011) — 11.56 10.57 10.49 499140 
SS—FBI Serial This study 11.38 10.93 10.58 10.45 500000 

Cooling Process—GA—FBI Serial Lim et al. (2013) 11.73 11.14 10.63 10.51 500000 
SS—FBI Serial Ranjbar et al. (2009) 11.59 11.07 10.64   
GA Both Zamani (2013) 11.33 10.94 10.65   
SFLA—FBI Serial Fang and Wang (2012) 11.44 10.87 10.66   
ACOSS Both Chen et al. (2010) 11.75 10.98 10.67   
GA Both Mendes et al. (2009) 11.72 11.04 10.67 10.67 63546 
GA Serial Debels and Vanhoucke (2007) 11.45 10.95 10.68   
PSO—HH Serial Koulinas et al. (2014) 11.74 11.13 10.68   
Memetic Algo. —FBI Serial Carlier et al. (2009) 11.62 11.09 10.70   
SS—FBI   Serial Debels et al. (2006)   11.73 11.10 10.71 10.53 500000 
GA—hybrid, FBI   Serial Valls et al. (2008)   11.56 11.10 10.73   
GA, TS—PR   Both Kochetov and Stolyar (2003)   11.71 11.17 10.74   
GA—FBI   Serial Valls et al. (2005)   12.21 11.27 10.74   
Bees Algo. — Sadeghi et al. (2011) 11.93 11.48 10.74   
GA—DP Both Cervantes et al. (2008) 11.43 10.96 10.81   
DABC Serial Nouri et al. (2013) 11.74 11.16 —   
GA—FBI   Both Alcaraz et al. (2004)  11.89 11.19 10.84   

Table 5 Computational comparison with schedule limits - J60 

 

schedules, most of them have a difference of less than 0.01 point from each other. Assuming that 

the width of the 95% confidence interval for any metaheuristic has the same order of magnitude 

as the one observed in Table 3 for our SS (0.01 point for 1000 and 5000 schedules, 0.00 point for 

50000 schedules), we can conclude that the precision used by researchers is appropriate and 

that randomness does not significantly change the current ranking. 

Table 5 shows that none of the heuristics is able to find all the best known solutions for J60. The 

proposed algorithm is ranked 7th for 50000 schedules based on the average deviation. However, 

only three algorithms in the literature are better than the lower bound of the 95% confidence 

interval presented in Table 3 (10.57%). The proposed SS is ranked 6th for 1000 and 5000 

schedules based on the average deviation, indicating that it is also competitive with lower 

schedule limits. As for J30, the average deviations obtained by the best metaheuristics for 50000 
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schedules are also close to each other. However, assuming that the width of 95% confidence 

interval for any metaheuristic has the same order of magnitude as the one observed in Table 3 

(0.05, 0.03 and 0.02 point for 1000, 5000 and 50000, resp.), it may be inappropriate to rank the 

methods with the precision commonly used by researchers. It would be more appropriate to 

gather them in groups where the difference in performances could be explained by randomness. 

With this framework, Proon and Jin (2011) developed the best metaheuristic, followed by a  

 

Algorithm SGS Authors 
Average Deviation (%) >50000 

1000 5000 50000 Avg. 
dev. (%) 

No. of 
sched. 

Best known makespans — — 29.18   

GANS Serial Proon and Jin (2011) 33.45 31.51 30.45   
ACOSS Both Chen et al. (2010) 35.19 32.48 30.56   
Cooling Process—GA—FBI Serial Lim et al. (2013) 34.95 32.75 30.66 29.91 500000 
SAILS Serial Paraskevopoulos et al. (2012) 33.32 32.12 30.78 30.39 200000 

GA Serial Debels and Vanhoucke (2007) 34.19 32.34 30.82   
SFLA—FBI Serial Fang and Wang (2012) 34.83 33.20 31.11   
SS—FBI Serial This study 34.13 32.52 31.16 30.39 500000 

PSO—HH Serial Koulinas et al. (2014) 35.20 32.59 31.23   
GA—hybrid, FBI   Serial Valls et al. (2008)   34.07 32.54 31.24 30.95 100000 
GA—FBI Both Wang et al. (2010) 35.18 33.11 31.28   
GA Both Zamani (2013) 34.02 32.89 31.30   
ESS Both Mobini et al. (2009) 34.51 32.61 31.37 31.20 127341 
GA Both Mendes et al. (2009) 35.87 33.03 31.44   
Artificial Immune Algo.—FBI Serial Mobini et al. (2011) 34.01 32.57 31.48   
Memetic Algo. —FBI Serial Carlier et al. (2009) 34.89 33.18 —   
SS-FBI Serial Ranjbar et al. (2009) 35.08 33.24 31.49   
DABC Serial Nouri et al. (2013) 36.40 33.72 31.49   
GA—FBI   Both Alcaraz et al. (2004)   36.53 33.91 31.49   
Bees Algo. — Sadeghi et al. (2011) 35.80 33.33 31.55   
SS—FBI   Serial Debels et al. (2006)   35.22 33.10 31.57 30.48 500000 
GA—FBI   Serial Valls et al. (2005) 35.39 33.24 31.58   
GA—DP Both Cervantes et al. (2008) 33.71 32.57 31.65   
GA, TS—PR   Both Kochetov and Stolyar (2003)   34.74 33.36 32.06   
GA—FBI Serial Gonçalves et al. (2011) — 35.94 32.76 30.08 490320 

Table 6 Computational comparison with schedule limits - J120 

 

group composed of Paraskevopoulos et al. (2012) and Mobini et al. (2011), and another group 

composed of this paper, Mobini et al. (2009), Wang et al. (2010) and Gonçalves et al. (2011). To 

further illustrate the impact of randomness on the performances of the proposed SS, note that 

with initPop = 1500 b1 = 27, b2 = 21, t1 =1.1, t2 = 2.1, npr = 1, the minimal average deviation 

among ten runs is 10.52%, which would match the results obtained by Proon and Jin (2011), but 

the maximal measure is 10.62%, leading to an average value of 10.59%. 

For J120, the results in Table 6 are more spread than for J30 and J60. As for J60, none of the 

existing heuristics is able to find all the best known solutions. The proposed SS is ranked 7th, 5th 

and 6th for 50000, 5000 and 1000 schedules, respectively. For this instance set, the width of the 
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confidence interval that we observed in Table 3 for the proposed SS (0.08, 0.04 and 0.03 point for 

1000, 5000 and 50000 schedules, respectively) does not change the ranking. 

Some papers conducted experiments for more than 50000 schedules. As shown in Tables 5-6, 

the results are significantly improved for J60 and J120, which should incite researchers to test 

metaheuristics for larger schedule limits. As these algorithms do not use the same schedule limit, 

the comparison of the results should be taken with caution. The proposed SS performs better 

than any other metaheuristics for J60, while the obtained results are close to those obtained in 

the literature for J120. 

As presented in Tables 4-6, no heuristic provides the best results for all the schedule limits and all 

the project sizes. For that reason, Kolisch and Hartmann (2006) introduced the concept of 

dominance in order to determine the best global heuristics. A heuristic X is dominated by a 

heuristic Y if X has for at least one combination of instance set and schedule limit a higher 

average deviation than Y without having for any of the other combinations a lower average 

deviation. By applying this rule, the proposed SS would only be dominated by Paraskevopoulos 

et al. (2012) for 1000, 5000 and 50000 schedules, which makes it one of the best heuristics and 

confirms that hybrid metaheuristics, especially those based on scatter search, are among the 

best current heuristics. However, Paraskevopoulos et al. (2012) do not indicate if their results 

were obtained with a single run or with several runs, and, in the latter case, if their results were 

the best or the average among several runs. As previously explained for J60, our method is 

hence able to provide better results than Paraskevopoulos et al. (2012) for a single run with a 

schedule limit of 50000, but worst results for ten replications. 

4.5.2. Comparative analysis with no schedule limits 

Some researchers have not provided results according to schedule limits, as it is sometimes 

impossible to count the number of generated schedules. These methods are presented in Tables 

7-9 for J30, J60 and J120, respectively. The first column describes each heuristic: PCAP for 

Parallel Complete Anytime Procedure, FF for Filter-and-Fan approach, LSSPER for Local Search 

with Subproblem Exact Resolution, VNS for Variable Neighborhood Search, PBP for Population 

Based Procedures, DBGA for Decomposition Based GA, MP for Multi-Pass approach, SA for 

Simulated Annealing, ATLAS for Accelerating Two-Layer Anchor Search, PASS for Polarized 

Adaptive Scheduling Scheme, LR for Lagrange Relaxation. Since the reported results differ in 

terms of stopping criterion and computational effort, it is hard to carry out any comparison with the 

proposed SS. The analysis presented hereinafter should then be taken with caution. 

For J30, Table 7 shows that the proposed SS produces better results in less time than these 

algorithms, except the GA of Hindi et al. (2002), the VNS of Fleszar and Hindi (2004) and the 

DBGA of Debels and Vanhoucke (2007) and. The latter achieved a worse average deviation than 
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the one obtained with the proposed SS for 1000 schedules, but with a significantly faster 

computation time. For 5000 schedules, Fleszar and Hindi (2004) obtained a better average 

deviation with a slightly lower computation time. As presented in Table 8 and Table 9, Thammano 

and Phu-ang (2012) obtained competitive results but they did not provide the computational times 

and the numbers of generated schedules. For J60, Ranjbar (2008) produced a better average 

deviation than the proposed SS for 50000 schedules, with a better computational time. Debels 

and Vanhoucke (2007) and Zamani (2012) obtained a worse average deviation compared to the 

proposed SS for 50000 schedules, but with better computational times. Valls et al. (2004) 

obtained a slightly better average deviation with a slightly faster computation time. Table 9 

highlights that Debels and Vanhoucke (2007) produced better results than the proposed SS for 

J120 and 50000 schedules in terms of average deviation and computation time, while Valls 

(2004), Ranjbar (2008) and Zamani (2012) produced competitive results very fast. From this 

analysis, it can be concluded that none of these heuristics globally perform better than the 

proposed SS in terms of both computation time and solution quality for all the instance sets. 

  

Algorithm SGS Authors 
Av. 
dev. 
(%) 

No. of 
schedules CPU(s) 

CPU freq. 
Av. Max. Av. Max. 

SS—FBI Serial This study (50000 sched.) 0.00 — — 3.50 191.02 2.53 GHz 

PCAP — Zamani (2010b) 0.00 — — 4.09 — 1.86 GHz 
FF Serial Ranjbar (2008) 0.00 — — 5.00 — 3 GHz 
LSSPER Serial Palpant (2004) 0.00 830 1120 10.26 123.00 2.3 GHz 
VNS Serial Fleszar and Hindi (2004) 0.01 — — 0.64 5.86 1 GHz 
SS—FBI Serial This study (5000 sched.) 0.02 — — 0.80 15.19 2.53 GHz 

TS—FBI Serial Valls et al. (2003) 0.06 — — 1.61 6.15 400 MHz 
SS—FBI Serial This study (1000 sched.) 0.10 — — 0.27 2.80 2.53 GHz 

PBP Serial Valls et al. (2004) 0.10 — — 1.16 5.49 400 MHz 
DBGA Serial Debels and Vanhoucke (2007) 0.12 — — 0.01 — 1.8 GHz 
Netw. Decomp. — Sprecher (2002) 0.12 — — 2.75 39.7 166 MHz 
GA Serial Hindi et al. (2002) 0.37 1683 3068 0.17 0.49 400 MHz 
MP—netw. flow Paral. Artigues et al. (2003) 1.74 30 30 — — — 

Table 7 Computational comparison with an unlimited number of schedules - J30 

 

Algorithm SGS Authors 
Av. 
dev. 
(%) 

No. of 
schedules CPU(s) 

CPU freq. 
Av. Max. Av. Max. 

SS—FBI Serial This study (500000 sched.) 10.45 — — 735.60 12800.24 2.53 GHz 

GA—TS—SA Serial Thammano and Phu-ang (2012) 10.52 — — — — — 
FF Serial Ranjbar (2008) 10.56 — — 5.00 — 3 GHz 
SS—FBI Serial This study (50000 sched.) 10.58 — — 34.66 369.89 2.53 GHz 

PASS Both Zamani (2012) 10.64 — — 3.00 — 1.86 GHz 
DBGA Serial Debels and Vanhoucke (2007) 10.68 — — 1.11 — 1.8 GHz 
ATLAS Both Zamani (2010a) 10.81 — — 36.20 — 1.86 GHz 
LSSPER Serial Palpant (2004) 10.81 1622 2262 38.78 223 2.3 GHz 
PBP Serial Valls et al. (2004) 10.89 — — 3.65 22.60 400 MHz 
SS—FBI Serial This study (5000 sched.) 10.93 — — 3.24 26.42 2.53 GHz 
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VNS Serial Fleszar and Hindi (2004) 10.94 — — 8.89 80.70 1 GHz 
PCAP — Zamani (2010b) 11.07 — — 28.45 — 1.86 GHz 
SS—FBI Serial  This study (1000 sched.) 11.38 — — 0.90 5.32 2.53 GHz 

TS—FBI Serial Valls et al. (2003) 11.45 — — 2.76 14.61 400 MHz 
Netw. Decomp. — Sprecher (2002) 11.61 — — 460.16 4311.46 166 MHz 
TS—netw. flow Paral. Artigues et al. (2003) 12.05 — — 3.20 — — 
MP—netw. flow Paral. Artigues et al. (2003) 14.20 60 60 — — — 
LR—activity list Both Möhring et al. (2003) 15.60 — — 6.9 57 200 MHz 

Table 8 Computational comparison with an unlimited number of schedules - J60 

Algorithm SGS Authors 
Av. 

Dev. 
(%) 

No. of 
schedules CPU(s) 

CPU freq. 
Av. Max. Av. Max. 

SS—FBI Serial This study (500000 sched.) 30.39 — — 2976.53 14179.87 2.53 GHz 
GA—TS—SA Serial Thammano and Phu-ang (2012) 30.51 — — — — — 
DBGA Serial Debels and Vanhoucke (2007) 30.69 — — 2.99 — 1.8 GHz 
SS—FBI Serial This study (50000 sched.) 31.16 — — 198.14 647.67 2.53 GHz 

PASS Both Zamani (2012) 31.22 — — 8.00 — 1.86 GHz 
FF Serial Ranjbar (2008) 31.42 — — 5.00 — 3 GHz 
PBP Serial Valls et al. (2004) 31.58 — — 59.43 263.97 400 MHz 
LSSPER Serial Palpant (2004) 32.41 3396 5000 207.93 501.00 2.3 GHz 
ATLAS Both Zamani (2010a) 32.45 — — 110.50 — 1.86 GHz 
SS—FBI Serial This study (5000 sched.) 32.52 — — 21.04 83.93 2.53 GHz 

VNS Serial Fleszar and Hindi (2004) 33.10 — — 219.86 1126.97 1 GHz 
PCAP — Zamani (2010b) 33.78 — — 34.23 — 1.86 GHz 
SS—FBI Serial This study (1000 sched.) 34.13 — — 4.62 10.69 2.53 GHz 

TS—FBI Serial Valls et al. (2003) 34.53 — — 17.00 43.94 400 MHz 
LR—activity list Both Möhring et al. (2003) 36.00 — — 72.90 654.00 200 MHz 
TS—netw. flow Paral. Artigues et al. (2003) 36.16 — — 67.00 — — 
Netw. Decomp. — Sprecher (2002) 39.29 — — 458.53 1511.33 166 MHz 
MP—netw. flow Paral. Artigues et al. (2003) 39.34 120 120 — — — 

Table 9 Computational comparison with an unlimited number of schedules - J120 

5. Concluding remarks 

This paper presents a new hybrid metaheuristic for solving the resource-constrained scheduling 

project problem (RCPSP). The method is based on a scatter search framework that involves 

forward-backward improvement, reversing of population at each iteration of the scatter search 

and an advanced path relinking strategy for combining pairs of solutions. This path relinking has 

two distinctive features. First, it is a bidirectional path relinking, which has been identified as one 

of the most promising approach for combination in scatter search. It consists in swaping the 

initiating and the guiding solutions at each step of the path relinking process. Second, this path 

relinking is based on a new move that consists in moving the most distant activity from the 

guiding solution in the current solution of the path to its place in the guiding solution. 

Since the performances are highly sensitive to the values of the scatter search parameters, an 

advanced parameter tuning method based on local search is proposed. Computational 

experiments on the PSPLIB benchmark (Kolisch and Sprecher 1996) show that the proposed 

scatter search algorithm provides high-quality solutions in reasonable computation times. An 
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extensive comparison with the best heuristics in the literature demonstrates that the proposed 

approach is one of the most advanced heuristics, especially for the J30 and J60 instance sets. 

We suggest three directions for further research. First, based on the obtained results, the 

experimental protocol commonly used in the literature should be updated by conducting several 

independent runs to include the effect of random devices involved in most metaheuristics, and by 

testing the heuristics on larger problem instances and for larger schedule limits. Second, since 

the hybrid metaheuristics based on scatter search are among the best heuristics, further research 

should be oriented to develop new mechanisms for scatter search and to include existing 

advanced ones for the schedule representation, the decoding procedure, the generation of the 

initial population, the subset generation method, the combination method, the improvement 

method and the use of long-term memory. Finally, the proposed hybrid scatter search could be 

used to tackle other combinatorial optimization problems including variants of the standard 

RCPSP. 
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