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Abstract. Biomedical sample management plays a central role in an efficient healthcare 

system and requires important resources. This article describes and models the 

challenging context of biomedical sample transportation in the Canadian province of 

Quebec as a variant of the multi-trip vehicle routing problem with time windows. In this 

case, several routes need to be planned from a laboratory to satisfy the multiple pick-up 

requests of each sample collection center (SCC) under some practical constraints. We 

propose two alternative mathematical formulations as well as fast heuristics to minimize 

total transportation distances. The performance of the proposed methods is assessed 

over a large case study based on the network of laboratories in the province of Quebec. 

Results helped Quebec’s Ministry of Health and Social Services to increase its service 

quality and to reduce its transportation costs. 
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1. Introduction 

Biomedical tests are of great importance in helping physicians make accurate diagnoses. To 

accomplish such tests, thousands of biomedical samples or “specimens” need to be transported daily 

from different facilities of the healthcare network where they are collected (hospitals, private clinics 

or other samples collection centers, SCCs) to laboratories where they are analyzed. Although large 

hospitals often own on-site laboratories where collected specimens can be analyzed, most of the 

SCCs are not equipped to analyze the samples they collect, so they must ensure adequate 

transportation of samples to laboratories.  

 

This research focuses on the organization of these transportation activities and is based on the real 

situation observed in Quebec, where the Ministry of Health and Social Services (Ministère de la 

santé et des services sociaux – MSSS) has the role of supporting and overseeing the health network 

in the province in order to ensure the well-being of Quebecers. Aiming at improving the services 

offered to the population, a special focus has recently been put on the optimization of the existing 

laboratories and, in particular, on the transportation aspects, giving birth to a supply chain 

optimization project named Optilab. Optilab seeks to enhance the quality of the services given by 

the network of laboratories in terms of security, accessibility, efficiency and efficacy (MSSS, 2012). 

Until now, the transportation of biomedical specimens in Quebec has been done in a rather 

decentralized manner, each laboratory and SCC deciding independently the transportation services 

needed and used. There is no formal structure ruling the specimens’ transportation on this network, 

nor are there directives. Also, the MSSS would apply closer control to transportation costs and take 

advantage of potential economies of scale due to high transportation volume generated by samples’ 

transportation. In this context, this research is a first step to model, quantify and optimize the daily 

transportation operations of biomedical samples. 

 

This paper presents two major contributions. First, it defines the biomedical sample transportation 

problem (BSTP) and proposes two alternative formulations. Second, it proposes a solving approach 

able to cope with real-size daily instances. This article is structured as follows. Section 2 describes 

the practical context of the biomedical sample transportation problem. Section 3 reviews related 

literature. Section 4 presents two mathematical formulations to optimize the BSTP and Section 5 

introduces several heuristics to solve it. Real data and computational results are presented in Section 

6. Section 7 closes this article and offers some research perspectives.  

2. Problem statement 

The network considered here is composed of sample collection centers (SCCs) and laboratories 

(Labs). SCCs are health facilities that patients visit in order to produce the requested biomedical 

samples. Then, the specimens are pre-treated and prepared to be sent to a Lab for analysis. 

Following the structure imposed by the MSSS, the Quebec province is divided into territories, and 

each SCC in a territory is affected a priori to a given Lab. Hence, each transportation network is 
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composed of a set of SCCs (clients) affected to a Lab (that we identify as a depot). Finally, even if 

hundreds of different specimens are collected, they are all grouped and transported within standard 

refrigerated sample boxes. As a box may contain up to 80 samples, an SCC rarely requests 

transportation for more than one or two boxes at a time. Due to the small size of the sample boxes, 

vehicle capacity is irrelevant. Therefore, we only need to consider the transportation requests of 

each SCC. These transportation requests are performed by public carriers which are under contract 

with the SCCs and paid on the basis of the traveled distance. Each driver may perform multiple 

routes during the working day. When visiting an SCC, the driver exchanges empty boxes for new 

ones. No constraint on the number of vehicles is considered because the carrier will adjust the 

number of drivers to satisfy regular planned transportation requests as well as emergency calls. 

Thus, drivers’ routes must begin at the Lab, where they will get empty boxes to exchange with full 

boxes at every visited SCC. The driver has to return to the Lab to deliver the samples before starting 

any other route. Finally, drivers’ schedule must respect the maximum number of driving hours per 

day fixed by the Quebec province regulation. 

 

The biomedical sample transportation from SCCs to the Lab has some characteristics that make it a 

challenging optimization problem. The major constraints are the samples’ maximum transportation 

time and the multiple transportation requests at each SCC. Maximal transportation time is due to the 

samples’ lifespan. After collection, each sample box must arrive at the Lab within a given time 

frame to be treated. Otherwise, samples deteriorate and become unusable, increasing tremendously 

both the Lab’s costs and the quality of the service. In fact, an unusable sample forces the patient to 

make a second collection; it delays the analysis and doubles the operations costs of the entire 

process (collecting, transporting and analyzing). In order to respect sample lifespans, SCC cannot 

keep the collected specimens for a long time; this is why each SCC may make a different number of 

sample transportation requests, depending on its daily opening hours. For example, if an SCC is 

open from 9h 00 to 13h 00, it cannot hold samples during the entire morning and then make a single 

transportation request at the end of the day. Instead, it will require at least two different pick-up 

appointments. Moreover, these two appointments cannot be too close to one another (e.g., it would 

not be useful to make a visit at 12h 00 and another one at 13h 00) because this can be as bad and as 

risky as just making one pick-up. This is why SCCs propose strict time windows for each 

transportation request; for example, the first pick-up must be done between 10h 45 and 11h 15 and 

the last one between 13h 00 and 13h 30. These multiple pick-ups are also needed to avoid problems 

with sample storage capacity at the SCC and provide the Lab with a more continuous supply of 

sample boxes and thus help to smooth the workload.  

 

Therefore, the BSTP aims at finding the minimum distance set of routes in order to satisfy all the 

transportation requests of each SCC while respecting the imposed time windows, the maximum 

transportation time of any sample and the vehicles’ maximum working hours. 
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3. Related literature  

The BSTP is characterized by multiple visits to each customer, a time window on each visit time, 

multiple routes (trips) for each vehicle and other practical constraints. Therefore, it is clearly 

grounded in the vehicle routing literature and particularly related to the vehicle routing problem with 

time windows (VRPTW) and the multi-trip vehicle routing problem (MTVRP). Because the 

literature on these subjects is vast, the next paragraphs aim solely at outlining some key reviews or 

the most recent works on these topics. 

 

Concerning VRPTW, the wide review of Cordeau et al. (2002) and those by Bräysy and Gendreau 

focused on local search algorithms (2005a) and metaheuristics (2005b) are key contributions to the 

field. More recently, Kallehauge (2008) and Baldacci et al. (2011; 2012) proposed exact algorithms 

that are among the best available for solving the classical capacitated VRPTW.  

 

Taillard et al. (1996) and Brandão and Mercer (1997; 1998) were among the first to deal with the 

multi-trip vehicle routing problem (MTVRP). They proposed tabu search algorithms for solving an 

MTVRP with different constraint types, including time windows. Olivera and Viera (2007) used an 

adaptive memory programming algorithm to solve the classical MTVRP, leading to better results 

than those produced by Brandão and Mercer (1998) and Taillard et al. (1996). Prins (2002) 

considers a MTVRP with two objectives (the total distance and the number of required vehicles) and 

reported results from a French manufacturer of furniture. Mingozzi et al. (2013) proposed an exact 

algorithm and solved benchmark instances with up to 120 customers. Battarra et al. (2009) solved an 

MTVRP-TW with multiple incompatible commodities with the objective of minimizing the number 

of vehicles. Cattaruzza et al. (2014) proposed an iterated local search algorithm for MTVRP-TW. 

Azi et al. (2010) addressed a variant of the MTVRP where a time window and revenue are 

associated with each customer. Martínez and Amaya (2013) used a tabu search algorithm for solving 

an MTVRP-TW with loading constraints. Azi et al. (2014) developed an adaptive large 

neighborhood search algorithm for the MTVRP where the objective is first to maximize the number 

of served customers and then to minimize the total distance traveled by the vehicles. 

Wang et al. (2014) proposed a metaheuristic based on a pool of routes to solve the MTVRP-TW. 

 

Three particular works seem to be the closest to the BSTP. Hernández et al. (2011) proposed a 

MTVRP-TW where a limit on the total duration of the routes is imposed. They developed a two-

phase exact algorithm to solve the problem and tested it on Solomon’s benchmark instances. Liu et 

al. (2013) studied a routing problem where biomedical samples need to be collected and delivered to 

laboratories. In their case, four types of deliveries and pick-up requirements were considered. As in 

the BSTP, visits must respect time windows, but in their case each node requires only one visit and 

each vehicle performs a single route. Finally, Doerner et al. (2008) dealt with a blood collection 

problem and proposed several variants of a construction heuristic and a branch-and-bound 

algorithm. As in the BSTP, transportation time is limited to preserve the blood’s quality, and 

multiple pick-ups can be planned at each customer location. However, in their case, time windows 

concern the opening hours of SCCs, instead of the transportation requests. Also, the number of pick-

ups is not fixed but is one of the decisions.  
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4. Mathematical formulations 

This section proposes two formulations for the BSTP. The first one deals explicitly with the multiple 

transportation requests at each SCC, while the second one duplicates the SCC, such as each node 

has only one transportation request. 

 4.1. Model 1: Multiple transportation requests per SCC (BSTP-MP) 

 

The BSTP is modeled over a complete graph   {   }, where    {               } is the set 

of nodes in the network, composed by the   SCCs (set    {          }) that generates 

transportation requests and the Lab {       } where every route must start and end. We define the 

arc set    {(     )                                }, and to each arc (     ) are 

associated a travel time (   ) and a travel distance (   ).   uncapacited vehicles are available for 

satisfying SCCs transportation requests. Each vehicle can perform multiple routes (        

inside a work shift, but it has to respect a limit on the length of its working day (  ).  

 

Each SCC   requires a specific number of transportation requests (        ). For SCC i, its q
th

 

pick-up has to be done inside a time window [       ], where     is the earliest time the transport 

may arrive (otherwise, he has to wait) to perform the pick-up   of SCC  , and     is the latest 

accepted arrival time. Time windows are considered to be hard constraints. In addition, we need to 

consider a loading time (  ) at each SCC and an unloading time (  ) of the vehicle at the Lab before 

a new route can be started. Furthermore, let      be the maximal transportation time for any sample.  

 

In order to define a transportation plan that respects the practical constraints of our problem and 

minimize transportation costs, we define the following decision variables.  

 

       binary variable equal to 1 if the arc       is used by vehicle   in its route  ; 0 otherwise. 

       binary variable equal to 1 if the q
th

 request of SCC   is done by vehicle   in its route  ; 0 

otherwise. 

      continuous variable that indicates the visit time of SCC   by vehicle   in route  . 

 

The model BSTP-MR is stated as follows: 

 

    ∑ ∑ ∑ ∑         
 
   

 
   

   
   

 
      (1.1) 

                            

Subject to:  

 

∑      
 
                                    (1.2) 

∑      
 
    ∑      

   
                                 (1.3) 

∑      
 
                         (1.4) 
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∑      
 
    ∑         

 
                         (1.5) 

∑      
 
    ∑        

 
                         (1.6) 

∑ ∑      
 
   

 
                         (1.7) 

∑      
  

    ∑      
 
                                  (1.8) 

                      (       )                     

                 

(1.9) 

      (       )             

  (       )  

                 

                  

(1.10) 

                                  (1.11) 

                   (  ∑      
 
   )                              (1.12) 

                 k                 (1.13) 

   

Objective (1.1) is to find a transportation plan that minimizes the total traveled distance. 

Constraints (1.2) assure that an SCC   is visited at most one time by route   of vehicle k. 

Constraints (1.3) force the flow of each vehicle   for each of its routes   to be balanced at each SCC 

of the network. This means that if an arc enters to node   in a route   of vehicle  , there must be an 

arc that leaves the same node for the same       combination. Constraints (1.4) state that a truck   

can start a route   or not, but (1.5) if the vehicle starts a route, it must come back to depot (node 

   ). Constraints (1.6) make an order on the routes; thus, route   is started if and only if a route 

    has been already created. Constraints (1.7) and (1.8) verify the pick-up request satisfaction. 

Constraints (1.7) state that each pick-up   for each SCC   is done by one and only one vehicle route 

      combination; constraints (1.8) link the arc to the pick-up variables, saying that if a pick-up is 

done by the route   of the truck   is because there is an arc of this combination that entered to the 

node  . Constraints (1.9) to (1.13) handle the time constraints. Constraints (1.9) have two main 

purposes: First, it estimates the arrival time at every node (clients or dummy depot), and second, it 

forces the sub-tours’ elimination. Then, constraint (1.10) fixes the upper and lower bound of the 

time windows, forcing that if the pick-up q of client   is done with vehicle   in its route   (      

 ), it must be inside the time window of the pick-up request; otherwise, the constraints are irrelevant 

(when         . Here Tk is used as a Big M value. Constraints (1.11) ensure that the starting time 

of route   is later than the arriving time of route     at node (n+1). Constraints (1.12) impose the 

maximum transportation length time limit (returning time to the Lab minus the pick-up time at any   

is less than the limit if j is visited by vehicle k on its route r). Constraints (1.13) force respect for the 

total work shift length for a vehicle  .  
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 4.2.  Model 2: Extended graph (BSTP-EG) 

 

In the BSTP-EG, each transportation request is represented by a specific node, so if SCC   requires 

   pick-ups,   is represented by    nodes located at the same place, each needing one request. 

Therefore, the original set N is extended into a set P of p nodes (   ∑   
 
   ). 

 

We define a complete graph    {    }, where     {               } is the set of nodes in the 

network, which includes the laboratory as nodes {       } and the set    {          }, with the 

  transportation requests of the SCCs. We define also    as the set of nodes representing the pick-

ups demanded by the original SCC  . Therefore, node set   is composed of a set of pick-ups 

originating from different SCCs (i.e.,    ⋃    ). Finally, we consider the arc set 

   {(     )                                }. Clearly,     and     are equal to zero 

for every (     ) if   and      , i.e., nodes   and   correspond to two requests from the same SCC. 

In addition, each request needs to be performed inside its original time window [     ]. Finally, no 

more than one node from each Pn can be visited on any route. The rest of the notation of model 

BSTP-MP is also valid for model BSTP-EG. The following decisions variables are used:  

 

       binary variable equal to 1 if the arc       is used by vehicle   in its route  ; 0 otherwise. 

      continuous variable that indicates the visit time of pick-up   by vehicle   in route  . 

 

    ∑ ∑ ∑ ∑         
 
   

 
   

   
   

 
        (2.1) 

 

Subject to:  

∑ ∑ ∑      
 
   

 
   

 
                   (2.2) 

∑ ∑      
 
         

                               (2.3) 

∑      
 
    ∑      

   
                                 (2.4) 

∑      
 
                         (2.5) 

∑      
 
    ∑         

 
                         (2.6) 

∑      
 
    ∑        

 
                         (2.7) 

                      (       )                     

                 

(2.8) 

     (  ∑      
 
   )            

  (  ∑      
 
   )  

                          (2.9) 

                                   (2.10) 

                   (  ∑      
 
   )                              (2.11) 

                  k                 (2.12) 
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Objective (2.1) minimizes the traveled distance. Constraints (2.2) ensure that every pick-up   (every 

node of P) is performed by a vehicle route (r, k). Constraints (2.3) assure that a truck   in its route   

visits at the most one node of the original SCC  . Constraints (2.4) force the flow of each truck   for 

each of its routes   to be balanced for each node j of the network. Constraints (2.5) state that a truck 

  can start a route   or not, but (2.6) if the vehicle starts a route, it must come back to the depot 

(node    ). Constraints (2.7) order the routes; thus, route   is started if and only if a route     

has been already done. Constraints (2.8) to (2.12) handle the time constraints. Their explanation is 

similar to constraints (1.9) to (1.13). 

 

As will be discussed in Section 6, the two formulations presented here are very difficult to solve. 

Aiming at improving their solvability, we added the following sub-tour elimination constraints to 

model BSTP-MR: 

 

∑ ∑      
 
   

 
    | |     

        { }  | |  {   }  

                               
(1.14) 

 

Similarly, we added the following constraints to BSTP-EG: 

 

∑ ∑      
 
   

 
    | |      

        { }  | |  {   }  

                            
(2.13) 

 

These constraints eliminate all infeasible tours of two or three nodes not connected to the depot. 

However, after executing extensive numerical experiments, we were not able to identify a positive 

impact of those constraints. Therefore, in order to provide a daily transportation plan for the MSSS, 

an alternative, faster approach to solving the BSTP needed to be developed. The next section 

presents some simple but efficient heuristics for solving the BSTP.  

5. Solving approach  

This section presents a two-stage heuristic for solving the BSTP. In the first stage, a pool of feasible 

solutions is generated using a construction procedure. Then, a local improvement procedure is 

applied to all the generated solutions in the second stage. Two alternative construction procedures 

(H1 and H2) are presented before describing the improvement stage.  

 5.1. Route first and then schedule (H1)  

 

The first construction heuristic is an iterative procedure composed of two steps that are executed 

sequentially until all the requests are assigned to routes. We note     as the arrival time at node   (in 

minutes) with route  . We also define    and    as the departure and finishing time of route  , 

respectively. Transportation requests are sorted in increasing order of their earliest time window (  ) 

in the ordered set   . Since each transportation request   is associated to a specific SCC, request 

and node are used indistinctly.  
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Step 1 Routes construction 

 

Let       the first route. 

 

Step 1.1 Route initialization: Select a transportation request     . Start route r with request  . The 

departure time of this route is fixed so that the vehicle will arrive at   at the beginning of its time 

window (  ), i.e.,             . The visit time of node   is fixed (      ). Delete   from   . 

 

Step 1.2 Adding visits to the current route: Consider the next transportation request      and 

verify the next three conditions: 

 

1. SCC demanding request j has not been visited in the current route  . 

2. It is possible to arrive at   before the end of its time window (              ). 

3. After visiting   at time        {              }, it is possible to return to the Lab, 

respecting the maximal travel time      of all the requests in the route. 

 

If all three are satisfied, j is added to route  ,     is fixed as the earliest possible service time to point 

  (       {              }), and   is erased from TR. Node   becomes the current position in 

route r, and the next potential visit is evaluated. When none of the transportation requests in TR is 

eligible, the route is closed, and the vehicle goes back to the Lab. Then, we can calculate    as the 

finish time of route   (             ). If TR is not empty, go to Step 1.1 to create route 

       ; otherwise, the algorithm goes to Step 2.  

 

Step 2 Trucks’ assignment  

 

Let R be the set of feasible routes sorted in ascending order of their departure time   . The routes 

are assigned to vehicles in order to construct the carriers’ schedule. This is done by assigning a 

subset of routes to a specific truck k. Truck k departure and finishing times are   
  and   

 
, 

respectively. To initialize this phase, we set    . The first route     is selected, and we set 

  
     and   

 
   . Route r is deleted from R. Then we elect the next route      and evaluate 

the two following conditions:  

 

1. The departure time of route   ,    , is later (greater) than   
 
. 

2. The schedule of vehicle  ,       
   respects the daily work shift limit   . 

 

If the two conditions are respected, the route    is added to the schedule of vehicle  , we set 

  
      and   

 
     and we erase    from the list  . Otherwise, the next route is considered. The 

process is repeated until no route in   can be assigned to vehicle    in which case k’s schedule is 

finished. If there are still routes that are not schedule to any vehicle, a new vehicle       is 

created, and Step 2 is repeated until all routes are assigned.  
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  5.2 Schedule construction (H2)  

 

This heuristic produces the schedule of the vehicles directly. This means that vehicles are activated 

one at a time, and the transportation requests are assigned to them one by one in order to compose 

its routes. Let     the first vehicle. 

Step 1 Vehicle initialization 

Select a transportation request     . The vehicle k is started with request   and TR is updated.   
  

is set in such a way that the vehicle collects empty boxes at the Lab and leaves in time to be at the 

beginning of the time window  . The arrival time to node   is set (      ). 

Step 2 Schedule construction 

Let   be the last node visited in the current route. We define a subset    of “feasible” destinations that 

could be visited from i. A feasible node satisfies all three of the conditions in Step 1.2 of H1 and 

allows the vehicle to visit node j and to go back to the Lab without exceeding the daily shift duration 

  . Then, a destination      is selected according to a selection criterion (either the closest request 

to i, or the one having the earliest time window) and is added to the vehicle.     is updated,   is 

erased from   , and this step is re-executed. If none of the requests in    can be added to   , the 

vehicle returns to Lab and   
 
 is set. Then, a new route for vehicle   is initiated. The first visit   in 

this new route will be the first request in    satisfying the next two conditions: 

  

1. k is able to arrive to   before the end of the node’s time window (  ). 

2.   is able to go to   and return to the Lab before the end of the drivers’ shift. 

 

If the two conditions are assured,   is added, TR is updated, and Step 2 is re-executed. Otherwise, a 

new truck       is activated, and the heuristic goes to Step 1. The procedure is repeated until 

   is empty.  

Multi-start versions of H1 and H2  

 

H1 and H2 are deterministic procedures. In order to generate a set of feasible solutions, they are 

executed several times, but each time, we force them to choose a different request from TR during 

the initialization process.  

 

Notice that all the schedules produced by H1 and H2 visit the first node in the first route at the 

beginning of its time window. However, departing as early as possible might force a premature 

return to the depot to satisfy constraint     . Figure 1 illustrates a route {             } 

but considers two different departure times. The upper route a) arrives to   at 8h 00 (the beginning of 

 ’s time window), which sets       11h 00. Even if visits to nodes j and v are scheduled as early as 

possible, the route is infeasible because its arrival to Lab is 11h 05, exceeding     . In the lower 

case, arrival to   has been delayed to 8h 05, so      11h 05, which allows an on-time return to the 

Lab.  
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Figure 1: a) Infeasible schedule due to earliest start  b) Feasible schedule due to later start. 

However, later departures are not always better. Visiting the first SCC at the end of its time window 

can prevent potential SCCs having similar (or the same) time windows from being included in the 

route. Unfortunately, there isn’t an a priori “best route construction” policy.  

 

To sum up, we executed both heuristics H1 and H2 several times, choosing at each execution a 

different request in the initialization process (independently of its order in TR), and for each 

considered initialization request j, we ran the heuristics, fixing the departure time at   ,    and at the 

middle of j’s time window ((     )  ⁄ ).  

 5.3. Local improvement  

 

An iterative local improvement procedure is applied to all the solutions obtained by the previously 

described heuristics. A feasible solution   is composed of   vehicles, each vehicle performing 

multiple routes. A neighborhood of a given solution is obtained by moving a request v assigned to a 

vehicle k to a later position in any of k’s routes. If the move leads to a distance reduction, the 

feasibility of the neighbor solution is checked. Starting with the first vehicle, its complete 

neighborhood is evaluated, and the best feasible move is implemented. The procedure is repeated 

until no improvement is found. Then the procedure is applied to the following vehicle, until all the 

other vehicles schedules have been considered.  

6. Computational results 

This section presents the computational results over a set of 38 real instances provided by the MSSS. 

It presents the instances and then reports the results produced by the two formulations and compares 

them to those produced by the developed heuristics.  
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 6.1 Instances 

 

We conducted with the MSSS a detailed survey from June to August 2013 to determine the 

transportation needs of SCCs. The 149 SCCs of four administrative regions
1
 were required to 

provide opening hours, the number of transportation requests and their associated time windows for 

each working period (a.m., p.m., night) of weekdays, weekend days and holidays. Hence, each SCC 

provided demand data concerning 18 different periods. Because some SCCs have the same demand 

in several periods, we obtained 38 different instances. For example, if the total demand of Monday 

a.m. is the same as that of Wednesday a.m., both periods were considered the same instance. The 

workload is higher Monday through Wednesday, leading to larger (more requests) instances. As 

fewer SCCs are open on weekends and only a few are open on holidays, the related instances are 

rather small. We arbitrarily divide instances into Small (four SCCs, around 10 requests), Medium 

(up to 10 SCCs, around 20 requests) and Large (up to 20 SCCs, up to 50 requests) sets.  

 

Experts in the MSSS set the loading and unloading time to 10 minutes (      minutes), and 

         minutes, which means that a sample will never travel more than 180 minutes. The 

working shift’s maximal length was fixed to        minutes. All travel times and distances were 

defined using GoogleMaps.  

 6.2 Results produced by BSTP-MR and BSTP-EG 

 

Both formulations were solved using the commercial software Gurobi v5.5, running on a PC with 

two Intel Xeon X5650 2.66GHz 6 Core and 72Go de RAM. Computational time was limited to 

3 600 sec. Table 1 reports the distance of the best feasible solution (Dist.), its gap in percentage with 

respect to the best lower bound (Gap) and the computational time (Sec.). Table 1 does not contain 

results for the larger instances because Gurobi was not able to find any integer feasible solution 

except for instance I-38. For this particular instance, BSTP-MR and BSTP-EG found solutions of 

equal distance (1 183), but the optimality gap was higher than 30%.  

 

  

                                                 
1
 Saguenay-Lac-Saint-Jean, Capitale-Nationale, Mauricie and Montérégie. 
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Table 1: Results produced by the two formulations (time limit = 3 600 sec.)  

 

   BSTP-MR  BSTP-EG 

 
Inst. 

 
Dist. Gap Sec. 

 
Dist. Gap Sec. 

S
m

a
ll

 

I-1  199 0 0  199 0 0 

I-2  557 0 0  557 0 0 

I-3  619 0 0  619 0 0 

I-4  199 0 0  199 0 0 

I-5  324 0 0  324 0 0 

I-6  271 0 0  271 0 0 

I-7  280 0 0  280 0 0 

I-8  268 0 0  268 0 0 

I-9  312 0 0  312 0 0 

I-10  236 0 0  236 0 0 

I-11  194 0 0  194 0 0 

I-12  125 0 0  125 0 0 

 Avg. :  299 0 0  299 0 0 

M
ed

iu
m

 

I-13  995 8 3600  995 0 249 

I-14  991 9 3600  991 3 3600 

I-15  931 29 3600  931 0 256 

I-16  159 0 199  159 0 26 

I-17  230 0 34  230 0 23 

I-18  301 0 9  301 0 3 

I-19  126 0 0  126 0 1 

I-20  193 0 0  193 0 4 

I-21  193 0 0  193 0 2 

I-22  285 0 1  285 0 4 

I-23  754 0 1  754 0 0 

I-24  230 0 0  230 0 0 

I-25  234 0 0  234 0 0 

 Avg.:  432 4 850  432 0 321 

 

All the Small instances were solved to optimality in negligible time. Considering Medium instances, 

formulation BSTP-EG reached 12 optimal solutions, while BSTP-MR gave proof of optimality in 10 

cases. Nonetheless, both models report the same total average distance. BSTP-EG computing times 

are smaller, 321 seconds on average, compared to 850 seconds for BSTP-MR.  

We ran again the Large instances extending the limit on the computational time to 10 800 seconds 

but Gurobi was not able to find any integer feasible solution other than I-38. Still, gaps reported for 

I-38 remain at 29%.  

Given the difficulty shown by Gurobi to find an integer solution, we decided to provide the solver 

with an initial feasible solution. To this end, we used the best solutions found by the heuristics 

presented in Section 5. Table 2 reports the results of these experiments.  
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Table 2: Results produced for large instances using an initial heuristic solution. 

       BSTP-MR    BSTP-EG 

  
 Best 

Heuristic  

  
3 600 sec 10 800 sec 

  
3 600 sec 10 800 sec 

Inst.  Dist.   Dist. Gap Dist. Gap   Dist. Gap Dist. Gap 

I-26  462   449 24 433 21   448 22 445 22 

I-27  2023   1982 36 1961 36   2022 32 1943 29 

I-28  1894   1838 35 1811 34   1851 31 1785 29 

I-29  1899   1802 34 1741 31   1854 31 1845 31 

I-30  1787   1721 39 1656 37   1717 31 1633 27 

I-31  645   600 15 582 13   622 16 622 14 

I-32  1701   1641 32 1641 32   1640 27 1619 24 

I-33  536   494 7 488 6   490 7 488 5 

I-34  500   469 5 469 4   475 8 469 5 

I-35  500   469 5 469 4   475 8 469 5 

I-36  2109   1937 64 1933 64   1933 63 1933 62 

I-37  1923   1833 7 1833 7   1833 5 1833 3 

I-38  1285   1183 21 1183 12   1183 20 1183 9 

Avg:  1328   1263 25 1246 23   1273 23 1251 20 

 

Column Best Heuristic Dist. reports the best solution found by the heuristics to each instance. We 

used these solutions as starting solutions for Gurobi, and we allotted 3 600 and 10 800 sec. of 

computational time. Both formulations were able to improve the provided initial solution. In 

particular, the average distance produced by the heuristics (1 328) was reduced after one hour to 

1 263 and 1 273 by BSTP-MR and BSTP-EG, respectively, which represents an improvement of 

around 4%. Within the 10 800 seconds limit, distances were reduced to 1246 and 1251, which 

represents an additional improvement of around 2%. Formulations show a rather poor performance 

closing the optimality gap, which ranges from 3 to 64%. We conclude that even if BSTP-MR seems 

to perform slightly better than BSTP-EG in the context of this particular experiment, they produce 

quite similar results. 

 6.3 Results produced by the heuristics 

 

Table 3 reports the results produced by the multistart versions of heuristics H1 and H2. In fact, for 

each instance, H1 was executed 3*|  | times, with each execution using a different request in the 

initialization phase and, for each request, using the three arrival times strategies (at the beginning, at 

the middle and at the end of the time window). As per H2, each instance was executed 2*3*|  | 

times because two options for the selection criterion were available (choose the closest request or 

the one having the earliest time window).  

 

The left part of Table 3 reports the results of H1 and H2 while the right part shows the results 

produced after applying the Local improvement procedure. An asterisk * by the instance number 

indicates that the best-known solution is optimal. Columns under header Deviation % give the 

difference between the heuristic solutions and the best-known solutions in percentage. 
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Corresponding best distances are also reported. For those instances where both H1 and H2 without 

local improvement were not optimal, column reports the difference between columns Min. without 

and with local improvement. Computational times were always under one second; therefore, they 

are not reported.  

Table 3: Heuristics performance  

 

  Without local improvement  With local improvement

 

 

Deviation % 

 

Best H1-H2 

 

Deviation% 

Best 

Heuristic 




Inst.  H1 H2 Min.  Dist  H1 H2 Min. Dist  

I-1*  0 0 0  619     619   

I-2*  0 0 0  199     199   

I-3*  0 0 0  557     557   

I-4*  5.5 3.5 3.5  206  5.5 0 0 199  3.5 

I-5*  0 0 0  324     324   

I-6*  0 0 0  268     268   

I-7*  0 0 0  271     271   

I-8*  0 0 0  280     280   

I-9*  0 0 0  236     236   

I-10*  0 0 0  312     312   

I-11*  0 0 0  194     194   

I-12*  0 0 0  125     125   

Avg:  0.5 0.3 0.3  299  0.5 0 0 299   

I-13*  4.4 0.8 0.8  1003  4.4 0.8 0.8 1003  0 

I-14*  8 4.1 4.1  1031  7.8 4.1 4.1 1031  0 

I-15*  2 2 2  950  2 2 2 950  0 

I-16*  4.7 4.6 4.6  166  4.6 0.7 0.7 160  3.9 

I-17*  6.4 6.4 6.4  245  6.4 6.4 6.4 245  0 

I-18*  12.6 11.4 11.4  336  12.6 11.4 11.4 336  0 

I-19*  0 0 0  285     285   

I-20*  7.9 4 4  131  7.9 4 4 131  0 

I-21*  15.7 15.7 15.7  223  0 15.7 0 193  15.7 

I-22*  15.7 2.6 2.6  198  0 2.6 0 193  2.6 

I-23*  0 0 0  234     234   

I-24*  0 0 0  754     754   

I-25*  8.5 7.2 7.2  247  8.5 7.2 7.2 247  0 

Avg:  11.1 8.3 4.5  446  10.4 8.2 2.8 443   

I-26  20.9 6.6 6.6  462  20.8 6.4 6.4 461  0.2 

I-27  4.1 6.7 4.1  2023  4.1 6.7 4.1 2022  0 

I-28  8.2 6.1 6.1  1894  6.8 5.5 5.5 1883  0.6 

I-29  11.2 9.1 9.1  1899  9.8 8.5 8.5 1888  0.6 

I-30  13.9 9.4 9.4  1787  13.3 9.4 9.4 1787  0 

I-31  16.8 10.8 10.8  645  16.8 9.6 9.6 638  1.2 

I-32  9.2 5 5  1701  9.2 5 5 1701  0 

I-33  14.9 9.9 9.9  536  10.2 7.4 7.4 524  2.5 

I-34  9.6 6.7 6.7  500  8.8 6 6 497  0.7 

I-35  9.6 6.7 6.7  500  8.8 6 6 497  0.7 

I-36  9.1 11.4 9.1  2109  9.1 10.7 9.1 2109  0 

I-37  4.9 5.3 4.9  1923  4.9 5.3 4.9 1923  0 

I-38  8.6 8.9 8.6  1285  8.6 8.4 8.4 1283  0.2 

Avg:  12.6 9.1 7.5  1328  11.7 8.5 6.9 1324  0.5 
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Both heuristics H1 and H2 produced optimal solutions for all the Small instances but one. For I-4, 

H2 produced a better solution, only 3.5% worse than the optimal one. We applied the Local 

Improvement procedure to I-4, and the procedure was able to improve solution H2 to optimality.  

 

For Medium instances, H1 and H2 produced three solutions proven as optimal. The Local 

Improvement procedure achieved four more optimal solutions and, in average, reduced the deviation 

from 4.5 to 2.8%. 

 

Finally, for Large instances, the Local Improvement procedure reduced the distances in 8 out of 13 

cases. In average, H1 and H2 with local improvement produced solutions 11.7 and 8.5% longer that 

the best-known solutions. Therefore, H2 seems to dominate H1, but since H1’s solutions are better 

than H2’s for three instances, the wise thing to do is to keep both heuristics to ensure better results. 

In average, Best Heuristic Dist. is 6.9% longer that the best-know solutions.  

7. Conclusions and research perspectives 

This article presents and formalizes the biomedical sample transportation problem faced by the 

health ministry of Quebec (MSSS). Although this problem is close to the multi-trip vehicle routing 

problem with time windows, it has particular constraints related to the perishable nature of the 

samples and the work organization in the network of laboratories of Quebec. We proposed two 

mathematical formulations and some fast heuristics to tackle this problem. Since commercial branch 

and bound software have shown to be unable to find integer solutions to several of our instances, we 

used the heuristic solutions as initial solutions for the solver. This strategy produced interesting 

results, but optimality gaps remain high.  

 

Nonetheless, this first phase of the Optilab project has allowed the MSSS to get a precise idea of the 

needs for transportation and logistics related to the biomedical sample collection and analysis. 

Transportation schedules of good quality have been produced. These schedules can be used as 

references to evaluate the transportation “effort”, in number of vehicles, driving time and traveling 

distance, required to adequately satisfy the requirements of the current biomedical analysis system 

in Quebec. In other words, the MSSS can now express its transportation requirements in a clear and 

detailed manner to interested 3PL or carriers willing to provide transportation services.  

 

Optilab offers new and challenging perspectives. Among them, we aim to extend our experiments to 

the other 13 administrative regions of the Quebec province, some of which are larger than the ones 

study up to now, requiring the development of even more efficient solving approaches. Also, we feel 

that the existing network needs to be reconsidered to include, for example, optimized opening hours 

at certain SCCs or the SCC-to-Lab allocation.  
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