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Abstract. We consider the capacitated lot sizing problem with multiple items, setup time 

and unrelated parallel machines, and apply Dantzig-Wolfe decomposition to a strong 

reformulation of the problem. Unlike in the traditional approach where the linking 

constraints are the capacity constraints, we use the flow constraints, i.e. the demand 

constraints, as linking constraints. The aim of this approach is to obtain high quality lower 

bounds. We solve the master problem applying two solution methods that combine 

Lagrangian relaxation and Dantzig-Wolfe decomposition in a hybrid form. A primal 

heuristic, based on transfers of production quantities, is used to generate feasible 

solutions. Computational experiments using data sets from the literature are presented 

and show that the hybrid methods produce lower bounds of excellent quality and 

competitive upper bounds, when compared with the bounds produced by other methods 

from the literature and by a high-performance MIP software. 
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1 Introduction

This article deals with a lot sizing problem that consists basically of determining the size of

production lots, i.e. the amounts of each item to be produced, in each of the periods in the

planning horizon in a way that minimizes total production costs, respects resource availability

and meets the demand of the items. The problem studied here involves the production of

multiple items in a single stage. The production sector consists of unrelated parallel machines

with limited capacity. The items can be produced on any of the machines and, several different

items can be produced on the same machine in the same time period (large bucket model). At

the start of the production of each type of item, there is a setup time and a setup cost for the

machine being used and, the setup is sequence-independent.

The paper has the following contributions. First, we propose a way to obtain lower bounds

that are stronger than the ones obtained by the traditional per-item Dantzig-Wolfe decom-

position. Second, we extend two hybrid algorithms that combine Lagrangian relaxation and

Dantzig-Wolfe decomposition and apply them to obtain the stronger lower bounds for the prob-

lem with unrelated parallel machines. Third, we improve the Lagrangian heuristic proposed by

Fiorotto and Araujo (2014) to obtain better upper bounds. Finally, computational experiments

are performed to show the quality of the upper bounds and lower bounds compared to others

methods from the literature. A comparison shows that the new hybrid method together with

the improved heuristic provides generally better gaps.

The paper is organized as follows. In Section 2, we provide a literature review on lot sizing

problems on parallel machines and Dantzig-Wolfe decomposition. In Section 3, the classical

formulation of the problem is presented along with the proposed reformulation. In Section 4,

we present the techniques of Lagrangian relaxation and Dantzig-Wolfe decomposition applied

to the lot sizing problem on parallel machines. Section 5 describes the proposed algorithms

to calculate these lower bounds. In section 6, the Lagrangian heuristic used is summarized

and, in Section 7, the computational results are presented. Finally in Section 8, we present our

conclusions.

2 Literature Review

In this section, we will first discuss papers related to lot sizing problems on parallel machines

and subsequently we discuss relevant papers involving Dantzig-Wolfe decomposition and column

generation applied to lot sizing problems.
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2.1 Literature Review on Parallel Machine Lot Sizing

In practical production planning problems, parallel machines often need to be taken into ac-

count. Areas of production that consider parallel machines are the pharmaceutical industry (De

Matta and Guignard, 1995), plastic sheet production (Mergaux and van Wassenhove, 1984),

tile production (De Matta and Guignard, 1994), the tire industry (Jans and Degraeve, 2004b),

bottling of liquids and others (Carreno, 1990) and packaging (Marinelli, 2007).

Considering the problem with identical parallel machines, Lasdon and Terjung (1971) pro-

pose a heuristic for a lot sizing and scheduling problem with no machine setup time. Carreno

(1990) proposes a heuristic for the Economic Lot Scheduling Problem (ELSP), i.e. with a con-

stant demand rate, with setup times for parallel machines and solves problems with one hundred

items and ten machines in fast computational times. Jans (2009) proposes new constraints to

break the symmetry that is present due to the identical machines and tests his approach using

a network reformulation for the problem. Tempelmeier and Buschkuhl (2009) consider the

multi-stage problem with setup carry-over (a setup is maintained between adjacent periods)

and develop a Lagrangian heuristic.

For the unrelated parallel machines case, Toledo and Armentano (2006) relax the capacity

constraints and propose a Lagrangian heuristic to solve the problem. An initial solution is

obtained by minimizing the Lagrangian problem, which is normally infeasible. In an attempt

to make it feasible production is shifted between periods and machines, moving the production

that exceeds the capacity and looking for feasible solutions that minimize the cost. Fiorotto

and de Araujo (2014) study the same problem. The authors use a strong reformulation of

the problem and instead of the capacity constraints, they relax the demand constraints using

Lagrangian relaxation. They also propose a heuristic to find feasible solutions and compare

their results with Toledo and Armentano (2006).

Multi-stage problems with unrelated parallel machines were studied in Ozdamar and Birbil

(1998), who present a generic model in which the multi-stage case can be considered. Three

hybrid heuristics are developed, in which a tabu search algorithm is used to make the problem

feasible and improve the solutions. Stadtler (2003) and Helber and Sahling (2010) also analyze

the multi-stage problem. Stadtler (2003) proposes a period decomposition heuristic and, to

solve each subproblem, a reformulation based on the facility location problem is used. Helber

and Sahling (2010) propose a fix-and-optimize approach and obtain better results than those

obtained by Stadtler (2003).

Some research in the literature deals with the problem of parallel machines and sequence-

dependent setup costs and times. Some of the research papers consider small bucket models,

where only one item can be produced per machine per period. Salomon et al. (1991) study the

Discrete Lot Sizing and Scheduling Problem (DLSP) with parallel machines, and analyze the
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complexity for the cases of identical and non-identical machines. The authors also present some

solution algorithms. Kang et al. (1999) propose a method based on column generation and

branch-and-bound. Belvaux and Wolsey (2000) describe a generic model and an optimization

system that is capable of solving a wide range of lot sizing problems including special cases

with different items and parallel machines. Meyr (2002) present a general model that consists

of an extension of the General Lot Sizing and Scheduling Problem (GLSP) model for the case in

which both setup cost and time are sequence-dependent. Fandel and Stammen-Hegener (2006)

also present a model based on the GLSP model and consider the multi-stage case. Marinelli

(2007) proposes a solution approach for a real capacitated lot sizing and scheduling problem

with parallel machines and shared buffers, arising in a packaging company producing yoghurt.

Finally, Meyr and Mann (2013) propose a heuristic for the lot sizing and scheduling problem on

parallel machines. Different decomposition approaches are proposed and compared with results

from the literature.

2.2 Literature Review on Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition and column generation has been used to find good quality lower

bounds for lot sizing problems. Before the seminal paper of Dantzig and Wolfe (1960), Manne

(1958) had already implicitly applied the ideas of decomposition for the lot sizing problem with

dynamic demand considering several items and capacity constraints. Manne proposed a linear

programming model that explicitly considers all possible production schedules. Lambrecht and

Vanderveken (1979), Bitran and Matsuo (1986) and Degraeve and Jans (2007) further discuss

the formulation proposed by Manne (1958).

Degraeve and Jans (2007) show that the decomposition proposed by Manne, while valid to

calculate a strong lower bound, has a structural deficiency when it aims to solve the problem

with integrality constraints. The set of feasible solutions for Manne’s formulation with integral-

ity constraints, is only a subset of feasible solutions for the original integer problem. The main

reason for this deficiency is that the solution for the subproblems, i.e. a new column, consists

of both setup and production variables and in Manne’s formulation the decisions of the setup

automatically determine the production quantity decisions according to the Wagner-Whitin

property. However, it is very likely that the optimal solution for the capacitated problem will

not have this property.

Dzielinski and Gomory (1965) use column generation to handle the formulation with the

large number of variables proposed by Manne (1958). Indeed, Manne’s formulation is the full

master problem obtained when one applies Dantzig-Wolfe decomposition (Dantzig and Wolfe,

1960) to a formulation with a smaller number of variables. Dzielinski and Gomory (1965)

also note that the subproblems that must be solved to generate columns are equivalent to the
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problem studied by Wagner and Whitin (1958).

Lasdon and Terjung (1971) develop a column generation approach to handle large problems.

Algorithms of this type are also addressed by Bahl (1983), Cattrysse et al. (1990), Salomon et

al. (1993) and Huisman et al. (2005).

Hindi (1995) presents a heuristic including variable redefinition and column generation. To

calculate the upper bound he solves a minimum cost flow problem. Hindi (1996) combines the

ideas of linear relaxation, column generation, minimum cost flow network and Tabu search in

a hybrid algorithm. Haase (2005) also solves the lot sizing problem by column generation and

finds improved lower bounds.

Considering that both Lagrangian relaxation and Dantzig-Wolfe decomposition have advan-

tages and disadvantages, Huisman et al. (2005) discuss two different ways to combine these two

methods in hybrid algorithms to solve the linear relaxation of the master problem. In the first

approach they apply Lagrangian relaxation to solve the master problem, i.e., no simplex method

is used. In the second approach, they use the simplex method to generate the optimal dual

variables of the master problem and the Lagrangian relaxation approach to generate columns.

In this latter approach the Lagrangian relaxation is applied to the compact formulation. The

ideas are illustrated using the lot sizing problem.

Pimentel et al. (2010) consider the lot sizing problem with setup time and apply the

Dantzig-Wolfe decomposition to the classical formulation in two different ways: item decom-

position and period decomposition. Furthermore, a third decomposition is presented which

applies decomposition per item and period simultaneously. The authors conclude that this last

approach provides better lower bounds than those obtained by the other decompositions. They

implemented three branch-and-price algorithms to solve the three decomposition models.

de Araujo et al. (2013) present a transformed reformulation and valid inequalities that

speed up column generation and Lagrangian relaxation for the capacitated lot sizing problem

with setup times (CLST) and show theoretically how both ideas are related to dual space

reduction techniques. Finally, the authors propose a combination of the two methods proposed

by Huisman et al. (2005). This approach obtains good computational results and avoids the

need of a linear programming optimization package.

The aim of this paper is to find good lower and upper bounds for the single stage problem

with unrelated parallel machines extending the ideas proposed in Huisman et al. (2005), de

Araujo et al. (2013) and Fiorotto and de Araujo (2014). Furthermore, different from most

other papers that use the traditional decomposition method, which is per item, we apply

decomposition per period and machine.
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3 Problem Formulations

3.1 Classical Formulation

We first present the classical formulation of the lot sizing problem on unrelated parallel ma-

chines. This formulation is based on the formulation of Trigeiro et al. (1989) for the single

machine problem, and has been studied in Toledo and Armentano (2006).

For the mathematical formulation of the problem, we consider the following data:

I = {1, ..., n}: set of items;

J = {1, ..., r}: set of machines;

T = {1, ...,m}: set of periods;

dit: demand of item i in period t ;

sditτ : the sum of the demand for item i, from period t until period τ (τ ≥ t);

hcit: unit inventory cost of item i in period t ;

scijt: setup cost for item i on machine j in period t ;

vcijt: production cost of item i on machine j in period t ;

fci: unit cost of initial inventory for item i ;

stijt: setup time for item i on machine j in period t ;

vtijt: production time of item i on machine j in period t ;

Capjt: capacity (in units of time) of machine j in period t.

The decision variables are then defined as follows:

xijt: number of units produced of item i on machine j in period t ;

yijt: binary variable, indicating the production or not of item i on machine

j in period t ;

sit: quantity of inventory of item i at the end of period t ;

si0: initial quantity of inventory for item i.

Mathematical formulation:

Min

n∑
i=1

fcisi0 +
n∑
i=1

r∑
j=1

m∑
t=1

(scijtyijt + vcijtxijt) +
n∑
i=1

m∑
t=1

hcitsit (1)
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Subject to:

si,t−1 +
r∑
j=1

xijt = dit + sit ∀i ∈ I, t ∈ T (2)

xijt ≤ min{(Capjt − stijt)/vtijt, sditm}yijt ∀i ∈ I, j ∈ J, t ∈ T (3)
n∑
i=1

(stijtyijt + vtijtxijt) ≤ Capjt ∀j ∈ J, t ∈ T (4)

yijt ∈ {0, 1}, xijt ≥ 0, sit ≥ 0, si0 ≥ 0, sim = 0 ∀i ∈ I, j ∈ J, t ∈ T (5)

The objective function (1) minimizes the total setup, production, inventory and initial

inventory costs. The constraints (2) guarantee the inventory balance in each period. To avoid

infeasible problems, the model considers the possibility of initial inventory. However the cost

fci for this inventory is very large. Next are the machine setup constraints (3) and the capacity

limits (4). In order to make the formulation stronger, we limit the production for each item in

constraints (3) by both the remaining demand and the maximum possible production with the

available capacity. Finally, constraints (5) define the variables domains.

3.2 Reformulation

Next we present a reformulation of the model (1)-(5) using the variable redefinition approach

proposed by Eppen and Martin (1987), producing a formulation based on the shortest path

problem. Each node on the graph represents a period, including a dummy period m+ 1. There

is an arc between each pair of nodes and the arc between nodes t and q (q > t) represents the

option of producing the sum of the demands between period t and period q − 1 during period

t. The cost of each arc corresponds to the total production and inventory cost associated with

the variable. The objective is to find the shortest path from 1 to m+ 1.

For the reformulation the following parameters are defined:

cvijtk: cost of production and inventory holding to produce item i, on

machine j in period t meeting the demand for periods t to k :

cvijtk = vcijtsditk +
k∑

s=t+1

s−1∑
u=t

hciudis;

ciit: cost of initial inventory of item i meeting demand for the periods 1

to period t:

ciit = fcisdi1t +
t∑

s=2

s−1∑
u=1

hciudis.

There are also the following new variables for the model:
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zvijtk: fraction of the production plan for item i on machine j, in which

the production in period t meets the demand for the period t to

period k ;

wit: fraction of the initial inventory plan for item i in which the demand

is met for the first t periods.

The reformulation based on the shortest path problem is as follows:

Min

n∑
i=1

m∑
t=1

ciitwit +
n∑
i=1

r∑
j=1

m∑
t=1

scijtyijt +
n∑
i=1

r∑
j=1

m∑
t=1

m∑
k=t

cvijtkzvijtk (6)

Subject to :

1 =
m∑
k=1

wik +
r∑
j=1

m∑
k=1

zvij1k ∀i ∈ I (7)

wi,t−1 +
r∑
j=1

t−1∑
k=1

zvijk,t−1 =
r∑
j=1

m∑
k=t

zvijtk ∀i ∈ I, t ∈ T \ {1} (8)

m∑
k=t

zvijtk ≤ yijt ∀i ∈ I, j ∈ J, t ∈ T (9)

n∑
i=1

stijtyijt +
n∑
i=1

m∑
k=t

vtijtsditkzvijtk ≤ Capjt ∀j ∈ J, t ∈ T (10)

yijt ∈ {0, 1}, wit ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T (11)

zvijtk ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T ∀k ∈ T , k ≥ t (12)

The objective function (6) minimizes the sum of the setup, production and inventory costs

including initial inventory costs. The constraints (7) and (8) define the flow balance constraints

for the shortest path network. For each item, one flow unit is sent through the network,

imposing that the demand for each product is met on time. Constraints (9) are the setup

forcing constraints. The capacity constraints (10) limit the total setup and production times

to the available capacity in each period and for each machine. Constraints (11) and (12) define

the variable domains.

Note that this model is an adaptation of the shortest path reformulation that was originally

proposed by Eppen and Martin (1987) for the case without capacity constraints. Due to the

capacity constraints, the variables wit and zvijtk can be fractional. The interpretation of a

fractional value, for instance 0.3 for the variable zvijtk is as follows: produce in period t, on

machine j, 30% of the total demand from period t until period k.

Hybrid Methods for Lot Sizing on Parallel Machines
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4 Dantzig-Wolfe Decomposition and Lagrangian Relax-

ation Applied to the Lot Sizing Problem on Parallel

Machines

In this section, we analyze the theoretical principles of Dantzig-Wolfe decomposition and La-

grangian relaxation applied to the lot sizing problem on parallel machines. The ideas proposed

by Jans and Degraeve (2004a), Huisman et al. (2005) and de Araujo et al. (2013) are used and

were extended for the problem being addressed.

In what follows next, we consider the LP relaxation of the Dantzig-Wolfe reformulation.

4.1 Dantzig-Wolfe Decomposition

The decomposition that is commonly used for the lot sizing problem, has as base the formulation

(1)-(5). The capacity constraints (4) are the linking constraints and the setup and demand

constraints plus the integrality conditions are put into subproblems. Thus, the problem is

decomposed into lot sizing problems per item. The approach that will be used in this paper,

takes as base the formulation (6)-(12) and the linking constraints will be the flow constraints

(7) and (8). The problem is decomposed into independent subproblems per period and per

machine containing the capacity and setup constraints plus the integrality conditions. Thus,

the extreme points represent production plans for each period and machine. The columns are

hence production plans indicating for a specific period and machine, which items are produced

and in which quantities. These production plans are feasible with respect to the capacity

constraints.

Formally, let Stj be the set of all extreme point production plans for period t and machine

j. Thus, zttjq is the new variable representing production plan q for period t on machine j.

The resulting relaxed master problem then looks as follows:

vDWMP = Min

n∑
i=1

m∑
t=1

ciitwit +
m∑
t=1

r∑
j=1

∑
q∈Stj

cttjqzttjq (13)

Hybrid Methods for Lot Sizing on Parallel Machines
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Subject to :

1 ≤
m∑
k=1

(wik +
r∑
j=1

∑
q∈S1j

aij1kqzt1jq) ∀i ∈ I, (πi1) (14)

wi,t−1 +
t−1∑
k=1

r∑
j=1

∑
q∈Skj

aijk,t−1,qztkjq

≤
m∑
k=t

r∑
j=1

∑
q∈Stj

aijtkqzttjq ∀i ∈ I, t ∈ T \ {1}, (πit) (15)

∑
q∈Stj

zttjq = 1 ∀t ∈ T, j ∈ J, (µtj) (16)

zttjq ≥ 0, wit ≥ 0 (17)

The objective function (13) minimizes the total initial inventory cost and the cost of the

production plans chosen for each period and machine. The constraints (14) and (15) are the

flow constraints and correspond to the constraints (7) and (8) with a ”smaller than or equal”

sign instead of an equality. It means that in each node the sum of the outgoing arcs must be

larger than or equal to the sum of the incoming arcs. We use this form because we will solve

this master problem with Lagrangian relaxation, and these constraints will be dualized in the

objective function with positive dual multipliers pit. Therefore, the inequality interpretation

makes it clearer to determine the sign of these relaxed constraints in the Lagrangian objective

function. Note that we can make this interpretation since the cost coefficients ciit, scijt and cvijtk

in the objective function (6) are positive. The constraints (16) are the convexity constraints,

which guarantee the choice of a convex combination of the extreme points. Note that the flow

constraints and the convexity constraints have dual variables called πit and µtj, respectively.

Due to the huge number of variables a column generation procedure is usually used to solve

the master problem. The main idea of this solution method is to start the master problem

with some columns (problem called restricted master (RMP )) and progress iteratively gener-

ating (with assistance of the subproblems) only the necessary columns until the solution of the

restricted master is equal to the solution of the original master problem.

The parameters aijtkq and cttjq of the variables zttjq are defined by the solution of the

subproblems. In the subproblems, the objective function minimizes the reduced costs. After

rearranging the terms of the objective function, the subproblem for a specific period t and

machine j is:
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zSPtj(π, µ) = Min
n∑
i=1

scijtyijt +
n∑
i=1

m−1∑
k=t

(cvijtk − πit + πi,k+1)zvijtk

+
n∑
i=1

(cvijtm − πit)zvijtm − µtj (18)

Subject to :

n∑
i=1

stijtyijt +
n∑
i=1

m∑
k=t

vtijtsditkzvijtk ≤ Capjt (19)

m∑
k=t

zvijtk ≤ yijt ∀i ∈ I (20)

yijt ∈ {0, 1}, zvijtk ≥ 0 ∀i ∈ I, k ∈ T , k ≥ t (21)

The constraints of the subproblem (for period t and machine j) are the capacity (19) and

setup (20) constraints plus the integrality constraint (21). These subproblems can be solved by

the branch-and-bound method proposed by Jans and Degraeve (2004a).

Let (y∗ijt, zv
∗
ijtk) be the optimal solution for a subproblem. A new column is added to

the restricted master problem, only if the optimal objective function value of the subproblem

(zSPtj(π, µ)) is less than zero. A new column q ∈ Stj will have the following parameters:

aijtkq = zv∗ijtk ∀i ∈ I,∀k ∈ T , k ≥ t (22)

cttjq =
n∑
i=1

scijty
∗
ijt +

n∑
i=1

m∑
k=t

cvijtkzv
∗
ijtk (23)

Finally, note that the master problem (13)-(17) is a linear programming problem and can

be solved using the simplex method within the column generation procedure.

4.2 Lagrangian Relaxation Applied to the Compact Formulation

Throughout this section, we discuss the Lagrangian relaxation applied to the compact formu-

lation (6)-(12) as developed in Fiorotto and de Araujo (2014) for the lot sizing problem on

parallel machines. We will call this procedure by LR/CF . In this Lagrangian relaxation, the

constraints (7) and (8) are dualized in the objective function (6) with Lagrangian multipliers

pit. We define p as the vector of all pit values. After reorganizing the terms of the objective

function, the Lagrangian problem becomes:

Hybrid Methods for Lot Sizing on Parallel Machines
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vLR(p) = Min

n∑
i=1

r∑
j=1

m∑
t=1

scijtyijt +
n∑
i=1

m−1∑
t=1

(ciit − pi,1 + pi,t+1)wit

+
n∑
i=1

(ciim − pi,1)wim +
n∑
i=1

r∑
j=1

m∑
t=1

m−1∑
k=t

(cvijtk − pit + pi,k+1)zvijtk

+
n∑
i=1

r∑
j=1

m∑
t=1

(cvijtm − pit)zvijtm +
n∑
i=1

pi1 (24)

Subject to : (9)-(12)

The Lagrangian problem can be decomposed into independent subproblems for each period

t and each machine j:

zLRtj(p) = Min
n∑
i=1

scijtyijt +
n∑
i=1

m−1∑
k=t

(cvijtk − pit + pi,k+1)zvijtk

+
n∑
i=1

(cvijtm − pit)zvijtm (25)

Subject to : (19)-(21)

These subproblems are exactly the same as the subproblem (18)-(21) resulting from the

Dantzig-Wolfe decomposition, except for a constant in the objective function. Indeed, this

is always the case if the dualized constraints in the Lagrangian relaxation and the linking

constraints of the Dantzig-Wolfe decomposition are the same (Huisman et al., 2005).

The Lagrangian multipliers pit are updated by the subgradient optimization method (Camerini

et al., 1975). The value of the objective function for the solution of the relaxed problem (vLR(p))

produces a lower bound for the original problem and the Lagrangian Dual problem gives the

maximum lower bound vDL = maxpvLR(p).

Note that the wit variables are present in the overall Lagrange objective function (24),

but not in the objective function of the subproblems (25) because they do not appear in the

constraints of the subproblem. To minimize the overall Lagrangian objective function (24) we

can easily calculate the optimal value of these variables according to the dual prices.

5 Hybrid Methods Applied to the Lot Sizing Problem

on Parallel Machines

Although the possibility to combine column generation and Lagrangian relaxation has been

known for long time, it has only recently been exploited in algorithms. Several papers from the
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literature have shown that the combination of these two techniques is a promising tool in the

resolution of integer programming problems (Huisman et al., 2005).

It is known that the dual solutions of the master problem obtained when using column

generation have a primordial role in the quality of this method. In the standard solution

approach using the simplex method for solving the master problem, the optimal dual solution

of the restricted master problem is used in the pricing problem. However, it has been pointed

out in the literature that optimal dual solutions generated by the simplex algorithm typically

cause an unstable behavior of the method. This occurs because these solutions are extreme

point solutions and oscillate sharply from one iteration to another, delaying the progress of

the method. To counter this behavior, strategies for stabilizing the dual solutions have been

proposed in the literature, leading to more efficient variations of the column generation method

(see for example, Ben Amor et al. (2007) and Gondzio et al. (2013)).

Following this trend, two different approaches that combine Lagrangian relaxation and

Dantzig-Wolfe decomposition are explored in this section.

5.1 Lagrangian Relaxation Applied to the Extended Formulation

(LR/EF )

Instead of using the simplex algorithm to solve the restricted master problem in order to obtain

bounds and the optimal dual values of the extended formulation (13)-(17) (master problem) it

is possible to use the Lagrangian relaxation applied to this formulation to approximate these

values. The linking constraints of the master problem (flow constraints, i.e., (14)-(15)) are

transferred to the objective function with the respective dual multipliers. The solutions of the

Lagrangian subproblems provide a lower bound to the optimal (LP) relaxation value of the

restricted master problem and to get good lower bounds the dual Lagrangian problem must be

solved. Cattrysse et al. (1993), Jans and Degraeve (2004a) and de Araujo et al. (2013) apply

this technique to solving variants of the capacitated lot sizing problem with a single machine.

Formally, to solve approximately the linear programming problem (13)-(17), the constraints

(14)-(15) are dualized in the objective function (13).

vLRDW (p) = Min
n∑
i=1

m∑
t=1

ciitwit +
m∑
t=1

r∑
j=1

∑
q∈Stj

cttjqzttjq

−
n∑
i=1

pi1(
m∑
k=1

wik +
m∑
k=1

r∑
j=1

∑
q∈S1j

aij1kqzt1jq − 1)

−
n∑
i=1

m∑
t=2

pit(
m∑
k=t

r∑
j=1

∑
q∈Stj

aijtkqzttjq − wi,t−1 −
t−1∑
k=1

r∑
j=1

∑
q∈Skj

aijk,t−1,qztkjq) (26)
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Subject to :∑
q∈Stj

zttjq = 1 ∀t ∈ T, j ∈ J, (utj) (27)

zttjq ≥ 0, wit ≥ 0 (28)

The problem (26)-(28) can be easily solved by inspection. After each iteration of the subgra-

dient optimization method, the multipliers pit are approximations of the optimal dual variables

(πit). With this approximation for the vector πit it is possible to calculate an approximation for

the vector µtj that represents the optimal multiplier for the convexity constraints (16) (Huisman

et al., 2005):

utj = minq∈Stj(cttjq −
n∑
i=1

m∑
k=t

pitaijtkq +
n∑
i=1

m−1∑
k=t

pi,k+1aijtkq) ∀j ∈ J, (29)

∀t ∈ T \ {m}

umj = minq∈Smj(ctmjq −
n∑
i=1

pimaijmmq) ∀j ∈ J (30)

The approximated Lagrangian multipliers can be used in the subproblems (18)-(21) to

generate new columns that are added to the restricted master problem and in the next step the

optimal dual variables πit and µtj for the updated restricted master are approximated again by

the Lagrangian relaxation.

For each approximation of the solution of the restricted master problem, a lower bound for

the master problem can be computed replacing the optimal dual variables by the approximated

ones, i.e.:

m∑
t=1

r∑
j=1

zSPtj(p, u) + vLRDW (p) ≤ vDWMP (31)

This can be proven by starting from the Lagrangian relaxation vLR(p) (24), which gives a

valid lower bound for any p:
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vLR(p) =
m∑
t=1

r∑
j=1

zLRtj(p)−
m∑
t=1

r∑
j=1

utj +
m∑
t=1

r∑
j=1

utj +
n∑
i=1

m∑
t=1

ciitwit

−
n∑
i=1

pi1(
m∑
k=1

wik − 1)−
n∑
i=1

m∑
t=2

pit(−wi,t−1)

=
m∑
t=1

r∑
j=1

zSPtj(p, u) +
m∑
t=1

r∑
j=1

utj +
n∑
i=1

m∑
t=1

ciitwit

−
n∑
i=1

pi1(
m∑
k=1

wik − 1)−
n∑
i=1

m∑
t=2

pit(−wi,t−1)

=
m∑
t=1

r∑
j=1

zSPtj(p, u) +
m−1∑
t=1

r∑
j=1

minq∈Stj(cttjq −
n∑
i=1

m∑
k=t

pitaijtkq

+
n∑
i=1

m−1∑
k=t

pi,k+1aijtkq) +
r∑
j=1

minq∈Smj(ctmjq −
n∑
i=1

pimaijmmq)

+
n∑
i=1

m∑
t=1

ciitwit −
n∑
i=1

pi1(
m∑
k=1

wik − 1)−
n∑
i=1

m∑
t=2

pit(−wi,t−1)

=
m∑
t=1

r∑
j=1

zSPtj(p, u) + vLRDW (p)

The advantage of approximating the optimal dual variables by the Lagrangian relaxation,

is that in the case of alternative dual solutions, column generation algorithms tend to converge

more quickly using dual variables produced by interior point methods than with extreme point

dual variables calculated by the simplex method (Bixby et al., 1992; Barnhart et al., 1998).

From this perspective, the Lagrangian multipliers can provide a better representation and

speed up the convergence. Computational experiments performed in Jans and Degraeve (2004a)

indicate that the use of the Lagrangian multipliers indeed speeds up the convergence and reduces

the problem of degeneration. The Lagrangian relaxation also has the additional advantages

that during the subgradient method, feasible solutions are possibly generated. Furthermore,

the subgradient update is quick and easy to implement and finally, this procedure eliminates

the need for a commercial LP optimizer.

Algorithm 1 shows the application of Lagrangian relaxation to the extended formulation in

order to obtain a lower and upper bound:

Algorithm 1: Lagrangian Relaxation Applied to the Extended Formulation Input: Initial

RMP; multipliers; max. iteration.

Output: Lower bound (LB); upper bound (UB).

1 Let LB = −∞, UB = +∞, pit = utj = 0;

2 While (zSPtj(p, u) < 0) do:
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3 Lagrangian step counter := 0;

4 Do while (Lagrangian step counter< max. iteration)

5 Solve the problem vLRDW (p) (26)-(28);

6 Update the multipliers pit with the subgradient method;

7 Lagrangian step counter := Lagrangian step counter +1;

8 end(do while);

9 Use best approximation for the Lagrangian multipliers of πit and

calculate an approximation of µtj (utj) with the formula (29)-(30);

10 Solve the subproblems (18)-(21) with the approximate dual prices

pit and utj;

11 Apply a feasibility heuristic (see Section 6);

12 Update the bounds LB and UB;

13 If (subproblem value < 0) then add columns;

14 end (while)

5.2 Lagrangian relaxation Applied to the Extended and Compact

Formulations (LR/EF/CF )

Following the ideas proposed in de Araujo et al. (2013), this approach is based on the obser-

vation that when the Lagrangian relaxation is obtained by dualizing exactly those constraints

that are the linking constraints in the Dantzig-Wolfe decomposition, the same subproblem re-

sults. Indeed, the subproblem to calculate the minimum reduced cost in the Dantzig-Wolfe

decomposition given by (18)-(21) and the Lagrangian subproblem (decomposition per periods

and machines of the Lagrangian problem presented in Section 4.2) are de same except for a

constant in the objective function. Consequently, the solutions generated by the Lagrangian

relaxation (on the compact formulation) can be used to add new columns in the restricted mas-

ter problem. In LR/EF/CF , we combine the approach of Section 5.1 with the ideas discussed

above in this section.

The main idea of this combined method (LR/EF/CF ) is to use the Lagrangian relaxation

on the extended formulation (master problem) to approximate the dual variables of the RMP

(as explained in Section 5.1), and afterwards use these variables as initial dual variables in

a column generation procedure based on Lagrangian relaxation of the compact formulation

(original formulation).

This method is represented in the Algorithm 2. After generating some initial columns, the

Lagrangian relaxation on the extended formulation problem (26)-(28) is solved a first time with
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the subgradient optimization method that provides an approximation pit and utj for πit and

µtj. Then, the subproblems (18)-(22) are solved. If all the reduced cost to generate columns are

positive the procedure is stopped and the lower bound can be found (using the formula (31)).

Otherwise, it moves to Lagrangian relaxation of compact formulation. The initial Lagrangian

multipliers are equal to the current dual prices found by the solution of the problem (18)-(22)

and the Lagrangian inner loop starts. The Lagrangian problem (24) is solved and the result

provides a lower bound. The inner loop of Lagrangian iterations continues (and we check if we

reached the maximum value). In each step new multipliers pit are obtained with the subgradient

optimization method and the Lagrangian problem is solved with the current dual prices and a

new lower bound is obtained. If this value is better than the current lower bound, we update the

current lower bound. Then, for each period t we check if we can find a column with negative a

reduced cost. This provides a new column because the Lagrangian subproblem (25) is identical

to the subproblem to generate columns (18)-(21). The reduced cost of each column should be

checked using the dual prices of the last time that the restricted master problem was solved.

After a fixed number of Lagrangian inner loops, if none of the generated column enters in the

restricted master problem, the best approximation according to the predefined parameters, for

the optimal solution is found. Otherwise, the columns with negative reduced costs are added

to the master problem (if these columns are not yet present in the master problem). Next, we

optimize again the restricted master problem with the new added columns using Lagrangian

relaxation. After a predefined number of iterations of the subgradient optimization method we

return to Lagrangian relaxation of the compact formulation using the new dual prices generated

by the approximate solution of the master problem. The procedure is stopped when no columns

price out.

Algorithm 2: Lagrangian Relaxation Applied to the Extended and

Compact Formulation

Input: Initial PMR; multipliers; max. iteration; max. it Lagrangian

Output: Lower bound (LB); upper bound (UB)..

1 Let LB = −∞, UB = +∞, pit = utj = 0;

2 While (zSPtj(p, u) < 0) do:

3 Lagrangian step counter := 0;

4 Do while (Lagrangian step counter< max. iteration)

5 Solve the problem vLRDW (p) (26)-(28);

6 Update the multipliers pit with the subgradient method;

7 Lagrangian step counter := Lagrangian step counter +1;

8 end(do while);

9 Use best approximation for the Lagrangian multipliers of πit and
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calculate an approximation of µtj (utj) with the formula (29)-(30);

10 Solve the subproblems (18)-(21) with the approximate dual prices

pit and utj;

11 Apply a feasibility heuristic (see Section 6) and update the upper

bound (UB);

12 If (zSPtj(p, u) < 0) Then

13 it Lagrangian = 0;

14 Do while (it Lagrangian ≤ max. it Lagrangian)

15 Calculate the Lagrangian bound (vLR(p)) (24) and update the

lower bound (LB);

16 Update the Lagrangian multipliers pit using subgradient;

17 it Lagrangian := it Lagrangian+ 1;

18 Add columns if zLRtj(p)(25) < 0 and not added yet;

18 end (do while);

20 end (if);

21 end (while);

6 Primal Heuristic

6.1 General Overview

To obtain a feasible solution (upper bound) we extended the feasibility heuristic proposed by

Fiorotto and de Araujo (2014) by adding an initialization and an improvement stage and by

making several changes. The initial solution is given by solving the Lagrangian relaxation

applied to the flow constraints (7) and (8). The solutions of the subproblems are then grouped

and, generally, the resulting solution is not a feasible solution for the problem (6)-(12), due

to the fact that the flow constraints were not taken into consideration. In other words, the

solution probably does not satisfy exactly the demand for all items and periods.

If the initial solution does not satisfy the demand constraints, the feasibility heuristic (con-

taining a backward stage, a forward stage and an improvement stage) is applied over all the

periods, making changes to the production plan, producing and, if necessary, removing excess

production in its attempt to make the solution a feasible one. Note that feasibility heuristics

based on production transfer have been applied to make the capacity constraints feasible (for

instance, Trigeiro et al. (1989) and Toledo and Armentano (2006)). In general, the feasibility

heuristic algorithm can be described as follows:
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Primal Heuristic Algorithm

• Stage 1: Backward Stage (free up capacity)

For each item, check if total production is in excess of total demand. To do this find the

total inventory quantity for each period and check if the inventory of the last period is

greater than zero. If it is, remove excess production.

• Stage 2: Forward Stage

Starting with the first period and moving to the last, we check for each item if the demand

is satisfied. If it is not, try to make the solution feasible in the following order:

– 2.1: Produce the quantity still needed with machines already set up (and checking

the machines in increasing order of production cost) in the current period and if not

possible, in previous periods;

– 2.2: Produce the remaining quantity by performing a new machine setup checking

the machines in increasing order of average unit production cost in the current period

or if not possible, in previous periods;

– 2.3: If, after all the above attempts, demand is still not met for a given item (i′) in

period t, we check among previously-made-feasible items for one which has inventory

left at the end of period t and remove the corresponding excess production, thus

freeing up capacity. Try to satisfy the demand for the given item (i′), by using this

capacity.

• Stage 3: Improvement Stage

After apply the Backward and Forward Stage (B&F ) for all Lagrangian iterations that

improved the lower bound, we obtain (in most cases) a feasible production plan, i.e., a

setup plan and according production quantities. Since these production quantities are

determined by the B&F heuristic, they are not necessarily the optimal production plans

for the given setup plan. Then, for the best found solution, we check if with the same setup

schedule, we can find better production quantities than suggested by the B&F heuristic.

We fix the setup variables to their current value, as given by the B&F heuristic solution,

and solve the remaining LP with LINDO to determine the optimal according production

quantities.

Following, each stage is described in detail.

6.2 Initialization

We would like to determine for each item which is the cheapest machine to produce on. This is

not trivial, since we have to take into account both the unit production cost and the setup cost.
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The total cost, however, depends on the proposed production plan. In order to establish a rank-

ing, we calculate an approximate average unit cost per item and per machine, assuming that

we use the Economic Order Quantity (EOQ) as production quantity (Andriolo et al., 2014).

The EOQ balances the holding and setup cost in a setting with constant demand. Therefore,

we first calculate the average demand per period for each item:

AVD(i) =

m∑
t=1

dit

m
, i = 1, 2, ..., n

After this, we calculate theEOQ for each item and machine, i.e, EOQ(i, j) =
√

2×AVD(i)×scijt
hcit

∀i ∈ I, j ∈ J . Note that in the data sets that we will use scijt, hcit, stijt, vtijt, and Capjt

are time invariant. To deal with the discrete time horizon, we set EOQ(i, j) := AVD(i) if

EOQ(i, j) ≤ AVD(i).

We need to consider two separate cases to calculate the approximate average unit cost

(ACEOQ) for each item and machine:

I) If EOQ(i, j) ≤ (Capjt−stijt)
vtijt

, then ACEOQ(i, j) =
scijt

EOQ(i,j)
+ vcijt;

II) However, if EOQ(i, j) >
(Capjt−stijt)

vtijt
, then Q :=

(Capjt−stijt)
vtijt

and ACEOQ(i, j) =
scijt
Q

+

vcijt;

The idea behind the formula is to estimate the average production cost for an item on each

machine taking into account both the unit production cost and the setup cost.

The values for ACEOQ(i, j) establishes the production priority order of the machines for

each item.

6.3 Backward Stage

This first stage to make a solution feasible consists of freeing up capacity if we have excess

production, and to do this, the production quantities for each item are analyzed and removed

if necessary. Initially we calculate the inventory of each item at the end of each period:

∆(i, t) :=
t∑
l=1

r∑
j=1

xijl −
t∑
l=1

dil ∀i ∈ I, t ∈ T

If ∆(i, t) < 0 Then ∆(i, t) := 0

If the inventory at the end of the horizon is strictly positive, i.e., if ∆(i,m) > 0 for some

i = 1, 2, ..., n then the excess production of this item must be eliminated. The aim is to remove

the excess inventory at the end of the horizon by reducing the production quantities in the

earliest possible period, without creating any (additional) backlog. The reason we look for the
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earliest period is that freeing up capacity in earlier periods provides more flexibility than freeing

up capacity in later periods.

To do this, starting with the last period (m) and following the sequence t = m,m− 1, ..., 1,

find the first period with zero inventory, indicated by t′. Then we calculate the total quantity

that should be removed in the period (t′ + 1). To do this, we determine the min{∆(i, t)} in

the interval t′ + 1, t′ + 2, ...,m. Let t∗ be the period for which we have this minimum.

Denoting this minimum by ∆(i, t∗), remove this amount from the production quantity in

the period (t′ + 1). Look for a machine (j) with the greatest (ACEOQ) and then:

If min{∆(i, t∗), xij,t′+1} = xij,t′+1 remove the total amount produced and consequently the

setup for this machine and period. Thus, the remaining capacity is updated:

Cap′j,t′+1 := Cap′j,t′+1 + xij,t′+1 × vtij,t′+1 + stij,t′+1

The values of ∆(i, t∗), the inventory level and the variables are also updated by:

∆(i, t) := ∆(i, t)− xij,t′+1, t = t′ + 1, ...,m;

xij,t′+1 := 0; yij,t′+1 := 0

Then move on to the other machines to remove any remaining excess production.

However, if Min{xij,t′+1,∆(i, t∗)} = ∆(i, t∗), remove the total amount that can be removed

in this period and recalculate the inventory level and production quantity:

Cap′j,t′+1 := Cap′j,t′+1 + ∆(i, t∗)× vtij,t′+1; xij,t′+1 := xij,t′+1 −∆(i, t∗);

∆(i, t) := ∆(i, t)−∆(i, t∗), t = t′ + 1, ...,m;

If after this step the inventory in the last period is equal to zero, we have eliminated the

production excess of this item. However, if the inventory of the last period is still greater than

zero we do the same analysis again, i.e., starting with the last period (m), we find the first

period (t) with zero inventory.

In the Figure 1, we provide an example with seven periods. In part (a) we see that there

is excess inventory at the end of the horizon. Note that starting with the last period, the

first period with zero inventory (t′) is the period 3 and the minimum inventory ∆(i, t∗) is 1 in

period 5 (t∗). In part (b) we see the inventory quantity for all periods after removing 1 unit

from production in period 4. Note that the inventory of the last period is still greater than

zero, therefore we have to do the same analysis again.
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Figure 1: Example of the backward stage

6.4 Forward Stage

When the process of eliminating the excess production is over, we start to check if the demand is

met and try to satisfy demand for pairs of items and periods for which demand is currently not

met. For this, the analysis will be done from period 1 through to the last period (t = 1, 2, ...,m).

First, we determine the order in which the items are analyzed according to the opportunity

cost (OC(i)) of each item using the decreasing order. We calculate OC(i) = ACEOQ(i, j′) −
ACEOQ(i, j̄), where j′ and j̄ are the most expensive and cheapest machine respectively for item

i.

To check if demand is met, an array is needed that counts the total production for each

item up to the given period. Initially Ω(i) = 0 ∀i ∈ I. Starting from period t = 1, go through

all the items (according to the order calculated) calculating Ω(i) := Ω(i) +
r∑
j=1

xijt and do the

following analysis.

If Ω(i) ≥ dit the demand for (i, t) is met. Simply remove this specific demand from the total

production, in other words, Ω(i) := Ω(i)− dit and move on to analyze the next item. Observe

that in this case we have Ω(i) ≥ 0.

If Ω(i) < dit, demand is not met for this pair (i, t), then the feasibility process needs to be

started. The quantity of items that need to be produced is easily calculated:

Φ = dit − Ω(i)

Once this amount has been calculated, we have three attempts to make the solutions feasible

(stages 2.1, 2.2 and 2.3 in the overview of the heuristic in Section 6.1).

• Attempt 1 (Stage 2.1)

Start at the current period t and go back period by period to the first period (τ = t, t−1, ...1)

checking first if the machines already setup for this item (yijτ = 1) have sufficient capacity to

produce the quantity that is still needed to satisfy demand.
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We check over all periods τ = t, t − 1, ...1 and within each time period we search over all

machines (on which a setup is done) according to the increasing order of the value of unit

production cost. Note that here we use the unit production cost instead ACEOQ because the

setup is already done.

Therefore, if yijτ = 1, that is, if the machine is already set up, we calculate the maximum

amount that can be produced with the remaining capacity, and compare this to the amount we

still need to produce. We calculate the minimum of these two values:

Min{Φ,
Cap′jτ
vtijτ

}

Then, ifMin{Φ, Cap
′
jτ

vtijτ
} = Φ the machine can produce the required amount to satisfy demand

for this pair (i,t). Therefore, the values are updated by:

Cap′jτ := Cap′jτ − Φ× vtijτ ; xijτ := xijτ + Φ; Φ := 0; Ω(i) := 0

However, if Min{Φ, Cap
′
jτ

vtijτ
} =

Cap′jτ
vtijτ

, there is still a quantity which needs to be produced. So

we update the values:

Cap′jτ := 0; xijτ := xijτ +
Cap′jτ
vtijτ

; Φ := Φ−
Cap′jτ
vtijτ

Next we check the next machine in the list or - if we have checked all the machines - move

back to the previous period and repeat the same analysis.

• Attempt 2 (Stage 2.2)

If after checking all previous periods and machines with a setup, there is still some demand

which is not met, we check the possibility of adding a setup to another machine but only if it can

produce all of the remaining quantity required to satisfy demand. Again starting from τ = t to

τ = 1 and checking the machines on which no setup is done for item i (according to the order

calculated by ACEOQ) if there is a period τ and a machine j such that Cap′jτ ≥ Φ×vtijτ +stijτ

then adjust the production accordingly:

xijτ := xijτ + Φ; yijτ := 1; Cap′jτ := Cap′jτ − (Φ× vtijτ )− stijτ ; Ω(i) := 0

However, if there is still no single machine with enough capacity to produce the total missing

demand, we repeat the loop and open up the possibility of setting up several machines. At this

stage, the criteria used to determine the order of which machine to set up is again the order

calculated according to the average unit production cost (ACEOQ).

• Attempt 3 (Stage 2.3)

If after all the previous attempts, it is still not possible to meet the demand for a given item

(i) in a given period (t), look among previous items that have already been made feasible for
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one that has inventory at the end of period t, in other words, one for which the value of omega

is positive. If it is found, make the necessary adjustments, i.e., remove the excess production

of the found item (freeing up capacity) and try to produce the required amount of item (i).

Thus, we search in the following order τ = t, t − 1, ...1 and within each time period we search

over all items according to the decreasing order calculated by ACEOQ and then:

If Ω(i′) > 0 and yi′jτ = 1, in other words, an item with a quantity in inventory and a

machine and period already setup for this item was found, do the following analysis:

If Ω(i′) ≥ xi′jτ then, as well as freeing up capacity, a setup of the machine can be removed

i.e.:

Cap′jτ := Cap′jτ + xi′jτ × vti′jτ + sti′jτ ; yi′jτ := 0; Ω(i′) := Ω(i′)− xi′jτ ; xi′jτ := 0

However, if Ω(i′) < xi′jτ , then just free up the capacity:

Cap′jτ := Cap′jτ + xi′jτ × vti′jτ ; xi′jτ := xi′jτ − Ω(i′); Ω(i′) := 0

With the capacity freed, calculate the total quantity of items (i) that can be produced and

check again to see if it is possible to produce the required amount to meet demand in the

following way:

If the machine is already set up for the item i, then calculate:

Min{Φ,
Cap′jτ
vtijτ

}

However, if there is no setup for item i, calculate:

Min{Φ,
(Cap′jτ − stijτ )

vtijτ
}

Then, if the minimum is Φ, a quantity sufficient to satisfy the demand for this pair (i, τ)

can be produced and so we adjust the production amount accordingly:

Cap′jτ := Cap′jτ − Φ× vtijτ − stijτ ; xijτ := xijτ + Φ, yijτ = 1

If the machine was already set up, we do not need to subtract the setup time.

However, if the minimum is
Cap′jτ
vtijτ

or
(Cap′jτ−stijτ )

vtijτ
, there is still a quantity left to be produced

and so we add the quantity that can be produced, for example, if the machine is already set

up for item i:

Cap′jτ := Cap′jτ −
Cap′jτ
vtijτ

× vtijτ ; xijτ := xijτ +
Cap′jτ
vtijτ
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If the machine is not set up for item i we have to use
(Cap′jτ−stijτ )

vtijτ
instead

Cap′jτ
vtijτ

. After that,

we move on to the next item (already made feasible) with a quantity in inventory and check

the same conditions.

Once these feasibility stages have been performed for all items, move on to the next period

of the forward stage and start the analysis again, for each item from first to last, trying to make

the solution feasible. Repeat this procedure until the last period of the forward stage.

The overall pseudo code for this stage is as follows. To simplify the reading we will denote

by i := 1, ..., n the decreasing order of the items according to the opportunity cost, j := 1, ..., r

the increasing order of the machines according to the value of production cost and k := 1, ..., r

the increasing order of the machines according to the value of ACEOQ. All the values of Ω(i)

are initialized at zero.

for t := 1, ...,m do

for i := 1, ..., n do

for j := 1, ..., r do

Ω(i) := Ω(i) + xijt

end

if (Ω(i) > dit) then

Ω(i) := Ω(i)− dit
else

Φ := dit − Ω(i)

for τ := t, t− 1, ..., 1

for j := 1, ..., r

if (yijτ = 1 and Φ > 0) then

Calculate the whole amount that can be produced on this

machine in this period, updating of the necessary parame-

ters;

end

end

end

for τ := t, t− 1, ..., 1

for k := 1, ..., r

if (yikτ = 0 and Φ > 0) then

First try to find a machine that can produce all quantity to

meet demand. If we can not find, we go back to this loop

and open the possibility to make more than one setup,

updating of the necessary parameters;
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end

end

end

for τ := t, t− 1, ..., 1

for q := 1, ..., i− 1

for k := r, ..., 1

if (Φ > 0, Ω(q) > 0 and yqkτ = 1) then

Remove the excess inventory and try to produce the re-

quired amount of item i, updating of the parameters;

end

end

end

end

end (if)

end (for i)

end (for j)

Finally, at the end of the forward stage, we calculate the objective function value of the

solution, if the solution becomes feasible, i.e. if all the demand is met.

6.5 Improvement Stage

This last stage consists of trying to improve the objective function value of the solution. We

fix the best setup plan found and solve the remaining LP problem using the LINDO package

solver, i.e., if we denote by y∗ijt the value of the setup variables found by the heuristic, we have

to solve the following problem:

Min
n∑
i=1

m∑
t=1

ciitwit +
n∑
i=1

r∑
j=1

m∑
t=1

m∑
k=t

cvijtkzvijtk (32)
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Subject to :

1 =
m∑
k=1

wik +
r∑
j=1

m∑
k=1

zvij1k ∀i ∈ I (33)

wi,t−1 +
r∑
j=1

t−1∑
k=1

zvijk,t−1 =
r∑
j=1

m∑
k=t

zvijtk ∀i ∈ I, t ∈ T/{1} (34)

m∑
k=t

zvijtk ≤ y∗ijt ∀i ∈ I, j ∈ J, t ∈ T (35)

n∑
i=1

m∑
k=t

vtijtsditkzvijtk ≤ Capjt −
n∑
i=1

stijty
∗
ijt ∀j ∈ J, t ∈ T (36)

zvijtk ≥ 0, wit ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T ∀k ∈ T , k ≥ t (37)

Finally, we remove possible setups that are not being used. We check for all the constraints

(35) if there is a setup (y∗ijt = 1) and
m∑
k=t

zvijtk = 0, and remove the setup if this is the case.

Note that the heuristic is applied to the solutions obtained by the Lagrangian subproblems.

Consequently, the quality of the solution of the heuristic is strongly linked to quality of the

production plans determined by these subproblems.

7 Computational Results

The algorithms described in the previous sections were tested on a total of 2160 instances

proposed in Toledo and Armentano (2006). The 2160 instances are divided into 8 different

types of classes that are generated with high and low values for the setup costs (HS or LS),

setup times (HT or LT) and with normal and tight capacity (NC or TC). Then, the class

NCLSLT, for example, refers to instances with normal capacity, low setup costs and low setup

times. The notation for the other classes follows the same reasoning. For each combination of

the following three parameters, ten instances were generated:

The parameters were generated in intervals [a, b] with a uniform distribution called U [a, b]:

• production cost (vcij) U[1.5,2.5];

• setup cost (scij) U[5,95];

• inventory cost (hci) U[0.2,0.4];

• production time (vtij) U[1,5];

• setup time (stij) U[10,50];
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• demand (dit) U[0,180];

To generate instances with high setup costs, the setup costs were multiplied by 10. In the

same way, to generate instances with high setup times the setup times were multiplied by 1.5.

To generate the normal capacity (NC), Toledo and Armentano (2006) use as a base a

lot-for-lot policy and afterwards, an adjustment is made to reduce the capacity in order to

generate instances which use about 80% of the capacity. The tight capacity (TC) is obtained

by multiplying this capacity by 0.9. Further details can be found in the paper Toledo and

Armentano (2006).

We compare the hybrid methods described in Section 5 (LR/EF and LR/EF/CF ) with

other existing methods: 1) the Lagrangian heuristic proposed in Toledo and Armentano (2006)

(per item decomposition), here denoted by TA, 2) the Lagrangian heuristic applied to the

compact formulation (6)-(12) as proposed in Fiorotto and de Araujo (2014) (using the period

and machine decomposition) denoted by LR/CF and 3) the CPLEX 12.6 software package,

applied to the formulation (6)-(12). The tests were done on a personal computer Intel Core-I5,

2.27GHz with 6Gb of RAM and the Windows 7 operating system.

The parameters used in the computational tests for the method LR/EF , described in

Section 5.1, which solves the master problem with Lagrangian relaxation are as follows: 900

iterations of the subgradient optimization method; initialization of the dual prices to zero; size

of the initial step of the subgradient method equal to 1 which is decreased by multiplying the

latest step size by a factor of 0.7 if the Lagrangian bound does not improve in the last 10

iterations. For the method LR/EF/CF , described in Section 5.2, we use the same parameter

setting described in the above method to approximate the solution of the master problem with

the Lagrangian relaxation. In addition, the columns are generated with Lagrangian relaxation

and in this case we use the following settings: 200 iterations of the subgradient optimization

method; initialization of the dual prices according to those obtained in the solution of the mas-

ter problem; size of the initial step equal to 1 which is decreased by multiplying the latest step

size by a factor of 0.6 if the Lagrangian bound does not improve in the last iteration. After

5 iterations of the column generation procedure, the number of iterations of the subgradient

optimization method is reduced from 200 to 1, this basically means that we just do regular col-

umn generation for that point on, without subgradient optimization. For the method LR/CF

proposed in Fiorotto and de Araujo (2014): they start the subgradient optimization method

fixing the dual variables to zero; the size of the initial step is equal to 1 and decreases by

multiplying by 0.6 if the Lagrangian solution is not improved in the last 50 iterations; 2500

iterations are made in total. For the method TA proposed in Toledo and Armentano (2006):

the size of the initial step is equal 1.75 and decreased by 2 if the Lagrangian solution is not

improved in the last 25 iterations; 150 iterations are made in total.
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In the tables in which we compare the gaps, the upper bounds of the two methods proposed

in this paper are obtained by the heuristic described in Section 6. Note that the best results

are highlighted in bold numbers.

Table 1 shows the overall performance of the several methods (computational times in sec-

onds and the gaps) aggregated over the 8 combinations of the following three factors: capacity,

setup cost and setup time. Each row of the table represent thus the average of 270 instances

generated for each class. Moreover, for CPLEX we fixed the time limit for each instance to

the same time as used by the method LR/EF/CF . The results from TA are taken directly

from their paper and the computational experiments were done on AMD Athlon XP2600 with

2.08GHz and 1GB of RAM. We note that despite the higher computation times of the hy-

brid methods, mainly the method LR/EF/CF , they present better gaps than the Lagrangian

heuristics TA and LR/CF proposed in Toledo and Armentano (2006) and Fiorotto and de

Araujo (2014), respectively. Note that this difference increases significantly when the prob-

lems with high setup cost (HS) are considered. In most cases, we have the same conclusion

comparing the results found by the hybrid methods with CPLEX.

CPLEX TA LR/CF LR/EF LR/EF/CF

capacity/setup Gap Time Gap Time Gap Time Gap Time Gap Time

NCLSLT 1.7 81.8 2.0 3.9 1.5 3.3 1.4 70.1 1.3 81.8

TCLSLT 1.8 71.5 3.4 8.9 2.4 4.1 2.3 35.2 1.9 71.5

NCHSLT 5.8 20.8 11.7 5.3 8.9 4.9 5.8 16.9 4.6 20.8

TCHSLT 7.6 17.3 18.5 7.8 12.6 6.5 6.1 25.7 5.7 17.3

NCLSHT 3.2 68.5 2.5 4.9 1.7 3.5 1.7 76.7 1.5 68.5

TCLSHT 2.8 86.1 4.2 14.4 2.9 4.7 2.6 27.7 2.0 86.1

NCHSHT 6.9 23.2 13.8 5.9 9.9 5.2 5.9 17.3 4.9 23.2

TCHSHT 8.1 17.1 23.5 8.4 13.9 6.6 6.2 20.9 5.7 17.1

Table 1: General average gap and computational times for each class.

Note that for Table 2 and the following tables, we are not able to give the results for TA,

since the results were not provided according to this classification in the paper of Toledo and

Armentano (2006).

Table 2 shows that both the gaps and the computation times increase with an increasing

number of periods. On the other hand, Table 3 shows that while the computations times

increase with an increasing number of items, the gaps decrease. This was also observed by

Trigeiro et al. (1989) for the single machine lot sizing problem with set up times. Finally

we observe from Table 4 that with the decomposition methods, the gaps increase but the

computation times decrease with an increasing number of machines. In Tables 2 to 4, the

new hybrid method always give average gaps that are much better compared to the other

decomposition methods. This is also the case when we compare the results to CPLEX, except

for the case with 25 items in Table 3 and the case with 2 machines in Table 4 for which CPLEX
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provides slightly better gaps.

CPLEX LR/CF LR/EF LR/EF/CF

Periods Gap Time Gap Time Gap Time Gap Time

6 4.2 11.2 4.7 2.8 2.9 7.8 2.4 11.2

12 4.3 39.3 6.6 6.7 4.2 29.1 3.8 39.3

18 5.7 93.9 8.9 13.5 4.9 72.1 4.2 93.9

Table 2: General average gap and computational times aggregated per period

CPLEX LR/CF LR/EF LR/EF/CF

Items Gap Time Gap Time Gap Time Gap Time

6 9.1 6.9 11.3 2.9 7.1 5.0 6.4 6.9

12 3.9 23.9 6.4 6.0 3.4 15.9 2.7 23.9

25 1.2 113.2 2.5 14.1 1.5 88.1 1.3 113.2

Table 3: General average gap and computational times aggregated per item.

CPLEX LR/CF LR/EF LR/EF/CF

Machines Gap Time Gap Time Gap Time Gap Time

2 2.4 69.1 4.7 8.2 3.2 57.8 2.6 69.1

4 5.5 41.2 6.9 6.8 3.8 29.7 3.3 41.2

6 6.3 33.88 8.6 4.5 5.0 21.6 4.5 33.8

Table 4: General average gap and computational times aggregated per machine.

In Tables 5 to 8 we set for each class the lower bound found by the linear relaxation to

100%, and calculated the other values relative to this. For example, for the first class in Table

5, the linear relaxation after the branching is 0.3% better than the linear relaxation.

Table 5 presents the lower bounds found by CPLEX for each class 1) from linear relaxation

at the root node (Linear Rel. column); 2) after applying the cuts (cuts column); and 3)

after branching (branches column). These lower bounds are compared with those generated

by all methods that are being analyzed. Note that the proposed hybrid methods found, in

all cases, better lower bounds than the TA and LR/CF methods. In relation to CPLEX,

even after branching, the lower bounds found using the hybrid methods are better, mainly for

the problems with high setup cost. This means that, if the lower bounds generated by these

methods were used in the root node of CPLEX, in addition to getting better gaps, it would

also helps the solver to prune more in the solution tree and find better feasible solutions.

In relation to the two proposed methods, it is observed that the differences are small,

however, the method LR/EF/FC obtained a small advantage in all instances.

Analyzing the lower bound results separately per period, item and machine (Tables 6, 7

and 8), we conclude that the hybrid methods found on average better lower bounds in all

configurations. The difference is particularly pronounced for the instances with a small number

of items or a high number of machines. On the other hand, the difference in lower bounds
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CPLEX (LB) TA LR/CF LR/EF LR/EF/FC

capacity/setup Linear Rel. Cuts Branching LB LB LB LB

NCLSLT 100 100.27 100.34 99.94 100.34 100.67 100.84

TCLSLT 100 100.42 100.54 99.78 100.46 101.29 101.30

NCHSLT 100 101.29 101.55 99.73 100.79 104.12 104.33

TCHSLT 100 101.39 101.81 99.34 101.87 105.66 105.81

NCLSHT 100 100.26 100.35 99.93 100.39 100.90 100.96

TCLSHT 100 100.38 100.52 99.70 100.54 102.05 101.19

NCHSHT 100 101.43 101.73 99.54 100.82 104.99 105.15

TCHSHT 100 101.42 102.13 98.44 102.76 106.46 107.13

Table 5: General average lower bounds for each class.

is small for the instances with a large number of items or a small number of machines. The

number of periods has a less pronounced impact on the lower bounds, even though here we

observe again that the hybrid methods provide much better lower bounds.

CPLEX (LB) TA LR/CF LR/EF LR/EF/FC

Periods Linear Rel. Cuts Branching LB LB LB LB

6 100 101.12 101.50 99.55 100.93 102.58 102.78

12 100 100.75 100.87 99.45 100.89 103.16 103.36

18 100 100.58 100.62 99.65 101.15 103.69 103.89

Table 6: General average lower bounds aggregated per period.

CPLEX (LB) TA LR/CF LR/EF LR/EF/FC

Items Linear Rel. Cuts Branching LB LB LB LB

6 100 102.09 102.68 98.91 102.04 106.29 106.63

12 100 100.40 100.54 99.81 100.73 102.66 102.83

25 100 100.08 100.14 99.93 100.20 100.48 100.56

Table 7: General average lower bounds aggregated per item.

CPLEX (LB) TA LR/CF LR/EF LR/EF/FC

Machines Linear Rel. Cuts Branching LB LB LB LB

2 100 100.47 101.05 99.45 100.77 101.70 101.88

4 100 100.71 100.82 99.62 100.99 103.68 103.81

6 100 100.95 100.98 99.61 101.95 103.95 104.09

Table 8: General average lower bounds aggregated per machine.

In the Tables 9 to 12 we compare the upper bounds. We fixed the upper bound found by

CPLEX to 100%, and calculated again the upper bounds found by the other methods relative

to this. Table 9 shows the heuristic’s behavior (upper bounds) for all classes. The results show

that we improved the heuristic proposed by Fiorotto and de Araujo (2014) considering that

we found better upper bounds for all classes. Note that these improvements are bigger for the

classes with high setup cost. Note that for 6 out of the 8 classes, we also improved on average

CPLEX upper bounds, whereas for the two remaining classes the increase is only 0.45% and
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0.20%. The high percentage of feasible solutions (%FS) found by the hybrid methods show the

efficiency of these heuristic. CPLEX, however, did not find feasible solutions for a considerable

number of instances within the time limit imposed. Instances with high setup costs seem

specifically difficult for CPLEX.

CPLEX LR/CF LR/EF/CF LR/EF

capacity/setup UB %FS UB %FS UB %FS UB %FS

NCLSLT 100 92.22 100.79 100.00 100.20 100.00 99.99 100.00

TCLSLT 100 92.96 101.52 100.00 100.72 100.00 100.45 100.00

NCHSLT 100 82.96 101.97 100.00 100.29 100.00 99.33 100.00

TCHSLT 100 69.25 99.23 99.62 97.04 100.00 96.11 99.62

NCLSHT 100 95.92 99.15 100.00 98.72 99.25 98.37 100.00

TCLSHT 100 86.29 99.66 100.00 98.86 98.88 98.60 100.00

NCHSHT 100 70.00 101.84 100.00 100.23 100.00 99.11 100.00

TCHSHT 100 80.00 104.34 99.25 101.25 99.62 100.20 99.62

Table 9: General average upper bounds for each class.

Finally, Tables 10, 11 and 12 compare the upper bounds considering the number of periods,

items and machines. We note that the new heuristic is better mainly for problems with 6

periods, 6 items and 4 or 6 machines.

CPLEX LR/CF LR/EF LR/EF/CF

Periods UB %FS UB %FS UB %FS UB %FS

6 100 94.16 99.27 100.00 98.65 99.72 97.74 100.00

12 100 76.25 100.97 99.72 99.93 99.86 99.55 99.86

18 100 78.33 102.53 99.72 100.65 99.44 99.98 99.72

Table 10: General average upper bounds aggregated per period.

CPLEX LR/CF LR/EF LR/EF/CF

Items UB %FS UB %FS UB %FS UB %FS

6 100 65.27 100.57 99.44 98.22 99.58 97.01 99.44

12 100 87.50 101.46 100.00 100.28 99.44 99.64 100.00

25 100 96.11 101.57 100.00 100.53 100.00 100.43 100.00

Table 11: General average upper bounds aggregated per item.

CPLEX LR/CF LR/EF LR/EF/CF

Machines UB %FS UB %FS UB %FS UB %FS

2 100 97.91 101.66 99.46 100.79 99.30 100.51 99.44

4 100 80.83 100.97 100.00 99.52 100.00 98.80 100.00

6 100 70.00 100.25 100.00 98.03 100.00 97.26 100.00

Table 12: General average upper bounds aggregated per machine.
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8 Conclusion

In this paper, the lot sizing problem with capacity constraints and parallel machines was stud-

ied. A reformulation of the problem using the variable redefinition approach proposed by Eppen

and Martin (1987) was used. Based on the literature, two hybrid solution methods that com-

bine Lagrangian relaxation and Dantzig-Wolfe decomposition were extended to the problem

considered. In both methods, the Dantzig-Wolfe decomposition is applied using as linking con-

straints the flow constraints. The problem is hence decomposed per period and per machine

instead of the classical per item decomposition. A feasibility heuristic based on production

transfers in order to satisfy the demand constraints is developed. This strategy was compared

to two Lagrangian heuristics proposed in the literature and also compared to CPLEX 12.6.

The computational results show that the proposed hybrid methods are efficient with respect to

both the lower bounds and upper bounds compared the existing methods.
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inequalities for stabilized column generation. Operations Research, 54 (2007), 454–463.

[Bitran and Matsuo(1986)] G. R. Bitran, H. Matsuo, The multi-item capacitated lot size prob-

lem: Error bounds of mannes formulations. Management Science, 32 (1986), 350–359.

[Bixby et al.(1992)] R. E. Bixby, J. W. Gregory, I. J. Lustin, R. E. Marsten, D. F. Shanno,

Very large-scale linear programming: a case study in combining interior point and simplex

methods. Operations Research, 40 (1992) 885–897.

[Camerini et al.(1975)] P. M. Camerini, L. Fratta, F. Maffioli, On Improving Relaxation Meth-

ods by Modified Gradient Techniques. Mathematical Programming Study, 3 (1975), 26–54.

[Carreno(1990)] J. J. Carreno, Economic lot scheduling for multiple products on parallel iden-

tical processors. Management Science, 36 (1990), 348–358.

[Cattrysse et al.(1990)] D. Cattrysse, J. Maes, L. N. van Wassenhove, Set partitioning and

column generation heuristics for capacitated dynamic lotsizing. European Journal of Op-

erational Research, 46 (1990) 38–47.

[Cattrysse et al.(1993)] D. G. Cattrysse, M. Salomon, R. Kuik, V. L. N. Wassenhove, A dual

ascent and column generation heuristic for the discrete lotsizing and scheduling problem

with setup times. Management Science, 39 (1993), 447–486.

[Dantzig and Wolfe(1960)] G. B. Dantzig, P. Wolfe, Decomposition principles for linear pro-

gramming. Operations Research, 8 (1960), 101–111.

[Degraeve and Jans(2007)] Z. Degraeve, R. Jans, A new dantzig-wolfe reformulation and

branch-and-price algorithm for the capacited lot-sizing problem with setup times. Op-

erations Research, 55 (2007), 909–920.

[De Matta and Guignard(1994)] R. De Matta, M. Guignard, Dynamic production scheduling

for a process industry. Operations Research, 42 (1994), 492–503.

[De Matta and Guignard(1995)] R. De Matta, M. Guignard, The performance of rolling pro-

duction schedules in a process industry. IIE Transactions, 27 (1995), 564–573.

[Dzielinski and Gomory(1965)] B. P. Dzielinski, R. E. Gomory, Optimal programming of lot

sizes inventory and labor allocations. Management Science, 11 (1965) 874–890.

[Eppen and Martin(1987)] G. B. Eppen, R. K. Martin, Solving Multi-Item Capacitated Lot-

Sizing Problems Using Variable Redefinition. Operations Research, 6 (1987), 832–848.

Hybrid Methods for Lot Sizing on Parallel Machines

CIRRELT-2014-56 33



[Fandel and Stammen-Hegener(2006)] G. Fandel, C. Stammen-Hegener, Simultaneous lot siz-

ing and scheduling for multi-product multi-level production, International Journal of

Production Economics. 104 (2006), 308–316.

[Fiorotto and de Araujo(2014)] D. J. Fiorotto, S. A. de Araujo, Reformulation and a La-

grangian Heuristic for Lot Sizing Problem on Parallel Machines. Annals of Operations

Research, (2014), In press.

[Gondzio et al.(2013)] J. Gondzio, P. G. Brevis, P. Munari, New developments in the primal

dual column generation technique. European Jounal of Operational Research, 224 (2013),

41–51.

[Haase(2005)] K. Haase, Solving large-scale capacitated lot-sizing problems close to optimality.

Working paper, Technische Universität Dresden, (2005).

[Helber and Sahling(2010)] S. Helber, F. Sahling, A fix-and-optimize approach for the multi-

level capacitated lot sizing problem. Journal Production Economics, 123 (2010), 247–256.

[Hindi(1995)] K. S. Hindi, Computationally efficient solution of the multi-item, capacitated

lot-sizing problem. Comput Ind Eng, 28 (1995), 709–719.

[Hindi(1996)] K. S. Hindi, Solving the CLSP by a tabu search heuristic. European Journal of

Operational Research. 47 (1996) 151–161.

[Huisman et al.(2005)] D. Huisman, R. Jans, M. Peeters, A. P. M. Wagelmans, Combining

column generation and lagrangian relexation. G. Desaulniers, J. Desrosiers, M. Solomon,

eds. Column Generation. Springer, New York, (2005), 247–270.

[Jans(2009)] R. Jans, Solving Lot-Sizing Problems on Parallel Identical Machines Using

Symmetry-Breaking Constraints. INFORMS Journal on Computing, 21 (2009), 123–136.

[Jans and Degraeve(2004a)] R. Jans, Z. Degraeve, Improved lower bounds for capacitated lot

sizing problem with setup time. Operation Research Letters, 32 (2004a), 185–195.

[Jans and Degraeve(2004b)] R. Jans, Z. Degraeve, An industrial extension of the discrete lot

sizing and scheduling problem. IIE Transactions, 36 (2004b), 47–58.

[Kang et al.(1999)] S. Kang, K. Malik, L. J. Thomas, Lotsizing and scheduling on parallel

machines with sequence-dependent setup costs. Management Science, 45 (1999), 273–

289.

Hybrid Methods for Lot Sizing on Parallel Machines

34 CIRRELT-2014-56



[Lambrecht and Vanderveken(1979)] M. Lambrecht, H. Vanderveken, Heuristic procedures for

the single operation, multi-item loading problem. AIIE Transactions, 11 (1979), 319–326.

[Lasdon and Terjung(1971)] L. S. Lasdon, R. C. Terjung, An efficient algorithm for multi-item

scheduling. Operations Research, 19 (1971) 946–969.

[Manne(1958)] A. S. Manne, Programming of economic lot sizes. Management Science. 4

(1958), 115–135.

[Marinelli(2007)] F. Marinelli, M. E. Nenni, A. Sforza, Capacitated lot sizing and scheduling

with parallel machines and shared buffers: A case study in a packaging company. Annals

of Operations Research, 150, (2007), 177–192.

[Mergaux and van Wassenhove(1984)] L, P. Mergaux, L. N. van Wassenhove, Production Plan-

ning With Capacity Constraints, Master thesis, Division of Industrial Management,

Katholieke Universiteit Leuven, Dutch, 1984.

[Meyr(2002)] H. Meyr, Simultaneous lotsizing and scheduling on parallel machines. European

Journal of Operational Research. 139 (2002), 277–292.

[Meyr and Mann(2013)] H. Meyr, M. Mann, A decomposition approach for the general lotszing

and scheduling problem for parallel production lines. European Journal of Operational

Research. 229 (2013), 718–731.

[Ozdamar and Birbil(1998)] L. Ozdamar, S. I. Birbil, Hybrid heuristics for the capacitated lot

sizing and loading problem with setup times and overtime decisions. European Journal of

Operational Research, 110 (1998), 525–547.

[Pimentel et al.(2010)] C. M. O. Pimentel, F. P. Alvelos, J. M. V. Carvalho, Comparing

Dantzig-Wolfe decompositions and branch-and-price algorithms for the multi-item ca-

pacitated lot sizing problem. Optimization Methods and Software, 25 (2010), 229–319.

[Salomon et al.(1991)] M. Salomon, L. G. Kroon, R. Kuik, L. N. van Wassenhove, Some exten-

sions of the discrete lot-sizing and scheduling problem. Management Science, 37 (1991),

801–812.

[Salomon et al.(1993)] M. Salomon, R. Kuik, L. N. van Wassenhove, Statistical search methods

for lotsizing problems. Operations Research, 41 (1993), 453–468.

[Stadtler(2003)] H. Stadtler, Multilevel lot sizing with set up times and multiple constrained

resources: Internally rolling schedules with lot-sizing windows. Operations Research, 51

(2003), 487–502.

Hybrid Methods for Lot Sizing on Parallel Machines

CIRRELT-2014-56 35



[Tempelmeier and Buschkuhl(2009)] H. Tempelmeier, L. Buschkuhl, A heuristic for the dy-

namic multi-level capacitated lotsizing problem with linked lotsizes for general product

structures. Or Spectrum, 31 (2009), 385–404.

[Toledo and Armentano(2006)] F. M. B. Toledo, V. A. Armentano, A Lagrangian-Based

Heuristic for the Capacitated Lot-Sizing Problem in Parallel Machines. European Journal

of Operational Research, 175 (2006), 1070–1083.

[Trigeiro et al.(1989)] W. W. Trigeiro, J. Thomas, J. O. McClain, Capacitated lot sizing with

setup times. Management Science, 35 (1989), 353–366.

[Wagner and Whitin(1958)] H. M. Wagner, T. M. Whitin, Dynamic version of the economic

lotsize model. Management Science, 5 (1958), 89–96.

Hybrid Methods for Lot Sizing on Parallel Machines

36 CIRRELT-2014-56


	Introduction
	Literature Review
	Literature Review on Parallel Machine Lot Sizing
	Literature Review on Dantzig-Wolfe Decomposition

	Problem Formulations
	Classical Formulation
	Reformulation

	Dantzig-Wolfe Decomposition and Lagrangian Relaxation Applied to the Lot Sizing Problem on Parallel Machines
	Dantzig-Wolfe Decomposition
	Lagrangian Relaxation Applied to the Compact Formulation

	Hybrid Methods Applied to the Lot Sizing Problem on Parallel Machines
	Lagrangian Relaxation Applied to the Extended Formulation (LR/EF)
	Lagrangian relaxation Applied to the Extended and Compact Formulations (LR/EF/CF)

	Primal Heuristic
	General Overview
	Initialization
	Backward Stage
	Forward Stage
	Improvement Stage

	Computational Results
	Conclusion



