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1 Introduction

The research on lot sizing started over 50 years ago with the seminal papers of Wagner and

Whitin (1958) and Manne (1958). Over the past decades, there has been an increasing interest

in the application of these models, and researchers have been able to incorporate more and

more real world features into lot sizing problems.

The lot sizing problem is a production optimization problem which involves determining

how many items to produce in each period in order to meet the demand for these items. The

resulting production plan should minimize the sum of the setup, production and inventory

holding costs. The problem considered in this work is the single stage, single machine, multi-

product, big bucket lot sizing problem with setup times. Several different products can be

produced in the same time period on the same machine. A setup must be done for each type of

product that is produced in a specific period. In the standard version of this problem (Trigeiro

et al., 1989)the setup for the first product type produced in a period starts at the beginning of

that period (see Figure 1.a). In this paper we study an extension of this lot sizing problem that

includes the possibility of a setup crossover. The idea is that in certain cases setup operations

can be interrupted at the end of a period and resumed at the beginning of the next period, in

other words, the setups can span over two periods. This implies that the first setup in period

t can already start at the end of period t − 1 if there is some capacity left, and continue at

the beginning of period t (see Figure 1.b). This flexibility can result in more efficient solutions

compared to the standard assumption (where the setup time is restricted to be contained within

the period) since we free up capacity in period t by moving (partially) the setup of the first

product to the previous period. In the big bucket models, the setup times are smaller or equal

than the capacity.

It is important to note the differences between the concepts of setup crossover and setup

carryover. While with setup crossover the setups can span over two periods, the setup carryover

allows a setup state to be maintained from one period to the next one, in other words, if we

finish a period t producing a particular item i it is possible to start the period t + 1 producing

the item i without performing a new setup for this item.

Although setup crossover is a natural extension of the standard assumption, just a few

studies have considered it, due to the difficulty in dealing with the underlying problems (Mohan

et al., 2012; Belo-Filho et al., 2014). All the studies that handle setup crossovers in their

formulations have added extra binary variables to the formulations indicating if there is a setup

crossover in a period or not, which increases the difficulty of the formulations.

The aim of this paper is: 1) to propose new ideas to avoid the necessity of defining new

extra binary variables to model the setup crossover; 2) to propose new constraints to break
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the symmetry which is present in the formulations from the literature; 3) to compare the

two formulations proposed in the literature to determine which formulation is the best; 4) to

analyse the impact of the proposed adaptations of these formulations (i.e. no binary variables

and symmetry breaking constraints), and 5) to determine the value of the flexibility provided

by the setup crossover and analyse the factors that have an impact on this value.

The paper is organized as follows. In Section 2, we provide a literature review on lot sizing

problems with setup crossover. Section 3 presents the formulations from the literature along

with the new proposed formulations. In Section 4, we present some theoretical results for the

formulations. Section 5 describes the computational results and analyses and finally in Section

6, we present our conclusions.

2 Literature Review

There is a vast amount of literature on big-bucket capacitated lot sizing problems (CLSP) with

setup times, where setup times have to be contained completely within one period (see e.g.

Trigeiro et al. (1989)). These models have been extended to deal with various industrial issues

(see Jans and Degraeve (2008) for an overview), including setup carryover and setup crossover.

Several papers analyze the extension with setup carryover. Sox and Gao (1999) propose

two formulations for the CLSP with setup carryover. The first one extends the formulation

proposed by Trigeiro et al. (1989) and the second one uses the shortest path reformulation

and the ideas proposed by Eppen and Martin (1987). Suerie and Stadtler (2003) propose a

formulation for the CLSP with setup carryover based on the simple plant location (Krarup

and Bilde, 1977) and their computational tests have shown that this formulation is better than

formulations proposed by Sox and Gao (1999). Gopalakrishnan et al. (2001) develop a tabu

search heuristic to solve the CLSP with setup carryover and using the data sets from Trigeiro

et al. (1989) they compute the effectiveness of the setup carryover. Their results indicate an 8%

reduction in total cost on average through setup carryover compared with the standard CLSP.

Regarding the problem with setup crossover for the small bucket problem, Suerie (2006)

studies the lot sizing and scheduling problem and proposes two formulations that correctly

handle setup crossovers which allow ”long” setup times (i.e. setup times can be bigger than the

capacity in one period). The author compares his results with the results found by the standard

lot sizing and scheduling problem and concludes that the proposed formulations produce more

feasible and improved solutions.

For the big bucket problem, Sung and Maravelias (2008) present a mixed-integer program-

ming formulation for the capacitated lot sizing problem allowing setup carryover and crossover

(CLSP-SCC). The authors consider sequence independent setups, non-uniform time periods
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and long setup times. They show in a detailed way how to deal with the boundary of the

periods using setup crossover with the assumption that the setup cost is accounted for at the

beginning of the setup. Finally they discuss how their formulation can be extended for problems

with idle time, parallel units, families of products, backlog and lost sales.

Menezes et al. (2010) propose a formulation for the CLSP-SCC considering sequence-

dependent and non-triangular setups, allowing subtours and enforcing minimum lot sizing.

They propose two lemmas to demonstrate that their formulation is more efficient than the

classical lot sizing and scheduling problem. Moreover, they present an example that shows the

improvement of the solutions allowing setup crossover compared to the classical formulation.

Kopanos et al. (2011) develop a formulation for the CLSP-SCC with backlog where the

items are classified into families. The approach considers that the setups are family sequence-

dependent, and sequence-independent for items belonging to the same family. The formulation

is tested for a complex real world problem in the continuous bottling stage of a beer production

facility and it finds good solutions for problems with hundreds of items.

Mohan et al. (2012) include the possibility of setup crossover for the formulation proposed

by Suerie and Stadtler (2003) that handles the problem with setup carryover and compare the

improvement obtained by adding the crossover in the formulation with setup carryover. They

conclude that in nine out of fifteen problem instances tested, their formulation yielded better

solutions or removed infeasibility.

Camargo et al. (2012) propose three formulations for the two-stage lot sizing and scheduling

problem and one of these considers setup crossover, which is achieved by a continuous-time

representation. From the computational results, they conclude that despite delivering the

worst performance in terms of CPU times, the formulation with setup crossover is the most

flexible of the three to incorporate setup-related features.

Belo-Filho et al. (2014) consider the problem CLSP-SCC with backlog. They propose two

formulations for the problem, the first one is built on top of the formulation of Sung and

Maravelias (2008) and the second one proposes a time index disaggregation, defining the start

and the completion time periods of the setup operation. They show the relationship between the

proposed formulations and compare their formulations with the formulation proposed by Sung

and Maravelias (2008). Finally they point out that setup crossover is an important modeling

feature in case setup times consume a considerable part of the period capacity.

3 Mathematical Models

In this section, we first present the classical formulation (without crossover) using the simple

plant location reformulation (Krarup and Bilde, 1977). Next, we present two formulations for
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the problem with setup crossover based on the ideas proposed by Menezes et al. (2010) and

Mohan et al. (2012) and three different ways to model the setup crossover without defining

new extra binary variables. Finally, we propose new constraints for the formulations proposed

by Menezes et al. (2010) and Mohan et al. (2012) to break the symmetry resulting from the

presence of alternative optimal solutions.

3.1 Classical Model

Various research papers have used alternative formulations to model the classical lot sizing

formulation. Two important reformulations have been proposed. A first one deals with the

reformulation of the problem as a Shortest Path problem in which a redefinition of the vari-

ables proposed by Eppen and Martin (1987) is the strategy used (Fiorotto and Araujo, 2014).

A second one consists of a reformulation based on the Simple Plant Location problem studied

in Krarup and Bilde (1977). Various theoretical and computational results concerning such

reformulations have been published in the literature. Considering that the linear relaxations

of these alternative formulations are stronger than of the classical formulation, and after per-

forming some preliminary computational tests we have chosen to use the simple plant location

reformulation for all formulations presented on this paper. See for example Trigeiro et al. (1989)

and Jans and Degraeve (2007) for the regular formulation.

The parameters and variables used in the formulations are described as follows:

Parameters

I = {1, ..., n}: set of items;

T = {1, ...,m}: set of periods;

dit: demand of item i in period t ;

hcit: unit inventory cost of item i in period t ;

scit: setup cost for item i in period t ;

vcit: production cost of item i in period t ;

stit: setup time for item i in period t ;

vtit: production time of item i in period t ;

Capt: capacity (in units of time) in period t ;

csitk: total production and holding cost for producing one unit of item i in period t to satisfy

demand of period k, csitk = (vcit +
k−1∑
u=t

hciu)dik.

Decision variables

xitk: fraction of the demand for item i in period k produced in period t ;

yit: binary setup variable, indicating the production or not of item i in pe-

riod t ;
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• Simple plant location reformulation (F0)

v(F0) = Min

n∑
i=1

m∑
t=1

scityit +
n∑

i=1

m∑
t=1

m∑
k=t

csitkxitk (1)

Subject to:

t∑
k=1

xikt = 1 ∀i ∈ I, t ∈ T | dit > 0 (2)

n∑
i=1

stityit +
n∑

i=1

m∑
k=t

vtitdikxitk ≤ Capt ∀t ∈ T (3)

xitk ≤ yit ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (4)

yit ∈ {0, 1}, xitk ≥ 0 ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (5)

The objective function (1) minimizes the total cost, which consists of the setup cost and

the aggregated production and holding costs. The constraints (2) ensure that demand is met

for each period. The capacity constraints (3) limit the sum of the total setup and production

times. The setup constraints (4) do not allow any production in period t unless a setup is done.

Finally, constraints (5) define the variables domains.

3.2 Models Proposed in Literature for the Problem with Setup

Crossover

In this section we present the formulations of the lot sizing problem with setup crossover

proposed in literature. These formulations are based on the formulations of Menezes et al.

(2010) and Mohan et al. (2012). Both papers also include the possibility of setup carryover.

We present here the way the setup crossover is formulated in these papers, without considering

the setup carryover extensions. There are others papers in the literature for extensions of the

CLSP with setup crossover as discussed in the literature review. However, for these formulations

the ways to model the setup crossover are similar to that of the papers previously mentioned,

and therefore they will be omitted.

Before presenting the formulation, we need to define some new variables:

Decision variables

vit: binary variable, indicating if the setup is split between period t and

period t + 1 for item i;

ut: extra time borrowed in period t for the setup in period t + 1.
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The first mathematical formulation based on the ideas proposed by Menezes et al. (2010)

is as follows:

• Model adding extra binary variables (F1)

v(F1) = Min
n∑

i=1

m∑
t=1

scityit +
n∑

i=1

m∑
t=1

m∑
k=t

csitkxitk (6)

Subject to:

t∑
k=1

xikt = 1 ∀i ∈ I, t ∈ T | dit > 0 (7)

n∑
i=1

stityit +
n∑

i=1

m∑
k=t

vtitdikxitk + ut ≤ Capt + ut−1 ∀t ∈ T (8)

xitk ≤ yit ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (9)

ut−1 ≤
n∑

i=1

vi,t−1stit ∀t ∈ T (10)

vi,t−1 ≤ yit ∀i ∈ I, t ∈ T (11)
n∑

i=1

vi,t−1 ≤ 1 ∀t ∈ T (12)

yit ∈ {0, 1}, vi,t−1 ∈ {0, 1}, vi0 = 0, ut−1 ≥ 0, u0 = 0 ∀i ∈ I, t ∈ T (13)

xitk ≥ 0 ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (14)

The objective function (6) minimizes the total cost. Constraints (7) guarantee that the

demand is satisfied in each period. The capacity constraints (8) limit the sum of the total

setup times and production times, considering the time borrowed from the previous period and

the time added to the next period in case of setup crossover. The setup constraints (9) do not

allow any production in period t unless a setup is done. Constraint (10) limits the borrowed

time in period t − 1 to be used in period t to the value of the setup time of the product for

which we allow the crossover. We cannot have a crossover from period t− 1 to period t if there

is no setup in period t, as imposed by constraint (11). Constraints (12) state that the setup

can be split across periods for at most one item and finally, the conditions (13) and (14) on the

variables complete the formulation.

The second formulation is based on the ideas proposed by Mohan et al. (2012) and the

main difference is the way to limit the time for the setup crossover (constraints (10) and (11)

of the previous formulation). Before presenting the formulation, we need to define others new

variables:
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New decision variables:

zit: = 1 if a complete setup is done in period t for item i, 0 otherwise;

vit: = 1 if setup crossover between period t− 1 and period t for item i with

splits being li,t−1 and fit, respectively (that is fit + li,t−1 = stit).

The second formulation is then as follows:

• Model separating complete setups (F2)

v(F2) = Min

n∑
i=1

m∑
t=1

(scitzit + scitvit) +
n∑

i=1

m∑
t=1

m∑
k=t

csitkxitk (15)

Subject to:

t∑
k=1

xikt = 1 ∀i ∈ I, t ∈ T | dit > 0 (16)

n∑
i=1

stitzit +
n∑

i=1

m∑
k=t

vtitdikxitk +
n∑

i=1

lit +
n∑

i=1

fit ≤ Capt ∀t ∈ T (17)

xitk ≤ zit + vit ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (18)

fit + li,t−1 = vitstit ∀i ∈ I, t ∈ T (19)
n∑

i=1

vit ≤ 1 ∀t ∈ T (20)

yit ∈ {0, 1}, vit ∈ {0, 1}, lit ≥ 0, li0 = 0, fit ≥ 0 ∀i ∈ I, t ∈ T (21)

xitk ≥ 0 ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (22)

The objective function (15) minimizes the total setup, production and inventory costs. The

constraints (16) guarantee that the demand is satisfied in each period. Constraints (17) ensure

that the total capacity consumed during a period for production and setups is less than or equal

to the available capacity. The setup constraints (18) do not allow any production in period t

unless a setup is done (either complete or crossover). When a setup is split, constraints (19)

ensure that the split times add up to the total setup time. Constraints (20) state that the setup

can be split across periods for at most one item. Finally, Constraints (21) and (22) define the

variable domains.

3.3 Proposed Models

The first new proposed formulation is built upon the idea that it is possible to limit the quantity

of borrowed time (ut) in each period by the lowest value of the setup times. Although we restrict

the set of feasible solution, we avoid the necessity of defining extra binary variables for the setup
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crossover. Note that this formulation will have a higher (or equal) optimal objective function

value compared to formulations F1 and F2 (as we will formally discuss in Section 4) and hence

can be used as a heuristic. This new formulation is defined as follows:

• Model with minimum setup time (F3)

v(F3) = Min
n∑

i=1

m∑
t=1

scityit +
n∑

i=1

m∑
t=1

m∑
k=t

csitkxitk (23)

Subject to:

t∑
k=1

xikt = 1 ∀i ∈ I, t ∈ T | dit > 0 (24)

n∑
i=1

stityit +
n∑

i=1

m∑
k=t

vtitdikxitk + ut ≤ Capt + ut−1 ∀t ∈ T (25)

xitk ≤ yit ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (26)

ut−1 ≤ min
∀j∈I
{stjt} ∀t ∈ T (27)

yit ∈ {0, 1}, xitk ≥ 0, ut−1 ≥ 0, u0 = 0 ∀i ∈ I, t ∈ T, k ∈ T , k ≥ t (28)

The objective function (23) and the constraints (24), (25) and (26) are the same as con-

straints (6), (7), (8) and (9) in the formulation F1. Constraints (27) limit the extra time

allowed for a setup crossover to the lowest setup time of all products. The last constraints (28)

state the domain of the variables.

• Model with minimum active setup time (F4)

The second proposed formulation is an extension of the first one. The idea is that we can

only use extra capacity from period t − 1 for a product that is setup in period t, i.e., we can

limit the borrowed extra time (in period t − 1) to the minimum time of the active setups in

period t.

The following modification of the constraints (27) handles this extension:

ut−1 ≤ stityit + max
∀j∈I
{stjt}(1− yit) ∀i ∈ I, t ∈ T (29)

Constraints (29) limit the extra time allowed for a setup crossover to the minimum setup

time of the active setups. If the setup is not active in period t for product i, i.e. yit = 0, then

the extra time is limited by the maximum setup time. Otherwise, if the setup is active for
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product i, i.e. yit = 1, then the extra time is limited by exactly this setup time. As we have

this constraint for every item, we are limiting the ut−1 variables to the minimum active setup

time.

The second proposed formulation, F4, is the same as F3 with constraints (27) replaced by

the constraints (29). This formulation will also result in a higher (or equal) optimal objective

function value when compared to formulations F1 and F2, and hence can only be used as a

heuristic.

• Model dropping the extra binary variables (F5)

The third new formulation is based on formulation F1. Analyzing the constraints (10) to

(12) we observe that the integrality constraints on vit can be dropped. The idea is that it is

always feasible to limit the allowable time for a setup crossover to the maximum of the active

setup times in a period (as formally discussed in Section 4). If less time is allowed (because

there is not enough idle capacity in the previous period) or needed, the ut variables can always

assume a lower value. This constraint is still imposed if we drop the integrality constraints on

the vit variables (assuming positive setup times). The right-hand side of (10) cannot be more

than the maximum of the active setup times because of constraints (11) and (12) together even

if the binary conditions on the vit variables are dropped. Note that when the binary decisions

are dropped, the variables vit does not necessarily indicate anymore which item is split, since it

can assume fractional values. They are only used to determine the maximum time allowed for

the crossover. The formulation F5 consists of the objective function (6), subject to constraints

(7)-(14) with the integrality constraints on vit dropped.

• Model to break the symmetry of formulation F1 (F1′)

For formulation F1, it is possible that alternative (optimal) solutions exists with the same

(optimal) objective function value, as will be formally explained in Section 4. The problem with

these alternative or symmetric solutions is that they can increase the total computation time

needed due to duplication in the branch-and-bound tree (see e.g. Sherali and Smith (2001),

Jans (2009) and Jans and Desrosiers (2013)). We can exclude these alternative solutions by

explicitly imposing that the item with the highest active setup time in period t + 1 is always

chosen as the item for which we have a setup crossover between periods t and t + 1. This is

always feasible since the variable ut can take a value which is lower than this setup time, or can

even take the value of zero (if no idle capacity is available in period t, or if a setup crossover

is not beneficial). To impose this condition, we first have to order the items in a decreasing

order of their setup times. Next we have to add the following symmetry breaking constraints

to formulation F1:
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v1,t−1 = y1t ∀t ∈ T \ {1} (30)

vi,t−1 ≥ yit −
i−1∑
j=1

yjt ∀i ∈ I \ {1}, ∀t ∈ T \ {1} (31)

Constraints (30) and (31) impose in each period the setup crossover for the product with

the highest active setup time. Note that as the items are ordered according to the decreasing

order of setup time, item one has the highest setup time. Therefore, constraint (30) enforces the

setup crossover between periods t−1 and t for the first item (i.e. the one with the highest setup

time) only if this item is setup in period t. Constraint (31) enforces a setup crossover between

periods t − 1 and t for item i only if this item is setup in period t and if none of the items

with a higher setup time have been setup in period t. Note that constraint (11) still prevents

a crossover for an item if there is no setup. Formulation F1 augmented with constraints (30)

and (31) will be called F1′.

• Model to break the symmetry of formulation F2 (F2′)

For formulation F2, we observe as well that there can be several alternative solutions with

the same objective function value (see Lemma 3 in Section 4). The reason is basically the same

as for formulation F1.

We also have proposed a type of symmetry breaking constraint to formulation F2 to impose

the setup crossover always for the product with the highest active setup time. As in the previous

formulation, we first have to order the items according to a decreasing order of setup times and

then we add to formulation F2 the following new constraints:

i−1∑
j=1

vjt ≥ zit ∀t ∈ T, i ∈ I \ {1} (32)

Constraints (32) imposes that if there is a full setup for item i, this means there must have

been a partial setup for an item j < i (assuming an decreasing order of setup time). Constraints

(32) will hence assign the setup crossover to the item with the highest active setup time.

4 Analysis of the Formulations

4.1 Theoretical Analysis of the Formulations

In this section we prove the relationship among the optimal objective function values for all of

the discussed formulations and we show that we can always construct an alternative solution
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with the same objective function value imposing the setup crossover for the product with the

highest active setup time. Note that v(F ) indicates the optimal objective function value of

formulation F and S(F ) denotes the set of feasible solutions.

Lemma 1 v(F0) ≥ v(F3) ≥ v(F4) ≥ v(F5) = v(F1) = v(F2).

Proof: The first inequality (v(F0) ≥ v(F3)) is trivial, since by adding the setup crossover the

flexibility is increased and better solutions can be found. Moreover, it is clear that S(0) ⊆ S(3)

because by fixing ut = 0 ∀t ∈ T in formulation F3 we obtain the classical formulation F0.

Formulation F3 is more restrictive than formulation F4. Comparing the right-hand side of

constraints (27) and (29) we have that min
∀j∈I
{stjt} ≤ stityit+max

∀j∈I
{stjt}(1−yit), ∀i ∈ I. Therefore

S(3) ⊆ S(4), which proves the proposed second relationship (v(F3) ≥ v(F4)).

We also see that (S(4) ⊆ S(5)). The reason is that in F5 the allowable time for a setup

crossover is restricted to the maximum of the active setups, whereas in F4 it is restricted to

the minimum of the active setups, which is more restrictive.

To show that v(F5) = v(F1) observe that there is an incentive to make the right-hand side

of (10) as large as possible, in order to allow the maximum flexibility. The vit variable does

not appear in the objective function, and the values are constrained by inequalities (11), (12)

and the domain restrictions. Therefore, there exists an optimal solution for F1 in which the

right-hand side of (10)
n∑

i=1

vi,t−1stit = max
i∈I|yit=1

{stit}. When we drop the integrality constraints

on the vit variables, the right-hand side of (10) will still have max
i∈I|yit=1

{stit} as the maximum

value. Therefore, by dropping the integrality constraints we will obtain the same objective

function value as with the integrality constraints.

Finally, the formulations F1 and F2 are both valid for the same problem and hence provide

the same optimal objective function value (v(F1) = v(F2)).

Lemma 2 Given a feasible (or optimal) solution for F1, with a setup crossover for product

i from period t to t + 1 (i.e. vit = 1 and vjt = 0 ∀j ∈ I \ {i}), we can construct an alternative

feasible (or optimal) solution with the same objective function value if there exists in period

t + 1 an active setup for another product i′ which has an equal or higher setup time (i.e.

sti′,t+1 ≥ sti,t+1 and yi′,t+1 = 1). This solution can be constructed as follows:

vi′t = 1, vit = 0 and all other variables (including ut) remaining the same.

Proof: The proof is easily established by the following two reasons:

1) The new solution satisfies all the constraints;

2) We have the same objective function, because the values of the variables xitk and yit remain

the same.
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Lemma 3 Given a feasible (or optimal) solution for F2, with a setup crossover for product i

from period t to t+1 (i.e. vi,t+1 = 1, vj,t+1 = 0 ∀j ∈ I \{i} and zi,t+1 = 0), we can construct an

alternative feasible (or optimal) solution with the same objective function value if there exists

in period t + 1 an active setup for another product i′ which has an equal or higher setup time

(i.e. sti′,t+1 ≥ sti,t+1 and zi′,t+1 = 1). This solution can be constructed as follows:

vi′,t+1 = 1, zi′,t+1 = 0

vi,t+1 = 0, zi,t+1 = 1

li′t ←− lit, lit = 0

fi′,t+1 = sti′,t+1 − li′t, fi,t+1 = 0

Proof: The proof is established by the following two reasons: 1)the new solution remains

feasible. Indeed:

(16) is satisfied for items i and i′ since the xikt variables do not change;

The left-hand side of (17) for period t remains unchanged since li′t has taken the value of

lit and lit has taken the value of zero, so that
n∑

j=1

ljt remains the same in the two solutions.

The left-hand side of (17) for period t + 1 has the same value after the changes (see Table

1):

Old solution New solution
n∑

i=1

sti,t+1zi,t+1 sti′,t+1 × 1 sti,t+1 × 1

n∑
i=1

li,t+1 unchanged unchanged

n∑
i=1

fi,t+1 fi,t+1 = sti,t+1 − lit fi′,t+1 = sti′,t+1 − li′t

TOTAL sti′,t+1 + sti,t+1 − lit sti,t+1 + sti′,t+1 − li′t

Table 1: Constraints (17) for period t + 1 and items i and i′.

(18) is satisfied since the right-hand side for item i and i′ is still equal to 1;

(19) is satisfied for items i and i′ by construction;

(20) is satisfied since we still only have one item (in each period) for which we allow a setup

crossover.

2)We have the same objective function by construction.
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4.2 Example

The following example shows the solutions for all formulations applied to the same instance.

We adapted the example proposed in Belo-Filho et al. (2014) making some changes considering

that in their case setup carryover is allowed.

We have to determine a production plan for four different items i = {A,B,C,D} over a

planning horizon composed of five non-uniform periods. Tables 2 and 3 contain the parameters,

the demand and capacity values. Note that the parameters are time independent.

A B C D

vti 0.1 0.1 0.1 0.1

hci 3 4 1 6

sti 3 4 1 6

sci 3 4 1 6

Table 2: Parameters for the example.

dit t = 1 t = 2 t = 3 t = 4 t = 5

i = A 0 30 0 0 0

i = B 40 0 20 20 0

i = C 0 0 30 0 0

i = D 0 0 0 0 40

Capt 10 10 10 6 6

Table 3: Demand and capacity data.

All formulations were solved to optimality using this data set. Figure 1 and Table 5 illustrate

the graphical solutions and the relevant non-zero variable values, respectively.

In Figure 1, white blocks represent production time that is consumed in that period, dark

grey represents the setup time and light grey represents idle time. The values of the non-zero

decision variables can be found in Table 5. For the classical formulation (F0) the value of the

optimal solution is 688. This high value results mainly from the inventory for item B from

period 1 to period 3 (20 units), for item C from period 2 to period 3 (30 units) and for item

D from period 3 to period 5 (40 units). Note that in this example the inventory costs are very

high. However, due to the lack of capacity it is impossible to have a setup for each item in a

period with positive demand, and the optimal solution for F0 results in high inventory levels.

Although slightly different, the solutions found by the formulations F1, F1′, F5, F2 and

F2′ have the same objective function value of 22. The only difference is that in formulation

F1 and F1′ the setup for item A is split between periods 1 and 2 and for the formulations F5,

F2 and F2′ the setup for this item is completely done in period 2. Observe that the solution

obtained by F2, F2′ and F5 can directly be transformed into the solution obtained by F1 and
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F1′ by splitting the setup of product A over periods 1 and 2. The two solutions presented

are both feasible for F1, F1′, F2, F2′ and F5. We see hence that there can be equivalent

alternative optimal solutions. Note that there are no inventories in the solutions obtained by

these formulations. Note also that although formulations F2 and F2′ presenting the same

solution, the value of some variables are different (see Table 4). It occurs because for a product

with a partial setup between periods t − 1 and t (vit = 1), it is still possible in some cases to

do the complete setup in period t by choosing li,t−1 = 0 or in period t− 1 by choosing fit = 0.

For the formulation F3 the maximum extra time that could be borrowed in each period was

1. Consequently, the optimal solution contains inventory for item B from period 1 to period

3 (20 units), for item C from period 2 to period 3 (30 units) and for item D from period 3 to

period 5 (30 units). The optimal objective function value for this formulation is 574. When we

limit the borrowed extra time to the minimum of the active setup times (F4), the formulation

has more flexibility to find better solutions than F3. The optimal solution found by formulation

F4 has inventory only for item C from period 2 to period 3 (30 units) and the objective function

value of the optimal solution is 52. The results are in line with the relationships proposed in

Lemma 1, and indicate that the inequalities can be strict.

5 Computational Results

The formulations were modeled in AMPL using CPLEX 12.6 as solver. The tests were done

on a personal computer Intel Core-I5, 2.27GHz with 6GB of RAM and the Windows operating

system. The computational tests involve four experiments based on standard instances proposed

in Trigeiro et al. (1989). In the first experiment, the formulations are tested for the well know F

and G instances. In the second experiment, the formulations were tested on a large data set of

540 standard instances, in the third one we test some adapted instances with high values for the

inventory costs and finally, in the fourth one we test some instances considering the possibility

of backlog. We have limited the computational time in all experiments to 1800 seconds per

instance. Note that in these instances the unit production costs are not considered.

5.1 Results for Experiment 1

The formulations were tested for a set of 145 instances proposed in Trigeiro et al. (1989). These

are 70 instances from the F-set and 75 from the G-set. The F-set contains 70 instances with

6 items and 15 periods. The G-set consists of 50 instances with 6 items and 15 periods and 5

instances for each of the cases with 12 items and 15 periods, 24 items and 15 periods, 6 items

and 30 periods, 12 items and 30 periods and 24 items and 30 periods.
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Figure 1: Graphical solution of the example for all formulations.

In Table 5 we give the upper bounds (Columns UP ) and the computational times in sec-

onds (Columns Time) for all formulations. We set the upper bounds found by the classical

formulation (F0) to 100% and calculate the others values relative to this. As expected, all

formulations with setup crossover have found better solutions than the classical formulation

(F0) and the differences are bigger for problems with 6 items. Comparing the computational

times, we can see that all formulations except the formulation F2 and F2′ for some instances

are faster than the classical formulation.

We observe that F1 is much faster than F0, which is surprising since it contains more binary

variables. Omitting the binary condition on the vit variables as done in formulation F5 does not

result in a significant change in the CPU time. It only provides a very small decrease compared

to F1. We observe that F3 and F4, i.e. the two restricted models without binary variables to

indicate the crossover take significantly more time to be solved compared to formulations F1

and F5.

Note that there is no benefit in adding symmetry breaking constraints to formulation F1

considering that the CPU times of the formulation F1′ are bigger than F1. However, for
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F0 variables

xA22 = 1 xB11 = 1 xB13 = 1 xB44 = 1 xC23 = 1 xD35 = 1

yA2 = 1 yB1 = 1 yB4 = 1 yC2 = 1 yD3 = 1

F1 and F1′ variables

xA22 = 1 xB11 = 1 xB33 = 1 xB44 = 1 xC33 = 1 xD55 = 1

yA2 = 1 yB1 = 1 yB3 = 1 yB4 = 1 yC3 = 1 yD5 = 1

u1 = 2 u2 = 4 u3 = 4 u4 = 4

vA1 = 1 vB2 = 1 vB3 = 1 vD4 = 1

F2 variables

xA22 = 1 xB11 = 1 xB33 = 1 xB44 = 1 xC33 = 1 xD55 = 1

zA2 = 1 zB1 = 1 zC3 = 1

vB3 = 1 vB4 = 1 vD5 = 1

lB2 = 4 lB3 = 4 lD4 = 4

fD5 = 2

F2′ variables

xA22 = 1 xB11 = 1 xB33 = 1 xB44 = 1 xC33 = 1 xD55 = 1

zC3 = 1

vA2 = 1 vB1 = 1 vB3 = 1 vB4 = 1 vD5 = 1

lB2 = 4 lB3 = 4 lD4 = 4

fA2 = 3 fB1 = 4 fD5 = 2

F3 variables

xA22 = 1 xB11 = 1 xB13 = 1 xB44 = 1 xC23 = 1 xD35 = 0.75 xD55 = 0.25

yA2 = 1 yB1 = 1 yB4 = 1 yC2 = 1 yD3 = 1 yD4 = 1

u3 = 1 u4 = 1

F4 variables

xA22 = 1 xB11 = 1 xB33 = 1 xB44 = 1 xC23 = 1 xD55 = 1

yA2 = 1 yB1 = 1 yB3 = 1 yB4 = 1 yC2 = 1 yD5 = 1

u1 = 1 u2 = 1 u3 = 4 u4 = 4

F5 variables

xA22 = 1 xB11 = 1 xB33 = 1 xB44 = 1 xC33 = 1 xD55 = 1

zA2 = 1 yB1 = 1 yB3 = 1 yB4 = 1 yC3 = 1 yD5 = 1

u2 = 4 u3 = 4 u4 = 4

vA1 = 1 vB2 = 1 vB3 = 1 vD4 = 0.66

Table 4: Variables values of example for all formulations.

formulation F2 the symmetry breaking constraints are very efficient and the difference of CPU

times between the formulations F2 and F2′ are very significant.

Note also that these instances are quite easy, considering that CPLEX has solved relatively

fast almost all instances for all formulations except formulation F2. Moreover, with formula-

tions F1, F1′, F2′, F4 and F5 the solver has proven the optimality for all instances within the

time limit. Using formulations F0, F2 and F3 the solver has proven the optimality for 98.6%,

88.9% and 99.3%, respectively.

5.2 Results for Experiment 2

In this experiment, the formulations were tested on a total of 540 instances with 20 peri-

ods, such that five characteristics are analyzed: number of items (10, 20 and 30), demand
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F G6-15 G12-15 G24-15 G6-30 G12-30 G24-30

Model UP Time UP Time UP Time UP Time UP Time UP Time UP Time

F0 100 2.3 100 21.7 100 5.8 100 10.2 100 364.3 100 642.6 100 472.9

F1 99.36 1.1 99.03 3.4 99.86 3.3 99.85 7.3 99.38 17.3 99.72 82.3 99.97 89.7

F1’ 99.36 1.3 99.03 3.5 99.86 4.3 99.85 11.6 99.38 24.7 99.72 112.0 99.97 131.4

F2 99.36 87.0 99.03 102.9 99.86 401.1 99.85 569.1 99.38 936.4 99.72 1444.4 99.97 1332.5

F2’ 99.36 7.7 99.03 21.5 99.86 16.0 99.85 17.7 99.38 136.0 99.72 211.3 99.97 228.7

F3 99.72 1.6 99.65 8.6 99.95 3.9 99.93 8.3 99.73 81.1 99.92 411.3 99.99 446.6

F4 99.67 1.3 99.54 10.7 99.95 10.0 99.90 15.7 99.73 237.5 99.90 365.6 99.99 390.0

F5 99.36 0.9 99.03 3.1 99.86 3.6 99.85 7.5 99.38 16.5 99.72 82.4 99.97 83.3

Table 5: Average general results for F and G data sets.

variability (medium [0, 125] and high [0, 200]), setup cost (low [25, 75], medium [100, 300] and

high [400, 1200]), setup time (low [5, 17] and high [21, 65]) and capacity utilization (low [75%],

medium [85%], and high [95%]). The numbers in the brackets indicate a uniform distribution

between the two numbers. For more details on the data set, we refer to Trigeiro et al. (1989).

Tables 6 to 10 show the overall performance of the formulations. We report the relative

upper bounds (UP ), computational times in seconds (Time) and percentage of instances solved

to optimality within the limit of 1800 seconds (OS). Since the symmetry breaking constraints

in F1′ were not able to improve the results obtained by F1, the results of F1′ are omitted.

The overall analysis of Tables 6 to 10 confirm the tendencies observed in Table 5. F0 is

slower than F1, F3, F4 (except for 20 items) and F5. F2 is overall the slowest formulation

and the performance of F2′ is in fact significantly better than F2. We see that F1 and F5

generally provide a similar performance (both in terms of CPU times and the percentage of

optimal solutions found). F3 and F4 provide a significantly worse performance compared to

F1 and F5. We also observe that the cost decrease obtained by introducing the possibility of

a setup crossover is very small in these instances and that the relevance of including a setup

crossover is bigger for problems with few items. The average cost decrease is 0.59% for 10 items,

0.23% for 20 items and 0.17% for 30 items. The average cost decrease over all 540 instances is

0.33%.

Table 6 shows that although the formulations F1, F2, F2′ and F5 have the same optimal

solutions, F5 found slightly better solutions for problems with 20 and 30 items. Considering

only instances for which CPLEX proved optimality (columns Aver. OS) we clearly see the big

improvement obtained by including the symmetry breaking constraints in the formulation F2.

The CPU times for formulations F2 and F2′ are 96.1 and 9.5, respectively.

Table 7 shows that the capacity utilization is an important factor for the quality of solutions

using setup crossover and the difficulty of the problems. For problems with loose capacity, the

inclusion of a setup crossover is not so important. The problems are quite easy considering

that the computational times are low and the percentage of solutions solved to optimality (OS)

is very high. When the capacity is tight, the importance of including setup crossover and the

difficulty of the problems increase. Note that the computational times are very high and the
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10 items 20 items 30 items Aver. OS

Model UP Time OS UP Time OS UP Time OS UP Time

F0 100 589.8 70.6 100 684.9 63.9 100 707.1 62.8 100 10.7

F1 99.41 462.0 80.6 99.78 625.2 68.9 99.86 613.0 68.9 99.88 4.7

F2 99.43 813.7 57.2 99.79 859.5 53.9 99.89 865.3 55.0 99.88 96.1

F2’ 99.43 628.0 68.8 99.79 685.0 64.5 99.89 672.8 65.5 99.88 9.5

F3 99.75 530.0 75.0 99.90 668.9 65.0 99.94 668.6 66.1 99.95 5.9

F4 99.73 539.1 73.4 99.90 688.3 63.9 99.94 666.8 65.6 99.94 6.3

F5 99.41 475.9 78.3 99.77 604.5 70.0 99.83 609.9 68.3 99.88 4.6

Table 6: General average results aggregated per number of items.

percentage of instances that CPLEX solved to optimality is very low for these instances.

Loose Capacity Normal Capacity Tight Capacity

Model UP Time OS UP Time OS UP Time OS

F0 100 29.3 98.9 100 404.8 84.4 100 1547.8 15.0

F1 99.95 17.2 99.4 99.79 280.7 91.1 99.30 1402.3 27.2

F2 99.95 126.2 96.1 99.79 777.3 61.7 99.37 1634.9 9.45

F2’ 99.95 27.1 99.4 99.79 435.7 81.6 99.37 1520.4 17.8

F3 99.98 25.7 98.9 99.91 347.8 87.2 99.70 1493.9 20.0

F4 99.98 25.7 98.9 99.90 354.9 85.6 99.69 1513.7 18.3

F5 99.95 16.0 99.4 99.79 276.9 90.6 99.28 1397.4 26.7

Table 7: General average results aggregated per capacity.

Table 8 presents the results aggregated per setup cost level. The benefits of including a

setup crossover decreases when the value of setup cost increases. It occurs because if the setup

cost is high, the formulations try to reduce the numbers of setups and keep more items in

inventory whereas one of the main gains of setup crossover is exactly the flexibility to produce

as close as possible to the demand period avoiding big quantities of inventory. Note also that

computational times increase and the OS decrease significantly when the value of setup cost

increases.

Low setup cost Normal setup cost High setup cost

Model UP Time OS UP Time OS UP Time OS

F0 100 477.8 74.4 100 623.3 67.2 100 880.8 57.2

F1 99.55 384.1 81.7 99.75 521.2 73.3 99.74 764.9 62.8

F2 99.56 550.4 70.0 99.76 772.8 60.0 99.79 1215.2 36.1

F2’ 99.56 470.6 75.0 99.76 572.4 69.4 99.79 858.5 58.8

F3 99.82 440.9 78.3 99.89 594.6 68.3 99.88 832.1 60.6

F4 99.82 455.6 76.7 99.88 600.6 68.3 99.87 828.1 59.4

F5 99.52 378.6 81.1 99.74 545.3 73.3 99.74 766.4 62.8

Table 8: General average results aggregated per setup cost level.

Tables 9 and 10 show the results taking into account the setup time and demand variability,

respectively. In these tables we can see that with increasing setup times and demand variability,

the computational times decrease, OS increases and the relative upper bounds decrease, indi-

cating a larger benefit provided by the crossover. Note that for problems with low setup times
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and low demand variability the proposed formulation F5 found again slightly better solutions

than the formulations from the literature F1 and F2.

Low setup time High setup time

Model UP Time OS UP Time OS

F0 100 715.6 64.8 100 605.7 69.6

F1 99.78 669.9 68.1 99.58 463.5 77.8

F2 99.80 931.3 51.4 99.60 761.0 59.6

F2’ 99.80 764.7 65.5 99.60 561.8 72.2

F3 99.91 699.1 63.7 99.81 545.9 73.7

F4 99.91 710.9 62.6 99.80 551.9 72.9

F5 99.76 670.1 66.3 99.58 456.8 78.1

Table 9: General average results aggregated per setup time.

Medium demand variability High demand variability

Model UP Time OS UP Time OS

F0 100 728.2 62.6 100 593.1 70.0

F1 99.72 645.9 67.8 99.64 487.6 77.0

F2 99.75 844.4 55.2 99.65 847.9 55.6

F2’ 99.75 735.7 63.3 99.65 585.5 71.8

F3 99.88 702.1 63.7 99.85 542.9 73.7

F4 99.88 704.2 63.3 99.83 558.6 72.2

F5 99.70 644.7 67.0 99.64 482.1 77.4

Table 10: General average results aggregated per demand variability.

Aiming to do a further analysis of the effect of introducing a setup crossover, Table 11 shows

the behavior of the solutions for 10 items for the formulations F0 and F1: the percentage of

setup and holding cost (columns SC(%) and HC(%)) in the objective function value and the

number of setups and total inventory (columns setup and inv.). We observe that overall the

number of setups is very similar for both formulations and the main difference is the level of

inventory. We obtain a decrease in total inventory of approximately 1%, but the total inventory

holding costs constitute only 30% of the total cost. So the overall cost decrease is relatively

small. It explains the small decrease obtained by introducing the possibility of a setup crossover

in these instances given that the value of the inventory costs are very low. Even though globally

the total number of setups does not significantly change when we introduce a setup crossover,

we see that the setup cost and the capacity tightness have an impact. Tight capacity levels and

low setup cost generally lead to a slight increase in the total number of setups when allowing

a setup crossover. The level of the setup times and the demand variability do not have a large

impact. The overall analysis of these instances indicates that the benefits of a setup crossover

come mainly from the decreased inventory level which results from a better matching of demand

and supply through the increased flexibility. This might require, however, a slight increase in

the number of setups as well.
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Model F0 Model F1

SC(%) HC(%) setup inv. SC(%) HC(%) setup inv.

Loose 74.75 25.24 101.7 10931 74.78 25.21 101.6 10880

Capacity Normal 72.87 27.13 101.9 11133 73.04 26.95 101.9 11120

Tight 62.81 37.19 95.3 12452 63.87 36.17 95.7 12158

Low 81.63 18.37 151 2051 82.56 17.44 151.6 1932

S. cost Normal 65.33 34.67 90.4 9232 65.64 34.36 90.4 9118

High 63.46 36.54 57.6 23234 63.47 36.53 57.2 23108

S. time Low 69.05 30.95 98.8 11516 69.36 30.64 98.8 11467

High 71.23 28.77 100.6 11435 71.75 28.25 100.7 11305

Demand Medium 72.07 27.93 108.3 11516 72.30 27.70 108.2 11485

High 68.21 31.79 91.1 11495 68.81 31.19 91.3 11286

Average 70.14 29.86 99.6 11505 70.56 29.44 99.7 11386

Table 11: Detailed results for 10 items.

It is important to note that although the cost decrease obtained by introducing the possi-

bility of a setup crossover is on average small in these instances (i.e. 0.33%), for some cases

this decrease is more relevant. Tables A.20 and A.21 in the appendix contain the results for

all 108 different combinations considering the five characteristics discussed in this experiment.

Note that for each of the 108 combinations, 5 instances were tested. We observe that the cost

decrease obtained by introducing the possibility of a setup crossover is the biggest for config-

urations with 10 items, tight capacity, low setup cost, high setup time and medium and high

demand variability, where we obtained a 2.77% and 2.62% cost decrease by including a setup

crossover. On the other hand, for many configurations with loose capacity we did not obtain

any improvement. This is in line with the aggregated analysis presented in Tables 6 to 10.

5.3 Results for Experiment 3

In this experiment the formulations were tested on a set of 180 instances. These are the same

as the instances with 10 items of experiment 2 with an altered high value for the inventory

costs. To generate the instances with high inventory costs we multiply the inventory costs by

10 and 100.

Tables 12 and 13 show the benefits of considering setup crossover for problems where the

inventory costs are significant. The global analysis confirms some of the conclusions of the

previous experiments. F1 and F5 have a similar performance. F3 and F4 are slower compared

to F1 and F5, but faster than F0. F2 is again the slowest formulation. However, in contrast

to the results of the previous experiments, we do see a significant decrease in the total costs

when setup crossover is allowed, which is on average almost 3% (for the inventory cost × 10)

and 8% (for the inventory cost × 100).

Table 12 contains the results for the instances with the inventory costs multiplied by 10. We

observe that the benefits of a setup crossover are the highest in a setting with tight capacity

(4.2% cost decrease), high setup times (4.4% cost decrease) and low setup cost (4.5% cost

decrease). The analysis further reveals that the approximate formulations F3 and F4 are not
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able to capture all of the benefits with an average cost decrease of 1.3%.

Model F0 Model F1 Model F2 Model F2’ Model F3 Model F4 Model F5

UP T(s) UP T(s) UP T(s) UP T(s) UP T(s) UP T(s) UP T(s)

Loose 100 81 99.00 2 99.00 185 99.00 66 99.54 46 99.53 43 99.00 2

Capacity Normal 100 499 96.40 342 96.41 926 96.41 579 98.42 363 98.37 393 96.40 331

Tight 100 1313 95.79 1150 95.82 1683 95.79 1428 98.25 1240 98.12 1292 95.78 1138

Low 100 292 95.49 225 95.49 604 95.49 436 98.19 265 98.16 268 95.49 225

S. cost Normal 100 727 97.05 485 97.06 1036 97.04 758 98.58 574 98.54 619 97.04 473

High 100 875 98.64 785 98.67 1154 98.67 880 99.44 811 99.33 842 98.64 775

S. time Low 100 496 98.53 468 98.55 842 98.54 553 99.46 490 99.42 524 98.53 461

High 100 766 95.60 528 95.61 1021 95.59 719 98.01 610 97.93 628 95.58 521

Demand Medium 100 811 97.54 667 97.55 944 97.54 872 98.88 719 98.83 725 97.53 666

High 100 451 96.59 330 96.60 920 96.59 511 98.59 381 98.52 427 96.59 316

Average 100 631 97.06 498 97.08 932 97.07 691 98.74 550 98.67 576 97.06 491

Table 12: Average general results with inventory costs multiplied by 10.

Table 13 contains the results for instances with inventory costs multiplied by 100. We

observe that for these instances, the effect of allowing a setup crossover is the highest for

the instances with normal capacity, low setup cost and high setup time where the total cost

decreases more than 10% on average. Note also that even in a setting with loose capacity the

total cost decrease is 6.3%.

Model F0 Model F1 Model F2 Model F2’ Model F3 Model F4 Model F5

UP T(s) UP T(s) UP T(s) UP T(s) UP T(s) UP T(s) UP T(s)

Loose 100 125 93.71 34 93.72 216 93.71 129 97.22 72 97.21 80 93.71 34

Capacity Normal 100 514 89.62 332 89.64 931 89.62 556 95.20 395 95.13 408 89.62 309

Tight 100 1168 94.03 1016 94.06 1683 99.04 1365 97.49 1068 97.39 1274 94.02 992

Low 100 290 89.82 222 89.83 604 89.82 384 95.65 246 95.61 268 89.82 214

S. cost Normal 100 593 92.04 399 92.06 1037 92.04 740 96.12 454 96.08 633 92.04 382

High 100 924 95.50 760 95.54 1189 95.50 927 98.14 834 98.04 860 95.49 740

S. time Low 100 399 95.88 389 95.90 835 95.89 595 98.44 387 98.42 500 95.88 382

High 100 805 89.02 532 89.04 1052 89.02 772 94.83 636 94.73 675 89.02 508

Demand Medium 100 787 93.31 658 93.35 970 93.32 892 96.67 691 96.63 754 93.31 635

High 100 417 91.59 263 91.60 917 91.59 475 96.60 332 96.52 421 91.59 255

Average 100 602 92.45 460 92.47 943 92.45 683 96.63 512 96.57 587 92.45 445

Table 13: Average general results with inventory costs multiplied by 100.

Table 14 and 15 show the behavior of the solutions for the results with inventory costs

multiplied by 10 and 100. We observe that, contrary to the results of Table 11, the percentage

of inventory cost in the objective function value is very high especially for instances in which the

inventory costs are multiplied by 100 (62.74% for formulation F0 and 59.89% for formulation

F1). It explains the more significant decrease obtained by introducing the possibility of a

setup crossover in these instances given that the value of the inventory costs are very high. We

observe that for the instances in which the inventory costs are multiplied by 10 (Table 14) the

total inventory goes down by approximately 5%, and the total setups only increase by 0.5%.

Regarding the instances in which the inventory costs are multiplied by 100 (Table 15) the total

inventory goes down by approximately 6% and the total setups only increase by 0.5%.

An Analysis of Formulations for the Capacitated Lot Sizing Problem with Setup Crossover

CIRRELT-2014-57 21



Model F0 Model F1

SC(%) HC(%) setup inv. SC(%) HC(%) setup inv.

Loose 88.33 11.66 158.8 1312 89.64 10.35 159.4 1200

Capacity Normal 64.39 35.60 145.4 3085 66.88 33.11 146.3 2868

Tight 25.25 74.74 113.3 9260 26.51 73.48 111.8 8881

Low 62.99 37.00 163.7 1603 65.26 34.73 164.4 1461

S. cost Normal 57.04 42.95 139.0 4152 58.89 41.10 139.8 3901

High 57.95 42.04 112.8 7902 58.88 41.11 113.1 7588

S. time Low 61.42 38.57 141.2 4144 62.16 37.83 141.5 4031

High 57.23 42.76 135.8 4961 59.86 40.13 136.8 4602

Demand Medium 64.62 35.37 147.3 4198 66.01 33.98 148.0 3972

High 54.03 45.96 129.7 4907 56.01 43.98 130.3 4661

Average 59.33 40.66 138.5 4552 61.01 38.98 139.1 4316

Table 14: General detailed results with inventory costs multiplied by 10.

Model F0 Model F1

SC(%) HC(%) setup inv. SC(%) HC(%) setup inv.

Loose 74.52 25.48 170.4 712 78.69 21.31 170.9 597

Capacity Normal 31.18 68.82 152 2810 35.21 64.79 153 2562

Tight 6.06 93.94 114.9 9316 6.43 93.57 115.4 8905

Low 45.49 54.51 164.9 1602 49.15 50.85 165.8 1458

S. cost Normal 32.59 67.41 143.5 4144 35.86 64.14 144.0 3877

High 33.69 66.31 128.8 7093 35.32 64.68 129.5 6728

S. time Low 43.84 56.16 150.9 3768 45.76 54.24 151.2 3641

High 30.67 69.33 140.7 4791 34.46 65.54 141.7 4022

Demand Medium 47.47 52.53 152.6 3893 50.54 49.46 153.0 3659

High 27.04 72.96 138.9 4666 29.68 70.32 139.8 4384

Average 37.26 62.74 145.8 4280 40.11 59.89 146.5 4021

Table 15: General detailed results with inventory costs multiplied by 100.

5.4 Results for Experiment 4

In this experiment the formulations were adapted to allow backlog and were tested on a set of 60

instances. These are the same as the instances with 10 items and tight capacity of experiment 2

with an altered (reduced) value for the capacity in order to generate some backlog. To generate

these instances with very tight capacity we reduce the capacity by 5% and 10%. We set the

backlog costs for each item equal to 100× inventory holding cost.

Tables 16 to 19 present the overall performance of the formulations for problems that con-

sider the possibility of backlog (based on instances in which the two formulations found feasible

solutions). We report all factors that have been analyzed and added the percentage of backlog

cost (columns B(%)) in the total objective function value, the percentage of feasible solutions

(columns FS) and the number of total backlog (columns Back.).

The overall analysis of Tables 16 to 19 show that for problems that allow the possibility

of backlog there is a significant decrease in the total costs when a setup crossover is allowed,

which is on average 2.3% and 4% for instances for which the capacity is reduced by 5% and

10%, respectively. We also observe, especially for instances for which the capacity is reduced

by 10%, an increase in the number of feasible solutions (4%).

Tables 16 and 17 present the results for instances for which the capacity is reduced by 5%.

We observe that for these instances when the setup cost and time is high, the importance of

including a setup crossover increase. Note also that overall the number of setups is very similar
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again for the case with and without setup crossover. We obtain a decrease in total inventory

and backlog of approximately 2.7% and 4%, respectively. Finally, the percentage of backlog

in the total objective function value is relatively small (on average only 11%) and there is no

backlog for instances with low setup cost.

Model F0 Model F1

UP T(s) FS UP T(s) FS

Low 100 1401 100 97.86 1101 100

S. cost Normal 100 1800 100 98.55 1666 100

High 100 1715 80 96.58 1731 85

S. time Low 100 1742 86 99.08 1758 90

High 100 1539 100 96.57 1245 100

Demand Low 100 1800 93 97.86 1617 97

High 100 1467 93 97.62 1350 93

Average 100 1633 93 97.73 1483 95

Table 16: General results with backlog and capacity reduced by 5%.

Model F0 Model F1

SC(%) HC(%) B(%) setup Inv. Back. SC(%) HC(%) B(%) setup Inv. Back.

L 45.52 54.48 0 114.8 7676 0 46.97 53.03 0 115.5 7397 0

S. cost N 47.59 50.34 2.05 77.5 15345 10 48.84 49.17 1.97 78.2 14766 10

H 43.25 21.02 35.72 60.3 21167 793 44.71 21.48 33.80 60.3 20921 759

S. time L 40.98 51.43 7.57 83.5 14911 252 41.55 50.92 7.51 83.7 14639 252

H 49.63 36.51 13.85 88.0 13714 211 51.71 35.46 12.82 88.8 13246 192

Demand M 44.44 41.86 13.69 90.3 14143 341 45.73 41.08 13.18 90.9 13739 335

H 46.79 45.18 8.18 81.6 14397 120 48.25 44.19 7.54 81.9 14047 106

Average 45.61 43.44 10.93 85.9 14270 230 46.99 42.64 10.36 86.4 13893 221

Table 17: General detailed results with backlog capacity reduced by 5%.

Tables 18 and 19 show the results for instances in which the capacity is reduced by 10%. For

these instances the percentage of backlog in the total objective function value is more relevant

(approximately 30%) and we obtain a decrease in total backlog of 10.2%. We observe that for

instances with high setup cost, the percentage of backlog in the objective function value is 93%.

Moreover, we obtained a decrease in the total costs of 8.8% for these instances.

Model F0 Model F1

UP T(s) FS UP T(s) FS

Low 100 1731 100 97.63 1411 100

S. cost Normal 100 1800 55 95.21 1688 55

High 100 1800 25 91.23 1800 35

S. time Low 100 1800 37 96.57 1800 37

High 100 1745 83 95.75 1440 90

Demand Medium 100 1800 66 94.92 1800 70

High 100 1714 53 97.36 1237 57

Average 100 1762 59 96.00 1550 63

Table 18: General results with backlog capacity reduced by 10%.

6 Conclusion

In this paper, the lot sizing problem with capacity constraints and setup crossover was studied.

A reformulation of the problem using the simple plant location model was used. Three new
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Model F0 Model F1

SC(%) HC(%) B(%) setup Inv. Back. SC(%) HC(%) B(%) setup Inv. Back.

L 27.68 48.80 23.50 91.2 12399 781 29.01 47.58 23.39 92.4 12083 775

S. cost N 35.58 50.34 14.06 65.3 19995 1152 36.82 49.38 13.79 65.3 19021 959

H 3.08 3.86 93.04 33.2 28080 7925 3.38 4.03 92.57 33.4 26682 6977

S. time L 9.10 39.31 51.58 66.9 19588 2525 9.25 39.43 51.30 66.8 19164 2324

H 34.41 44.67 20.91 78.9 15714 1606 36.02 43.25 20.72 80.0 14940 1415

Demand M 22.78 39.22 37.99 73.5 18012 2625 23.68 38.61 37.69 73.9 17205 2299

H 31.55 47.80 20.64 77.4 15505 964 33.03 46.43 20.52 78.6 15012 935

Average 26.68 43.03 30.28 75.2 16898 1886 27.84 42.08 30.06 76.0 16231 1693

Table 19: General detailed results with backlog capacity reduced by 10%.

formulations avoiding the necessity to define new extra binary variables to model the setup

crossover and two adding new symmetry breaking constraints were proposed. Using CPLEX

12.6 these formulations were compared with two different formulations proposed in literature

to model the setup crossover using extra binary variables and with the classical assumption

where a setup crossover is not allowed. The results show that the proposed formulations are

efficient, specially the formulation F5 which is slightly better than the formulation F1 proposed

in the literature. Comparing the benefits obtained allowing a setup crossover with the classical

assumption, we conclude that it depends on the characteristic of the problem, but especially

for problems with high inventory cost it can be very significant. Indeed, when the inventory

costs were multiplied by 10 and 100 the cost decrease obtained by introducing the possibility

of a setup crossover are on average 3% and 7.5%. Finally, we also conclude that the benefits

obtained allowing a setup crossover are significant for problems which allow the possibility

of backlog. We obtained a decrease in the total costs by 2.3% and 4% when the capacity was

decreased by 5% and 10%, respectively. Moreover, the formulation with a setup crossover found

more feasible solutions.
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A Table with the 108 combinations of experiment 2

Tables A.20 and A.21 show all 108 possible combinations including the five characteristics

analyzed in experiment 2. Observe that the results are organized according to increasing upper

bound.
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Characteristic of the problem Formulation F5

Items Cap. S. Cost S. Time Demand UB Time OS

10 T L H M 97.23 864.8 60

10 T L H H 97.38 2.7 100

30 T L L M 98.26 1800 0

10 T H H H 98.34 1800 0

10 T L L M 98.53 1561.7 20

10 T M H H 98.59 661.4 80

10 T H L M 98.65 1800 0

10 T L L H 98.71 618.9 80

10 M L H H 98.71 0.3 100

10 T M H M 98.86 1714.5 20

10 T H H M 98.88 1440.0 20

20 T L H H 99.02 72.8 100

20 T L H M 99.12 1226.4 60

20 T M H H 99.29 1211.2 60

20 T H H M 99.30 1800 0

10 T M L H 98.32 1800 0

30 T H H M 99.39 1800 0

10 M H H H 99.40 223.6 100

20 T L L H 99.40 1445.5 20

20 T H H H 99.41 1800 0

10 T M L H 99.42 112.0 60

30 T L H M 99.44 1494.5 20

20 T M H M 99.45 1800 0

10 T H L H 99.46 1690.9 20

20 T L L M 99.47 1800 0

10 M L L M 99.48 0.6 100

30 T L L H 99.53 1800 0

10 M H H M 99.59 332.6 100

30 T L H H 99.60 14.5 100

10 M M H H 99.61 1.4 100

30 T M H M 99.62 1800 0

30 T H H H 99.63 1800 0

10 M L H M 99.66 0.2 100

30 T M H H 99.70 842.4 60

20 T M L H 99.72 1800 0

20 T H L M 99.73 1800 0

20 T M L H 99.73 1800 0

10 M M H M 99.74 2.26 100

10 M H L H 99.74 48.7 100

20 M L H H 99.74 0.7 100

10 L H H H 99.76 2.6 100

30 T H L H 99.77 1800 0

10 T H L M 99.78 1800 0

10 M M L H 99.79 16.3 100

10 L H H M 99.82 6.1 100

30 T M L H 99.82 1800 0

20 M H H H 99.83 1.6 100

20 M L L H 99.84 2.4 100

20 M H H M 99.84 847.6 60

20 T H L H 99.84 1800 0

30 T M L M 98.84 1800 0

10 L M L H 99.85 0.6 100

Table 20: General average results aggregated.
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