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1 Introduction

Trust region and line search techniques, originally introduced as a globalization
of the locally-converging Newton technique, are currently among the most popu-
lar techniques for optimizing possibly non-convex, twice-continuously differentiable
non-linear functions. In this setting, the methods typically rely on a second-order
Taylor-development of the objective function, therefore requiring the Hessian of the
objective function to be available. However, the numerical cost associated to Hessian
evaluation is usually computationally expensive, and one prefers to construct some
approximation of the Hessian, leading to so-called quasi-Newton techniques. The
most popular Hessian approximations are BFGS (Broyden, 1970, Fletcher, 1970,
Goldfarb, 1970, Shanno, 1970) and symmetric rank-1 (SR1) update (Conn et al.,
1991), both of them maintaining symmetry of the matrix and satisfying the secant
condition. The convergence to the true Hessian can however be slow, resulting in
numerous iterations during the optimization process.

This work focuses on maximum likelihood estimation problems, aiming to in-
vestigate efficient optimization algorithms to solve them. An alternative Hessian
approximation has been proposed in this context by Berndt et al. (1974). This ap-
proximation, called BHHH by reference to the authors, relies on the information
identity property, and appears to be less computationally demanding, while it better
reflects the problem structure. This explains the popularity of the approach, as illus-
trated for instance in Train (2009, Chapter 8). Unfortunately, the conditions needed
to ensure validity of the information identity are difficult to satisfy, especially as they
require a correctly specified model. In practice, these conditions are often violated,
and the estimation can fail to converge. This has led Bunch (1987) to consider the
log-likelihood problem as a particular case of generalized regression and to propose to
add a correction term to the Hessian approximation, similarly to the Gauss-Newton
method in the context of least-squares problems (Dennis Jr et al., 1981).

In Bunch’s original proposal, a single switch was to be executed from a first
quadratic model to a second one once the first one no longer converge effectively. An
issue then was to identify the iteration where the switch had to be performed. In the
approach we propose, the switch is considered at each iteration of the optimization
method, raising the question of how to select among a set of Hessian approximations
at each iteration. The present paper addresses this issue by proposing new criteria
for switching between quadratic models, either to build a subproblem in trust region
methods or to compute the search-direction in line search methods. More specifically,
we propose two new models that differ in the way the Hessian approximation is
selected at each iteration. The predictive model proposes a way to predict a Hessian

1

On Optimization Algorithms for Maximum Likelihood Estimation

CIRRELT-2014-64



approximation for the next iteration by considering the accurateness of the quadratic
models. This model applies to both trust region and line search methods. The
multi-subproblems model is designed for trust region methods only, in which several
subproblems are taken into account and solved approximately. This model selects
the Hessian approximation that decreases the most the objective function. The
proposed optimization algorithms are applied to mixed logit models and logit based
route choice models.

The paper is structured as follows. We first provide in Section 2 relevant back-
ground on maximum likelihood estimation. Section 3 briefly describes the trust
region and line search optimization methods, and Section 4 introduces different Hes-
sian approximation methods. We present our switching strategies for these two opti-
mization methods in Section 5. Section 6 introduces some basic concepts of discrete
choice theory, as it constitutes the studied framework for our numerical experiments.
Numerical assessments are reported in Section 7 and finally Section 8 concludes.

2 Maximum likelihood estimation

Maximum likelihood is one the most popular technique in statistics to estimate the
parameters of a model, given some observations assumed to be the realizations of
some random vector. More precisely, consider a random vector Y , and assume we
have N observations independently drawn from this vector. Let assume for now
that Y is continuous. Denote by f(Y |θ) the probability density function (pdf) Y ,
conditioned on a set of parameters θ. The random distribution would be completely
characterized if we knew the particular value of θ, say θ0, corresponding to the
population under interest. In the discrete case, we would consider the probability
mass function instead of the density. Since the observations are assumed to be
independent, the joint density is the product of the individual densities:

f(y1, y2, . . . , yN | θ) =
N∏
n=1

f(yn|θ).

However, we are not interested in the observations, that are known, but rather
in θ, so it is convenient to consider a function of θ that would follow the value of the
joint density, given the observations y1, . . . , yN :

L(θ | y1, y2, . . . , yN) = f(y1, y2, . . . , yN | θ),

where L(θ | y1, y2, . . . , yN) is called the likelihood function. Since we do not know θ0,
we will approximate it by computing an estimator θ̂N of its value, that can be judged

2

On Optimization Algorithms for Maximum Likelihood Estimation

CIRRELT-2014-64



as the most likely value for θ, given our observations. This is done by maximizing
the function L(θ | y1, . . . , yN) with respect to θ:

max
θ∈Θ

L(θ | y1, y2, . . . , yN), (1)

where we confine the search to the parameter space Θ, and we assume that θ0 belongs
to Θ. We assume furthermore that (1) has a unique solution, called the maximum
likelihood estimator:

θ̂N = arg max
θ∈Θ

L(θ | y1, y2, . . . , yN).

In practice, due to numerical stability issues, it is often more convenient to work
with the logarithm of the likelihood function, called the log-likelihood:

lnL(θ | y1, . . . , yN) = lnL(θ | y1, . . . , yN) =
N∑
n=1

ln f(yn|θ) (2)

or the average log-likelihood

1

N

N∑
n=1

ln f(yn|θ). (3)

The likelihood function can be denoted simply by L(θ), and its logarithm by LL(θ).
Maximizing the log-likelihood is equivalent to maximize the likelihood since the log-
arithm operator is monotonically increasing:

θ̂N = arg max
θ∈Θ

LL(θ),

assuming that the solution exists and is unique. The maximum likelihood estimator
is attractive as, under mild conditions, θ̂N almost surely converges to θ0 as N grows
to infinity, and the distribution function of

√
N(θ̂N−θ0) converges to the multinormal

distribution function with mean zero and variance-covariance matrix V . The reader
is referred e.g. to Newey and McFadden (1986) for more details.

3 Optimization algorithms

This section describes algorithms for solving the maximum likelihood (or log-likelihood)
estimation problem. This problem can be expressed as a unconstrained non-linear
optimization problem as follows:

min
x∈Rn

f(x)
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where f(x) = −L(x) or −LL(x) is a general notation of the likelihood or log-
likelihood function, and we use x instead of θ in order to follow conventional notation
in optimization. We seek optimization algorithms for this problem that behave in
the following manner:

1. Reliably converge to a local minimizer from an arbitrary starting point;

2. Do so as quickly as possible.

Algorithms which satisfy the first above requirement are called globally convergent.
Most optimization algorithms use the value of the objective function f and possi-

bly its first and second derivatives. Since the evaluation of the true Hessian is usually
computationally expensive, approximations of the Hessian are often preferred, with
the hope of retaining fast local convergence at a lower cost. We first review two
classes of optimization algorithms that satisfy the two conditions above and where
the Hessian or its approximation play an important role: line search methods and
trust region methods. Next, we describe several methods for approximating the Hes-
sian matrix.

3.1 Line search methods

Line search methods are effective iterative algorithms to compute local minimizers
in unconstrained optimization problems. Each iteration k of a line search algorithm
computes a search direction pk and a positive step length αk along the search direction
that satisfies a sufficient decrease in the function as measured by the inequality

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)
Tpk (4)

for some constant c1. This condition is the first of the Wolfe conditions, also called
Armijo condition. In the context of line search, this condition could be satisfied for
all sufficiently small values of α, so it may not be enough by itself to ensure fast
convergence, or even convergence to a local solution. Thus, another condition is
proposed, called the curvature condition:

∇f(xk + αkpk)
Tpk ≤ c2∇f(xk)

Tpk (5)

for some constant c2 satisfying c1 ≤ c2 < 1. (5) is sometimes replaced by the strong
curvature condition

|∇f(xk + αkpk)
Tpk| ≥ c2|∇f(xk)

Tpk|,
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yielding the strong Wolfe condition. Once a scalar αk has been found satisfying the
(strong) Wolfe conditions, xk+1 is set to xk + sk, where sk = αkpk is the accepted
step at kth iterate.

Most line search algorithms require the search direction pk to be a descent di-
rection, i.e. pTk∇f(xk) < 0, thus reducing the function f(x) along this direction.
In the steepest descent approach, the search direction is simply the opposite of the
gradient pk = −∇f(xk). Newton’s method or quasi-Newton methods compute pk by
minimizing the predictive quadratic model

mk(p) = f(xk) +∇f(xk)
Tp+

1

2
pTHkp, (6)

leading to pk = −H−1
k ∇f(xk), where Hk is a symmetric and non-singular matrix. In

Newton’s method, Hk is the exact Hessian ∇2f(xk), but in quasi-Newton method,
Hk is an approximation of the Hessian updated at every iteration of a line search
algorithm. When pk is defined in this way and the matrix Hk is positive definite, we
have

pTk∇f(xk) = −∇f(xk)
TH−1

k ∇f(xk) < 0

and therefore pk is a descent direction.

3.2 Trust region methods

Trust region methods approach global optimization by (approximately) minimizing,
at each iteration, a model of the objective function in a region centered at the current
iterate, defined as

Bk = {s ∈ Rn and ||s||k ≤ ∆k}.

Here ∆k is a scalar known as the trust region radius and || · ||k is some norm, possibly
iteration-dependent. An usual choice is the 2-norm. The model is typically chosen
as a quadratic approximation of the objective function, such as the n-dimensional
quadratic model mk defined in (6). In other words, to get the next iterate, the step
sk is found by solving the following constrained optimization problem:

min
s∈Bk
{mk(s)}.

This is also called the subproblem of the trust region algorithm. The exact minimiza-
tion of the subproblem is often expensive and unnecessary, so instead it can be solved
approximately using less computational time, using for instance the Steihaug-Toint
algorithm (Steihaug, 1983, Toint, 1981).
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The main idea of trust region methods is then to compare the decrease predicted
by the model minimization with the actual decrease of the objective function, com-
puting the ratio

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
.

If the agreement ρk is sufficiently good, the trial point becomes the new iterate and
the trust region is maintained or enlarged. In such a case, the iteration is said to be
successful or very successful, depending of the magnitude of ρk. If this agreement is
poor, the trust region is shrunk in order to improve the quality of the model. We
refer the reader to Conn et al. (2000) or Nocedal and Wright (2006, Chapter 4) for
more details.

4 Hessian approximation methods

Line search and trust region methods therefore typically make extensive use of the
quadratic model mk which is strongly based on the Hessian matrix Hk. Because the
computation of the exact Hessian is often too expensive, several Hessian approxima-
tion methods have been proposed. We now describe some well-known approaches.

4.1 Secant approximations

Each iteration k of the secant method uses the curvature information from the current
iteration, and possibly the matrix Hk to define Hk+1. The matrix Hk+1 is computed
to satisfy the secant equation

Hk+1dk = yk

where dk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk). In this way, Hk+1dk is a finite
difference approximation to the derivative of ∇f(x) in the direction of xk+1 − xk.
To determine Hk+1 uniquely, an additional condition is imposed that among all
symmetric matrices satisfying the secant equation in some sense, the one closest to
the current matrix Hk is selected:

min
H=HT ,Hdk=yk

||H −Hk||W

where || · ||W is the weighted Frobenius norm: ||A||W = ||W 1
2AW

1
2 ||F in which || · ||F

is defined by ||C||F =
√∑

1≤i,j≤n c
2
ij. The weight W can be chosen as a matrix
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satisfying the condition Wyk = dk. This condition allows an easy solution of the
problem above, the unique solution being

Hk+1 = Hk −
Hkdkd

T
kHk

dTkHkdk
+
yky

T
k

yTk dk
(BFGS). (7)

This update is also called the BFGS (or rank-2) update (Broyden, 1970, Fletcher,
1970, Goldfarb, 1970, Shanno, 1970), and is one of the most popular Hessian approx-
imation method.

Another well-known approximation matrix is the symmetric rank-1 (SR1) update
which maintains the symmetry of the matrix but does not guarantee positive defi-
niteness, allowing to take advantage of a negative curvature. The SR1 update also
complies with the secant equation,

Hk+1dk = yk,

with the additional requirement

Hk+1 = Hk ± δδT .

The only formula that satisfies these conditions is given by

Hk+1 = Hk +
(yk −Hkdk)(yk −Hkdk)

T

(yk −Hkdk)Tdk
(SR1).

For a detailed description see Conn et al. (1991). Since this Hessian approximation
is not necessarily positive definite, the quadratic model (6) can be unbounded below.
This is not an issue for trust region methods as the search space is bounded at each
iteration, but can lead to failure of line search methods, requiring modifications of
the algorithms (Öztoprak and Birbil, 2011).

4.2 Statistical approximation

When maximizing the log-likelihood to estimate model parameters, a specific Hessian
approximation can be derived, reflecting the problem structure. If the model is
correctly specified and assuming that θ0 is the true parameters vector, we have the
information matrix equality

I(θ0) = −E[∇2f(y|θ0)],
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where I(θ0) is the Fisher information matrix, defined as the covariance matrix of the
score at θ0, and the expectation is taken over the population. The score is defined
as

g(y|θ) = ∇θ ln f(y|θ),
leading to the following expression for the information matrix

I(θ0) = E[∇θ ln f(y|θ0)∇T
θ ln f(y|θ0)]

where T is the transpose operator. For a finite sample, the information matrix can
be consistently estimated as

IN(θ∗N) =
1

N

N∑
n=1

∇θ[ln f(yn|θ∗N)∇θ ln f(yn|θ∗N)T ].

Berndt et al. (1974) suggest to extrapolate on the information identity, using the
opposite of the (sample) information matrix as the Hessian approximation:

HBHHH(θ) = −IN(θ). (8)

This approximation is known as the BHHH approximation or statistical approxima-
tion, and, being positive definite, can be used at each iteration of the trust region
or line search algorithms. It only requires the information available at the current
iteration, and is cheap to obtain. Moreover, as it relies on the specific properties of
the maximum log-likelihood problem, the BHHH approximation is often closer to the
true Hessian than the secant approximations, especially during the first iterations.
The secant approximations only asymptotically converge, under some conditions, to
the true Hessian with the number of iterations. However, two issues affect the use
of the BHHH approximation. First, the information matrix equality is only valid
asymptotically with the number of observations, at the true parameters. Second, it
requires a correctly specified model, which can be very difficult to obtain. Therefore,
the BHHH approximation may not converge to the Hessian of the log-likelihood ob-
jective function, sometimes leading to poor performances, especially when close to
the solution.

4.3 Corrected BHHH approximations

A closer look at the log-likelihood Hessian exhibits more clearly the rule of the
BHHH approximation, and suggests some corrective procedures to enforce conver-
gence. Writing again the log-likelihood function

LL(θ) =
1

N

N∑
n=1

ln f(yn|θ)
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we can derive the Hessian as

∇2LL(θ) = − 1

N

N∑
n=1

∇f(yn|θ)∇f(yn|θ)T

f 2(yn|θ)
+

1

N

N∑
n=1

∇2f(yn|θ)
f(yn|θ)

. (9)

Using (8), (9) can be rewritten as

∇2LL(θ) = HBHHH(θ) + A(θ),

with

A(θ) =
1

N

N∑
n=1

∇2f(yn|θ)
f(yn|θ)

.

The computation of A(θ) requires the calculation of N individual Hessian matrices,
which is often very expensive. A(θ) however can be approximated by investigating its
structure, as done in Bunch (1987). More precisely, assuming that at iteration k the
matrix Hk is available to approximate the next Hessian Hk+1, the new approximation
can be obtained by specifying an appropriate secant condition, which takes the form

Hk+1dk = yk, (10)

in which Hk+1 is a new matrix approximation. We can write

Hk+1 = HBHHH(θk+1) + Ak+1,

where Ak+1 is an approximation of A(θk+1).
Bunch (1987) proposes two secant equations to approximate A(θ). First, (10)

gives (HBHHH(θk+1) +Ak+1)dk = yk, and by setting ȳ1
k = yk −HBHHH(θk+1)dk, this

yields the secant equation
Ak+1dk = ȳ1

k (11)

which can be used to approximate matrix Ak+1. The second secant equation is
derived by approximating each individual Hessian matrix ∇2f(yn|θ). More precisely,
we note that

∇2f(yn|θk)dk ≈ ∇f(yn|θk+1)−∇f(yn|θk).

Substitution into (9) gives

A(θk)dk ≈
1

N

N∑
n=1

∇f(yn|θk+1)−∇f(yn|θk)
f(yn|θk)

9

On Optimization Algorithms for Maximum Likelihood Estimation

CIRRELT-2014-64



So if we define ȳ2
k = 1

N

∑N
n=1

∇f(yn|θk+1)−∇f(yn|θk)

f(yn|θk)
, the second secant approximation

can be written as
Ak+1dk = ȳ2

k. (12)

Bunch (1987) suggests to update Ak+1 with the BFGS method, but any secant
approximation can be used, for instance the SR1 update.

5 Model switching strategies

The objective of this work is to obtain computationally efficient optimization meth-
ods for solving the maximum likelihood estimation problem. We propose approaches
based on the line search and the trust region methods as these two methods meth-
ods are globally convergent, using a quadratic model of the log-likelihood function.
As previously discussed, several Hessian approximation methods are available, with
performances that may vary in different phases of the optimization process. Some
authors have considered switching among Hessian approximations during the opti-
mization. For example, Phua and Setiono (1992) proposed a switching algorithm
based on the condition number of the secant approximation matrices. Bunch (1987)
proposed an approach called model switching which initially uses the BHHH approx-
imation and then switches to a corrected BHHH approximation in the last phase
of the optimization process. This section introduces new and switching strategies
adapted to line search and trust region methods. At first we present, in the fol-
lowing, a general framework for the switching models so that our algorithms can be
described explicitly.

We denote by Hk the set of available Hessian approximations to select from at
the kth iteration of an optimization algorithm:

Hk = {H i
k , i = 1, . . .},

where H i
k refers to a specific Hessian approximation. For example the matrix ob-

tained by the BHHH approximation can be denoted by H1
k , the matrix obtained by

the BFGS method can be denoted by H2
k , etc. Each iteration of an optimization

algorithm with model switching executes one more step in which one Hessian ap-
proximation is chosen from Hk in order to compute the search direction in a line
search algorithm or to define the subproblem in a trust region algorithm. The next
two sections describe our switching strategies.
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5.1 Multi-subproblems model

Each iteration of a trust region algorithm defines a subproblem mins∈Bk{mk(s)}
where Bk and mk(s) are respectively the trust region vectors and a quadratic model
used to approximate the objective function at iteration k. Solving approximately
this subproblem determines the current step. Given a set of Hessian approximations
Hk at each iteration, there is a set of corresponding subproblems:

min
s∈Bk

mi
k(s) = min

s∈Bk

{
f(xk) +∇f(xk)

T s+
1

2
sTH i

ks

}
, H i

k ∈ Hk. (13)

We solve approximately all the available subproblems in order to obtain the set of
steps {sik} and to choose a step si

∗

k which satisfies

i∗ ∈ arg min
i

f(xk + sik). (14)

This approach evaluates the decrease in the objective function made by each pro-
posed step and selects the subproblem which maximizes this decrease. A trust region
method with the multi-subproblems switching strategy is described in Algorithm 1.
We note that Algorithm 1 requires solving all the subproblems, therefore calculating
more than one objective function value at each iteration. In the numerical experi-
ments section, we explicit the stopping criteria used.

5.2 Predictive model

Consider a set of models as in (13) and denote by δik(s) the absolute difference be-
tween the quadratic model mi

k(s) and f(xk + s). We call δik(s) the approximation
error of the quadratic model mi

k(s). The predictive model uses this quantity to eval-
uate the accurateness of the quadratic model and to select a Hessian approximation
for the next iteration. More precisely, at the end of an iteration k with step sk of some
optimization algorithm (either trust region of line search), and given that the objec-
tive function f(xk + sk) is already computed, the approximation errors associated
with different Hessian approximations can be computed as

δik(sk) = |f(xk + sk)−mi
k(sk)| =

∣∣∣∣f(xk + sk)− f(xk)− sTk∇f(xk)−
1

2
sTkH

i
ksk

∣∣∣∣ .
Consequently, the next Hessian approximation H i∗

k+1 is predicted by minimizing this
error

i∗ = arg min
i
{δik(sk)}. (15)

11
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Algorithm 1 Trust region method with the multi-subproblems switching model

Step 0. Initialization: Given an initial point x0, an initial trust region with
radius ∆0 and constants η1, η2, γ which satisfy

1 > η1 > η2 > 0 and 1 > γ1 > γ2 > 0,

choose an initial matrix H0 and set k = 0.

Step 1. If stopping criteria are met, stop. Otherwise, go to Step 2.

Step 2. Define a set of Hessian approximations Hk.

Step 3. Step calculation: Calculate the set of steps {sik, i = 1, 2 . . .} by solv-
ing approximately all the subproblems.

min
s∈Bk
{mi(s), H i

k ∈ Hk}.

Determine the best step si
∗

k by solving (14).
Compute the ratio ρk

ρk =
f(xk)− f(xk + si

∗

k )

f(xk)−mk(si
∗
k )

.

If ρk > η2 set xk+1 = xk + sk, otherwise set xk+1 = xk.

Step 4. Trust region radius update: Update the trust region radius as fol-
lows:

∆k+1 =


max{2‖sk‖,∆k} If ρk ≥ η1

γ1∆k If η1 > ρk ≥ η2

γ2∆k If ρk ≤ η2

Set k ← k + 1 and go to Step 1.

12
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The predictive switching strategy has the advantage of not requiring any new
evaluation of the objective function. The objective function for probabilistic choice
models is often costly to evaluate, particularly with large real data sets. Avoiding the
evaluation of this function improves the computational efficiency of the optimization
methods. A trust region algorithm with the predictive switching strategy is described
in Algorithm 2. A line search algorithm with the predictive switching strategy is
described in Algorithm 3.

Algorithm 2 Trust region method with the predictive switching model

Steps 0–2. Identical to Algorithm 1.

Step 3. Step calculation: Evaluate the step sk by solving approximately the
subproblem

min
xk+s∈Bk

mk(s).

Evaluate ρk

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
.

If ρk > η2 set xk+1 = xk + sk, otherwise set xk+1 = xk.

Step 3. Hessian approximation prediction: The next Hessian approxima-
tion H i∗

k+1 is predicted by solving (15). Set Hk+1 = H i∗

k+1.

Step 4. Trust region radius update: Identical to Step 4 of Algorithm 1.
Set k ← k + 1 and go to Step 1.

6 Discrete choice theory

The proposed switching techniques have been applied on the estimation of various
discrete choice models, so before describing our numerical experiments, we provide
a short introduction to discrete choice theory.

6.1 Discrete choice models

Discrete choice theory examines how people make decisions among a finite number of
possible choices. More specifically, we consider a set ofN individuals, each one having
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Algorithm 3 Line search method with the predictive switching model

Step 0. Initialization: Choose an initial matrix H0 and set k = 0.

Step 1. If stopping criteria are met, stop. Otherwise, go to Step 2.

Step 2. Search direction calculation: Compute search direction pk which
satisfies the equation:

Hkpk = −∇f(xk).

Step 3. Step calculation: Compute step length αk which satisfies the Wolfe
conditions and set xk+1 = xk + αkpk.

Step 4. Hessian approximation prediction: Predict the next Hessian ap-
proximation H i∗

k+1 using (15). Set Hk+1 = H i∗

k+1.

Set k ← k + 1 and go to Step 1.

to choose one alternative within a finite set. The Random Utility Maximization
(RUM) theory (McFadden, 1973) assumes that each individual n associates to each
alternative i within a choice set Cn an utility Uni. This utility consists of two parts:
a deterministic part Vni known by the modeler and an uncertain part εni which is
known to individuals but unknown to modelers. The instantaneous utility is

Uni = Vni + εni.

The deterministic term Vni can include attributes of the alternative as well as socio-
economic characteristics of the individual. In general a linear-in-parameters is used:
Vni = βTxni where β is a vector of parameters to be estimated and xni is the vector
of attributes of alternative i as observed by individual n. The decision maker aims to
maximize the instantaneous utility so the probability that an alternative i is chosen
by individual n is

P (i|n,Cn) = P (Uni ≥ Unj, ∀j ∈ Cn) = P (Vni + εni ≥ Vnj + εnj, ∀j ∈ Cn)

Different assumptions for the random terms εnj, j ∈ Cn can lead to different types
of discrete choice models. A popular model is the multinomial logit (MNL) model
which assumes that the random terms are independent and identically distributed
(i.i.d.) Extreme Value type I with mean µ and scale factor λ (often normalized to
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one), characterized by the distribution function

F (x) = e−e
−λ(x−µ)

.

The choice probability is then

PL(i|n,Cn) =
eλVni∑

j∈Cn e
λVnj

. (16)

Such model can be estimated by maximizing the log-likelihood function over the
parameters vector β:

max
β

LL(β) =
1

N

N∑
n=1

lnPL(i|n,Cn).

The MNL model provides a simple closed form for the choice probabilities. It
however has an important limitation which is the independence of irrelevant alterna-
tives (IIA) property (see for instance Train, 2009). Other models have been proposed
in order to relax this limitation. Examples are the nested logit model (Ben-Akiva and
Lerman, 1985), the mixed logit model (McFadden, 1978) and the cross-nested logit
models (McFadden, 1981, Vovsha and Bekhor, 1998). In the following we briefly de-
scribe the mixed logit and logit route choice models, which are used in our numerical
tests.

6.2 Mixed logit models

Mixed logit models have been known for many years but have become popular with
McFadden and Train (2000). They obviate the three limitations of standard logit
by allowing for random taste variation, unrestricted substitution patterns, and cor-
relation in unobserved factors over time (Train, 2009). Mixed logit models can be
derived under a variety of different behavioural specifications, where each derivation
provides a particular interpretation. The first application of Mixed logit was ap-
parently the demand for electricity-using goods (Electric Power Research Institute
(1977)).

Using the random-terms formulation, we here assume that the vector of model
parameters β is itself derived from a random vector ω and a parameter vector θ,
which we express as β = β(ω, θ). ω typically specifies the random nature of the
model and the vector parameters θ quantifies the population characteristic for the
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model. The associated unconditional probability is obtained by integrating (16) over
ω:

PML(i|n,Cn, θ) = EP [PL(i|n,Cn, ω, θ)] =

∫
PL(i|n,Cn, ω, θ)f(ω)dω (17)

where P is the probability measure associated to ω, E is the expectation operator
and f is the density function. When Tn observations are available par individual,
the correlation is often captured by assuming that the parameters β do not vary for
the same individual, while being randomly distributed throughout the population
(Revelt and Train, 1998). (17) then becomes

PML(i|n,Cn, θ) = EP

[
Tn∏
t=1

PL(it|n,Cn, ω, θ)

]
, (18)

where it is the tth observed choice.
It is usual to replace the expectation by some approximation, typically obtained

by sampling over ω. (18) becomes

PML(i|n,Cn, θ) ≈ SPR
ML(i|n,Cn, θ) =

1

R

Rn∑
ri=1

Tn∏
t=1

PL(it|n,Cn, ωri , θ)

where Rn is the number of random draws associated with individual n. The sample
can be generated by standard Monte Carlo or quasi-Monte Carlo techniques, though
there is no clear advantage of one approach in this context (Munger et al., 2012).

6.3 Logit based route choice models

Discrete choice models are also used for analyzing and predicting route choices in
various transport applications. The route choice problem in real networks is charac-
terized by a very large number of path alternatives and in practice it is not possible
to enumerate all paths connecting a given origin-destination pair in a real network.
In order to consistently estimate a route choice model, either paths have to be sam-
pled (Frejinger et al., 2009), or the recursive logit (RL) model recently proposed by
Fosgerau et al. (2013) can be used. These two modeling approaches have in common
that they are based on the MNL model, but we will restrict ourselves to path-based
models in our numerical tests.

When the path choice sets are sampled, for each individual n and a sampled
choice set Dn, the probability that a path σ is chosen is

P (σ|n,Dn) =
eVnσ+lnπ(Dn|σ)∑
j∈Dn e

Vnj+lnπ(Dn|j)
,

16

On Optimization Algorithms for Maximum Likelihood Estimation

CIRRELT-2014-64



where Vnj is the deterministic utility of path j observed by the individual n and
lnπ(Dn|j) is the correction for sampling bias. π(Dn|j) is the probability of sampling
choice set Dn given that j is the chosen alternative (Frejinger et al., 2009). Mai
et al. (2014) show that when the models are correctly specified, the information
matrix equality holds if and only if the sampling corrections π(Dn|j), j ∈ Dn, are
added to the choice probabilities.

In order to deal with the overlapping of paths in the network, the path size
attribute has been proposed in Ben-Akiva and Bierlaire (1999) as an additional
deterministic attribute for the utilities. Frejinger et al. (2009) propose a heuristic
sampling correction of the path size attribute called expanded path size (EPS). With
the EPS attribute, the path choice probability is

P (σ|Dn) =
eVnσ+βPSEPSn(σ)+lnπ(Dn|σ)∑
j∈Dn e

Vnj+βPSEPSn(σ)+lnπ(Dn|j)

where EPSn(σ) is the EPS attribute of path σ observed by individual n. The EPS
attribute can be computed based on the length of links lying of the corresponding
path and the expanded factors (Frejinger et al., 2009).

We note that the model is based on the MNL model in spite of the fact that
error terms are believed to be correlated due to the physical overlap among paths,
the EPS attribute allows to partly address this issue. If the random terms are
correlated, the model is misspecified, leading to potential issues when relying on the
BHHH technique. Modeling issues can also be present in the deterministic part of
the utilities. The reader can consult Mai et al. (2014) for a discussion about the
invalidity of the information matrix equality for logit based route choice models.

7 Numerical assessment

7.1 Data sets

In order to evaluate the performance of the various optimization algorithms we es-
timate models on three real data sets, two used with mixed models (SP2 and IRIS)
and one feeding two route choice models (PS and PSL). Table 1 gives the number of
observations, along with the number of individuals (in parentheses), the number of
alternatives, and the number of parameters to be estimated for the four considered
models. We now describe these data sets briefly.
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Data set SP2 IRIS PS PSL
Number of observations 2466 (2740) 2602 (871) 1832 (1832) 1832 (1832)
Number of alternatives 2 8 50 50
Number of variables 9 19 4 5

Table 1: Models

7.1.1 Mixed logit

The discrete choice data tests have been conducted on two real data sets: Cybercar
(Cirillo and Xu, 2010) and IRIS (Bastin et al., 2010). Cybercar is a data set that
has been collected in April 2008 at the Baltimore/Washington International Airport
and concerns the operation of an automated vehicle technology called Cybercars.
Our tests utilize only part of this data set which we refer to as SP2. IRIS refers
to a regional transport model in Belgium where data have been collected on the
propensity to switch from car to public transportation. We use this data set to
evaluate the performance of the switching algorithms on a large-scale model, where
statistical approximation do not work well. Seven of the explanatory variables in
the IRIS model are randomly distributed, with two of them assumed to be normal
or log-normal (congested and free flow time coefficients) and the remaining five are
assumed to be normal. When the congested and free flow time coefficients have
normal distribution we identify this model as the IN model, when they have a log-
normal distribution the model is identified as the ILN model.

7.1.2 Route choice

The route choice data tests have been collected on the Borlänge network in Sweden
which is composed of 3077 nodes and 7459 links. The path sample consists of 1832
trips corresponding to simple paths with a minimum of five links. There are 466
destinations, 1420 different origin-destination (OD) pairs and more than 37,000 link
choices in the sample. The route choice data were collected by GPS monitoring,
therefore the socio-economic information about the drivers is not available. We note
that the same data have been used in other route choice modeling articles (Fosgerau
et al., 2013, Frejinger, 2007). We use two path-based models with and without
the EPS attribute (denoted by PL and PSL respectively). For each observation we
sample a choice set of 50 draws. See Frejinger et al. (2009) and Mai et al. (2014) for
details on the model specifications and estimation results.
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7.2 Performance comparisons

We compare the performance of switching approaches with trust region and line
search algorithms using a single Hessian approximation. For maximum likelihood es-
timation, the cost of model minimization in trust region methods or search direction
computation in line search algorithms is typically negligible compared to the evalua-
tion cost of the log-likelihood. Indeed, the problem dimension is usually small while
the number of observations is large, as shown in Table 1. Therefore, the number of
objective function evaluations captures most of the computational cost, and will be
used to compare performance among algorithms. As the purpose of the comparisons
is to evaluate the impact of different Hessian approximations on the performance of
the optimization algorithms, the estimation results as well as the analysis on the ef-
fects of the Monte-Carlo methods will not be reported. Note that 1000 Monte Carlo
random draws per individual is used for the mixed logit models. We use the Monte
Carlo method to sample choice sets for the estimation of the route choice models
(see for instance Mai et al., 2014). All the reported numerical results are based on 10
independent simulations. The numerical evaluations for the mixed logit models have
been carried out using the package AMLET (Bastin et al., 2006). The optimization
algorithms to estimate the route choice models have been implemented in MATLAB.

When a single Hessian approximation is used, trust region algorithms are imple-
mented either with the BHHH, the BFGS or the SR1 Hessian approximation, and
line search algorithms are implemented either with the BHHH or the BFGS. Line
search algorithms have not been implemented with SR1 as it does not guarantee
descent search directions. For the switching models, we have implemented trust re-
gion algorithms with the multi-subproblems and the predictive models, and a line
search algorithm with the predictive model. In order to facilitate our discussions,
we denote by BHHHcorr1-BFGS and BHHHcorr2-BFGS the corrected BHHH approx-
imations using respectively (11) and (12), and where Ak+1 is updated by the BFGS
method. We denote by BHHHcorr1-SR1 and BHHHcorr2-SR1 the SR1 approximations
based respectively on (11) and (12).

We also compare algorithms with two Bunch’s switching approaches, which use a
single switch from the BHHH to the BHHHcorr1-BFGS or to
BHHHcorr2-BFGS. In Bunch’s model switching, the algorithms start with the BHHH
and do not switch to another approximation if A(θk) is small, meaning that a good
starting guess is provided. It is however not the case for our data sets. The algorithms
may take few iterations to build up Ak and switch to a corrected approximation for
the remainder of the optimization procedure. Bunch however does not explain ex-
plicitly when the switch is performed. In our implementation of Bunch’s approaches,
we perform the switch when close to the solution. More precisely, the switch to an
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alternative approximation occurs when the norm of the gradient is less than 10−3.
We use the strong Wolfe conditions to compute the search directions for the line

search algorithm while the sub-problems are solved by the Steihaug-Toint algorithm.
For the line search algorithms, the chosen parameters for the strong Wolfe conditions
are c1 = 10−4 and c2 = 0.9. It is also a typical choice in practice. For the trust region
algorithms, different parameters are chosen between the mixed logit and route choice
models in order to obtain better performance (i.e. lower number of iterations) in each
context. Parameters η1 = 0.9, η2 = 0.01 are chosen for the mixed logit models and
η1 = 0.75, η2 = 0.05 for route choice models. We also assign γ1 = 0.7, γ2 = 0.5 for
all the models.

Each iteration of our switching models allows to switch between several Hessian
approximations, hence, the specification of a set of Hessian approximations for each
model. For the multi-subproblems models, as the number of function evaluations
depends on the number of matrices in the set, we only selected two approximations:
BHHH and BHHHcorr1-BFGS. For the trust region combined with the predictive
model, we selected three Hessian approximations: BHHH, BHHHcorr1-BFGS and
BHHHcorr1-SR1. BHHHcorr2-SR1 has been selected for the predictive model in order
to take advantage of a negative curvature. BHHH and BHHHcorr1-BFGS approxi-
mations have been selected for the line search algorithm with the predictive model,
SR1 was not selected since it does not always produce a descent direction. We note
that the performance of the BHHHcorr1- and BHHHcorr2- are very similar, therefore
they are not included in a same set of Hessian approximations.

Considering the two switching models, the two optimization algorithms and sev-
eral Hessian approximations, we have the following optimization algorithms:

[1] TR-BHHH: Trust region algorithm with BHHH

[2] TR-BFGS: Trust region algorithm with BFGS

[3] TR-SR1: Trust region algorithm with SR1

[4] TR-BUNCH1: Bunch’s switching approach with BHHHcorr1-BFGS

[5] TR-BUNCH2: Bunch’s switching approach with BHHHcorr2-BFGS

[6] TR-PRED: Trust region algorithm with the predictive model

[7] TR-MULTI: Trust region algorithm with the multi-subproblems model

[8] LS-BHHH: Line search algorithm with the BHHH
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[9] LS-BFGS: Line search algorithm with the BFGS

[10] LS-PRED: Line search algorithm with the predictive model

We stop any algorithm if one of the conditions described in Table 2 is satisfied,
declaring a success or a failure depending on the case encountered. Parameters
MAX-ITER = 300 and ε = 10−5 were chosen for all the algorithms.

Criteria Stopping test Description
∇f(xk) ≤ ε GRADIENT Successful

∇̄f(xk)
def
= maxc

(
|[∇f(xk)]c|,max{[xk]c,1.0}

max{|f(xk)|,1.0}

)
≤ ε RELATIVE GRADIENT Successful

k ≥ MAX-ITER TOO MANY ITERATIONS Fail
0 < xk+1 − xk ≤ ε STEP SIZE Fail
∆k ≤ ε TRUST REGION RADIUS Fail

Table 2: Summary of stopping conditions

Table 3 reports average numbers of function evaluations for all the algorithms.
For the sake of comparison we report the average number of iterations in parentheses
and the number of failures in brackets. The quantities are reported based only on
successful runs and the number in bold in each column is the best result. Among
trust region algorithms with a single Hessian approximation, results show that for
the SP2 and IN models, BHHH approximation compared better than the secant
approximations (i.e. BFGS and SR1), which explains why BHHH is often the favorite
approach for MLE. For these models, the algorithms with the BHHH method always
reach the optimal solution rapidly. Alternatively, the secant approximations (BFGS
and SR1) perform much better than the BHHH for the route choice models when
used in the trust region algorithm. This can partly be explained by the violation
of the information matrix equality, which has been shown in Mai et al. (2014). For
the most complex model ILN, the TR-BHHH algorithm has failed to converge for
9 of the 10 runs. In this case, the algorithm rapidly converges to the neighborhood
of the solution, but then progresses very slowly close to the optimum, finally it fails
to satisfy one of the successful stopping conditions. The norms of the gradient and
relative gradient are always greater than 10−4 since the threshold for our algorithms
is ε = 10−5. We however note that for the successful case the TR-BHHH performs
the best compared to the other algorithms. These results translate a well-known
behavior of the BHHH approximation as it may not converge to the true Hessian
due to misspecification issues. On the contrary, there are no failures for the line
search algorithms, even for the ILN model. Line search algorithms present the same
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trends than trust region methods between BFGS and BHHH, but are sometimes
faster, sometimes slower.

Algorithms SP2 IN ILN PS PSL

T
ru

st
re

gi
on

TR-BHHH 27.0 (27.0) 23.9 (23.9) 37.0∗ (37.0) [9] 40.5 (40.5) 58.2 (58.2)
TR-BFGS 52.9 (52.9) 155.1 (155.1) 147.6 (147.6) 19.6 (19.6) 22.5 (22.5)
TR-SR1 42.1 (42.1) 241.5 (241.5) 238.4∗(238.4) [2] 24.5 (24.5) 25.4 (25.4)
TR-BUNCH1 20.6 (20.6) 33.9 (33.9) 57.4 (57.4) 51.3 (51.3) 51.0 (51.0)
TR-BUNCH2 20.9 (20.9) 34.5 (34.5) 57.6 (57.6) 51.3 (51.3) 51.0 (51.0)
TR-PRED 14.2 (14.2) 21.8 (21.8) 54.7 (54.7) 20.6 (20.6) 19.6 (19.6)
TR-MULTI 46.4 (23.2) 40.4 (20.2) 77.4 (38.4) 33.2 (16.6) 31.4 (15.7)

L
in

e
se

ar
ch

LS-BHHH 28.1 (14.6) 20.1 (17.6) 78.8 (46.2) 22.6 (22.1) 22.2 (21.7)
LS-BFGS 31.8(15.8) 126.0(98.9) 202.5 (142.0) 19.0 (17.3) 19.1 (17.6)
LS-PRED 34.7 (15.1) 20.5 (18.1) 70.5 (43.8) 22.6 (22.1) 22.2 (21.7)

Table 3: Performance comparison

Among the switching algorithms, for the mixed logit models, the two Bunch’s
approaches perform similarly and they are generally better than the trust region
algorithms with a single Hessian approximation. For the route choice models they are
however slower compared to other algorithms. Our predictive model with line search
and trust region algorithms is slightly better than Bunch’s switching algorithms as
well as the classical algorithms. The results show that the predictive algorithms are
always competitive, both for the trust region and the line search version, while the
TR-MULTI is the slowest. This is expected as the TR-MULTI algorithm requires
two evaluations of the objective function at each iteration, leading to double the
number of function evaluations, while the other trust region strategies only compute
the objective function once per iteration. In other words, the TR-MULTI method is
usually more effective in terms of iterations, while the total cost, involving the cost
per iteration, is higher.

In all previous experiments, a standard starting point (x0 = 0 for the mixed logit
models and x0 = (−3, . . . ,−3) for the route choice models) was chosen as the initial
point of the iterative process. To evaluate the performance of the algorithms in diffi-
cult cases, we perform additional experiments on the ILN problem, the most complex
model, with a starting point chosen far away from the optimum. Table 4 reports
the success rate of the simulations for ILN when the initial vector of parameters is
unusual x0 = (20.0, -25.0, -20.0, 13.0, 21.0, 30.0, -14.0,-21.0, -13.0, -1.0, 31.0, -8.0,
-22.0, 0.0, 4.0, -32.0, 11.0, -11.0, 32.0, -1.5, 12.0,15.2,-11.5, -0.6, 32.7). Note that the
optimal parameter of this model is x̂ ≈ (-1.1,-5.5, 4.9, -7.3, 6.5, -0.64, -2.8, 1.0, -2.97,
-1.10, 0.27, -0.52, 0.216, 0.24, 3.21, -1.14, -1.84, -3.28, -2.83, -2.45, 2.51, -2.71, 1.86,
1.37, 1.91), where the optimal log-likelihood value is approximately −3.15, much
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higher than the initial log-likelihood value of −275.28.
In Table 4, the TR-MULTI algorithm has a success rate of 50%, a clear dominance

over the other algorithms. Simulations fail in Table 4 mostly on the “STEP SIZE”
condition (see Table 2), where algorithms stop at points which are very far from the
optimal solution. We also observed some failures due to the “TOO MANY ITER-
ATIONS” condition (each estimation was limited to 500 iterations). Interestingly,
two failure cases due to the “TOO MANY ITERATIONS” condition had a final
log-likelihoods very close to the optimum. These failures belong to the TR-BHHH
algorithm.

None of the line search algorithms converged, failing to compute a step size that
satisfies the strong Wolfe conditions at the beginning of the optimization process
(after only few iterations). This observation suggests that the trust region algorithms
are more robust than the line search algorithms.

Algorithms Successful cases

Trust region

TR-MULTI 5/10
TR-PRED 3/10
TR-BUNCH1 3/10
TR-BHHH 0/10
TR-BFGS 1/10
TR-SR1 0/10

Line search
LS-BHHH 0/10
LS-BFGS 0/10
LS-PRED 0/10

Table 4: Rate of successful simulations for a difficult case (ILN)

In Bunch’s approaches, switching from BHHH to a corrected BHHH approxima-
tion only occurs once during the optimization process. In Table 5 we report the
average number of switching over 10 simulations for our three switching models TR-
PRED, TR-MULTI and LS-PRED. In this table we observe a small average number
of switches for the LS-PRED, which means that LS-PRED often uses BHHH during
the all the optimization process or switched one or two times to a corrected BHHH
and then uses a fixed approximation scheme until convergence. The contrast with
the number of switches in the trust-region methods can be partly explained as the
possibility for switching is considered once per iteration, but the trust region methods
typically requires more, but cheaper, iterations than line search techniques. More-
over, the additional efforts made at each iteration of the line search algorithm to
satisfy the Wolfe conditions provide a step that is often more efficient for the model
under consideration, limiting the potential for other models to provide a higher func-
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tion decrease at the new iterate. This suggests that the trust region approach is more
suited for switching strategies.

Algorithms SP2 IN ILN PS PSL

Trust region
TR-PRED 5.3 4.7 18.4 6.4 5.7
TR-MULTI 6.5 7.8 11.5 8.4 7.7

Line search LS-PRED 1.4 1.0 0.9 1.0 1.0

Table 5: Average number of switches per estimation in the switching models

8 Conclusion

In this paper, we have reviewed standard trust region and line search algorithms for
maximum likelihood estimation, with emphasis on the use of Hessian approximation
methods to determine the step at each iteration. We have explored the possibility
of switching between various Hessian approximations throughout the optimization
process. In particular, we propose a predictive approach, aiming to determine the
most suited model between several quadratic approximations at each iteration. This
approach does not require any new computation of the objective function. We have
also proposed the multi-subproblems model which is based on the fact that, at each
iteration of a trust region algorithm, we can solve more than one sub-problem to
better determine a step. This approach however requires additional evaluations of
the objective function which depends on the size of the set of Hessian approximations
considered at each iteration.

We have applied our algorithms to mixed logit and logit based route choice models
based on real data sets. The predictive model outperforms the switching approaches
proposed by Bunch (1987) as well as the classical optimization algorithms. The multi-
subproblems requires large numbers of function evaluations but it has the highest
successful rates when solving a complex mixed logit model with an unusual starting
point.

In future research we plan to extend further the switching models to use informa-
tion from several iterations to improve the accurateness of the switching strategies,
and to combine this approach with adaptive sampling strategies for mixed logit mod-
els (Bastin et al., 2006). We also emphasize that the proposed algorithms can be
applied to least square problems too, extending the method proposed by (Dennis Jr
et al., 1981). Moreover, we plan to extend the switching algorithms to other classes
of non-linear optimization problems.
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