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1 Introduction

Classical facility location aims at striking a balance between facility construction costs and transportation
costs to satisfy customer demands. Operations research practitioners therefore contributed a considerable
variety of extensions to classical models to represent real world applications in a more realistic manner,
involving the location of hospitals (Vahidnia et al., 2009), telecommunication hubs (Chardaire et al., 1996),
schools (Antunes and Peeters, 2001), manufacturing and distributing systems (Min and Melachrinoudis,
1999), and many others. The dynamic adjustment of the capacities over a planning horizon has often been
a central issue. Problem extensions have been proposed to allow for the expansion and the reduction of
capacity along time (Luss, 1982; Antunes and Peeters, 2001), temporary facility closing (Chardaire et al.,
1996; Dias et al., 2006) and the relocation of capacities from one location to another. Other important
extensions acknowledged uncertainty in the customer demands (Schütz et al., 2008) or the production ca-
pacities themselves (for references, see, e.g., Snyder, 2006). Given the difficulty to solve those problems
for real world sized instances, many solution algorithms have been suggested. Exact methods have been
proposed for classical variants (Wentges, 1996; Görtz and Klose, 2012), whereas heuristics have proved to
be effective for more complex problem variants. Due to the complicated structure of the latter, only a few
works have applied methods that provide a bound on the solution quality, such as Benders decomposition
and Lagrangian relaxation (Dias et al., 2006; Kim and Kim, 2013). More complex problem variants have
therefore been solved by methods such as sophisticated local search (Lee and Dong, 2008; Melo et al., 2011),
which, by themselves, do not allow for an assessment of the solution quality.

In this paper, we consider a multi-period facility location problem with multiple commodities and multiple
capacity levels that has recently been introduced and applied in the forestry sector by Jena et al. (2012). In
the application considered by the authors, a logging company must locate camps to host its workers. The
problem involves several different ways to adjust capacity, namely, the expansion of capacity, the temporary
closing of parts of the facility and the relocation of facilities from one location to another. Many of these
features have already been discussed in early literature. The first multi-period models include those by
Ballou (1968) and Wesolowsky (1973). Multiple commodities have also been considered by authors such as
Geoffrion (1974) and Warszawski (1973). Modular capacity levels have often been treated by offering a choice
of facility size (Lee, 1991; Shulman, 1991; Correia and Captivo, 2003; Gouveia and Saldanha da Gama, 2006),
whereas capacity expansion has been discussed in detail by Luss (1982) and has been found to be a crucial
feature in many applications (Antunes and Peeters, 2001; Canel et al., 2001; Melo et al., 2006). Wesolowsky
and Truscott (1975) have been among the first to consider simple relocation of facilities, followed by several
others (Min and Melachrinoudis, 1999; Brotcorne et al., 2003; Melo et al., 2006). While the temporary closing
of entire facilities has been modeled in several studies (Van Roy and Erlenkotter, 1982; Chardaire et al., 1996;
Canel et al., 2001; Dias et al., 2006), the problem introduced by Jena et al. (2012) was the first to consider
the partial closing and reopening of facilities along time. The authors propose a flow based formulation
that uses a network structure for each facility location to manage the size of available capacity and the
size of temporarily closed capacity of the facility. An integer flow, representing the number of open and
closed capacity levels, allows for the closing of open capacity and the reopening of closed capacity. Another
feature of the problem is the use of the so-called round-up capacity (RUC) constraints, which imply integer
rounding of the total demand for each commodity allocated to the same facility. While this characteristic
may correspond to the practice in many industries, to the best of our knowledge, the authors were the first
to explicitly model this type of capacity constraints. In the following, we will refer to this problem as the
Dynamic Facility Location Problem with Relocation and Partial Facility Closing (DFLP RPC) with RUC
constraints.

The contribution of this paper is twofold. We first propose a new formulation for the DFLP RPC with
RUC constraints that is based on a recently introduced modeling technique (Jena et al., 2014a) and yields
integrality gaps more than ten times smaller than those of the formulation proposed by Jena et al. (2012). The
use of this modeling technique also enables the formulation to make use of a more detailed cost structure. We
then develop an efficient heuristic based on Lagrangian relaxation. The heuristic extends the one presented
by Jena et al. (2014b) and adapts it to the new problem features, in particular to the partial closing of
facilities, the relocation of facilities, and the RUC constraints. The heuristic consists of two optimization
stages. In the first stage, Lagrangian relaxation is applied to provide lower and upper bounds for the
problem. Then, a restricted mixed-integer programming (MIP) model, based on the Lagrangian solutions,
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is solved to improve the final solution quality. Computational results show that the proposed heuristics are
capable of finding high quality solutions in short computing times, even for large-scale instances for which
general-purpose MIP solvers do not find feasible solutions. Furthermore, given the strength of the proposed
formulation, the heuristics provide significant bounds on the quality of the obtained solution.

The remainder of the paper is organized as follows. Section 2 defines the problem and its application
in forestry. Then, Section 3 introduces a new formulation for the DFLP RPC with RUC constraints. The
two-stage Lagrangian heuristic is presented in Section 4. Computational experiments for the problem, as
well as for simplified problem variants without relocation and without RUC constraints, are presented in
Section 5. The integrality gaps of the problems are analyzed. Furthermore, the quality of the solutions for
the industrial problem provided by a general-purpose MIP solver and the proposed heuristics are compared.
Finally, conclusions are drawn in Section 6.

2 Problem Description

We consider the problem introduced by Jena et al. (2012), which extends the Capacitated Facility Location
Problem in several respects: multiple time periods, multiple (modular) capacity levels and multiple com-
modity types. Given a set of customers with independent demands for each commodity and time period, the
objective is to find the optimal locations and opening schedules for facilities that provide sufficient capacity
to satisfy the customer demands at minimal costs. New facilities may be constructed and existing facilities
may expand their capacity at any time period. Since a facility may not always require its entire capacity,
parts of the facility may be temporarily closed, while other parts remain open. Given that the temporary
closing and reopening of capacity is usually much cheaper than the complete shut-down and construction
of a facility, this feature may result in a very dynamic opening schedule of the facilities. Facilities may also
be relocated from one location to another, assuming: 1) a facility can only be relocated as a whole, not
partially; 2) before it is relocated, the entire capacity of a facility has to be closed; 3) facilities cannot be
merged at the same location.

In contrast to classical facility location models, the problem considered here involves particular capacity
constraints, the above mentioned round-up capacity (RUC) constraints. These constraints require that, even
though facilities may be able to provide the exact level of capacity required, they need to reserve production
capacity in multiples of a certain size. This involves rounding the demands for each commodity according to
the lot sizes to compute the total capacity necessary at the facility. The following example illustrates these
constraints. In a given time period, a set of customers have been allocated to obtain a total of 287 units of
commodity A and 113 units of commodity B from a certain facility. Let us assume that this facility needs to
reserve blocks of size 100 for the production of commodity A and blocks of size 150 for the production of a
commodity B. Even though the facility may produce the exact amount required by the customers, it needs
to ensure a total capacity of 300 units, i.e., three blocks, for commodity A and 150 units, i.e., one block, for
commodity B.

Application in Forestry. The DFLP RPC with RUC constraints was motivated by an industrial ap-
plication in the forestry sector introduced by Jena et al. (2012), where a logging company needs to locate
camps to host its workers. Facilities represent logging camps, while customers represent logging regions that
specify a total demand for two different commodities: the workforce for wood logging and the workforce for
the construction and maintenance of access roads. Demands are specified over a time horizon of five years,
each year divided into a summer and a winter season. Logging camps are composed by trailers and therefore
have a very flexible structure. The capacity level of a facility thus represents the number of trailers at the
camp. The hosting capacity of a logging camp can easily be expanded by adding new trailers. Some trailers
may be closed, while others remain open. Trailers are only available for use when they are open. The total
number of trailers of a camp, i.e., the sum of open and closed trailers, is also referred to as the number
of existing trailers. Demands are specified as the average number of crews working throughout the entire
season. It is likely that a crew will only work part of the season in a given region, which leads to a fractional
demand. Given that crews always work together, the logging camp must ensure sufficient hosting capacity
for the entire crew. The RUC constraints therefore ensure that capacity is modeled in a realistic manner.
As an example, let us assume that one crew will work the entire season, while another one will work only
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40% of the season at a given site. The total demand for the two crews is thus 1.4 and a logging camp would
need to ensure a total capacity for at least d1.4e = 2 crews in order to host the workers of both crews in the
same time period.

3 Mathematical Formulations

In this section, we propose a new formulation based on a modeling technique that has shown to yield very
strong LP relaxation bounds. We first review the input data used to model the problem. We denote by J the
set of potential facility locations and by L = {0, 1, 2, . . . , q} the set of possible capacity levels for each facility.
We also denote by I the set of customer demand points and by T = {1, 2, . . . , |T |} the set of time periods in
the planning horizon. We assume throughout that the beginning of period t + 1 corresponds to the end of
period t. The set of different commodities is denoted by P . The demand of customer i for commodity p ∈ P
in period t is denoted by ditp , while the cost to serve one unit of commodity p to customer i from facility j

operating at capacity level ` during period t is denoted by gijt`p . We denote by sp the block size (in commodity
units) that has to be reserved at a facility to provide commodity type p. A facility may temporarily close
parts of its capacity. The capacity of a facility with ` open capacity levels at location j is given by uj`
(with uj0 = 0). Furthermore, we let J0 be the set of locations that already possess existing facilities at the
beginning of the planning horizon and `j be the capacity level of the existing facility at location j. The
construction cost of a facility of size ` ∈ L at location j ∈ J is denoted by cCj`. The costs to reopen and

close ` capacity levels of the same facility are given by cTO` and cTC` , respectively. The maintenance costs
for ` open capacity levels at a facility during period t is given by cM`t . Finally, cRn represents the costs for
relocating a camp with ` closed trailers.

We now present a new formulation for the DFLP RPC with RUC constraints, based on a modeling
technique referred to as the Generalized Modular Capacities (GMC) formulation (Jena et al., 2014a). This
formulation uses binary facility location variables yjt`1`2 to explicitly represent a capacity change from level
`1 to `2 at the beginning of time period t at location j. Even though the use of such variables results in
larger models than classical flow based modeling techniques, it has been shown that GMC based formulations
provide significantly stronger LP relaxation bounds, and therefore facilitate the solution of the problem when
using general-purpose MIP solvers.

In the DFLP RPC, one needs to simultaneously manage capacity on two levels: the existing capacity
and the open capacity. We therefore extend this modeling technique and use binary variables yjt`1`2n1n2

that
take value 1 if a facility at location j changes its existing capacity from level n1 to n2 and its open capacity
from level `1 to `2 at the beginning of time period t. Clearly, variables are defined only for `1 ≤ n1 and
`2 ≤ n2. Integer variables zjt`p ∈ Z+ represent the total number of blocks of commodity type p reserved at

a facility with ` open capacity levels, located at j ∈ J . Binary variables ŵjt`n indicate whether a facility of
size n, open at capacity level `, is closed and relocated from location j to another location before period
t. Binary variables w̌jtn indicate whether a facility of size n is relocated to location j before period t. The
continuous variables xijt`p ∈ [0, 1] denote the fraction of the demand ditp satisfied by a facility at location j
open at facility level `.

The objective function coefficients associated to the capacity change decisions yjt`1`2n1n2
are given by

f jt`1`2n1n2
and describe the aggregated costs to change the open capacity of a facility at location j from level

`1 to `2 and the existing capacity from level n1 to n2 at the beginning of period t, as well as the costs to
operate the facility at levels `2 and n2 throughout time period t. Clearly, this cost structure is much more
general than the one of the flow formulation used by Jena et al. (2012) and could therefore represent the
capacity transitions in a more realistic manner. However, to obtain a formulation equivalent to that of Jena
et al. (2012), we set the cost matrix f jt`1`2n1n2

as follows.
The number of capacity levels constructed (nFC), the number of capacity levels reopened (nRE) and the

number of capacity levels closed (nCL) that are represented by a decision variable yjt`1`2n1n2
can be computed
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by:

nFC = max {0, (n2 − n1)}
nRE = max {0, (`2 − `1)− nFC}
nCL = max {0, (`1 − `2) + nFC} .

The cost coefficients are then defined as:

f jt`1`2n1n2
= cM`2t + cC(nFC)t + cTO(nRE)t + cTC(nCL)t.

We define the GMC based formulation for the DFLP RPC with RUC constraints (RPCr-GMC) as follows:

min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

∑
t∈T

f jt`1`2n1n2
yjt`1`2n1n2

+
∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

gijt`p d
it
p x

ijt
`p

+
∑
j∈J

∑
`∈L

∑
n∈L

∑
t∈T

(cTC` +
cRn
2

)ŵjt`n +
∑
j∈J

∑
n∈L

∑
t∈T

cRn
2
w̌jtn (1)

s.t.
∑
j∈J

∑
`∈L

xijt`p = 1 ∀i ∈ I, ∀p ∈ P, ∀t ∈ T (2)

∑
i∈I

ditp x
ijt
`p ≤ z

jt
`p ∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (3)∑

p∈P
spz

jt
`p ≤

∑
`1∈L

∑
n1∈L

∑
n2∈L

uj`y
jt
`1`n1n2

∀j ∈ J, ∀` ∈ L, ∀t ∈ T (4)

∑
`1∈L

∑
n1∈L

y
j(t−1)
`1`n1n

=
∑
`2∈L

∑
n2∈L

yjt``2nn2
+ ŵjt`n

∀j ∈ J, ∀` ∈ L\ {0} , ∀n ∈ L\ {0} , ∀t ∈ T\ {1} (5)∑
`1∈L

∑
n1∈L

y
j(t−1)
`10n1n

+ w̌jtn =
∑
`2∈L

∑
n2∈L

yjt0`2nn2
+ ŵjt0n

∀j ∈ J, ∀n ∈ L\ {0} , ∀t ∈ T\ {1} (6)∑
`2∈L

∑
n2∈L

yj1`j`2(n1=`j)n2
= 1 ∀j ∈ J0 (7)

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

yjt`1`2n1n2
≤ 1 ∀j ∈ J, ∀t ∈ T (8)

∑
j∈J

∑
`∈L

ŵjt`n =
∑
j∈J

w̌jtn ∀n ∈ L, ∀t ∈ T (9)

xijt`p ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (10)

yjt`1`2n1n2
∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L,

∀n1 ∈ L, ∀n2 ∈ L, ∀t ∈ T (11)

ŵjt`n ∈ {0, 1} ∀j ∈ J, ∀` ∈ L, ∀n ∈ L, ∀t ∈ T (12)

w̌jtn ∈ {0, 1} ∀j ∈ J, ∀n ∈ L, ∀t ∈ T (13)

zjt`p ∈ Z+
0 ∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T. (14)

The objective function (1) minimizes the total costs for changing the capacity levels and allocating the
demand. Note that the relocation costs cRn are equally split on variables ŵ and w̌. Hereby, we intend to
better use both variables within the Lagrangian relaxation. Constraints (2) are the demand constraints for
the customers. Constraints (3) and (4) are the round-up capacity constraints at the facilities that first round
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up the total demand (specified in number of blocks) and then use the rounded number of blocks to determine
the total capacity necessary at the facility. Constraints (5) and (6) are the flow conservation constraints that
link the capacity change variables in consecutive time periods. These constraints also allow the use of the
relocation variables ŵjt`n and w̌jtn to remove flow from one location and add it to another location, respectively.
Constraints (7) are the flow initialization constraints that specify that exactly one capacity level is chosen at
the beginning of the planning horizon. Constraints (8) guarantee that exactly one capacity change variable
is selected at each time period. Finally, constraints (9) are the relocation linking constraints that match the
outgoing and incoming relocations of facilities of the same size. The flow conservation constraints (5) – (7)
represent a network flow structure, which is illustrated in Figure 1 for a small example with four time periods
and two capacity levels. Each node represents the number of open and existing capacity (open capacity level
/ existing capacity level). The binary capacity change variables are represented by arcs, which allow for the
construction of new capacity, as well as the closing and reopening of existing capacity.

0/0

1

capacity
levels

2t 4t3tperiods t

0/0

0/1

1/1

0/2

1/2

2/2

0/0

0/1

1/1

0/2

1/2

2/2

0/0

0/1

1/1

0/2

1/2

2/2

0/0

0/1

1/1

0/2

1/2

2/2

Figure 1: Network flow structure to manage partial facility closing and reopening. Each node indicates the
level of open and existing capacity.

Valid Inequalities. We propose the following valid inequalities for our model:

xijt`p ≤
∑
`1∈L

∑
n1∈L

∑
n2∈L

yjt`1`n1n2
∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (15)

∑
j∈J

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

uj`2y
jt
`1`2n1n2

≥
∑
i∈I

∑
p∈P

ditp ∀t ∈ T. (16)

The Strong Inequalities (SI) (15), typically used in facility location and network design problems (Van Roy,
1986; Gendron and Crainic, 1994), are known to provide a tight upper bound for the demand assignment
variables. The valid inequalities (16) are referred to as the Aggregated Demand Constraints (ADC). Although
they are redundant for the LP relaxation, adding them to the model enables MIP solvers to generate cover
cuts that further strengthen the formulation.

4 Lagrangian Heuristics

When applying Lagrangian relaxation to capacitated facility location problems, it is common to relax either
the capacity constraints (Van Roy and Erlenkotter, 1982; Barcelo et al., 1990) or the demand constraints
(Shulman, 1991; Beasley, 1993; Wu et al., 2006). Jena et al. (2014b) applied the latter Lagrangian relaxation
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to the GMC formulation. By relaxing the demand constraints, the Lagrangian subproblem decomposes into
independent subproblems, one for each candidate facility location. These independent subproblems can then
be efficiently solved by dynamic programming.

When the relocation of facilities is allowed, as it is the case for our problem, the relocation constraints
(9) are an additional link between the candidate facility locations. Therefore, the relaxation of the demand
constraints is not sufficient to decompose the Lagrangian subproblem by location. There are two possibilities
to overcome this issue. One can relax both the demand constraints (2) and the relocation constraints
(9) in order to obtain a subproblem that can be decomposed by location. Alternatively, one can relax
only the demand constraints (2). The remaining Lagrangian subproblem then still includes the relocation
linking constraints (9) and, therefore, cannot be decomposed by location. Instead, the subproblem may
be transformed into a pure integer program and be solved by a generic MIP solver. In our computational
experiments, the latter approach has not been competitive with the former one, given that the MIP solver
may still take considerable time to solve the resulting integer program. We therefore report on the first
approach, relaxing both the demand constraints (2) and the relocation linking constraints (9).

Let α be the vector of Lagrange multipliers associated to the relaxed demand constraints and β the one
associated to the relaxed relocation linking constraints. Let c̃ijt`p = gijt`p d

it
p −αipt denote the modified variable

coefficients for the x variables. The Lagrangian subproblem can be stated as follows:

L(α, β) = min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
n1∈L

∑
n2∈L

∑
t∈T

f jt`1`2n1n2
yjt`1`2n1n2

+
∑
j∈J

∑
`∈L

∑
n∈L

∑
t∈T

(cTC` +
cRn
2
− βnt)ŵjt`n +

∑
j∈J

∑
n∈L

∑
t∈T

(
cRn
2

+ βnt)w̌
jt
n

+
∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

c̃ijt`p x
ijt
`p +

∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. (3)− (8), (10)− (14).

4.1 Solution of the Lagrangian Subproblem

We separate the Lagrangian subproblem into |J | independent subproblems, one for each potential facility
location for a fixed set of Lagrange multipliers α and β. The Lagrangian subproblem is then defined as
L(α, β) =

∑
j∈J Lj(α, β) +

∑
j∈J

∑
p∈P

∑
t∈T αipt, where Lj(α, β) corresponds to the problem of finding

the optimal opening schedule for the capacities of facility j with modified demand allocation costs c̃ijt`p . To
solve this problem, we extend the dynamic programming algorithm presented by Jena et al. (2014b). Let

Oα,βj (`, n, t) denote the value of the optimal opening schedule from time period 1 to t, including the costs
to satisfy the customer demand during these time periods and assuming that a facility of size n, open at
capacity level ` is available at the end of time period t. To compute these values, we need to evaluate the
following four combinations of incoming and outgoing relocations:

1. No incoming relocation, no outgoing relocation. The cheapest capacity level is chosen, including the
costs to satisfy demand until period t− 1 and the costs for the capacity transition:

Ĉ1(`, n, t) = min
0≤n1≤n,0≤`1≤n1

{f jt`1`n1n
+Oα,βj (`1, n1, t− 1)}.

2. Incoming relocation, no outgoing relocation. A facility of size n1 has been relocated to location j and
possibly expanded by additional capacity, resulting in a final level of existing capacity n. Furthermore,
some unused capacity may have been closed, resulting in a final level of open capacity `:

ĈRelocIN (`, n, t) = min
1≤n1≤n

{
cRn1

2
+ cTO(nRE)t + cTC(nCL)t + βn1t + ccj(n−n1)

|

nRE = max {0, `− n+ n1} , nCL = max {0, n− n1 − `}}

Ĉ2(`, n, t) = ĈRelocIN (`, n, t) + cM`t +Oα,βj (0, 0, t− 1).
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3. No incoming relocation, outgoing relocation. A facility has been relocated to another location and a
facility of size < `, n > has been constructed afterwards:

ĈRelocOUT = min
1≤n1≤q,0≤`1≤n1

{cTC`1t +
cRn1

2
− βn1t +Oα,βj (`1, n1, t− 1)}

Ĉ3(`, n, t) = ĈRelocOUT + fj0`0nt.

4. Incoming relocation, outgoing relocation. A facility has been relocated to another location, while a
facility has been relocated to the current location, eventually followed by a capacity expansion, resulting
in a final capacity level n:

Ĉ4(`, n, t) = ĈRelocIN (`, n, t) + ĈRelocOUT + cM`t .

Based on these four cases, the optimal value for Oαj (`, n, t) is computed as:

Oα,βj (`, n, t) = Lαj (`, t) + min{Ĉ1(`, n, t), Ĉ2(`, n, t), Ĉ3(`, n, t), Ĉ4(`, n, t)}, (17)

where Lαj (`, t) is the cost of the optimal demand allocation at facility j with ` open capacity levels at period
t, which is computed as shown below.

We solve the subproblem for location j by selecting the minimum among all possible facility sizes:

Lj(α, β) = min
0≤`≤q,`≤n≤q

{
Oα,βj (`, n, |T |)

}
.

Note that, using the RUC constraints, the Lagrangian subproblem does not have the integrality property.
The lower bound provided by the Lagrangian subproblem may thus be better than the bound provided by
the LP relaxation of the original problem.

Computation of the Optimal Demand Allocation. When using common capacity constraints, as used
in the Capacitated Facility Location Problem, the optimal demand allocation Lαj (`, t), taking into account

the adjusted demand allocation costs c̃ijt`p for a given α, j, ` and t, can be obtained by solving a continuous
knapsack problem (Shulman, 1991). However, when using the RUC constraints, finding the optimal demand
allocation is identical to solving the following MIP:

min
∑
i∈I

∑
p∈P

c̃ijt`p x
ijt
`p

s.t.
∑
i∈I

ditp x
ijt
`p ≤ z

jt
`p ∀p ∈ P∑

p∈P
spz

jt
`p ≤ u

j
`

xijt`p ≤ 1 ∀i ∈ I, ∀p ∈ P

xijt`p ∈ R+ ∀i ∈ I, ∀p ∈ P

zjt`p ∈ Z+
0 ∀p ∈ P.

This problem contains two embedded knapsack problems. The overall knapsack problem consists in
selecting, for each p, an integer value for zjt`p such that the total capacity is respected and the costs are
minimized. The cost for each of these integer values depends on the choice of x and is computed by a
continuous knapsack that selects x variables such that the total costs are minimized. The steps to solve this
problem are therefore as follows:

1. First, all feasible integer values for zjt`p are identified. For each p, the feasible integer values that zjt`p

may take are given by set Ωp =
{

0, 1, 2, ...,
⌊
uj
`

sp

⌋}
.
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2. The costs for each of the integer values of zjt`p are computed by solving a continuous knapsack problem
for each p ∈ P , by rearranging the demand nodes dipt in increasing order of their ratio of adjusted trans-

portation costs and demand quantity, i.e.,
c̃ijt`p

ditp
, and by serving demands until either the entire capacity,

given by the integer value of zjt`p, is filled or a demand node with a positive adjusted transportation
cost is met.

3. A Multiple-Choice Knapsack Problem (Martello and Toth, 1990) is solved by using dynamic program-
ming, in which each integer value for a zjt`p variable represents an object with a cost coefficient given by

the solution of the previously solved continuous knapsack. The weight of object zjt`p is given by spz
jt
`p

and the total knapsack capacity is given by uj` . Exactly one object for each p ∈ P is selected.

Note that solving the series of continuous knapsacks for a given p in step 2 can be performed efficiently,
as the optimal solution for the continuous knapsack of a capacity z′ is necessarily part of an optimal solution
for any capacity z′′ with z′′ > z′.

4.2 Solution of the Lagrangian Dual

The Lagrangian dual problem is maximized to obtain the optimal Lagrange multipliers:

max
α,β

L(α, β).

The Lagrangian function L(α, β) is non-differentiable. However, a subgradient direction can easily be
computed. The subgradient direction is composed of the two vectors γipt and µnt, which represent the
subgradients for the relaxed demand and relocation linking constraints, respectively. At the k− th iteration,
they are computed as the derivative of the relaxed constraints in α and β, respectively, with variables x, ŵ
and w̌ fixed to the values found in the Lagrangian subproblem:

γkipt = 1−
∑
j∈J

∑
`∈L

xijt`p ∀i ∈ I, ∀p ∈ P, ∀t ∈ T

µknt =
∑
j∈J

w̌jtn −
∑
j∈J

∑
`∈L

ŵjt`n ∀n ∈ L\ {0} , ∀t ∈ T.

Due to its strong convergence properties, we chose to use a bundle method to solve the Lagrangian dual.
The implementation based on Frangioni (2005) uses a subset of the tuples < L(αs), γs > with s ∈ B, where
B is referred to as the bundle of subgradients γs. From the primal view point, the following quadratic
problem has to be solved at each iteration (Frangioni and Gallo, 1999):

min
θs

{
1
2 ‖

∑
s∈B

γsθs ‖2 + 1
REBθ; s.t.

∑
s∈B

θs = 1, θ ≥ 0

}
,

where R is the so-called trust region for the tentative ascent direction, and Es = L(α) + γ(α̂− α)− L(α̂) is
the linearization error from the current point α̂. The solution values for θs, given for each bundle member,
hold valuable information and can be used to construct feasible integer solutions (see Section 4.4). The
tentative ascent direction is then computed by the convex combination of the subgradients, using the convex
multipliers θ. Alternatively, the dual problem can be solved to compute the ascent direction, or directly the
new point. Frangioni and Gallo (1999) elaborate on this relationship in detail.

4.3 Generation of Upper Bounds

At each iteration, a feasible solution is generated based on the current Lagrangian primal solution. This
feasible solution serves as an upper bound for the optimal integer solution and directly impacts the conver-
gence of the bundle methods. Even though high quality upper bounds are desirable, it is important that
they are generated in an efficient manner, as the solution of the Lagrangian dual typically involves hundreds
of iterations.
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To generate feasible solutions, we extend the approach followed by Jena et al. (2014b) by also considering
partial closing and reopening of facilities, relocation of facilities and the RUC constraints. The Lagrangian
solution provides a facility opening schedule for the entire planning horizon, defined by a capacity level pair
(`′jt/n

′
jt) for each j and t, as well as the corresponding demand allocation. As the demand constraints (2)

have been relaxed, the set of demands dipt can be separated into three subsets: Σ1, Σ2 and Σ3 denote the
demands defined by triplets < i, p, t >, which are exactly met, over-served and under-served, respectively:

Σ1 =

< i, p, t >:
∑
j∈J

xijt(`′jt)p
= 1

 ,Σ2 =

< i, p, t >:
∑
j∈J

xijt(`′jt)p
> 1


and Σ3 =

< i, p, t >:
∑
j∈J

xijt(`′jt)p
< 1

 .

To obtain an integer feasible solution, we perform the following steps:

1. Identify feasible relocation pairs: Feasible pairs of relocation decisions are identified by matching
the outgoing relocations ŵjt`n and incoming relocations w̌jtn from the Lagrangian solution. For each pair
of facility size n and time period t, we choose the maximum number of facility matches j′ and j′′ (with
j′ 6= j′′) among the ŵj′`nt and w̌j′′nt decisions made in the Lagrangian solution. The procedure to
find these pairs considers facilities without a specific order and excludes infeasible configurations, i.e.,
no outgoing relocation of a facility is smaller than a previously incoming relocation and subsequent
incoming relocations at the same location are separated by outgoing relocation. For locations for which
no relocation pairs have been selected, we generate the optimal opening schedule without relocations.

2. Reduce demand allocation: For each < i, p, t >∈ Σ2, all facility/size pairs (j, (`′jt)) are sorted in

decreasing order of their allocation costs gijt`p . The allocated flow is removed until the total allocated
demand for < i, p, t > equals 1.

3. Increase capacities: If the total remaining capacity is smaller than the total remaining demand,
we increase the capacity sequentially for each time period according to the following steps until the
total demand can be met. Facilities are considered without a specific order. We consider two simple
possibilities to increase capacity: if `′jt < n′jt, we incrementally increase `′jt until the missing capacity
is covered or `′jt = n′jt; if no facility exists, we incrementally increase both `′jt an n′jt until the missing
capacity is covered or the maximum capacity level for this facility is reached. For any time period
t′ > t, the existing capacity level n′jt′ is increased to the new level n′jt if n′jt′ < n′jt.

4. Increase the demand allocation: For each < i, p, t >∈ Σ3, all facility/size pairs (j, (`′jt)) with

remaining capacity are sorted in increasing order of their allocation costs gijt`p . Demand is allocated to
these pairs until the total allocated demand for < i, p, t > equals 1. Note that, due to the rounding in
the capacity constraints, certain demand may be allocated to a facility without consuming additional
capacity, if the facility has a commodity p block that is not yet completely filled. Furthermore,
allocating a new commodity p block is subject to capacity availability at the facility for the entire
lot.

5. Reduce unused capacities of open facilities: For each facility, a dynamic programming algorithm,
similar to the one used to solve the Lagrangian subproblem, computes the optimal opening schedule
that guarantees sufficient capacity to satisfy the demand allocated to that facility. The algorithm
takes into account the total lot size for each commodity reserved at the facility, not only the allocated
customer demands.

Even though the resulting solution is integer feasible, its demand allocation may still be improved.
Therefore, a final step consists in computing the optimal demand allocation for the current opening schedule
using the CPLEX network algorithm.
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4.4 Restricted MIP model

To improve the final solution quality, we may use a restricted MIP based on the convexified solutions provided
by the bundle method (see Section 4.2). The restricted MIP model for the DFLP RPC needs to decide for
the level of open and existing capacity levels for each location and time period. We therefore define the
restricted MIP in terms of capacity level pairs (`, n).

As explained in Section 4.2, the bundle method provides a multiplier θs for each Lagrangian solution s
such that

∑
s θ

s = 1. The value θs can be seen as a probability that solution s provides a good opening
schedule. We may therefore derive probabilities for each of the opening decisions yPj`nt =

∑
s θ

sysj`nt, where

ysj`nt is 1 if solution s selects capacity level pair (`, n) for location j at period t. Furthermore, let LRjt be
the set of (`, n) pairs for location j and period t available in the restricted MIP. The restricted MIP is then
defined as follows:

• Selection of capacity levels. If the decision for location j and period t is not fixed, LRjt is composed

by the nS capacity level pairs (`, n) that have the highest yPj`nt values, with yPj`nt > 0.001.

• Defining the set of capacity transitions. Decision variables yjt`1`2n1n2
are defined for all combina-

tions between (`1, n1) and (`2, n2), with (`1, n1) ∈ LRjt and (`2, n2) ∈ LRj(t+1), if available in the original
RPCr-GMC formulation.

Relocation decisions are added to the restricted MIP by computing the probabilities for outgoing and
incoming relocations ŵPj`nt and w̌Pjnt, respectively. We set ŵPj`nt =

∑
s θ

sŵsj`nt, where ŵsj`nt is 1 if solution
s relocates a facility of size n open at level ` from location j to another location at period t. In the same
way, we set w̌Pjnt =

∑
s θ

sw̌sjnt, where w̌sjnt is 1 if solution s relocates a facility of size n open at level `

from location j to another location at period t. All relocation variables with their corresponding ŵPj`nt
and w̌Pjnt greater than or equal to 0.001 are added to the restricted model. To ensure their feasibility with
respect to the flow conservation constraints, certain capacity levels are added to the sets of available capacity
levels LR. To be precise, when adding a relocation decision w̌jtn to the restricted MIP, capacity level pair
(0, n) is added to LRj(t−1) and capacity level pairs (0, n) and (n, n) are added to LRjt to ensure that the flow

conservation constraints contain the capacity transition variables yjt`1`2n1n2
that either maintain the facility

closed or reopen it at its maximum capacity level n.

5 Computational Experiments

In this section, the performance of the Lagrangian heuristic and that of the MIP solver CPLEX are evaluated
and compared by means of computational experiments. All mathematical models and the Lagrangian based
heuristics have been implemented in C/C++ using the IBM CPLEX 12.6.0 Callable Library. The code has
been compiled and executed on openSUSE 11.3. Each problem instance has been run on a single Intel Xeon
X5650 processor (2.67GHz), limited to 24GB of RAM.

In addition to the DFLP RPC with RUC constraints, we consider two simplified problem variants, which
are defined next. Then, we explain how test instances are generated. The integrality gaps of the different
problem variants and formulations are then analyzed. Finally, computational results are presented to compare
the performance of the Lagrangian heuristics and that of CPLEX.

5.1 Problem Variants

The RUC constraints are a particular characteristic of the industrial application considered here. The
majority of facility location models in the literature uses classical capacity constraints such as the following:∑

i∈I
ditp x

ijt
`p ≤

∑
`1∈L

∑
n1∈L

∑
n2∈L

uj`y
jt
`1`n1n2

∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T. (18)

Computational results are therefore reported for the DFLP RPC with RUC constraints and two simpli-
fied problem variants, both using classical capacity constraints (18), to illustrate the impact of the RUC
constraints on the difficulty of solving the problem.
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The DFLP RPC is defined as the DFLP RPC with RUC constraints, but with classical capacity con-
straints (18). The GMC based formulation for this problem, referred to as the RPC-GMC formulation, is
therefore defined by objective function (1) and constraints (2), (5) – (13) and (18). The Dynamic Facility
Location Problem with Partial Facility Closing (DFLP PC) is defined in the same way as the DFLP RPC,
but without the relocation of facilities. Its GMC based formulation is referred to as the PC-GMC formulation
and is defined by objective function (1) and constraints (2), (5) – (8), (10) – (13) and (18), but without the
relocation variables ŵjt`n and w̌jtn and the RUC integer variables zjt`p.

We refer to the flow formulation proposed by Jena et al. (2012) as the RPCr-2i formulation. Based on
this formulation, we also define formulations for the DFLP PC and the DFLP RPC with classical capacity
constraints. We denote the corresponding formulations as the PC-2i and RPC-2i, respectively.

When applying Lagrangian relaxation to the simplified problem variants with classical capacity con-
straints, the optimal demand allocation in the subproblem becomes significantly easier to compute. Instead
of solving a multiple-choice integer knapsack problem when RUC constraints are used, classical capacity con-
straints involve only the solution of simple continuous knapsack problems. This reduces the computational
complexity to solve the Lagrangian subproblem. Furthermore, for the DFLP PC, the dynamic program-
ming algorithm to solve the optimal opening schedule does not consider relocation decisions. In the same
way, when generating feasible upper bounds, the first step in Section 4.3, matching incoming and outgoing
relocation decisions, is ignored.

5.2 Test Instances

Test instances have been generated by following a scheme similar to that described in Jena et al. (2014a).
However, the instances used in this previous work included only one commodity, up to 100 candidate facility
locations and up to 1000 customer locations. In this work, we use instances that are significantly larger
with respect to the number of candidate facility locations and the number of commodities. Instances have
been generated with different numbers of candidate facility locations |J | and customers |I|, combining all
pairs of |J | ∈ {50, 100, 150, 200, 250} and |I| ∈ {|J |, 4 · |J |}. The highest capacity level at any facility,
denoted by q, has been selected such that q ∈ {3, 5, 10}. Three different networks have been randomly
generated on squares of the following sizes: 300km, 380km and 450km. We consider two different demand
scenarios. In both scenarios, the demand for each of the customers is randomly generated and randomly
distributed over time. The two scenarios differ in their total demand summed over all customers in each time
period. In the first scenario, the total demand is similar in each time period. The second scenario assumes
that the total demand follows strong variations along time and therefore varies at each time period. The
number of commodities |P | has been selected such that |P | ∈ {1, 3, 5}. The demands for the second to fifth
commodities are based on the demand for the first commodity. To be precise, the demand dipt for p ≥ 2
is computed as ditp = dit1 · rp · avgDemp/avgDem1, where avgDem1 = 10, avgDem2 = 6, avgDem3 = 9,
avgDem4 = 5, avgDem5 = 8, and rp ∼ N(1.0, 0.2) is a normally distributed random variable with mean
of 1.0 and standard deviation of 0.2. Construction and operational costs follow concave cost functions, i.e.,
they involve economies of scale. The combination of the different properties listed above results in a total of
(5× 2× 3× 3× 2× 3 =) 540 instances. All instances contain ten time periods, which is found to be sufficient
to demonstrate capacity changes along time and small enough to not increase the size of the models too
much. Note that we assume that the problem instances do not contain initially existing facilities. We refer
to A for a detailed description of the parameters used to generate the instances.

5.3 Analysis of the Integrality Gaps

We now assess the strength of the proposed formulations for each of the three problem variants by means
of their integrality gaps. Table 1 summarizes, for each of the three problem variants, the integrality gaps
provided by the 2i and GMC based formulations. The reported integrality gaps are the average over the
instances of the same size for which all six formulations have solved the LP relaxation within 12 hours of
computing time and for which the optimal integer solution is known within 0.1%. This number is indicated
in column “# inst”. The results demonstrate the same trend for all three problem variants. The GMC based
formulations provide significantly lower integrality gaps, on average 13 to 30 times lower than those provided
by the 2i formulations. Note, however, that the strong bound comes with the price of higher computing
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times when solving the LP relaxation with CPLEX. For example, for the DFLP RPC with RUC constraints,
solving the LP relaxation (limited to 12hs) of the GMC based formulation takes on average over all 540
instances about 17,085 seconds, while the 2i formulation takes only 4,879 seconds. Furthermore, CPLEX
does not provide any bound for 177 instances when using the GMC formulation, mostly due to memory
limitations, while this problem occurs for only 52 instances when using the 2i formulation.

Even though CPLEX struggles to solve the LP relaxation for many of the instances, the Lagrangian
relaxation may provide bounds at least as good as the LP relaxation in a more efficient manner. In fact, for
the DFLP RPC with RUC constraints, the Lagrangian subproblem does not have the integrality property
when RUC constraints are used. The lower bound provided by the Lagrangian relaxation may therefore
be better than the LP relaxation bound of the original formulation. An analysis showed that, for the 380
instances for which the LP relaxation has been solved with CPLEX within a total of 12 hours, the Lagrangian
relaxation, limited to 500 iterations and 2 hours of computing time, provided a better bound for all instances.
The bound provided by the Lagrangian relaxation has been on average 1.98% and for some instances up to
23.99% higher than the LP relaxation bound. The last column of Table 1 indicates the deviation of the lower
bound provided by the bundle method of the Lagrangian heuristic from the upper bounds for the same set
of instances. While the average integraliy gap provided by the 2i formulation has been assessed as 2.89%,
the Lagrangian relaxation was able to decrease the integrality of the GMC formulation from 0.22% to an
average deviation of 0.13%. As a result, the Lagrangian heuristic is likely to provide significant bounds on
the quality of the solutions obtained.

Instance # DFLP PC DFLP RPC DFLP RPC w/ RUC
q size inst. 2i GMC 2i GMC 2i GMC LRH
3 50/50 13 3.34 0.57 4.96 0.59 4.97 0.60 0.62

50/200 18 1.06 0.04 1.52 0.05 1.52 0.05 0.09
100/100 17 2.50 0.10 3.93 0.09 3.93 0.09 0.12
100/400 18 0.98 0.01 1.45 0.01 1.45 0.01 0.03
150/150 17 2.08 0.07 3.46 0.05 3.46 0.05 0.06
150/600 14 0.95 0.01 1.46 0.01 1.46 0.01 0.04
200/200 17 1.89 0.05 3.16 0.03 3.16 0.03 0.06
200/800 9 0.84 0.02 1.40 0.02 1.40 2.77 0.05
250/250 17 1.69 0.02 2.97 0.02 2.97 0.02 0.05
250/1000 5 0.76 0.02 1.26 0.03 1.27 0.03 0.05
Avg All 145 1.68 0.09 2.67 0.08 2.67 0.26 0.11

5 50/50 4 4.98 0.95 6.22 0.81 6.22 0.81 0.88
50/200 11 1.80 0.11 2.29 0.10 2.30 0.11 0.16
100/100 9 3.47 0.18 4.86 0.22 4.86 0.22 0.29
100/400 11 1.58 0.01 2.07 0.01 2.07 0.01 0.04
150/150 6 3.07 0.10 4.55 0.07 4.55 0.07 0.09
150/600 4 1.49 0.01 2.11 0.01 2.11 0.01 0.03
200/200 7 2.67 0.07 3.95 0.02 3.95 0.02 0.07
200/800 1 1.64 0.01 2.34 0.01 2.34 0.01 0.02
250/250 5 2.24 0.02 3.60 0.03 3.60 0.02 0.07
250/1000 2 1.47 0.02 2.16 0.03 2.16 0.03 0.04
Avg All 60 2.45 0.13 3.41 0.12 3.41 0.12 0.16

10 100/400 1 3.01 0.03 3.10 0.00 3.14 0.04 0.07
Avg All 1 3.01 0.03 3.10 0.00 3.14 0.04 0.07

All Avg All 206 1.91 0.10 2.89 0.09 2.89 0.22 0.13

Table 1: Comparison of average integrality gaps (in %) for the three problem variants for instances where
the optimal integer solution is known and the LP relaxation of all formulations has been solved.

5.4 CPLEX Optimization

Even though the LP relaxation of the 2i formulations is solved much faster than that of the GMC formu-
lations, the latter provide a substantially better bound. The GMC formulations therefore perform much
better than the 2i formulations when the MIP solver is used to find the optimal integer solutions. We now
compare the performance of the two formulations for the instances for which both formulations found fea-
sible solutions within the given time limit. The time limit has been set to three hours. The results for the
DFLP RPC with RUC constraints are given in Table 2. Comparing on the same set of instances, the GMC
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formulation clearly outperforms the 2i formulation regarding the average and maximum deviations from the
best known lower bound, as well as the computing times. In addition to the better solution quality, the GMC
based formulation finds feasible solutions for more instances. Feasible solutions were found for 131 instances
when using the RPCr-2i formulation, while the the RPCr-GMC formulation found feasible solutions for 251
instances.

For the simplified problem variants, similar results have been observed. Here, the time limit has been
set to two hours. The PC-2i formulation for the DFLP PC reports an average optimality gap of 1.09%, a
maximum gap of 90.83% and an average solution time of 2,768 seconds, whereas the the PC-GMC formulation
results in a lower average gap of 0.16%, a maximum gap of 3.78% and an average solution time of 1,613
seconds. For the DFLP RPC, the RPC-2i formulation resulted in an average gap of 0.44%, a maximum gap
of 4.83% and an average solution time of 1,956 seconds. Again, the RPC-GMC formulation reported superior
performance with an average gap of 0.21% and a maximum gap of 1.39% in an average solution time of only
592 seconds. Feasible solutions were found for 323 instances when using the PC-2i formulation and for 291
instances when using the PC-GMC formulation. For the DFLP RPC, the RPC-2i formulation led to feasible
solutions for 179 instances, whereas the RPC-GMC formulation found feasible solutions for 285 instances.
This illustrates the increasing difficulty to solve the different problem variants as facility relocation is allowed
and RUC constraints are used.

RPCr-2i RPCr-GMC
q Instance # inst. Avg % Max % Time Avg % Max % Time

size Gap* Gap* (sec) Gap* Gap* (sec)
3 50/50 16 0.20 1.48 2,561.5 0.17 1.50 2,393.1

50/200 18 0.00 0.01 1,398.4 0.00 0.01 733.3
100/100 16 0.08 1.22 1,795.3 0.02 0.21 854.9
100/400 12 0.16 1.92 2,968.2 0.00 0.01 529.3
150/150 13 0.01 0.02 2,324.5 0.00 0.01 459.8
150/600 6 1.65 4.75 7,200.5 0.01 0.02 2,682.5
200/200 13 0.04 0.20 3,547.5 0.22 2.79 1,721.2
250/250 7 0.33 1.29 5,403.0 0.00 0.01 1,443.4
Avg All 101 0.19 4.75 2,850.1 0.06 2.79 1,248.2

5 50/50 6 0.52 2.32 3,819.7 0.19 0.61 2,607.5
50/200 8 0.00 0.01 1,762.8 0.00 0.01 347.1
100/100 5 0.01 0.01 1,972.6 0.01 0.01 369.6
100/400 3 0.12 0.35 3,744.3 0.00 0.00 745.0
150/150 4 0.06 0.22 4,819.3 0.04 0.15 2,395.5
200/200 2 0.00 0.00 3,705.0 0.00 0.01 1,245.5
Avg All 28 0.13 2.32 3,028.7 0.05 0.61 1,234.9

10 50/200 1 0.28 0.28 7,201.0 0.34 0.34 7,200.0
Avg All 1 0.28 0.28 7,201.0 0.34 0.34 7,200.0

All Avg All 130 0.18 4.75 2,922.0 0.06 2.79 1,291.1

Table 2: CPLEX results comparing the two formulations for the DFLP RPC with RUC constraints, consid-
ering instances where both formulations found feasible solutions.

5.5 Peformance of the Lagrangian Heuristic

We now present results for the Lagrangian heuristics and compare their performance to CPLEX. When using
RUC constraints, the solution of the Lagrangian subproblem is more difficult and consumes significantly
more computing time. However, it is likely that the problem variant with RUC constraints selects similar
facility locations in their optimal solutions as the problem variant without RUC constraints. The Lagrangian
heuristics presented in this section therefore initialize the Lagrange multipliers by first solving the problem
variant without RUC constraints and then by solving the problem variant with RUC constraints. The
initialization phase without RUC constraints is terminated after a maximum of 300 iterations of the bundle
method or when the best upper bound lies within 1% of the best known lower bound. Note that, even though
we solve the subproblem for the problem variant without RUC constraints, we generate upper bounds for
the problem variant with RUC constraints. Furthermore, note that the lower bounds from the initialization
phase are also valid for the problem variant with RUC constraints. After the initialization phase, the original
problem is solved by the bundle method, limited to a maximum of 500 iterations (including the iterations
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performed in the initialization phase). In a final optimization phase, we solve the restricted MIP to improve
the solution quality.

The following experiments allow for a total of 3 hours of computing time. For all experiments, a 0.01%
optimality stopping criterion has been used. Table 3 presents the results for the Lagrangian heuristic applied
to the DFLP RPC with RUC constraints. The results are given for two configurations of the heuristic. The
first configuration uses only the bundle method, whereas the second configuration adds the restricted MIP
model afterwards. The restricted MIP has been used with parameter nS = 10. For the second configuration,
the restricted MIP is started after 2 hours at the latest. The last column for each configuration indicates
the number of instances for which the heuristic proved optimality within 1%. Given the strong lower bounds
provided by the heuristic, the heuristic proves optimality within 1% for 379 of the 540 instances.

Bundle only Bundle + R-MIP
q Instance Avg Max Time # 1 % Avg Max Time # 1 %

size Gap % Gap % (sec) opt Gap % Gap % (sec) opt
3 50/50 3.77 11.64 325.4 1 0.31 1.22 4,142.9 9

50/200 0.78 1.54 499.1 15 0.53 0.96 268.3 18
100/100 1.75 6.14 858.7 8 0.40 0.87 273.2 18
100/400 0.85 2.82 914.9 16 0.59 0.92 650.8 18
150/150 1.86 5.13 1,559.9 8 0.29 0.99 610.8 18
150/600 1.02 2.86 1,291.0 14 0.70 0.98 760.5 18
200/200 1.89 6.40 2,576.7 10 0.42 0.94 1,098.2 18
200/800 1.47 4.70 2,479.1 11 0.51 1.00 1,707.8 18
250/250 1.54 6.44 2,686.9 10 0.40 0.93 1,381.2 18
250/1000 1.88 4.67 5,942.3 6 0.29 1.00 4,081.3 18
Avg All 1.68 11.64 1,913.4 99 0.44 1.22 1,497.5 171

5 50/50 9.18 20.01 639.5 1 1.70 4.57 6,763.3 2
50/200 1.80 4.31 3,259.6 5 0.49 1.32 1,907.4 16
100/100 6.21 20.14 2,382.9 1 0.73 2.26 3,825.7 10
100/400 1.16 3.30 2,798.1 13 0.50 0.99 1,605.0 18
150/150 5.21 9.84 4,834.0 1 0.60 1.50 1,943.1 15
150/600 1.09 2.98 3,419.6 10 0.43 0.95 2,339.4 18
200/200 3.99 9.31 6,061.1 2 0.45 1.20 2,948.4 17
200/800 1.71 4.96 4,154.0 9 0.53 0.98 2,900.0 18
250/250 3.15 8.80 5,849.7 5 0.35 0.98 3,313.8 18
250/1000 2.05 4.35 7,494.4 5 0.30 0.97 5,024.0 18
Avg All 3.56 20.14 4,089.3 52 0.60 4.57 3,224.8 150

10 50/50 15.93 27.86 1,770.1 0 6.38 20.19 7,404.5 0
50/200 9.80 18.18 5,830.8 0 3.45 18.18 8,189.3 2
100/100 17.78 29.99 5,134.7 0 4.99 20.86 8,427.6 0
100/400 5.85 13.43 7,882.2 2 2.24 13.43 6,213.4 12
150/150 18.42 29.05 7,207.3 0 6.04 29.05 9,140.5 1
150/600 5.03 10.94 8,013.6 3 2.88 10.94 6,707.2 11
200/200 17.15 26.92 8,040.9 0 5.16 26.26 9,010.6 1
200/800 4.65 11.91 9,568.7 0 2.96 11.91 7,356.3 12
250/250 15.21 27.29 8,357.2 0 6.26 27.29 8,666.2 4
250/1000 3.05 5.68 10,893.3 1 0.86 5.68 7,598.8 15
Avg All 11.29 29.99 7,269.9 6 4.11 29.05 7,864.3 58

All Avg All 5.51 29.99 4,424.2 157 1.72 29.05 4,194.1 379

Table 3: Results for the Lagrangian heuristic for all 540 instances for the DFLP RPC with RUC constraints.

Table 4 provides a direct comparison between the results of CPLEX and the Lagrangian heuristic. The
MIP solver does not find feasible solutions for about half of the instances, in particular for those with a
high number of capacity levels, i.e., q = 10. For the instances where CPLEX finds feasible solutions, the
Lagrangian heuristic provides more reliable results, having a smaller maximum deviation of the provided
solution value from the best known lower bound, while the computing times are significantly lower. Further-
more, given the strong lower bounds provided by the heuristic, the latter is capable to prove optimality for
almost the same number of instances as CPLEX (218 vs. 227).
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CPLEX Bundle + R-MIP
q Instance # Avg Max Time # 1% Avg Max Time # 1%

size ns Gap % Gap % (sec) opt Gap % Gap % (sec) opt
3 50/50 0 0.23 1.21 4,327.7 16 0.31 1.22 4,142.9 9

50/200 0 0.00 0.01 751.2 18 0.53 0.96 268.3 18
100/100 0 0.01 0.18 1,325.3 18 0.40 0.87 273.2 18
100/400 0 0.00 0.01 719.8 18 0.59 0.92 650.8 18
150/150 0 0.02 0.26 1,665.1 17 0.29 0.99 610.8 18
150/600 1 0.01 0.02 3,017.2 17 0.69 0.98 756.5 17
200/200 0 0.12 2.04 2,949.2 17 0.42 0.94 1,098.2 18
200/800 9 0.40 3.48 6,120.1 8 0.22 0.81 1,411.7 9
250/250 0 0.10 1.79 2,978.1 17 0.40 0.93 1,381.2 18
250/1000 15 0.84 2.51 8,152.7 2 0.05 0.11 1,400.7 3
Avg All 25 0.10 3.48 2,553.1 148 0.43 1.22 1,170.5 146

5 50/50 3 2.15 8.39 8,005.7 9 1.19 3.28 5,831.7 2
50/200 0 0.45 3.43 4,956.9 16 0.49 1.32 1,907.4 16
100/100 4 0.36 1.48 4,955.4 11 0.42 1.29 2,104.2 10
100/400 7 0.01 0.03 2,504.8 11 0.48 0.97 653.5 11
150/150 7 0.92 7.56 6,093.3 8 0.34 0.89 812.4 10
150/600 12 0.04 0.19 5,291.7 5 0.20 0.77 651.0 6
200/200 10 0.09 0.39 4,031.4 8 0.16 0.50 800.8 8
200/800 17 0.01 0.01 4,005.0 1 0.84 0.84 1,145.0 1
250/250 12 0.04 0.14 5,347.5 5 0.18 0.73 557.7 6
Avg All 90 0.63 8.39 5,259.5 74 0.50 3.28 1,950.8 70

10 50/50 12 1.78 4.07 10,800.2 3 1.85 2.81 611.5 0
50/200 15 0.71 1.51 10,110.0 2 0.60 1.21 264.3 2
100/100 13 2.88 8.82 10,800.4 0 1.92 3.14 2,254.6 0
Avg All 166 1.94 8.82 10,652.4 5 1.61 3.14 1,123.9 2

All Avg All 281 0.38 8.82 3,931.3 227 0.52 3.28 1,433.1 218

Table 4: Comparison of solution quality for CPLEX and the Lagrangian heuristic considering instances for
the DFLP RPC with RUC constraints where CPLEX found feasible solutions.

6 Conclusions

We have considered a recently introduced multi-period facility location problem with multiple capacity
levels and multiple commodities. This problem, motivated by an industrial application in forestry, allows for
several ways to adjust capacity along time, such as the expansion of capacity and the relocation of facilities.
As for many problems motivated by industrial applications, the features of the problem go beyond classical
variants and significantly complicate the solution. In particular, the problem extends classical facility location
by considering the partial closing and reopening of facilities, as well as capacity constraints that consider
rounding on the left-hand side of the constraints.

In this paper, we proposed a new formulation for this problem, as well as for two simplified variants
without relocation and with classical capacity constraints. For our test instances, the proposed formulations
provide significantly lower integrality gaps than previous formulations, on average 13 to 30 times lower. As
a consequence, MIP solvers perform much better when using the new formulation. Next to computational
advantages, the proposed modeling technique also allows for a better representation of the cost structure of
the problem.

Based on the proposed formulations, we developed efficient Lagrangian heuristics to find high quality
solutions for the problems. They consist of two optimization phases. In the first phase, the Lagrangian
dual is solved by a bundle method, providing lower and upper bounds. Then, a restricted MIP model is
solved to improve the final solution quality. Even though the relocation of facilities, as well as the particular
capacity constraints represent an additional obstacle when decomposing the problem, we demonstrate how
to efficiently construct feasible facility relocations after relaxing the relocation linking constraints and how
to solve the round-up capacity constraints in a combinatorial manner. Computational results show that the
proposed heuristics outperform state-of-the-art MIP solvers, providing better average and maximum devi-
ations from the best known lower bounds in significantly shorter computing times. While the MIP solver
does not find feasible solutions for about half of the instances, the heuristics are able to provide high quality
solutions for all instances. The average deviation from the best known lower bounds for all 540 test instances
is 1.37% for the original problem considering relocation and round-up capacity constraints. The Lagrangian
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heuristics also provide relatively accurate bounds on the solution quality, since the proposed formulations
produce low integrality gaps.
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and the Fonds de recherche du Québec Nature et Technologies (FRQNT) for their financial support. Finally,
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A Test Instances

Due to the lack of openly available instance sets that include the input data required by the DFLP PC and
DFLP RPC with classical and with RUC constraints, we generated a total of 540 instances, 180 for each
capacity level, to test the presented models. These instances extend those used by Jena et al. (2014b) to
account for partial facility closing, facility relocation and the RUC constraints. In the following we briefly
describe how these instance properties are generated and which parameters are used. We refer to Jena et al.
(2014b) for details.

A.1 Problem dimension

Instances were generated with different numbers of candidate facility locations |J | and customers |I|, combin-
ing all pairs of J ∈ {50, 100, 150, 200, 250} and I ∈ {|J |, 4 · |J |}. To be precise, the instance dimensions are:
(10/20), (50/50), (50/200), (100/100), (100/400), (150/150), (150/600), (200/200), (200/800), (250/250)
and (250/1000). Instances have been generated with a maximum of 3, 5 and 10 capacity levels, which are
assumed to be reasonable values for a broad variety of different application contexts. The capacities uj` are
generated based on the total number of customers and are chosen such that a considerably large number of
facilities (about half of the candidate locations) is selected.

The candidate facility locations and the customer demand points have been randomly generated following
a continuous uniform distribution. The networks were generated on squares of the following three sizes:
300km, 380km and 450km. All generated instances contain ten time periods, which is found to be sufficient
to demonstrate capacity changes along time and small enough to not increase the size of the models too
much.

A.2 Demand allocation and fixed costs

Costs are divided into fixed and variable costs and include economies of scale in function of the size of the
facility. Fixed costs are given by the construction of facilities and the change of their capacity levels. Variable
costs are composed of the costs to produce and transport the commodities. Transportation costs have been
computed based on the Euclidean distance between the points, including a small modification that results in
a slight clustering effect of the customers close to a facility. The generation of the total demand allocation
costs gij`t to serve the customer demands, the facility construction costs foj` and the facility maintenance
costs F oj` is described in Jena et al. (2014b).

The costs for reopening and closing existing facilities were taken from the input data of the previously
mentioned industrial application introduced by Jena et al. (2012). Although being strictly increasing, these
costs do not necessarily represent economies of scale. The costs to reopen 1, . . . , 10 closed capacity levels
are 3,138.34, 4,084.69, 4,924.58, 5,693.26, 7,085.07, 7,727.50, 8,342.34, 8,933.68, 10,057.70 and 10,594.80,
respectively. The costs to close 1, . . . , 10 open capacity levels are 8,624.93, 11,595.80, 14,305.60, 16,836.50,
21,524.10, 23,727.90, 25,858.30, 27,925.70, 31,901.10 and 33,820.70, respectively.

Once all capacity levels are closed, a facility can be relocated to another location. The costs to relocate
a facility of 1, . . . , 10 capacity levels from one location to another are set to 12,823.70, 19,431.90, 24,077.00,
30,247.00, 42,639.10, 48,854.50, 50,579.90, 56,314.10, 67,804.10 and 73,558.50, respectively.

A.3 Demand distribution

We consider two different demand scenarios. In both scenarios, the demand for each of the customers is
randomly generated and randomly distributed over time. The two scenarios differ in their total demand
summed over all customers in each time period. In the first scenario, the total demand is similar in each
time period. We set the average demand for a customer to 12 units per time period. The total demand
for all customers is therefore approximately 10 · |I| units at each time period. The second scenario assumes
that the total demand follows strong variations along time and therefore varies at each time period. In this
scenario, the total demand for all customers is multiplied by a random distortion factor at each time period.
The demands for the second to fifth commodity are computed based on the demand of the first commodity.
For further details, we refer to Jena et al. (2014b).
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When round-up capacity constraints are used, demands dipt are divided by the corresponding lot size sp,
which have been set to s1 = 6, s2 = 3, s3 = 5, s4 = 2 and s5 = 7.
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