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Abstract. This paper presents a branch-and-price approach to solve personalized tour 

scheduling problems in a multi-activity context. Two formulations are considered. In the 

first formulation, columns correspond to daily shifts that are modeled with context-free 

grammars and tours are assembled in the master problem by means of extra constraints. 

In the second formulation, columns correspond to tours that are built in a two-phase 

procedure. The first phase involves the composition of daily shifts, while the second phase 

assembles those shifts to generate tours using a shortest path problem with resource 

constraints. Both formulations are flexible enough to allow different start times, lengths 

and days-off patterns, as well as multiple breaks, continuity and discontinuity in labor 

requirements. We present computational experiments on problems dealing with up to five 

work activities and one week planning horizon. The results show that the second 

formulation is stronger in terms of its lower bound and that it is able to find high-quality 

solutions for all instances with an optimality gap lower than 1%. 
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1 Introduction

Personnel scheduling problems consist in constructing a set of feasible shift schedules and
assigning them to the company staff to satisfy a given demand for staff requirements. These
problems arise in diverse organizations such as hospitals, airline companies, retail stores, call
centers and banks, where they have become important tasks, due to the necessity to achieve
a better level of service, to reduce staff costs and to increase employee satisfaction.

According to Baker [4], three main categories of problems can be distinguished in personnel
scheduling: Shift scheduling, Days-off scheduling and Tour scheduling. The first category deals
with the specification of work and rest periods to assign to shifts, as well as the selection of
a set of those shifts to satisfy the demand for staff requirements. In shift scheduling, the
planning horizon is usually one day divided into time intervals of equal length. The second
category involves the selection of days-off over a planning horizon of at least one week. Such
selection is usually restricted by some employee preferences or workplace agreements. The
last category includes problems that arise from the integration of shift scheduling and days-
off scheduling; therefore, the aim of tour scheduling problems is to specify the time intervals
of the day and the days of the week in which employees must work.

Complex extensions of classical personnel scheduling problems appear when real appli-
cations are considered. For instance, when more than one activity has to be scheduled, the
Multi-activity shift scheduling and the Multi-activity tour scheduling problems arise. In both
extensions not only the specification of work and rest periods is necessary, but also the as-
signment of activities to the shifts. In a multi-activity context, specific characteristics related
with work rules, workplace agreements, and employee skills and preferences define the rules
to build employee schedules.

The problem considered in this paper is the personalized multi-activity tour scheduling
problem (MATSP). In the MATSP, a tour can be seen as a schedule over a planning horizon
of at least one week, where for every time interval it must be specified if the employee is
working on an activity, having a break or resting. Aside from multiple activities, undercovering
and overcovering of demand are considered. The MATSP is flexible enough to be easily
adapted depending on different work rules and scenarios. The number of feasible tours grows
fast with the number of activities, the number of employees and the length of the time
horizon, making the complete enumeration of tours impractical. Therefore, we propose column
generation approaches embedded into branch-and-price (B&P) methods. Two formulations
for the MATSP are considered, each giving rise to a different B&P algorithm. First, the
Daily-based formulation consists of an extension of a multi-activity shift scheduling problem,
where columns correspond to daily shifts and tours are assembled in the master problem by
means of extra constraints. Second, the Tour-based formulation, where columns correspond
to tours that are built in a two-phase procedure. The first phase involves the composition of
daily shifts, while the second phase assembles those shifts to generate tours.

The outline of the paper is the following. Section 2 presents the literature review related
with personnel scheduling problems, as well as some background material. The definition
of the problem, the two formulations and some properties of them are presented in Section
3. The B&P algorithms for the Daily-based formulation and the Tour-based formulation
are presented in Sections 4 and 5, respectively. Computational experiments are discussed in
Section 6. Finally, Section 7 presents the concluding remarks and future work.
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2 Background and Related Research

In this section, we present a literature review on the models and methods proposed to solve
shift scheduling, multi-activity and tour scheduling problems. Then, we present an introduc-
tion on the use of grammars in the context of multi-actity shift scheduling.

2.1 Shift Scheduling

Two different modeling approaches can be distinguished in the literature on shift scheduling
problems: explicit and implicit models. Explicit models allow to consider flexibility in terms of
break placement, start times and shift length by representing each feasible shift with a different
variable. On the contrary, implicit models define one variable for every shift and break type,
seeking to reduce the number of decision variables by compromising model flexibility.

Dantzig [18] was the first author to introduce an explicit model for the SSP. The model is
based on a set covering formulation in which the objective is to minimize the total labor cost,
ensuring that labor requirements at every time interval are met. Trying to reduce the number
of variables, Moondra [27] proposes a method that implicitly represents shifts and considers
flexibility regarding multiple shift lengths and start times. Break flexibility is considered in
Bechtold and Jacobs [5] with an implicit formulation where shifts are grouped into shift types
according to their start time, length and break window.

Aykin [2] and Rekik et al. [33] present two extensions of Bechtold and Jacobs’ formulation.
In the first extension, the author tackles multiple rest, meal breaks and break windows by
introducing integer variables for the number of employees assigned to a shift and starting their
breaks at different time intervals. The second extension deals with two implicit models that
include a reformulation of forward and backward constraints and a transportation structure
to match shifts with admissible breaks.

Column generation (CG) and constraint programming (CP) have been recently proposed
as alternatives to solve complex shift scheduling problems. CG is used when the incorporation
of flexibility in the composition of shifts causes a considerable increase in the number of
variables. In this method, two strategies can be adopted to reach integrality in the problem:
a heuristic approach, where the master problem is solved by forcing the integrality constraints
on the decision variables, and an exact method, where the CG procedure is embedded into a
B&P algorithm. In that vein, Mehrotra et al. [26] use B&P and exploit the advantages of a set
covering formulation to solve a shift scheduling problem with multiple rest breaks, one meal
break and break windows. On the other hand, CP is used to model shift scheduling problems
where work rules involve non trivial relationships between variables. As an illustration, Côté
et al. [13] take advantage of the expressiveness of a Deterministic finite automaton (DFA)
that, used in a 0-1 mixed integer programming model, helps to implicitly express a large set
of rules and represent all possible patterns for an employee timetabling problem.

2.2 Multi-Activity Shift Scheduling

In one of the first attempts to solve multi-activity shift scheduling problems, Ritzman et al.
[35] develop a heuristic approach by integrating a construction method and a simulation com-
ponent to schedule employees in a post office over a planning horizon of one week. Although
the authors tackled the multi-activity context, they do not consider breaks nor rules related
with switching between activities.
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A few decades later, approaches using CP, formal languages and context-free grammars
were suggested in Demassey et al. [19], Quimper and Rousseau [30] and Côté et al. [12, 14].
In the first approach [19], a CP-based column generation algorithm is presented as a way to
model complex regulation constraints to solve large instances of multi-activity shift scheduling
problems. Quimper and Rousseau [30], solve multi-activity shift scheduling problems with up
to ten work activities by using specialized graph structures that are derived from formal
languages and solved via Large neighborhood search. Côté et al. [12], propose two models:
one that uses an automaton to derive a network flow model, and another one that benefits from
context-free grammars to obtain a MIP model in which an and/or graph structure is used.
Despite their ability to easily handle complex rules, the models present some scalability issues
when the number of employees and the number of activities increase. Côté et al. [14], seek
to solve the scalability issues of their previous models by introducing an implicit formulation
that encapsulates model symmetry by using integer variables. Computational results show
that, in the mono-activity case, the solution times of the model are comparable and sometimes
better than the results presented in the literature and that, in the multi-activity case, the
model is able to solve to optimality instances with up to ten work activities.

To solve the personalized version of the problem introduced in Côté et al. [14], Côté et al.
[15] present a grammar-based column generation method where the pricing subproblems are
formulated using grammars and solved with a dynamic programming algorithm. Although
the expressiveness of grammars enables to encode a large set of work rules over shifts, some
limitations are present regarding shift total length over longer planning horizons (e.g., one
week). Boyer et al. [6] extends the previous work, where besides considering multiple activities,
it also includes multiple tasks. An extensive study of branching strategies is made, showing
that the method is able to find, in a reasonable amount of time, the solution for all test
instances with an optimality gap lower than 5%.

Instead of working with explicit and implicit models or with CP, some authors have pro-
posed different methods to tackle multi-activity shift scheduling problems. Some of them
include Tabu search [17], heuristic column generation [34], decomposition techniques [20], or
a simplification of the multi-activity shift scheduling problem [21, 25] by fixing sequences of
work, rest days, shift types and breaks.

2.3 Tour Scheduling

Since the introduction of Dantzig’s model for shift scheduling [18], a lot of research has been
conducted to consider more realistic and complex versions of the problem. One example of
such extensions is the work of Morris and Showalter [28], which introduces the first integer
programming formulation to solve tour scheduling problems based on Dantzig’s set covering
model. The authors combine LP and heuristic methods to solve a two-phase problem. In the
first phase, daily schedules are generated and sent to the second phase where weekly tours
are constructed. Trying to introduce flexibility without increasing dramatically the size of
the problem, Bailey [3] presents a formulation to implicitly model the start times in a tour
scheduling problem. A construction heuristic is used to assign shifts under a limited staff size
constraint, while a rounding heuristic is used to achieve integrality of the variables.

Jarrah et al. [24] propose an implicit model with aggregated variables that decomposes
the weekly tour scheduling problem into seven daily-shift scheduling subproblems. A trans-
portation model and a postprocessor are used to assign breaks to shifts and shifts to tours,
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respectively. The authors test their method on a real-world application, running several sce-
narios including flexibility in start times and break allocation. Jacobs and Brusco [23] present
a compact implicit model to demonstrate the importance of start time bandwidth flexibility
in tour scheduling. Computational results suggest that allowing start-time flexibility reduces
significantly the required workforce size when compared with fixed start time.

Attempting to develop more realistic models, Brusco and Jacobs [9] considers both start
time and meal break flexibility in an implicit integer programming model to solve the continu-
ous tour scheduling problem. The authors evaluate their approach on a real-world application,
showing that the effect of the scheduling policies on the optimal workforce size can vary sig-
nificantly depending on the level of other policies.

In order to solve a discontinuous tour scheduling problem (shifts are allowed to overlap
from one day to the next) in a call center, Çezik et al. [11] propose a model with two com-
ponents: a daily-shift generator and a days-off generator. In the former, seven daily shift
schedules are generated through implicit modeling, while in the latter, weekly requirements
are met via network flows. The proposed model is able to solve half of the real instances to
optimality by using a heuristic B&P algorithm.

In a recent work, Brusco and Johns [10] introduce an integrated approach to overcome
the lack of integration between start time selection and tour construction by using Tabu
search and a cutting plane method. The former is useful for the start time selection, while
the latter handles tour construction. Computational experiments are conducted with and
without consistency in demand patterns. In both cases, the method has a good performance
in terms of computational time.

Decomposition techniques and column generation are also often used in the context of
tour scheduling problems. As an illustration, Rekik et al. [32] use Benders decomposition
to solve a continuous tour scheduling problem where the subproblems are modeled with a
transportation structure, and the forward and backward constraints introduced by Bechtold
and Jacobs [5] are used as a set of initial feasibility cuts. After conducting an extensive
analysis, the authors conclude that the proposed model considerably decreases the number of
variables at the cost of a small increase in the number of constraints. Ni and Abeledo [29]
present a B&P algorithm to solve the continuous version of the problem where weekly tours
are decomposed into daily shifts and start-time patterns. Computational experiments show
that for large-scale instances where implicit methods often fail to find a feasible solution, the
proposed method is able to find near-optimal solutions.

Because achieving integrality for large-scale instances is a difficult task, Al-Yakoob and
Sherali [1] propose a heuristic column generation to schedule, over one week, different cat-
egories of employees. Employee preferences for work centers, shift types and days-off are
considered. Given previously defined shift types, the method is able to generate, in a reason-
able amount of time, employee schedules for up to 90 stations and 336 employees.

Combining implicit and explicit shift definitions and developing an exact B&P algorithm,
Brunner and Bard [7] solve a discontinuous tour scheduling problem over a one-week planning
horizon for postal service employees. The authors analyze the flexibility impact on work-
force size, costs and utilization rate by considering several scenarios in the computational
experiments.

Brunner and Stolletz [8] present a stabilized B&P algorithm to solve a discontinuous tour
scheduling problem that includes flexibility regarding labor regulations and assignment of
lunch breaks. The master problem is based on a set covering formulation. Computational
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experiments show that the model convergence is faster when the stabilization technique is
used.

The reader is referred to Van den Bergh et al. [36] for a comprehensive review of recent
papers on tour scheduling problems.

The literature review on tour scheduling problems reveals that no method has been pro-
posed to integrate tour scheduling and multi-activity shift scheduling problems. In particular,
no rules for the allocation and transition between activities were ever taken into account in the
existing research. The literature review on multi-activity shift scheduling problem (Section
2.2) shows that some authors have addressed these problems over planning horizons longer
than one day, but only in situations where either weekly patterns were previously defined or
rules concerning total tour length and days-off were not considered.

The present paper addresses these gaps in the literature by proposing models and methods
that integrate the tour scheduling and multi-activity shift scheduling problems. To efficiently
handle the multi-activity context, we make use of context-free grammars, which are reviewed
next.

2.4 Grammars and Shift Scheduling Problems

We define a context-free grammar as a tuple G = 〈Σ, N, P, S〉 where Σ is an alphabet of
characters called the terminal symbols, N is a set of non-terminal symbols, S ∈ N is the
starting symbol and P is a set of productions represented as A→ w, where A ∈ N is a non-
terminal symbol and w is a sequence of terminal and non-terminal symbols. The productions
of a grammar can be used to generate new symbol sequences until only terminal symbols are
part of the sequence. A Context-free language is the set of sequences accepted by a context-free
grammar.

A parse tree is a tree where each leaf is labeled with a terminal and each inner-node is
labeled with a non-terminal. A grammar recognizes a sequence if and only if there exists a
parse tree where the leaves, when listed from left to right, reproduce the sequence. An and/or
graph is a graph where each leaf corresponds to an assignment that can either be true or false.
An and-node is true if all of its children are true. An or-node is true if one of its children
is true. The root is true if the grammar accepts the sequence encoded by the leaves. The
and/or graph embeds every possible parse tree of a grammar.

Finally, a DAG Γ is a directed acyclic graph that embeds all parse trees associated with
words of a given length n recognized by a grammar. The DAG Γ has an and/or structure
where the and-nodes represent productions from P and or-nodes represent non-terminals from
N and letters from Σ. The DAG Γ is built by a procedure proposed in Quimper and Walsh
[31].

In the shift scheduling context, the use of grammars allows both to include work rules
regarding the definition of shifts and to handle the multi-activity context in an easy way.
Thus, feasible shifts can be represented as words in a context-free language. For example,
words rw1w1bw2 and w1bw2w1r are recognized as valid shifts in a two-activity shift scheduling
problem where letters w1, w2, b and r represent working on activity 1, working on activity 2,
break and rest periods, respectively. The time horizon consists of five time intervals, shifts
have a length of four periods and must contain exactly one break of one period that can be
placed anywhere during the shift except at the first or the last period. The grammar that
defines the shifts on this example follows:
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G = (Σ = (w1, w2, b, r), N = (S, F,X,W,B,R), P, S),
where productions P are: S → RF |FR, F → XW , X → WB, W → WW |w1|w2, B → b,
R→ r, and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2, B → b and R→ r generate the
terminal symbols associated with working on activity 1, working on activity 2, having a break
or having a rest period inside of the shift, respectively. Production W → WW generates
two non-terminal symbols, W , meaning that the shift will include a working subsequence.
Production X → WB means that the shift will include working time and then it will be
followed by a break. Production F → XW generates a subsequence of length four (the daily
shift), which includes working time followed by a break to finish with more working time.
Finally, the last two productions are S → RF and S → FR. The former generates a sequence
starting with a period of rest followed by the daily shift. The latter generates a sequence
starting with the daily shift followed by a period of rest.

Let Oπdil be the or-nodes associated with π ∈ N ∪ Σ, i.e., with non-terminals from N or
letters from Σ, that generate a subsequence at day d, position i of length l. Note that if
π ∈ Σ, the node is a leaf and l is equal to one. On the contrary, if π ∈ N , the node represents
a non-terminal symbol and l > 1. AΠ,k

dil is the kth and-node representing productions Π ∈ P
generating a subsequence at day d, from position i of length l. There are as many AΠ,k

dil nodes
as there are ways of using P to generate a sequence of length l from position i during day
d. The sets of or-nodes and and-nodes from day d are denoted by Od and Ad, respectively.
The root node is described by OSd1n and its children by AΠ,k

d1n. Figure 1 represents the DAG
Γ associated with the grammar of the example, where dashed-line or-nodes are part of the
parse trees associated with and-node AS→RF,115 , while continuous-line or-nodes are part of the

parse trees associated with and-node AS→FR,115 . For clarity, we did not include the subscript
of the day in the notation of the nodes.
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Figure 1: DAG Γ on words of length five and two work activities.

Figure 2 shows two of the 32 parse trees that are embedded into the DAG Γ presented in
Figure 1. Note that the leaves correspond to letters from Σ that form a word, in this case of
length five, when listed from left to right.
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(b) Word: w1w2bw1r

Figure 2: Parse trees derived from DAG Γ on words of length five and two work activities.
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3 Problem Definition and Formulations

In this section, we first introduce the problem studied and its notation to later define the
mathematical models for the Daily-based and the Tour-based approaches. We then show that
the Tour-based formulation yields a better linear programming (LP) relaxation bound than
the Daily-based formulation.

3.1 Problem Definition and Notation

The problem addressed in this paper is a Tour scheduling problem in a multi-activity context
where the set of activities is denoted by J . The planning horizon is at least one week in which
each day d ∈ D is divided into Id time intervals of equal length. Each employee e ∈ E have
different skills, meaning that the personalized version of the problem is considered. The set
of feasible tours for each employee e is denoted by T e, while the set of feasible shifts for each
employee e at each day d is denoted by Sed. The notation used in both formulations is as
follows:
General parameters

bdij : staff requirements for day d, time interval i and activity j;

cedij : cost of employee e working on day d, time interval i and activity j;

c+
dij , c

−
dij : overcovering and undercovering costs of employee requirements for day d, time

interval i and activity j, respectively;

Jedi: set of work activities that employee e can perform at period i of day d.

Daily shift parameters

ε: minimum resting time between two consecutive daily shifts;

Sedi(1): set of shifts that finish at time interval i during day d for employee e;

Sedi(2): set of shifts that cover from i to i+ ε time intervals during day d for employee e;

δedijs: parameter that takes value 1, if shift s covers time interval i and work activity j during
day d for employee e, and assumes value 0 otherwise;

ceds: cost associated to shift s during day d for employee e (ceds =
∑
i∈ Id

∑
j ∈ Je

di

δedijsc
e
dij);

Every daily shift s from day d has a set of attributes: its start period tds, its length lds
(considering breaks), its working time wds, and its end period fds = tds + lds − 1.

Tour parameters

∆l, ∆u: minimum and maximum number of working days in a tour, respectively;

Θl, Θu: minimum and maximum tour length in time intervals, respectively;

Φ = |D| −∆l: maximum number of days-off in a tour;
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φedst: parameter that takes value 1 if tour t includes shift s at day d for employee e, and
assumes value 0 otherwise;

ρedijt: parameter that takes value 1 if tour t covers time interval i and work activity j at day
d for employee e, and assumes value 0 otherwise (ρedijt =

∑
s∈Sed

φedstδ
e
dijs);

cet : cost of tour t for employee e (cet =
∑
d∈D

∑
i∈ Id

∑
j ∈ Je

di

δedijtc
e
dij =

∑
d∈D

∑
s∈Sed

φedstc
e
ds).

3.2 The Daily-Based Formulation

In order to solve the MATSP, we propose, as a first formulation, a natural extension of the
model presented in Côté et al. [15]. In this extension, daily shifts are linked into tours by
means of extra constraints that assure the minimum and maximum tour length, the minimum
and maximum number of working days per tour and the minimum resting time between
consecutive shifts. We define the following variables:
xeds: binary variable that takes value 1 if shift s on day d is assigned to employee e, and
assumes value 0 otherwise;
y+
dij , y

−
dij : slack variables representing overcovering and undercovering of employee require-

ments for day d, time interval i and activity j, respectively.
The Daily-based formulation, denoted FS , is as follows:

f(FS) = min
∑
e∈E

∑
d∈D

∑
s∈Sed

cedsx
e
ds +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij (1)

∑
e∈E

∑
s∈Sed

δedijsx
e
ds − y+

dij + y−dij = bdij , ∀ d ∈ D, i ∈ Id, j ∈ J, (2)

∑
s∈Sed

xeds ≤ 1, ∀ e ∈ E, ∀ d ∈ D, (3)

∆l ≤
∑
d∈D

∑
s∈Sed

xeds ≤ ∆u, ∀ e ∈ E, (4)

Θl ≤
∑
d∈D

∑
s∈Sed

wdsx
e
ds ≤ Θu, ∀ e ∈ E, (5)

∑
s∈Sedi(1)

∑
j ∈ J

δedijsx
e
ds +

∑
s∈Sedi(2)

∑
j ∈ J

δedijsx
e
ds ≤ 1, ∀ e ∈ E, d ∈ D, i ∈ Id, (6)

xeds ∈ {0, 1}, ∀ e ∈ E, d ∈ D, s ∈ Sed, (7)

y+
dij , y

−
dij ≥ 0, ∀ d ∈ D, i ∈ Id, j ∈ J. (8)

The objective of FS , (1), is to minimize the total staffing cost plus the penalization for
overcovering and undercovering of demand. Constraints (2) ensure that staff requirements per
day d ∈ D, time interval i ∈ Id and work activity j ∈ J are met. Constraints (3) guarantee
that every employee is assigned to at most one shift per day. Constraints (4) and (5) enforce
a minimum and maximum number of working days (∆l and ∆u) and tour length (Θl and Θu),
respectively. Constraints (6) ensure a minimum rest time between consecutive shifts. Finally,

Branch-and-Price for Personalized Multi-Acitvity Tour Scheduling

CIRRELT-2015-03 9



constraints (7)-(8) set the binary nature of variables xeds and the non-negativity of variables
y+
dij , y

−
dij .

3.3 The Tour-Based Formulation

The Tour-based formulation makes use of slack variables as in the Daily-based formulation,
but also includes the following decision variables related to tours:
xet : binary variable that takes value 1 if tour t is assigned to employee e, and assumes value
0 otherwise.

Hence, the constraints related with the link between daily shifts and tours are consid-
ered in the definition of feasible tours and not in the mathematical model. The Tour-based
formulation, denoted FT , is as follows:

f(FT ) = min
∑
e∈E

∑
t∈T e

cetx
e
t +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij (9)

∑
e∈E

∑
t∈T e

ρedijtx
e
t − y+

dij + y−dij = bdij , ∀ d ∈ D, i ∈ Id, j ∈ J, (10)∑
t∈T e

xet = 1, ∀ e ∈ E, (11)

xet ∈ {0, 1}, ∀ e ∈ E, t ∈ T e, (12)

y+
dij , y

−
dij ≥ 0, ∀ d ∈ D, i ∈ Id, j ∈ J. (13)

The objective of FT , (9), is to minimize the total staffing cost plus the penalization for
overcovering and undercovering of demand. Constraints (10) ensure that staff requirements
per day d ∈ D, time interval i ∈ Id and work activity j ∈ J are met. Constraints (11)
guarantee that every employee is assigned to exactly one tour. Finally, constraints (12)-(13)
set the binary nature of variables xet and the non-negativity of variables y+

dij , y
−
dij .

3.4 Comparison Between the Two Formulations

Let f(FS) and f(FT) be the LP relaxation bounds of the Daily-based formulation and the
Tour-based formulation, respectively, withFS andFT the corresponding LP relaxations.

Proposition 1: f(FS)≤ f(FT).
Proof: Consider the Daily-based formulation (1)-(8) to which we add the following redun-

dant constraints:

y+
dij , y

−
dij ≤ bdij , ∀ d ∈ D, i ∈ Id, j ∈ J. (14)

Note that the LP relaxation of the resulting model is equivalent toFS. Using the resulting
model, we dualize constraints (2) to obtain the following Lagrangian subproblem, denoted by
FS(β), where βdij are the Lagrange multipliers associated to constraints (2):
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f(FS(β)) =
∑
d∈D

∑
i∈ Id

∑
j ∈ J

βdijbdij+

min
∑
e∈E

∑
d∈D

∑
s∈Sed

cedsx
e
ds −

∑
e∈E

∑
d∈D

∑
i∈ Id

∑
j ∈ J

∑
s∈Sed

βdijδ
e
dijsx

e
ds∑

d∈D

∑
i∈ Id

∑
j ∈ J

(c−dij − βdij)y
−
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dij + βdij)y

+
dij

subject to constraints (3)-(8) and (14).

Note that FS(β) decomposes into two subproblems: one expressed in terms of the x
variables only, with feasible set X, and the other involving only the y variables, with feasible
set Y . The subproblem that depends only on the x variables is defined by:

min
∑
e∈E

∑
d∈D

∑
s∈Sed

ceds − ∑
i∈ Id

∑
j ∈ J

βdijδ
e
dijs

xeds

subject to constraints (3)-(7).

This subproblem can itself be decomposed by employee and its feasible set is defined as
the finite set of points X = Πe∈EX

e, where Xe corresponds to (3)-(7) for each employee e.
The subproblem involving only the y variables is defined by:

min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c−dij − βdij)y
−
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dij + βdij)y

+
dij

subject to the non-negativity constraints (8) and the bound constraints (14).

Therefore, the feasible set X × Y of the Lagrangian subproblem FS(β) can be written
as X × Y = (Πe∈EX

e) × Y .The corresponding Lagrangian dual can be written as Z =
maxβ f(FS(β)). By Lagrangian duality theory [22], this Lagrangian dual is equivalent to the
following LP model:

Z = min
∑
e∈E

∑
d∈D

∑
s∈Sed

cedsx
e
ds +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij∑

e∈E

∑
s∈Sed

δedijsx
e
ds − y+

dij + y−dij = bdij , ∀ d ∈ D, i ∈ Id, j ∈ J,

(x, y) ∈ conv(X × Y ).

where conv(A) is the convex hull of any set A. Clearly, Z ≥ f(FS), since conv(X × Y ) is
contained in the feasible set ofFS.

Since X × Y = (Πe∈EX
e)× Y and Y is a bounded polyhedron, we have conv(X × Y ) =

(Πe∈Econv(Xe))×Y . Now, for any employee e ∈ E, every point xe in conv(Xe) can be written
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as a convex combination of the extreme points of conv(Xe). Any such extreme point ξe(t)
corresponds to a tour T e for employee e. Thus, we can write xe =

∑
t∈T e µe(t)ξe(t), where

µe(t) is the convex combination weight associated to tour t ∈ T e, i.e.,
∑
t∈T e

µe(t) = 1, ∀ e ∈ E

and µe(t) ≥ 0, ∀ t ∈ T e, e ∈ E. Thus, we have:

Z = min
∑
e∈E

∑
t∈T e

∑
d∈D

∑
s∈Sed

cedsξ
e
ds(t)

µe(t) +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij

∑
e∈E

∑
t∈T e

 ∑
s∈Sed

δedijsξ
e
ds(t)

µe(t)− y+
dij + y−dij = bdij , ∀ d ∈ D, i ∈ Id, j ∈ J,

∑
t∈T e

µe(t) = 1, ∀ e ∈ E,

µe(t) ≥ 0, ∀ t ∈ T e, e ∈ E,
0 ≤ y+

dij , y
−
dij ≤ bdij , ∀ d ∈ D, i ∈ Id, j ∈ J.

We remark that ξeds(t) = φedst, for any e ∈ E, d ∈ D,s ∈ Sed and t ∈ T e. If we let µe(t) = xet ,
for each t ∈ T e and e ∈ E, we obtain the LP relaxation model of the Tour-based formulation
(9)-(13) with the redundant constraints (14). Thus, f(FT) = Z ≥ f(FS). �.

Appendix A presents an example where a feasible solution ofFS is not feasible forFT , which
implies that, in this case, the optimal LP relaxation value of the Daily-based formulation is
lower than the optimal LP relaxation value of the Tour-based formulation.

4 B&P for the Daily-Based Formulation

In this section, we present a B&P algorithm for the Daily-based formulation. First, we intro-
duce the restricted master problem. Second, we describe the pricing subproblems. Finally,
we present the branching rule used to find near optimal integer solutions.

4.1 Restricted Master Problem

In practical scenarios, the complete enumeration of the set of feasible shifts Sed for every
employee e and every day d is intractable due to the incorporation of flexibility regarding shift
length, break placement, shift start times, among others. Therefore, we define a restricted
master problem FS̃ as the LP relaxation of problem (1)-(8) over restricted sets of shifts

S̃ed ⊆ Sed.
Let βdij , λ

e
d, δ

e, θe and αedi be the dual variables associated with constraints (2) to (6),
respectively. The reduced cost c̄eds of column (shift) s during day d for employee e is given by:

c̄eds =
∑
i∈ Id

∑
j ∈ Je

di

(cedij − βdij)δedijs − λed − δe − wdsθe − αedfds −
fds∑

i=fds−ε
αedi (15)
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The objective in the column generation procedure is to find, at every iteration, columns
with negative reduced cost, i.e., c̄eds < 0. Hence, (15) is used in the objective function of
the pricing subproblems for every employee and every day of the planning horizon. Under a
B&P algorithm, if no negative reduced cost columns can be generated, the restricted master
problem is optimal for the node under evaluation.

4.2 Pricing Subproblems for Daily Shift Generation

New columns are generated based on the work presented in Côté et al. [15] and the concepts
of Section 2.4. For each employee e and day d, a grammar Ged is generated. Such grammar
represents the possible shifts that an employee can perform during the day and its genera-
tion is made by considering the employee skills, its preferences, availability, work rules and
regulations such as minimum and maximum shift length, start times, minimum and maxi-
mum number of activities and breaks per shift, position of breaks and rules for the transition
between activities.

From each grammar Ged, we generate a DAG Γed that is used to find negative reduced cost

shifts for every employee e and day d. In Γed each children of the root node Aπ,kd1n ∈ ch(OSd1n)
represents a daily shift and its corresponding reduced cost is computed by solving the dynamic
programming algorithm presented in Quimper and Rousseau [30]. The algorithm traverses
the DAG from the leaves to the root node by summing up the costs of the children of the
and-nodes and choosing the minimum cost child of the or-nodes. It should be noted that, at
every iteration of the column generation, the cost of every node in Γed has to be updated. If
the node is a leaf that corresponds to working on activity j at period i during day d, its cost
is updated with cedij − βdij ; if the node is an and-node Aπ,kd1n ∈ ch(OSd1n) its cost is updated

with (−λed − δe − wdsγe − αedfds −
fds∑

i=fds−ε
αedi); otherwise, the cost is zero.

4.3 Branching Rule

We use the branching rule suggested in Côté et al. [15], where at each node of the B&P
algorithm, we select the employee e′ with the highest fractional solution. For that employee,
we select two daily shifts, se

′
d (1) and se

′
d (2), corresponding to the associated variables with

the largest fractional values. Then, we identify the first divergent position i′ between se
′
d (1)

and se
′
d (2), meaning that both shifts differ in their activities (work-activity, rest or break).

Let j(1) ∈ J and j(2) ∈ J be the assigned activities at period i′ for shifts se
′
d (1) and se

′
d (2),

respectively. As mentioned before, Je
′
di′ is the set of work activities that employee e′ can

perform at period i′ during day d. A partition of Je
′
di′ into subsets Je

′
di′(1) and Je

′
di′(2) is created,

such that j(l) ∈ Je′di′(l), for l = 1, 2. The rest of the activities in Je
′
di′ are equally distributed

between the two partitions. After generating the partitions, two nodes are created. At each
node l = 1, 2 it is ensured that employee e′ does not perform the activities in Je

′
di′(l) at period

i′. The rule is easily handled in the subproblem, since if an activity j is forbidden at period i
during day d, the associated leaf Ojdi1 receives a large cost in the DAG Γed ensuring that tours
containing shifts with activity j at position i for day d will not be generated. Therefore, the
suggested branching rule preserves the structure of the pricing subproblem.
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5 B&P for the Tour-Based Formulation

In this section, we present a B&P algorithm for the Tour-based formulation. First, we intro-
duce the restricted master problem. Second, we describe a two-phase procedure to solve the
pricing subproblems. Finally, we present the branching rule used to identify integer solutions.

5.1 Restricted Master Problem

The complete enumeration of the set of feasible tours T e for every employee is intractable due
to the incorporation of shift and tour flexibility. Hence, we define a restricted master problem
FT̃ as the LP relaxation of problem (9)-(13) over restricted sets of tours T̃ e ⊆ T e.

Let βdij and σe be the dual variables associated with constraints (10) and (11), respectively.
The reduced cost of column (tour) t for employee e is given by:

c̄et =
∑
d∈D

∑
i∈ Id

∑
j ∈ Je

di

(cedij − βdij)ρedijt − σe (16)

Expression (16) is used in the objective function of the pricing subproblems for every
employee. Under a B&P algorithm, if a new column with negative reduced cost is found, the
column is added to the restricted master problem FT̃ . If no negative reduced columns can be
generated, the solution of FT̃ is optimal for the node under evaluation.

5.2 Pricing Subproblems for Tour Generation

Tours are composed of a combination of daily shifts and days-off over a time horizon of at
least one week. Considering the above, the approach presented in this section seeks to build
tours with a two-phase process. In the first phase, daily shifts are generated with the same
procedure introduced in Section 4.2, except for a change in the cost of every node in Γed. In
this case, if the node is a leaf that corresponds to working on activity j at period i from day
d, its cost is cedij − βdij , otherwise the cost corresponds to zero. In the second phase, the
proposed method assembles shifts into tours by considering the constraints related with the
tour length, the number of working days and the minimum resting time between consecutive
shifts. Thus, in this second phase of the subproblem, the multi-activity property does not
affect the assembling of feasible tours and the only attributes that must be considered are the
shift starting time and shift length. The two-phase procedure is exact because, as it will be
described further, at every iteration of the column generation, we include the shift with the
lowest reduced cost for every start time and length at each day in the planning horizon.

The objective in the second phase of the subproblem is to generate tours with negative
reduced cost for every employee. Taking this into consideration, let Ke =

⋃
d∈D

Aπ,kd1n ∈ ch(OSd1n)

be the union over the set of days of all the children of the root node OSd1n of Γed. Therefore, Ke
can be seen as the set of shift “shells” containing all the possible combinations of shift starting
times and lengths but without considering breaks and activity allocation. Let Ge(N ,A) be a
directed acyclic graph with a set of nodes N = {vk | k ∈ Ke ∪{vs, vf}}, where vk corresponds
to shift k for employee e, while vs and vf are the source and sink nodes, respectively. The
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set of arcs A is divided into three types: arcs going from the source node to a “shift” node
A1 = {(vs, vk) | vk ∈ N , dk ≤ Φ + 1}; arcs connecting two “shift” nodes A2 = {(vk, vk′ ) |
vk, vk′ ∈ N , k 6= k

′
, tk′ − fk ≥ ε, dk′ − dk ≤ Φ + 1}; and arcs connecting a “shift” node to the

sink, A3 = {(vk, vf ) | vk ∈ N , dk ≥ ∆l}.
Each node in graph Ge(N ,A) has, besides a list of immediate successors N (vk) = {vi ∈

N|(k, i) ∈ A}, a set of attributes (start period tk, length lk, considering breaks, working time
wk, end period fk = tk + lk − 1, day dk and reduced cost c̄k) inherited from its corresponding
daily shift. The source node has a cost equal to zero, the sink node has a cost equal to
the negative of the dual variable σe and the remaining nodes have a cost equal to c̄k. The
list of successors of each node is generated according to the work rules for tour composition,
employee preferences and availability, as expressed in the arc types definition. Thus, successors
of source node vs are nodes that, depending on their start day, allow enough time to meet the
constraints related with the minimum number of working days required in a tour. In the same
way, sink node vf is a successor of node vk if the finish day of vk is greater or equal to the
minimum number of working days required in a tour. Finally, a node vk′ is a successor of node
vk if first, its start time allows to guarantee that there is a minimum rest time between both
shifts and secondly, if its start day allows to meet the constraints related with the minimum
and maximum number of days-off and their consecutiveness.

Tours are resource constrained paths along graph Ge(N ,A). In this case, if the cost of
a tour is negative, that means that a column with negative reduced cost was found and it
deserves to be sent to the restricted master problem. It should be noted that every feasible
path should meet the constraints related with the resources considered in the problem: the
total tour length and the number of working days. Furthermore, the method is optimal, since
graph Ge(N ,A) contains the shifts with the lowest reduced cost for all the possible shift
structures.

Figure 3 presents an example of graph Ge(N ,A). In the graph, the number of days in
the planning horizon is 7, the minimum and maximum number of working days are 5 and 6,
respectively, the minimum and maximum tour length are 15 and 18, respectively, and shifts
are built with the DAG Γed presented in Figure 1. Nodes with an odd number represent shifts

obtained from and-node AS→RF,1d15 that generates the structures rwbww, rwwbw, whereas

nodes with an even number represent shifts obtained from and-node AF→FR,1d15 with structures
wbwwr, wwbwr. In this case, for every and-node there are sixteen possible shifts, where
rw1bw1w1, rw1bw1w2,..., rw1w2bw2,...,rw2w2bw2 are some possible shifts for the first structure
and w1bw1w1r, w1bw1w2r,..., w1w2bw2r,...,w2w2bw2r are some possible shifts for the second.
The shift considered at every node is the one with the minimum reduced cost.

For clarity, Figure 3 does not include all the possible arcs, but three examples of paths
that consider every arc type are presented: a path with a total length of 18 working periods
and one day-off (dashed path): s− 1− 3− 5− 8− 10− 12− e, a path with a total length of 15
periods and two days-off in a row (dotted path): s−2−4−6−8−13−e and path with a total
length of 15 periods and two nonconsecutive days-off (bold path): s− 3− 7− 9− 11− 14− e.

Two processes are considered in the solution method for the tour composition: a graph
preprocessing and the solution of a shortest path problem with resource constraints (SPPRC).
The aim of the graph preprocessing is to reduce the size of the tour graph Ge(N ,A) by deleting
nodes that are similar to each other. Therefore, a node vk ∈ N is deleted if it is dominated
by a node vk′ ∈ N , k

′ 6= k. Considering the above, vk′ dominates vk if both nodes represent
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Figure 3: Ge(N ,A) over a planning horizon of seven days.

shifts starting the same day, if both cover the same number of periods and if the cost of
vk′ is lower than the cost of vk. Note that the preprocessing step allows to solve the pricing
subproblems in a fast but heuristic way, since some nodes that could be in the optimal solution
of the SPPRC are deleted. Therefore, to guarantee the optimality of the column generation
approach, when no more columns with negative reduced cost can be found, we call the pricing
subproblems once again, this time without performing the preprocessing step, and solve the
SPPRC with the complete graph.

To solve the shortest path problem with resource constraints, we implemented a label
setting algorithm where the total length of the tour and the number of working days are global
resources that are consumed by the labels while they are extended. In order to avoid exploring
paths that in some point will be infeasible or dominated, we included pruning strategies related
with bounds, the consumption of global resources and the dominance property between labels.
The pseudocode of the algorithm and its description are presented in Appendix B.

5.3 Branching Rule

Let e1 and e2 be the two employees with the highest fractional solutions at the node under
evaluation. e1 holds the first largest value and e2 holds the second largest value, xe1

t(1)
≥ xe2

t(1)
.

Let xe2
t(2)

be the second largest variable value for employee two, hence xe2
t(1)
≥ xe2

t(2)
. The

branching rule used for the Tour-based formulation is an aggressive variable fixing strategy
combined with the rule presented for the Daily-based formulation. In this way, at each node
of the B&P tree, we choose employees e1 and e2, fix to one variable xe1

t(1)
for e1 and select two

tours, te2(1) and te2(2), for e2 corresponding to variables xe2
t(1)

and xe2
t(2)

to apply the branching

rule presented in Section 4.3.

6 Computational Experiments

In this section, we present the computational experiments to test the performance of the
B&P algorithms. First, we generate random instances to test and compare the algorithms.
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Second, we test the Tour-based B&P algorithm for the mono-activity tour scheduling problem
introduced by Brunner and Bard [7].

6.1 Results on Random Instances

We perform the computational experiments on several random instances that are generated as
follows. We start creating a set of feasible schedules for each employee to randomly choose one.
From these schedules, we derive the associated demand profile along the planning horizon.
Undercovering and overcovering of employee requirements are generated by randomly adding
or removing demand. All instances are defined over a one-week planning horizon where days
are divided into 96 periods of 15 minutes and shifts are not allowed to span from one day
to another (discontinuous version of the problem). The number of working days in the tour
should fall between 5 and 6 and the tour length should fall between 35 and 40 working hours
per week. Activities have a minimum and maximum length that ranges between two and ∞
time periods, depending on the instance. Each tour has an associated cost corresponding to
the sum of the costs of performing activity j at time interval i plus the sum of transition costs
ctr between activities. Instances are divided into three groups and are labeled with the format
E A D V G where E, A, D, V and G represent the number of employees, number of activities,
length of the planning horizon in days, version of the instance and group, respectively. The
instances and the productions used in the grammars to create the shifts are described as
follows, where: sd and ed are the first and last time intervals in day d with demand greater than
zero, respectively; al and au are the minimum and maximum length of activity a, respectively;
Ae is the set of skills of employee e, and artificial activity r represents either a break or a
resting time.

G1: Instances with flexible start times and three types of shifts
In this group of instances, shifts may start at any time interval of the day allowing enough

time to complete its length and three types of shifts are considered: 8-hour shifts with a
1-hour lunch break in the middle, 4-hour and 6-hour shifts without breaks.
S[sd,ed] → RPR |RFR |RQR | PR |RP | FR |RF |QR |RQ;

P[16,16]
ctr→ JjJj̄ |Jj , ∀j ∈ Ae;

Q[24,24]
ctr→ JjJj̄ |Jj , ∀j ∈ Ae;

F → PLP ;
Ja[al,au] → J

′
a, ∀a ∈ Ae;

J
′
a → a|aJ ′a, ∀a ∈ Ae;
Jj̄ → Jj′ , ∀j ∈ Ae, ∀j

′ ∈ Ae\{j};
Jj̄

ctr→ Jj′Jj̄′ , ∀j ∈ Ae, ∀j
′ ∈ Ae\{j};

R→ r|rR;
L[4,4] → r|rR.

G2: Instances with flexible start times and two types of shifts
In this group, we allow flexibility in terms of shift start time, meaning that shifts may

start at any time interval of the day and two types of shifts are considered: 8-hour shifts with
a 1-hour lunch break in the middle and 4-hour shifts without breaks.
S[sd,ed] → RPR |RFR | PR |RP | FR |RF ;

P[16,16]
ctr→ JjJj̄ |Jj , ∀j ∈ Ae;
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F → PLP ;
Ja[al,au] → J

′
a, ∀a ∈ Ae;

J
′
a → a|aJ ′a, ∀a ∈ Ae;
Jj̄ → Jj′ , ∀j ∈ Ae, ∀j

′ ∈ Ae\{j};
Jj̄

ctr→ Jj′Jj̄′ , ∀j ∈ Ae, ∀j
′ ∈ Ae\{j};

R→ r|rR;
L[4,4] → r|rR.

G3: Instances with restricted start times and three types of shifts
In this third group of instances, shifts cannot start at any time interval, therefore a set

of start times is considered. Three types of shifts are generated: 8-hour shifts with a 1-hour
lunch break in the middle, 4-hour and 6-hour shifts without breaks. The start times are 1,
17, 33, 49 and 61.
S[36,36] → PR |QR | FR;

P[16,16]
ctr→ JjJj̄ |Jj , ∀j ∈ Ae;

Q[24,24]
ctr→ JjJj̄ |Jj , ∀j ∈ Ae;

F → PLP ;
Ja[al,au] → J

′
a, ∀a ∈ Ae;

J
′
a → a|aJ ′a, ∀a ∈ Ae;
Jj̄ → Jj′ , ∀j ∈ Ae, ∀j

′ ∈ Ae\{j};
Jj̄

ctr→ Jj′Jj̄′ , ∀j ∈ Ae, ∀j
′ ∈ Ae\{j};

R→ r|rR;
L[4,4] → r|rR.

Table 1 presents the average size of the graphs for the instances with flexible and restricted
start times. The name of the instance is presented in Column 1. Column 2 shows the average
number of nodes in the DAG Γ for each employee at every day in the planning horizon.
Columns 3 and 4 present the average number of nodes and arcs in graph Ge(N ,A).

The computational experiments were performed on a 64-bit GNU/Linux operating system,
96 GB of RAM and 1 processor Intel Xeon X5675 running at 3.07GHz. The B&P algorithms
were implemented in C++ using the object-oriented branch-and-bound library (OOBB) de-
veloped by Crainic et al. [16]. The RMP was solved by using the barrier method of CPLEX
version 12.5.0.1.

6.1.1 Solution at the Root Node.

Tables 2 - 3 show the computational effort, at the root node, for the B&P algorithms for
the proposed formulations: the Daily-based formulation (FS̃) and the Tour-based formulation
(FT̃ ) for instances with flexible and restricted start times, respectively. We report the value
(LP val.) and the required time in seconds (CPU time), to solve the LP relaxation of the RMP.
The difference between the lower bound of FT̃ against the lower bound of FS̃ is presented in
Column 6.

According to the results, FT̃ achieved better lower bounds for all the 21 instances when
compared with FS̃ . It is worth noting that the difference between lower bounds tends to
increase as the problem flexibility increases. This can be seen in the results where the average
LB difference for instances in G1-G2 (flexible start time) is 3.79%, while the average LB
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Instance Nodes DAG Γ Nodes G(N ,A) Arcs G(N ,A)

20 1 7 1 G1 6,980 998 291,606
20 1 7 2 G1 11,899 1,496 627,300
25 1 7 1 G1 7,006 1,001 292,689
25 1 7 2 G1 11,998 1,505 633,753
40 1 7 1 G1 7,006 1001 292,689
40 1 7 2 G1 11,998 1,505 633,753
20 3 7 1 G2 24,802 652 124,072
20 3 7 2 G2 19,420 983 270,476
20 3 7 3 G2 19,147 972 265,352

20 1 7 1 G3 300 63 1,215
20 1 7 2 G3 300 96 2,700
25 1 7 1 G3 300 63 1,215
25 1 7 2 G3 300 105 3,141
40 1 7 1 G3 300 63 1,215
40 1 7 2 G3 300 105 3,141
20 3 7 1 G3 3,918 63 1,215
20 3 7 2 G3 1,851 101 2,906
20 3 7 3 G3 1,851 99 2,802
20 5 7 1 G3 1,131 53 1,127
20 5 7 2 G3 1,154 51 1,007
20 5 7 3 G3 1,379 84 2,285

Table 1: Average number of nodes and arcs in the graphs for instances with flexible and
restricted start times.
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difference for instances in G3 (restricted start time) is 1.77%. Regarding the computational
time to solve the LP relaxation at the root node, the Daily-based formulation shows a better
performance in 15 out of 21 instances and, as expected, results also show that the average
computational time of both formulations increases as the number of activities or employees
grow.

The reason for the differences in the time performance for both formulations is mainly
due to the structure of the pricing subproblems. Subproblems of FS̃ only deal with the
composition of daily shifts, while subproblems in FT̃ handle the composition of daily shifts
and the assembling of tours. However, as it will be shown in the computational results for
the B&P, it is worth to invest more time in the solution of the root node if the lower bounds
obtained are better, especially when the model exhibits symmetry that makes difficult to
prove optimality due to many equivalent solutions.

Tour-based Daily-based
Instance LP val. CPU time LP val. CPU time LB Dif.

20 1 7 1 G1 52,080 21.02 50,080 24.72 3.84%
20 1 7 2 G1 49,440 30.84 47,440 18.20 4.05%
25 1 7 1 G1 60,560 16.10 58,060 33.47 4.13%
25 1 7 2 G1 72,660 6.03 70,160 32.51 3.44%
40 1 7 1 G1 100,410 10.52 96,410 52.64 3.98%
40 1 7 2 G1 98,390 89.17 94,390 52.95 4.07%
20 3 7 1 G2 55,270 185.11 53,195 70.20 3.75%
20 3 7 2 G2 60,120 133.69 58,045 54.36 3.45%
20 3 7 3 G2 60,450 97.80 58,375 51.51 3.43%
Average - 65.60 - 49.40 3.79%

Table 2: Computational effort to solve the LP relaxation at the root node, for instances with
flexible start times.
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Tour-based Daily-based
Instance LP val. CPU time LP val. CPU time LB Dif.

20 1 7 1 G3 82,825 3.59 82,145 0.68 0.82%
20 1 7 2 G3 64,675 4.4 63,775 1.79 1.39%
25 1 7 1 G3 99,995 2.83 98,732.5 0.91 1.26%
25 1 7 2 G3 72,660 1.31 70,160 3.03 3.44%
40 1 7 1 G3 202,050 1.35 198,050 1.99 1.98%
40 1 7 2 G3 117,677 9.49 116,280 6.84 1.19%
20 3 7 1 G3 73,440 61.05 71,440 7.69 2.72%
20 3 7 2 G3 61,655.5 130.6 59,635.6 17.32 3.28%
20 3 7 3 G3 63,575 86.61 61,560 15.89 3.17%
20 5 7 1 G3 95,078.3 509.53 94,865.6 8.44 0.22%
20 5 7 2 G3 93,962.2 156.92 93,280.1 10.25 0.73%
20 5 7 3 G3 131,824 126.63 130,432 12.22 1.06%
Average - 91.2 - 7.25 1.77%

Table 3: Computational effort to solve the LP relaxation at the root node, for instances with
restricted start times.

A heuristic approach in which we solve the IP version of the problem at the root node was
tested. Tables 4 - 5 present the best upper bound found (IP RMP) and the computational
time required (CPU time) to find it, for the Tour-based formulation and the Daily-based
formulation on instances with flexible start time and restricted start time, respectively. The
value of the integrality gap for both formulations is computed as: (IP RMP - LP val.)

IP RMP and re-
ported in Columns 4 and 7. We set a time limit of 600 sec. or a relative MIP gap tolerance
of less than 1% to solve the problem when the integrality constraints are considered.

Tour-based Daily-based
Instance IP RMP CPU time Gap IP RMP CPU time Gap

20 1 7 1 G1 52,080 0.29 0.00% 52,280 10.51 4.21%
20 1 7 2 G1 49,660 0.16 0.44% 49,640 100.77 4.43%
25 1 7 1 G1 60,560 0.59 0.00% 60,760 38.09 4.44%
25 1 7 2 G1 72,660 0.29 0.00% 73,100 27.36 4.02%
40 1 7 1 G1 100,850 0.25 0.44% 100,810 49.89 4.36%
40 1 7 2 G1 98,940 1.35 0.56% 98,990 551.02 4.65%
20 3 7 1 G2 57,625 600 4.09% 55,380 89.97 3.94%
20 3 7 2 G2 62,350 600 3.58% 60,450 264.32 3.98%
20 3 7 3 G2 62,050 600 2.58% 60,700 116.32 3.83%
Average - 200.33 1.30% - 138.69 4.21%

Table 4: Computational effort to find an upper bound at the root node, for instances with
flexible start times.
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Tour-based Daily-based
Instance IP RMP CPU time Gap IP RMP CPU time Gap

20 1 7 1 G3 82,860 0.07 0.04% 83,280 0.65 1.36%
20 1 7 2 G3 65,280 1.51 0.93% 65,040 9.18 1.94%
25 1 7 1 G3 100,380 0.64 0.38% 100,650 3.46 1.90%
25 1 7 2 G3 73,100 0.3 0.60% 72,860 2.02 3.71%
40 1 7 1 G3 202,250 0.03 0.10% 203,450 1.45 2.65%
40 1 7 2 G3 118,170 0.97 0.42% 118,170 13.50 1.60%
20 3 7 1 G3 76,030 600 3.41% 74,070 7.16 3.55%
20 3 7 2 G3 65,445 600 5.79% 62,245 45.20 4.19%
20 3 7 3 G3 67,330 600 5.58% 64,285 59.45 4.24%
20 5 7 1 G3 102,170 600 6.94% 96,035 9.30 1.22%
20 5 7 2 G3 102,860 600 8.65% 94,690 11.40 1.49%
20 5 7 3 G3 137,135 600 3.87% 133,430 55.74 2.25%
Average - 300.29 3.06% - 18.21 2.51%

Table 5: Computational effort to find an upper bound at the root node, for instances with
restricted start times.

According to the results, the Tour-based formulation achieved better solution times for all
the 12 mono-activity instances when compared to the Daily-based formulation. On the other
hand, the Daily-based formulation had a better performance as the number of activities grow.
Observe that if feasible integer solutions are required for multi-activity problems, avoiding the
B&P process and using only the variables generated at the root node with the Daily-based
formulation could be a good option. On the contrary, as shown by the results of the next
section, if the objective is to solve the problems to optimality, a B&P algorithm should be used
taking advantage of the formulation with the best lower bound, in this case the Tour-based
formulation.

6.1.2 Branch-and-Price.

Tables 6 - 7 show the results of the B&P algorithm for the instances with flexible start time and
restricted start time, respectively, with both formulations, the Tour-based formulation and
the Daily-based formulation. Columns 2 and 6 present the value of the best integer solution
found. Columns 3 and 7 report the total computational time required to find the integer
solutions, while Columns 4 and 8 contain the number of nodes explored in the B&P trees.
Finally, Columns 5 and 9 show the value of the integrality gap (defined as the percentage
difference between the best upper bound minus the best lower bound). The algorithm stops
when the gap is less than 1% or when the total time reaches one hour. The search strategy
used was a depth-first search where the upper bound of the algorithm was initialized with the
heuristic integer solution found at the root node.

For the Tour-based formulation, our method was able to find high-quality integer solutions
for all the instances in the three groups. All the mono-activity instances were closed with the
heuristic at the root node in less than two minutes. On the contrary, for the multi-activity
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instances, it was necessary to explore several nodes in the B&P tree to find integer solutions
with an optimality gap less than 1%. Note that, as can be seen in the results for instances
with five activities, the computational time and the number of nodes explored in the B&P
tree increase with the number of activities. The average optimality gap for instances in G3 is
the highest among the three groups, with a value of 0.56%.

On the other hand, the B&P algorithm implemented for the Daily-based formulation did
not have a good performance when tested with the three groups of instances. The algorithm
was not able to improve, within one hour time limit, the integer solution found at the root
node, and when compared with the Tour-based formulation, it only achieved better integer
solutions in 2 out of 21 instances. As a result, if the objective is to find near optimal solutions,
the Tour-based formulation could be considered stronger because it exhibits a better LP
relaxation bound that makes easier to close the optimality gap.

Tour-based Daily-based
Instance IP val. CPU time Nb. Nodes Gap IP val. CPU time Nb. Nodes Gap

20 1 7 1 G1 52,080 21.31 1 0.00% 52,280 3,600 777 4.21%
20 1 7 2 G1 49,440 31 1 0.44% 49,640 3,600 229 4.43%
25 1 7 1 G1 60,560 16.69 1 0.00% 60,760 3,600 369 4.44%
25 1 7 2 G1 72,660 6.32 1 0.00% 73,100 3,600 545 4.02%
40 1 7 1 G1 100,520 10.77 1 0.44% 100,810 3,600 217 4.36%
40 1 7 2 G1 98,390 90.52 1 0.56% 98,990 3,600 57 4.65%
20 3 7 1 G2 55,380 2366.81 39 0.20% 55,380 3,600 51 3.95%
20 3 7 2 G2 60,120 1735.07 35 0.00% 60,450 3,600 159 3.98%
20 3 7 3 G2 60,780 1507.83 39 0.54% 60,700 3,600 33 3.83%
Average - 643 13 0.24% - 3,600 271 4.20%

Table 6: Computational effort in the B&P algorithm for instances with flexible start times.
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Tour-based Daily-based
Instance IP val. CPU time Nb. Nodes Gap IP val. CPU time Nb. Nodes Gap

20 1 7 1 G3 82,860 3.66 1 0.04% 83,280 3,600 615 1.36%
20 1 7 2 G3 64,730 5.91 1 0.93% 65,040 3,600 677 1.94%
25 1 7 1 G3 100,250 3.47 1 0.38% 100,650 3,600 703 1.9%
25 1 7 2 G3 72,660 1.61 1 0.6% 72,860 3,600 1055 3.71%
40 1 7 1 G3 202,050 1.38 1 0.1% 203,450 3,600 971 2.65%
40 1 7 2 G3 117,730 10.46 1 0.42% 118,170 3,600 1393 1.6%
20 3 7 1 G3 73,625 1,070.66 39 0.25% 74,070 3,600 1113 3.55%
20 3 7 2 G3 62,125 1,408.06 37 0.76% 62,245 3,600 405 4.19%
20 3 7 3 G3 63,950 1,370.42 37 0.59% 64,285 3,600 953 4.24%
20 5 7 1 G3 95,890 2,033.89 41 0.85% 96,035 3,600 465 1.22%
20 5 7 2 G3 94,800 2,256.76 127 0.88% 94,690 3,600 431 1.49%
20 5 7 3 G3 133,035 1,929.55 91 0.91% 133,430 3,600 410 2.25%
Average - 841.32 32 0.56% - 3,600 766 2.51%

Table 7: Computational effort in the B&P algorithm for instances with restricted start times.

6.2 Results on Instances From Brunner and Bard [7]

This mono-activity problem consists of a discontinuous tour scheduling problem over one week
with two types of employees: full time workers (Reg) and part time workers (Flex). In the
problem, each day is divided into 48 time intervals of 30 minutes each. Each Reg employee
must be given an 8.5-hour shift on each working day and the starting time of shifts can vary
by day (nine start times). In contrast, Flex employees can be assigned to one of five shift
types ranging from 4 to 8.5 hours, which can have different starting times (12 start times). If
an employee works 6 hours or more a day, its assigned shift must have a 0.5-hour lunch break.

In Brunner and Bard [7], the master problem is based on a set covering model that
seeks to minimize the total cost of the tours plus the cost of undercovering of employee
requirements. The model guarantees that the total number of employees that are on duty
cover the requirements for each period during the time horizon, and that the ratio between
the number of Reg employees and the number of Flex employees is at least a given value.

Table 8 presents the description of the eleven scenarios analyzed. Column 1 gives the name
of the instance. Column 2 presents the value of the ratio between Reg and Flex employees.
Columns 3 and 4 specify the types of employees having shifts with flexible length and start
time, respectively. Columns 5 and 6 show if shifts have a break and if two days off in a
row must be considered in the tour, respectively. The full description of the parameters to
build daily shifts and weekly tours, as well as, the employee requirements are presented in the
appendix of the work in Brunner and Bard [7].

Table 9 shows the output statistics for the Tour-based formulation and the model pre-
sented in Brunner and Bard [7], now called Brunner’s model. Since the number of employees
is not known, the Daily-based formulation cannot be used in the context of this problem be-
cause tours are composed for each employee through constraints (3)-(6). In the same way, the
proposed B&P algorithm cannot be used in the context of this problem, because the branch-
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Instance Ratio Flex length Flex start Breaks 2 Days off in a row

B1 4 Flex No Yes No
B2 4 No Flex Yes No
B3 4 Flex Flex Yes No
B4 4 Flex Reg,Flex Yes No
B5 4 No Flex No No
B6 4 Flex Flex No No
B7 4 Flex Reg,Flex No No
B8 1 Flex Reg,Flex No No
B9 2 Flex Reg,Flex No No
B10 3 Flex Reg,Flex No No
B11 5 Flex Reg,Flex No No

Table 8: Description of Brunner and Bard [7] problem’s scenarios.

ing rule is based on employee branching. That is why we decided to solve the Tour-based
formulation with the root node heuristic presented in Section 6.1.1, where we observed a good
performance on mono-activity instances (average optimality gap of 0.33% in less than 2 sec.
of computational time). Columns 2 and 4 present the IP value at the root node for the eleven
instances evaluated with the Tour-based formulation and Brunner’s model, respectively. As
it was done in Brunner and Bard [7] we set a time limit of 300 sec. to solve the IP at the
root node. Columns 3 and 5 show the total CPU time in sec. to solve the LP relaxation and
obtain the IP value for both formulations. Finally, the value of the best IP solution found
with the B&P algorithm presented in Brunner and Bard [7] and the total computational time
in seconds to obtain that value are reported in Columns 6 and 7, respectively.

Tour-based Brunner’s model
Instance IP val. CPU time IP val. CPU time Best IP val. Total time

B1 95,944 303.95 95,864 488.06 95,640 2,882.39
B2 95,120? 304.34 95,640 496.62 95,120 5,743.36
B3 95,056? 331.24 95,832 492.20 95,120 14,428.84
B4 94,960? 341.52 95,920 406.75 95,456 6,293.98
B5 93,442.5 365.60 93,402.5 348.35 93,282.5 2,514.85
B6 93,290.5? 342.93 93,426.5 322.10 93,322.5 1,909.29
B7 93,266.5 304.50 93,298.5 322.93 93,178.5 1,871.9
B8 83,501? 323.80 84,421 331.44 84,061 1,853.11
B9 88,295? 340.10 88,727 342.46 88,439 1,919.47
B10 90,967.5? 344.34 91,135.5 335.27 90,999.5 1,891.51
B11 94,812.5 321.32 94,964.5 316.10 94,796.5 1,860.59
Average - 329.42 - 382.02 - 3,924.48

Table 9: Computational effort at the root node to solve the integer problem.
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From Table 9, we can conclude that the Tour-based formulation shows competitive solution
times when compared with Brunner’s model. Regarding the quality of the solution (IP value
obtained) the star (?) in Column 2 means that our model was able to achieve, in less than 6
minutes, the same or a better integer solution than the one reported as the best in Brunner
and Bard [7], where the computational time to find this value was more than 30 minutes for all
the instances (values reported in Column 7). Regarding the problem difficulty, Brunner and
Bard [7] found that the instances with a lunch break were the most difficult to solve (instances
B1 to B4) and that the time tended to decrease when more flexibility was introduced in the
model. On the contrary, we did not observe any significant change in the execution time when
considering either more flexibility or breaks.

7 Concluding Remarks

In this paper we introduced two B&P algorithms to solve the personalized multi-activity tour
scheduling problem. Two formulations were presented in which the master problem is modeled
as a generalized set partitioning problem. With respect to the pricing subproblems, in the
Daily-based formulation, columns (daily shifts) are modeled using context-free grammars. In
the Tour-based formulation, columns (tours) are built with an exact two-phase procedure.
In the first phase, daily shifts are modeled by using context-free grammars, where in the
second phase, the daily shifts are assembled into tours by using a shortest path algorithm
with resource constraints.

Although our computational experiments suggest that the Daily-based formulation finds
solutions for the LP relaxation at the root node in a shorter execution time when compared
with the Tour-based formulation, we show that the second formulation is stronger in terms of
its LP relaxation lower bound.

Two methods were tested to find integer solutions. A heuristic approach in which we
impose the integrality constraints at the root node and an exact approach corresponding to
a B&P. The Daily-based formulation exhibited better solution times than the Tour-based
formulation for the heuristic approach. On the other hand, the Tour-based formulation had a
better performance in the exact approach being able to find, within 1 hour, integer solutions
for all the instances with an optimality gap lower than 1%. We also tested the Tour-based
formulation on a mono-activity problem presented in Brunner and Bard [7]. The experiments
suggested that the solution times and quality of our formulation are comparable with the
solution times and quality reported by Brunner and Bard [7].

Despite the ability of our models to handle complex work rules, convergence and scalability
issues arise when the number of employees and activities increase. One solution to this problem
could be to implement an implicit model in order to avoid the dimension associated with the
number of employees. Another option might be to implement new branching strategies related
with the shift length in order to reduce the number of nodes explored in the B&P tree and
reach integrality in a shorter time.
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Appendix A Example for the Comparison Between the Two
Formulations

The problem is a mono-activity tour scheduling with a three-day time horizon; each day
is divided into four time intervals; the total tour length ranges between 4 and 6 time
intervals; the minimum and maximum number of days are 1 and 2, respectively; there are
no constraints for the minimum resting time; and the total number of employees is 1. The
grammar used to compose the daily shifts is as follows:

G = (Σ = (w, b), N = (S,X,W,B), P, S),
where productions P are: S → XW , X →WB, W →WW |w, B[2,2] → b

Daily shifts have a working length of 3 time intervals and must have one break allocated
in their second time interval (production B[2,2] → b). Table 10 presents the employee re-
quirements and the structure of the feasible shifts and tours. The cost of the activity per
time interval at each day is 1 and the costs of overcovering and undercovering of employee
requirements are 1 and 2, respectively.

Day (d) 1 2 3

Time interval (i) 1 2 3 4 1 2 3 4 1 2 3 4

Empl. req. (bdij) 1 1 0 0 1 1 0 0 1 1 0 0
Shift1 (x11) 1 0 1 1 - - - - - - - -
Shift2 (x21) - - - - 1 0 1 1 - - - -
Shift3 (x31) - - - - - - - - 1 0 1 1

Tour1 (x1) 1 0 1 1 1 0 1 1 0 0 0 0
Tour2 (x2) 1 0 1 1 0 0 0 0 1 0 1 1
Tour3 (x3) 0 0 0 0 1 0 1 1 1 0 1 1

Table 10: Employee requirements, shifts and tours structures.

For the Daily-based formulation, since all the shifts have the same working length (3 time
intervals) it is easy to show that the constraint for the minimum and maximum number of
working days (4) is redundant and that the summation of the value of the three decision
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variables (x11, x21, x31) have to fall inside the interval [4/3, 6/3] because of constraints (5).
Now, since all the shifts have the same structure and the employee requirements are the same
at each day, we can conclude that the value of f(FS) is the same when we evaluate the point
(1,1,0) or the point (2/3, 2/3, 2/3). Therefore, we can evaluate the value of f(FS) when all the
variables fall, with the same value, inside the interval [4/9, 6/9]. Figure 4 presents the value
of the objective function for the evaluated points, as well as the optimal solution f(F ?S) = 16
with x?11 = x?21 = x?31 = 4/9.
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3 4 5 6

b
b
b
b
b
b
b
b
b
b

b →Optimal point

3(x11 + x12 + x13)

¯
f
(F

1 S
)

Figure 4: Optimal solution for the LP relaxation of the example using the Daily-based for-
mulation.

The solution of the problem with the Daily-based formulation is not feasible for the Tour-
based formulation, since all possible tours must have a length of 6 time intervals and must
include 2 working days. As mentioned before, since the employee requirements and the shifts
are the same for every day, the value of f(FT) is the same when we evaluate all the points
where x1 + x2 + x3 = 1. In this case the optimal value of f(F ?T) is 18. Hence f(F ?S) < f(F ?T).

Appendix B Label setting algorithm to solve the SPPRC

Let Q be the set of labels. Each label l ∈ Q has an associated path P(l) and a set of attributes:
its resident node v(l), its predecessor node p(l), its cost c(l), its distance t(l) and its number
of working days d(l) accumulated along P(l).

Algorithm 1 presents the pseudocode of the labeling algorithm. The inputs are the tour
graph Ge(N ,A) and the maximum number of tours α to generate per iteration. The output
corresponds to a vector of paths ~Pe with negative reduced cost. Line 1 returns an initial
set of labels (partial paths from vs to all its successors). Line 2 selects the first label to be
processed according to its cost. Line 4 searches to prune by bound the current label before
extending it. This pruning is done by calculating an optimistic prediction of the total cost
of the path that might be generated by the current label. If such cost is negative, the label
is not pruned, otherwise the label is removed from list Q without being processed. Line 5
seeks to extend label l1 to all of its successors. A new label l2 is created and stored in Q
(Line 9) if it is feasible (Line 6), non-dominated (Line 7) and its resident node is different
than the sink node vf . If the resident node is vf and the cost of label l2 is negative, a new

path is stored in ~Pe (Line 11). The feasibility function checks if the label to be created can
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reach the minimum number of working days and tour length and, at the same time, if it does
not exceed the maximum number of working days and tour length. The dominance function
compares certain attributes of the label to be created with the rest of the labels in Q. Hence,
if the resident node, accumulated time and number of working days are the same for both
labels and if the cost of label l

′
is lower or equal than the cost of label l, l

′
dominates l. The

algorithm stops when either set Q is empty or the number of tours t generated is greater than
or equal to α.

Input Ge(N ,A), α
Output ~Pe

1: initialization

2: selectLabel

3: while Q 6= ∅ ∧ t < α do
4: if pruneByBound (l1)= false then
5: for vi ∈ N (vk) do
6: if pruneByFeasibility (l1, vi)= false then
7: if dominance (l2)= false then
8: if vi 6= vf then
9: Q ← l2
10: else
11: ~P ← P, t = t+ 1

12: remove l1 from Q
13: selectLabel

14: return ~Pe

Algorithm 1: Label setting algorithm to solve the SPPRC

Branch-and-Price for Personalized Multi-Acitvity Tour Scheduling

CIRRELT-2015-03 31


	Introduction
	Background and Related Research
	Shift Scheduling
	Multi-Activity Shift Scheduling
	Tour Scheduling
	Grammars and Shift Scheduling Problems

	Problem Definition and Formulations
	Problem Definition and Notation
	The Daily-Based Formulation
	The Tour-Based Formulation
	Comparison Between the Two Formulations

	B&P for the Daily-Based Formulation
	Restricted Master Problem
	Pricing Subproblems for Daily Shift Generation
	Branching Rule

	B&P for the Tour-Based Formulation
	Restricted Master Problem
	Pricing Subproblems for Tour Generation
	Branching Rule

	Computational Experiments
	Results on Random Instances
	Solution at the Root Node.
	Branch-and-Price.

	Results on Instances From brunner2013flex

	Concluding Remarks
	Appendices
	Appendix Example for the Comparison Between the Two Formulations
	Appendix Label setting algorithm to solve the SPPRC



