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Abstract. In this paper, we consider two-tiered city logistics systems accounting for both 
the inbound and outbound traffic that have not been taken into account in models and 
algorithms for vehicle routing research. The problem under study, called the Multi-zone 
Multi-trip Pickup and Delivery Problem with Time Windows and Synchronization, has two 
sets of intertwined decisions: the routing decisions which determine the sequence of 
customers visited by each vehicle route, the scheduling decisions which plan movements 
of vehicles between facilities within time synchronization restrictions. We propose a tabu 
search algorithm integrating multiple neighborhoods targeted to the decision sets of the 
problem. To assess the proposed algorithm, tests have been conducted on the first 
benchmark instances of the problem which have up to 72 facilities and 7200 customer 
demands. As no previous results are available in the literature for the problem, we also 
evaluate the performance of the method through comparisons with published results on 
two simplified problems: the Multi-zone multi-trip vehicle routing problem with separate 
delivery and collection, and the Vehicle routing problem with backhauls. The proposed 
algorithm is competitive with existing exact and meta-heuristic methods for these two 
problems. 
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1 Introduction

We introduce a new problem class, theMulti-trip Pickup and Delivery Problem with Time
Windows and Synchronization (MT-PDTWS ), which generalizes a number of Pickup
and Delivery with Backhauls (P&DB) problem settings (Savelsbergh and Solomon, 1995;
Parragh et al., 2008a,b; Berbeglia et al., 2007, 2010; Toth and Vigo, 2002).

In the MT-PDTWS setting, a homogeneous fleet of vehicles operates multi-tour routes
out of a single garage to deliver and pick up loads to and at customers, respectively.
To-be-delivered loads are customer specific, are available at particular terminals within
specified hard time windows, and must be delivered within the time window of the
respective customer. The same or different customers have loads that must be picked
up, within the customer time windows, and brought to a terminal, within one of its
periods of activity, belonging to the subset of terminals associated to the particular
customer. A vehicle must complete a terminal-to-customer delivery sequence before
starting a pickup sequence or moving to a terminal for another delivery phase. Waiting
at terminals may be strictly limited (in both time and space) and, thus, synchronization
of vehicle arrivals and terminal operating time windows is an important characteristic
of the problem setting. The original characteristics of the MT-PDTWS, setting it apart
from and generalizing most P&DB problems, therefore are 1) multi-commodity demand
defined as specific, time-dependent origin-to-destination loads to be delivered or picked
up; 2) the synchronization of activities at terminals; and 3) multi-tour routes.

The MT-PDTWS arises in logistics and production planning. Our initial motivation
comes from planning the operations of two-tiered City Logistics systems (Crainic et al.,
2009). In such systems, inbound loads are sorted and consolidated at first-tier facilities
(called external zones) located on the outskirts of the city, moved to second-tier facilities
(the satellites), located close to or within the City Logistics-controlled area (the CL-area),
by vehicles of various modes. In the second tier, a fleet of vehicles of size and motorization
appropriate for the CL-area performs multi-tour routes to pickup outbound demands
within the CL-area and bring them to satellites. Once there, planned appropriate pairs
of first-tier and second-tier vehicles transfer inbound and outbound loads to each other
according to a cross-docking strategy, without intermediate storage. The first-tier vehicles
then bring the outbound loads to external zones, while the second-tier vehicles deliver
the inbound loads to designated customers situated within the CL-area. This integration
of inbound and outbound operations is aimed to help reduce the number of empty vehicle
movements of all vehicle fleets and the freight traffic in the CL-area. As satellites are used
as cross-dock transshipment facilities, the synchronization of the operations of first-tier
and second-tier vehicles at satellites becomes one of the most constraining aspects of the
problem.

To our best knowledge, the MT-PDTWS has not been addressed in the literature
before. Crainic et al. (2012) discussed the issue of combining different types of routing
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activities within the City Logistics planning context, but no problem definition was pro-
vided, nor any modelling or algorithmic contribution. Our goal is to formally introduce
and define the MT-PDTWS, provide a mathematical formulation and propose an effi-
cient meta-heuristic (generalizing the method proposed by Nguyen et al., 2013, for the
Time-dependent Multi-zone Multitrip Vehicle Routing Problem with Time Windows).

We make the following contributions: 1) we formally define and present the first
formulation for the MT-PDTWS; 2) we propose an efficient tabu search meta-heuristic
to address the problem; 3) we introduce a new set of benchmark instances with up to 72
facilities and 7200 customers; 4) we analyze the performance of the proposed method,
including through comparisons with methods proposed for related P&DB problems, and
study the impact of two main problem characteristics, namely combining pick up and
delivery operations, and synchronization.

The remainder of the paper is organized as follows. Section 2 contains a detailed
problem description and high-level model; to make the presentation more concise, the
mathematical formulation is provided in Appendix A. Section 3 reviews the literature.
The proposed methodology is described in Section 4. Computational results are then
reported and analyzed in Section 5, while conclusions and future works are considered in
Section 6.

2 Problem Description

The system is composed of a garage, g, where the fleet of vehicles of homogeneous
capacity Q is based, a number of facilities where customer-specific loads are available
during particular (hard) time windows and to where loads picked up at customers may
be brought during one of their time windows, and customers waiting for their loads to
be delivered or picked up, or both, during their time windows. The route planning is to
be performed for a certain schedule length, T , each route visiting one or several facilities
(hence the “multi-tour” characterization) during their respective time windows to bring
in or take away time-dependent customer loads.

We model the time-dependency characterizing demand and operations in the MT-
PDTWS through time windows, the well-known representation device for vehicle routing
problems. We first model facilities, which become available to receive vehicles for loading
and unloading operations at particular time periods only. A particular set of loads
destined to specific customers may be available at each such time period, and must be
taken away and distributed. Then, as a given facility may be available at several periods
during the schedule length considered, with a different set of loads at each occurrence, we
define supply points as particular combinations of facilities and availability time periods
(definition similar to that of Nguyen et al., 2013). Each supply point s ∈ S has a no-
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wait, hard opening time window [t(s) − η, t(s)], specifying the earliest and latest times
a vehicle may be at s, respectively. Hence, the vehicle must not arrive at s sooner than
(t(s) − η) and no later than t(s). To model various possibilities of handling the former
case, waiting stations (e.g., a parking lots) w ∈ W are provided where the vehicle may
wait before moving to s. Otherwise, if there is no waiting station available, the vehicle
goes to the garage to finish its route.

The second time-dependency phenomenon concerns customers, which may receive
several loads from different supply points and, thus, during different time windows. The
same or different customers may also have loads to be picked up and transported to
one of a given subset of supply points. We model this time dependency by identifying
each particular load as a customer demand, characterized by the routing activity and
the customer involved, the supply point where it is available or the set of supply points
that may take it in, and the particular customer time window. We thus define a set of
delivery-customer demands, each d ∈ CD being characterized by the supply point where it
is available, the customer it must be delivered to, and the time window when the delivery
must be performed. We also define a set of pickup-customer demands, each p ∈ CP being
characterized by the customer shipping it and the time window within which the pickup
must be performed, as well as the set of admissible supply points Sp ∈ S to which
the load may be delivered, the choice of a particular one being part of the decisions
characterizing the MT-PDTWS. Then, for each customer demand i ∈ {CP ∪ CD}, we set
(i, qi, δ(i), [ei, li]) to stand for the quantity qi of demand to be delivered or picked up at
the customer demand i within the hard time window [ei, li] with a service time δ(i).

Each supply point s may thus service a group of either pickup-customer demands
CPs ⊆ C

P , or delivery-customer demands CDs ⊆ C
D, or both. The loads collected from

pickup-customer demands in CPs are brought to s during its time windows. Similarly,
the freight to be delivered to delivery-customer demands in CDs have to be loaded at s
during the same time window. Let ϕ(s) and ϕ′(s) be the times required, respectively to
load and unload a vehicle at s. Figure 1 represents the possible loading and unloading
activities of a vehicle at a supply point s. Striped and empty disks stand for pickup and
delivery-customer demands, respectively, dashed lines indicating empty moves.
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Figure 1: Activities at supply points

Figures 1a and 1b depict instances of the “unload only” operation in which, after

3

Multi-Trip Pickup and Delivery Problem with Time Windows and Synchronization

CIRRELT-2015-11



arriving at the supply point with the collected freight from pickup-customer demands,
the vehicle unloads all freight, then it leaves the supply point empty for its next tour or
the garage to end its activity. The two instances differ in the level of synchronization only.
From the last serviced customer demand, the vehicle goes directly to the supply point s,
Figure 1a, if it can arrive at s within the time window [t(s)− η, t(s)]. Otherwise, when
the direct move gets the vehicle to s sooner than t(s) − η, the vehicle goes to a waiting
station, Figure 1b, and waits there in order to get to s within its time window. Figure
1c represents the “load only” case when the vehicle arrives empty at s and loads freight.
Figures 1d and 1e depict instances of unload & load operations in which, after unloading
all the freight collected from pickup-customer demands, the vehicle loads freight and
leaves to deliver it to designated delivery-customer demands.

Let a pickup or delivery leg be a route that links one or several pickup or delivery-
customer demands, respectively, and a supply point. We then define two types of pickup
and delivery legs, together with their feasibility rules:

• Direct-pickup leg : A route run by a vehicle that services one pickup-customer
demand or a sequence of pickup-customer demands and then travels directly to the
supply point to unload all freight (Figure 1a); A pickup leg assigned is feasible if
the vehicle with a total load not exceeding Q arrives at s within its time window
[t(s) − η, t(s)] after servicing a subset of pickup-customer demands in CPs within
their time windows;

• Indirect-pickup leg : Similar to the case of the direct-pickup leg, except that,
after servicing the last pickup-customer demand, the vehicle has to go to a waiting
station and wait there due to the synchronization requirement at the supply point
(Figure 1b);

• Single-delivery leg : A route run by a vehicle that arrives empty at a supply point
s, loads freight and delivers it to one delivery-customer demand or a sequence of
delivery-customer demands in CDs (Figure 1c); A single-delivery leg is feasible if the
vehicle arrives empty at s at time t′ ∈ [t(s)− η, t(s)] to load freight not exceeding
Q, and leaves s at time t′+ϕ(s) to perform the delivery to the corresponding subset
of customer demands in CDs within their time windows.

• Coordinated-delivery leg : A route combining a single-delivery leg and either a
direct-pickup (Figure 1d) or an indirect-pickup leg (Figure 1e) at a supply point
s; A coordinated-delivery leg is feasible if the vehicle arrives at s at time t′ ∈
[t(s)−η, t(s)] to unload all the collected freight, then starts to load delivery demands
not exceeding Q at time t′+ϕ′(s), and leaves s at time t(s)+ϕ′(s)+ϕ(s) to perform
the delivery for the corresponding subset of customer demands in CDs within their
time windows.

A sequence of legs, starting and ending at the garage and performed by a single

4

Multi-Trip Pickup and Delivery Problem with Time Windows and Synchronization

CIRRELT-2015-11



vehicle, is called a work assignment . Vehicles operate according to the Pseudo-
Backhaul strategy of Crainic et al. (2012), in which any delivery or pickup leg must
be completed before another one may start. Figure 2 illustrates a four-leg work as-
signment, where s1, s2, s3 are supply points, g and w1 are the garage and waiting sta-
tion, respectively, and several pickup and delivery customer demand sets are given
by CPs1 = {p1, p2, p3, p4, p5}, C

D
s1

= {d1, d2, d3, d4, d5}, C
P
s2

= {p6, p7, p8, p9, p10}, C
D
s2

=
{d6, d7, d8, d9, d10, d11}, C

P
s3
= {p11, p12, p13, p14, p15}, and C

D
s3
= {d12, d13, d14, d15}. Dashed

lines stand for the empty travel. The vehicle operating this work assignment performs
a sequence of four legs {r1, r2, r3, r4}, where r1 = {s1, d1, d3, d4} is a single-delivery leg,
r2 = {p6, p8, p9, w1, s2} is an indirect-pickup leg, r3 = {s2, d6, d9, d8, d7} is a coordinated-
delivery leg, and r4 = {p11, p13, p12, s3} is a direct-pickup leg. The vehicle first moves
empty out of the garage g to supply point s1 and starts loading delivery demands. After
loading for a time ϕ(s1), it leaves s1 to service delivery-customer demands d1, d3, d4 in C

D
s1
,

then moves empty to pickup customer zone CPs2 for collecting freight at pickup-customer
demands p6, p8, p9. For synchronization reasons, the vehicle goes from customer demand
p9 to the waiting station w1 and waits there in order to arrive at s2 within its opening
time window. Once at s2 (at some arrival time t), it performs unloading from t for a
duration ϕ′(s2), and then loads from time t+ϕ′(s2) for a time ϕ(s2), after which it leaves
s2 to service delivery-customer demands d6, d9, d8, d7 in CDs2 . After servicing the last
delivery-customer demand d7, it moves empty to pickup customer zone CPs3 . There, af-
ter loading freight at pickup-customer demands p11, p13, p12, the vehicle moves to supply
point s3 within its opening time window. Once at s3, this vehicle starts unloading freight
for a duration of ϕ′(s3). At the end, the vehicle moves back empty to g to complete its
work assignment.
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Figure 2: A four-leg work assignment illustration

Let F stand for fixed cost for operating a vehicle work assignment. The set of available
vehicles is denoted by K. Let also cij to stand for the cost (money, time, distance, etc.)
associated with each pair of sites (supply points, waiting stations, and customer demands)
i and j making up the set of nodes of the complete space-time network describing the
problem (i, j ∈ {g ∪ CD ∪ CP ∪ S ∪W}).

The MT-PDTWS can then be seen as the problem of (1) assigning pickup-customer
demands to supply points, and (2) selecting a set of work assignments (pickup and
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delivery legs) each to be performed by one vehicle. The objective is to minimize the total
cost, which is comprised of the routing cost of operating the work assignments and the
fixed cost of using the vehicles, while the following conditions are satisfied:

1. Every vehicle starts and ends its leg sequence at the garage g;

2. Each pickup-customer demand p is assigned to exactly one supply point s ∈ Sp;

3. Every vehicle required to service customer demands in CPs ∪ C
D
s must reach its

supply point s ∈ S within its no-wait, hard opening time window (it may wait at
a waiting station, eventually). Assume the arrival time at s is t; Once at s:

• If the vehicle is not empty, the freight it contains, picked up from customer
demands in CPs , is first unloaded, this operations starting at time t and con-
tinuing for a duration of ϕ′(s); Once empty, the vehicle may either:

– (1) load goods for a duration of ϕ(s) and then leave s to deliver to customer
demands in CDs , or

– (2) move empty either to another pickup customer zone to collect goods,
or directly to another supply point for loading goods, or

– (3) go to the garage g to complete the work assignment;

• Otherwise, the vehicle starts to load goods for customer demands in CDs at
time t and continues loading for a duration of ϕ(s), after which it leaves s to
deliver the goods. After performing a tour within the delivery customer zone
CDs , the vehicle may continue its movement as either the situations (2) or (3)
described above;

4. Every customer demand is visited by exactly one vehicle (it belongs to exactly one
leg) with a total load not exceeding Q, and each customer demand i ∈ {CD ∪ CP}
is serviced within its hard time window [ei, li], i.e., the vehicle may arrive before ei
and wait to begin service, but must not arrive later than li.

The full mathematical formulation is provided in Appendix A.

3 Literature Review

The MT-PDTWS we introduce in this paper is a new variant in the vehicle routing
problem class generalizing both a number of pickup and delivery problem settings and
the routing problems typically studied in the City Logistics literature.

Relative to City Logistics routing, the MT-PDTWS extends the Time-dependent
Multi-zone Multi-trip Vehicle Routing problem with Time Windows (TMZT-VRPTW)
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by considering an additional type of customer demands. The TMZT-VRPTW addresses
only the demands for delivery within the CL-controlled area, which corresponds to only
delivery-customer demands in our setting, while the MT-PDTWS considers both deliv-
ery and pickup-customer demands. Crainic et al. (2009) introduced the TMZT-VRPTW
and proposed a decomposition-based heuristic approach to address it. The general idea
is to solve each customer-zone routing out of each supply point subproblem indepen-
dently, and then put the created vehicle tours together into multi-tour routes by solving
a minimum cost network flow problem. Yet, as routing decisions affect the supply point
assignment decisions and vice-versa, these two decision levels are intertwined and should
not be solved separately. Nguyen et al. (2013) later investigated an alternative approach
that addresses these two decisions simultaneously within a tabu search framework. The
proposed method yields solutions with higher quality up to 4.42% in term of total cost,
requiring not only less vehicles, but also less usage of waiting stations, when compared
to the previous approach.

There has been extensive research on the pickup and delivery problem variants as
illustrated in the surveys and book cited in the Introduction. Based on the difference
in the sequence of customer service, Parragh et al. (2008a,b) divided them into two
subclasses: the first refers to transportation of goods from the depot to delivery (linehaul)
customers and from pickup (backhaul) customers to the depot, while the second refers
to those problems where goods are transported between pickup and delivery locations.
As we follow the Pseudo-Backhaul strategy in which any delivery or pickup phase must
be completed before another one may be started, the MT-PDTWS belongs to the first
subclass.

One distinguishes between single-demand problem settings where linehaul and back-
haul customers are disjoint, and the combined setting where the same customer has both
a pickup and a delivery demand. In the former case, one finds problems in which line-
haul customers of a given trip have to be serviced before backhaul customers of the same
trip, called Vehicle Routing problem with Backhauls (VRPB; Osman and Wassan, 2002;
Brandão, 2006), and problems in which linehaul and backhaul customers may be visited in
any order called Vehicle Routing problem with Mixed linehauls and Backhauls (VRPMB;
Dethloff, 2002; Ropke and Pisinger, 2006). In the combined case, each customer may
be visited either exactly once (Nagy and Salhi, 2005; Dell’Amico et al., 2006) or twice,
once for delivery and once for pickup (Salhi and Nagy, 1999; Gribkovskaia et al., 2001).
Problems in this case are called Vehicle Routing problem with Simultaneous Delivery and
Pickup.

The VRPB can be considered as a subproblem of the MT-PDTWS. More precisely,
the VRPB addresses a single-tour routing of, first, delivery-customer demands out of the
supply point s and, second, pickup-customer demands assigned to supply point s′, where
t(s) < t(s′). Time synchronization restrictions at supply points and waiting stations
are not considered. Two variants, with and without time windows at customers, are
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considered in the VRPB literature. The number of studies dealing with the time-window
variant is relatively smaller than those without time windows.

The Vehicle Routing Problem with Cross-Docking (VRPCD) partially shares the re-
quirement of synchronizing vehicle operations with our problem. The VRPCD generally
involves transporting products from a set of suppliers to their corresponding customers
via a cross-dock. Products from the suppliers are picked up by a fleet of vehicles, consol-
idated at the cross-dock facility (i.e., sorted into groups according to their destinations),
and immediately delivered to customers by the same set of vehicles, without delay or
storage. A supplier and its customers are not necessarily served by the same vehicle.
At the cross-dock facility, the unloading of a vehicle must be completed before reloading
starts. Constraints might be imposed on the simultaneous vehicle arrival at the facility
(Lee et al., 2006; Liao et al., 2010), or the arrival dependency among vehicles is deter-
mined by the consolidation decisions (Wen et al., 2008). Similarly to our problem, each
vehicle thus operates pickup and delivery phases separately.

There are also significant differences between the VRPCD and the MT-PDTWS,
however, and one might see the former as a very particular special case of the later.
Thus, in the VRPCD, each vehicle performs a single-tour route composed of a sequence
of two trips, first pickup and then delivery, using the cross-dock facility as intermediate
storage. There are no such limitations in the MT-PDTWS, neither on the number of legs
(trips), nor on their sequencing (note than the Pseudo-Backhaul rule permits sequencing
several legs of the same type). This results in a multiple synchronization requirements
for each MT-PDTWS work assignment (route).

Bettinelli et al. (2015) recently studied the Multi-zone multi-trip vehicle routing prob-
lem with time windows and separate delivery and collection (MZMT-VRPTW-DC). Sim-
ilar to the MT-PDTWS, this problem involves scheduling a homogeneous fleet of vehicles
to pick up or deliver loads at or to customers associated to a given set of supply points
where vehicles synchronize operations. There are also differences between the two prob-
lem settings, however, notably, each pickup-customer demand is pre-assigned to a supply
point, the departure times from supply points are fixed independently of the operation
performed therein, vehicles arriving early at customers may wait paying a penalty cost
proportional to the waiting time, and vehicles are allowed to stop at waiting stations
at any time (including between customer visits). The MZMT-VRPTW-DC minimizes
the sum of the vehicle fixed cost and the routing operating cost combining travel and
waiting-penalty costs. The authors proposed a branch-and-cut-and-price algorithm to
solve the problem. Experiments on a large set of instances with up to ten supply points
and two hundred customers showed the algorithm to be very efficient for relatively small
instances (all but two instances were solved to optimality within the time limit of one
hour, tight lower bounds, slightly more than 1% being obtained for the largest instances).
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4 Solution method

We propose a tabu search (TS ) meta-heuristic for the MT-PDTWS, inspired by and
extending the method of Nguyen et al. (2013) introduced for the TMZT-VRPTW. The
new developments address challenging characteristics of the problem at hand, namely the
combined pickup and delivery operations, and the goal of scheduling service to pickup-
customer demands. New neighborhoods are introduced to address these issues.

Section 4.1 introduces the general structure of the meta-heuristic. The search space
is defined in Section 4.2, while Section 4.3 describes the construction of the initial solu-
tion. The main features of the tabu search algorithm are then given: the neighborhood
structures (Section 4.4), the neighborhoods selection strategy (Section 4.6), the tabu
status mechanism (Section 4.7), the diversification mechanism (Section 4.8), and the
post-optimization procedure (Section 4.9).

4.1 General structure

The tabu search meta-heuristic exploits several neighborhoods operating on legs and
routes, the neighborhood selection at each iteration being governed by a dynamically-
adjusted neighborhood-selection parameter, r. An elite set of solutions guides the long
term behavior of the search, while a post-optimization procedure polishes the final best so-
lution. The overall structure of the proposed tabu search algorithm for the MT-PDTWS
is given in Algorithm 1.

An initial feasible solution z is generated using a greedy method seeking to fully utilize
vehicles and minimize the total cost. One neighborhood is selected probabilistically at
each iteration based on the current value of r, then the selected neighborhood is explored,
and the best move is chosen (lines 7-8). This move must not be tabu, unless it improves
the current best TS solution zbest (aspiration criterion). The algorithm adds the new
solution to an elite set E if it improves on zbest. It also remembers the value of the
parameter r when this new best solution was found (lines 9-13), and finally updates the
elite set E by removing a solution based on its value and the difference between solutions
(Section 4.8).

Initially, the search freely explores the solution space by assigning the same selection
probability to each neighborhood. Whenever the best TS solution zbest is not improved for
ITcNS TS iterations (line 15), the Control procedure (which updates the neighborhood-
selection parameter) is called to reduce the probability of selecting leg neighborhoods
(line 25). As a consequence, routing neighborhoods are selected proportionally more of-
ten, giving moves involving customers more opportunity to optimize routes. The search
is re-initialized from the current best TS solution zbest after the execution of the Control
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Algorithm 1 Tabu search

1: Generate an initial feasible solution z

2: zbest ← z

3: Elite set E ← ⊘
4: Probability of selecting routing neighborhood with respect to leg neighborhood r ← 1
5: STOP ← 0
6: repeat

7: A neighborhood is selected based on the value of r
8: Find the best solution z′ in the selected neighborhood of z
9: if z′ is better than zbest then

10: zbest ← z′

11: rbest ← r

12: Add (zbest, rbest) to the elite set E ; update E
13: end if

14: z ← z′

15: if zbest not improved for ITcNS iterations then
16: if zbest not improved after CcNS consecutive executions of Control procedure then

17: if E = ⊘ then

18: STOP ← 1
19: else

20: Select randomly (z, rz) (and remove it) from the elite set E
21: Diversify the current solution z

22: Set r ← rz and reset tabu lists
23: end if

24: else

25: Apply Control procedure to update the value of r
26: z ← zbest
27: end if

28: end if

29: until STOP
30: zbest ← Post-optimization(zbest)
31: return zbest
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procedure (line 26). Moreover, after CcNS consecutive executions of this procedure with-
out improvement of the current best TS solution zbest, a solution z is selected randomly
and removed from the elite set (line 20), and a Diversification mechanism is applied to
perturb z (line 21). The value of r is reset to the value it had when the corresponding elite
solution was found, and all tabu lists are reset to the empty state (line 22). The search
then proceeds from the new (perturbed) solution z. The search is stopped when the
elite set E is empty. Finally, a post-optimization procedure is performed to potentially
improve the current best solution zbest (line 30).

4.2 Search space

We allow the search to explore unfeasible solutions with respect to vehicle capacity and
the time windows of customer demands and supply points, unfeasible solutions being
penalized proportionally to the violations of these restrictions. More precisely, let c(z)
denote the total traveling cost for a solution z, and let q(z), wc(z) and ws(z) denote the
associated total violation of vehicle load, customer-demand time windows, and supply-
point time windows, respectively. The total vehicle-load violation is computed on a leg
basis with respect to the value Q, whereas the total violation of time windows of customer
demands is set to

∑

i∈z max{(ai−li), 0}, and the total violation of time windows of supply
points is equal to

∑

s∈z max{(t(s)−η−as), (as− t(s)), 0}, where ai and as are the arrival
time at customer demand i and supply point s, respectively.

Solutions are then evaluated according to the weighted fitness function f(z) = c(z)+
αQq(z) + αCwc(z) + αSws(z) + F ∗ m, where m is the number of vehicles used in the
current solution, while αQ, αC , αS are penalty parameters adjusted dynamically during
the search. The updating scheme is based on the idea of Cordeau et al. (2001). At each
iteration, the value of αQ, αC and αS are modified by a factor 1 + β > 1. If the current
solution is feasible with respect to load constraints, the value of αQ is divided by 1 + β;
otherwise it is multiplied by 1 + β. The same rule applies to αC and αS with respect to
time window constraints of customers and supply points, respectively. We set αQ = αC

= αS = 1 and β = 0.3 in the experimentation reported on in Section 5.

4.3 Initial solution

To obtain an initial solution, the supply points are sorted and indexed in increasing
order of their opening times, i.e., if t(s1) ≤ t(s2), then s1 < s2 and vice-versa. Next, each
pickup-customer demand is assigned to one supply point, building each feasible work
assignment sequentially.

There are several ways to assign pickup-customer demands to supply points. For
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example, each pickup-customer demand can be assigned to its closest supply point. An-
other way would have each supply point s service a predefined number of its closest
pickup-customer demands. However, these simple strategies do not take into account
that significant variations in delivery loads that may exist among supply points. Such
strategies may create imbalances in pickup and delivery demands at some supply points,
reducing the possibility of unload & load operations at those supply points and, thus,
increasing the number of empty movements.

Our approach aims to avoid this pitfall and generate an initial solution with a small
total traveling cost and balanced unloading and loading operations at supply points.
Considering both the distance from pickup-customer demands to supply points and the
capacity of the latter to receive such demands, we proceed as follows:

1. Compute the total delivery demands assigned to each supply point. Let Ks denote
this number for supply point s ∈ S;

2. Bound the total volume vehicles can pickup and unload at supply point s to Ks;

3. Randomly select a pickup-customer demand p until all are assigned, and

• Assign p to the nearest supply point in Sp;

• When the assignment violates the maximum capacity of the nearest supply
point in Sp, the pickup-customer demand p is randomly allocated to the supply
point in Sp whose residual capacity is large enough to accommodate it.

Once the assignment of pickup-customer demands to supply points is completed,
initial work assignments are built sequentially until all customer demands are serviced
(assigned to a work assignment). For each work assignment:

1. Determine the initial supply point of the first leg as the supply point s with earliest
opening time and unserviced customer demands;

2. Create one or a sequence of legs between supply point s and either another supply
point s′ or the garage g using the following greedy algorithm:

(a) Identify the set of supply points S ′ = {s′ ∈ S|s′ with unserviced customer
demands and t(s′) > t(s)};

(b) If S ′ = ∅, the leg ends at the garage g and stop ← true;

(c) Otherwise (S ′ 6= ∅), for each pair (s, s′)

• Build the list of candidate customers: unrouted pickup-customer demands
of s first, then unrouted delivery-customer demands of s and, finally, un-
routed pickup-customer demands of s′;
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• Insert each candidate into the leg by applying the heuristic I1 of Solomon
(1987) until the vehicle is full;

(d) Select the feasible leg with the smallest average cost per unit demand among
all those generated between all pairs of s and s′, and assign it to the current
work assignment;

3. If the leg (or sequence of) ends at a supply point s′, set s ← s′ and return to (2)
to build the next leg(s);

4. Otherwise, i.e., the leg ends at the garage, stop (the current work assignment is
completed).

The average cost per unit demand is defined as the ratio of the total traveling time over
the total demand carried by the vehicle between s and s′, where the total demand for
empty legs (no customers between s and s′) is set to 1.
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Figure 3: A generation of a sequence of legs between two supply points

Figure 3 illustrates this procedure through a number of different possibilities when
routing customer demands between two supply points s and s′. If there are unrouted
pickup-customer demands of s, the greedy algorithm assigns them to the current work
assignment, first generating the pickup leg {p2, p5, p3, s}. Between supply point s and
s′, the algorithm may then generate (1) A sequence of a delivery leg {s, d1, d2, d4} and a
pickup leg {p7, p10, s

′}; (2) A pickup leg: {p9, p11, p12, s
′}; (3) A delivery leg: {s, d3, d5, d7};

(4) An empty leg connecting s and s′. Which one is actually generated depends on the
departure time at supply point s, the time windows and the distance between unserviced
delivery- and pickup-customer demands of the supply points s and s′, respectively.
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4.4 Neighborhoods

A solution to the MT-PDTWS is a set of work assignments, each work assignment consist-
ing of a sequence of legs with each leg corresponding to a sequence of customer demands.
The neighborhood set of a current MT-PDTWS solution z is thus made up of all the
solutions z′ that can be obtained by perturbing in some way z. We use two types of per-
turbations, one that changes the sequence of customer demands within one or several legs
and a second that changes the sequence of legs within one or several work assignments.
Our neighborhood strategies use one or a combination of such perturbations in order
to generate neighbor solutions. Each type of perturbation corresponds to working on a
particular type of decision variable. We therefore group our neighborhood strategies into
routing neighborhoods when they primarily change the sequence of customer demands in
at least one leg, and leg neighborhoods when they primarily change the sequence of legs
in at least one work assignment.

Note that, similar considerations were applied in Nguyen et al. (2013) to define neigh-
borhoods for the TMZT-VRPTW that worked either on routing or scheduling decisions.
The main difference and challenge for the MT-PDTWS is the presence of pickup-customer
demands that not only need servicing but also require the determination of the delivery
destination, that is, the assignment to a particular supply point. This translates into the
definition of two types of leg sequences composed of either pickup- or delivery-customer
demands, rather than a unique type in the TMZT-VRPTW, and work assignments made
of variously interleaved legs of these two types. This also translates into new decision
variables, determining the assignment of pick-customer demands to supply points, and
more complex scheduling decisions. New neighborhoods are thus defined to address this
challenge and handle these decisions for the MT-PDTWS.

4.4.1 Routing neighborhoods

Routing neighborhoods for the MT-PDTWS execute different intra- and inter-route (work
assignment) moves commonly used in the VRP literature, Relocation, Exchange and 2-
opt, attempting to improve the routing of the vehicle(s) servicing customer demands.
Remember that each MT-PDTWS leg services either pickup- or delivery-customer de-
mands but not both. As a result, when routing neighborhoods execute inter-route moves,
the modified legs must continue to be of the same type, either pickup or delivery legs.

The definition of the delivery-customer demands specifies their assignment to partic-
ular supply points, which is similar to the case of the TMZT-VRPTW. Consequently, the
corresponding neighborhoods are also similar, addressing two delivery-customer demands
that belong to the same supply point (and, thus, to the same leg or different successive
legs):
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• Relocation move : One of the two customer demands is taken from its current
position and inserted after the other one;

• Exchange move : Two customer demands are swapped;

• 2-opt move : For two customer demands in the

Same leg: The edges emanating from them are removed, two edges are added, one
of which connects these two customer demands and the other connects their
successor customer demands;

Different legs: The remaining customer sequences of these legs are swapped pre-
serving the order of customer demands.

The situation is more complex for pickup-customer demand moves, the routing neigh-
borhoods for pickup-customer demands differing substantially from the routing neighbor-
hoods for delivery-customer demands. Indeed, while the latter involve legs that belong to
the same supply point, this is not true for the former, as such pickup-customer demands
may be reassigned to different supply points. We therefore define routing neighborhoods
for pickup-customer demands that simultaneously modify the sequence of customer de-
mands (the routing) and reassign them to supply points. The reassignment is achieved
by allowing moves to be performed on legs that belong to different supply points. The
feasibility criterion for such a move, i.e., that reassigns a pickup-customer demand p
from supply point si to supply point sj, is that the latter belongs to the list of admissible
supply points for p (sj ∈ Sp).

Three routing neighborhoods are thus considered for pairs of pickup-customer de-
mands satisfying the feasibility criterion for supply-point reassignment:

• Relocation move : One pickup-customer demand is shifted from its current po-
sition to another position, in the same or a different leg, which may be assigned to
the same supply point or not;

• Exchange move : The two pickup-customer demands are exchanged; They may
belong to the same leg or, if the condition for supply-point reassignment allows it,
to two distinct legs sharing one common supply point or not;

• 2-opt move : For two pickup-customer demands in the

Same leg: The edges emanating from them are removed, two edges are added, one
of which connects these two pickup-customer demands, and the other connects
their successor pickup-customer demands;

Different legs, same supply point (thus in different work assignments): The
remaining segments of these legs are swapped preserving the order of customer
demands;
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Different legs, distinct supply points: The remaining customer sequences of
these legs are swapped preserving the order of customer demands.

p Sp

p1 {s2, s4}

p2 {s2, s3, s4}

p3 {s1, s2, s4}

p4 {s2, s4}

p5 {s4}

p6 {s4, s5}

p7 {s2, s4}

p8 {s1, s2, s4}

Table 1: List of pickup-customer demands and admissible supply points for Figure 4

(a) Work assignment W# before 2-opt

W$

s%s& s'

W$

(b) Work assignment W# after 2-opt

d( p& p% p) p' d* d+ p, p- p. p/

s%s& s'p& p. p/ d* d+ p, p- p% p) p'd(

Figure 4: An example of 2-opt routing neighborhood for pickup-customer demands

Let us illustrate the condition for supply-point reassignment through a simple ex-
ample. Consider Table 1 displaying the sets Sp of admissible supply points (Column 2)
for pickup-customer demands p ∈ P (Column 1) for the work assignment Wu shown in
Figure 4a. Consider the two pickup-customer demands p1 and p6 in Wu belonging to dif-
ferent supply points, s2 and s4, respectively. The 2-opt move of p1 and p6 applied on Wu

requires the supply-point reassignments of {p2, p3, p4} to s4 and of {p7, p8} to s2. Pickup-
customer demands p7 and p8 can be reassigned to supply point s2 as s2 ∈ {Sp7 ∩ Sp8}.
Similarity, p2, p3, p4 can be reassigned to s4 as s4 ∈ {Sp2 ∩ Sp3 ∩ Sp4}. The condition for
supply-point reassignment is satisfied, therefore this 2-opt move is accepted. Figure 4b
illustrates Wu after the move. On the other hand, the 2-opt move of p1 and p5 requires
the supply-point reassignments of {p2, p3, p4} to s4 and of {p6, p7, p8} to s2. However,
s2 /∈ Sp6 , so p6 can not be reassigned to supply point s2. Due to the unfeasibility of the
supply-point reassignment, this 2-opt move is not accepted.
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All feasible neighbors are evaluated (Section 4.5) in the selected neighborhood (Section
4.6), and the best one is implemented.

4.4.2 Leg neighborhoods

Leg neighborhoods change the leg sequencing of work assignments and are described here
in terms of supply-point moves. Indeed, each MT-PDTWS leg is assigned to the supply
point where the vehicle either returns the collected freight or loads new freight (or both).
Leg-neighborhood transformations can therefore be seen as the repositioning of supply
points, together with the legs and customer demands associated with them, between
work assignments. Two neighborhoods, Relocate and Exchange, are defined under the
leg neighborhood category.

Relocate supply point moves remove a supply point, and the customer demands it
services, from its current work assignment and inserts it into another work assignment.
Exploration is performed for each work assignment Wu, each supply point si ∈ Wu, and
each work assignment Wv 6= Wu, two cases being possible depending on whether the
supply point to be reassigned belongs already to the target work assignment or not.

When si /∈ Wv, for each two successive supply points sj, sj+1 ∈ Wv, such that
sj < si < sj+1, one moves si from work assignment Wu to Wv locating it between sj and
sj+1. Figure 5 illustrates the case, where the relocation of supply point si also moved the
associated pickup {pi, pj} and delivery {dm, dn} legs.

(a) Work assignments before Relocate

W0

s1
W2

s134

s5 s534

s164
W0

s1W2

s134

s5 s534

s164

(b) Work assignments after Relocate

d1 d5
p1

p5 d7

d8

p9 p: d1 d5

d9 d: d9 d:

p1
p5 d7

d8

p9 p:

Figure 5: Relocate a supply point with its pickup and delivery legs

Once a supply point is relocated to a new work assignment, one may also perform
the reassignment of pickup-customer demands to other supply points to maximize the
unload & load operations at supply points and thus reduce empty movements. More
precisely, whenever a pickup (or a single-delivery) leg assigned to si is relocated between
sj and sj+1, and the vehicle only loads at sj+1 (or only unloads at sj), one verifies the
reassignment of the pickup-customer demands in the leg of si (or sj) to supply point sj+1

(or si). If the reassignment is feasible, the customer demands in the leg of si are relocated
between sj and sj+1 to create a new unload & load operation at supply point sj+1 (or
si) on the work assignment Wv. Otherwise, the leg assigned to si is just simply relocated
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between sj and sj+1 as before. Figure 6 illustrates these possibilities when moving si on
Wu, and its pickup leg {pi, pj}, between sj and sj+1 on Wv. As the leg assigned to sj+1

of Wv is a single delivery leg, one verifies whether reassigning pi and pj to supply point
sj+1 is feasible; In the affirmative, i.e., sj+1 ∈ {Spi ∩ Spj}, the reassignment is applied,
and the movement yields the work assignment Wv shown in Figure 6b. Notice that, an
unload & load activity was created at sj+1 and that supply point si has been dropped
from both work assignments. Figure 6c illustrates the case when this reassignment is not
feasible.

(a) Work assignments before Relocate

(b) Work assignments after Relocate

Pickup leg reassigned & supply point dropped
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(c) Work assignments after Relocate
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dB dC dD
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s<>?

s@ s@>?

s<A? d< d@ p<
p@

pB pC

dB dC dD

Figure 6: Relocate a supply point and, eventually reassign a pickup leg

When si ∈ Wv, three cases are possible according to the current activity at the supply
point si of the vehicle operating the work assignment Wu:

• Case 1 - Unload only. Relocates the pickup leg ri assigned to si in work assignment
Wu. Three cases are possible according to the vehicle operation at supply point si
in Wv prior the relocation:

– Case 1.1 - Unload only. Let rj be the pickup leg assigned to si in Wv; The
move proceeds by concatenating the two pickup legs ri and rj . Appending ri
to rj and rj to ri are both considered (Figure 7).

– Case 1.2 - Load only. Let rj be the single-delivery leg assigned to si in Wv.
The move proceeds by locating pickup leg ri right before single-delivery leg rj
creating an unload & load operation at si (Figure 8).

– Case 1.3 - Unload & load. Let rj the pickup leg and r′j the coordinate-delivery
leg assigned to si in Wv, then move si from work assignment Wu to Wv by
concatenating the two pickup legs ri and rj. Both cases of appending ri to rj
and rj to ri are considered as in Case 1.1.
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(c) Work assignments after Relocate

Case: append (rE,sE) to (rF,sE)

(b) Work assignments after Relocate

Case: append (rF,sE) to (rE,sE)

(a) Work assignments before Relocate
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Figure 7: Relocate a supply point: concatenation of two pickup legs

(a) Work assignments before Relocate (b) Work assignments after Relocate
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Figure 8: Relocate a supply point: creation of an unload & load operation

• Case 2 - Load only. Relocates the single-delivery leg ri assigned to si within work
assignment Wu. The three cases of vehicle operation at supply point si within work
assignmentWv described above (Case 1) are also considered here. An unload & load
operation is created in Case 2.1, while concatenation of delivery legs is attempted
in Cases 2.2 and 2.3 (the concatenation of delivery legs ri and rj, already assigned
to si in Wv, is also examined in two cases: one appending ri to rj and the other
appending rj to ri).

• Case 3 - Unload & load. Relocates both the pickup leg ri and the coordinate delivery
leg r′i assigned to the same supply point si in Wu. Three cases of vehicle operation
at supply point si in Wv are considered as in the previous cases. All possibilities of
concatenation of delivery and pickup legs assigned to the same supply point si in
both work assignments Wu and Wv are also examined.

Exchange supply point . The neighborhood exchanges supply points, and their
associated legs and customer demands, between work assignments Wu and Wv. For
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supply points si ∈ Wu and sj ∈ Wv:

• When si−1 < sj < si+1

– If sj−1 < si < sj+1 then, swap si and sj (swap both pickup- and delivery-
customer demands if any);

– If sj−1 = si < sj+1 then, first swap si and sj; Then, if there were pickup-
customer demands assigned to si in both Wu and Wv, and because sj−1 = si,
concatenate pickup-customer demands in Wv as described in Case 1.1 above;
Also concatenate delivery-customer demands in both work assignments, if pos-
sible;

– if sj−1 < si = sj+1: same as item above.

• Otherwise, either si−1 = sj or sj = si+1. Then, swap supply points si and sj and
modify Wv and, possibly, Wu. Three cases are possible for Wv: 1) sj−1 < si < sj+1;
2) sj−1 = si < sj+1; and 3) sj−1 < si = sj+1, and the treatment is the same as
above. For Wu, when there were pickup (delivery)-customer demands assigned to
sj in both Wu and Wv, and because si−1 = sj (or sj = si+1), concatenate pickup
(delivery)-customer demands in Wu as described in Case 1.1 above.

The reassignment of pickup-customer demands to new supply points is performed as
in the relocate supply point neighborhood, whenever it could create an unload & load
operation. Only feasible reassignments are accepted, i.e., only if the new supply points
belong to the list of permissible supply points of the pickup-customer demands.

4.5 Move evaluation

Moving legs or customer demands may change the transport cost and the number of
vehicles, as well as the level of constraint violations of load and time windows (customer
demands and supply points) restrictions. Consequently, the move value is defined as a
sum of five terms ∆f = ∆c+F∗∆m+∆q+∆wc+∆ws representing the differences between
the current and neighboring solutions in transport cost, fixed cost of using vehicles, and
the violation of load, time windows at customer demands and supply points.

4.6 Neighborhood selection strategy

The proposed tabu search algorithm explores the search space of the MT-PDTWS using
at each iteration one of the eight neighborhoods just described. The selection of the
neighborhood is probabilistic, and controlled by the neighborhood-selection parameter
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r (see Nguyen et al., 2013, for a similar mechanism). We assign to routing and leg
neighborhoods the selection probabilities r/(2 + 6r) and 1/(2 + 6r), respectively.

Leg and routing neighborhoods are given the same selection probability at the begin-
ning of the search (by setting r = 1). This allows the tabu search algorithm to freely
explore the search space. Because the number of supply points is much smaller than
the number of customer demands in most MT-PDTWS instances, the algorithm should
perform more customer than leg moves to ensure adequate optimization of routes. Conse-
quently, after the initial phase, the probability of selecting leg neighborhoods is gradually
lowered, relative to the probability of selecting routing neighborhoods, by dynamically
modifying the value of r.

It is the Control procedure that varies the value of r during the execution of the
tabu search to monotonically reduce (increase) the probability of selecting leg (routing)
neighborhoods after each ITcNS iterations without improvement of the best solution. A
linear scheme rk+1 = rk +∆r is used, where ∆r is a user-defined parameter, while rk+1

and rk are values of r at iteration k + 1 and k, respectively.

4.7 Tabu lists and tabu duration

Five tabu lists are included in the meta-heuristic, one list for each type of leg and routing
move (tabu lists do not distinguish between delivery- and pickup-customer demands, but
the length of the tabu tenure does). The solution elements receiving a tabu status
following a leg move are

• Relocation move: the position of supply point si just inserted into work assignment
Wv cannot be changed by another relocate supply point move while it is tabu;

• Exchange move: supply points si and sj just swapped cannot be swapped again
while they are tabu;

while for routing moves

• Relocation move: the position of customer demand i just inserted after customer
demand j cannot be changed by the same type of move while it is tabu;

• Exchange move: customer demands i and j just swapped cannot be swapped again
while they are tabu;

• 2-opt move: a 2-opt move applied to customer demands i and j cannot be applied
again to the same customer demands while tabu.
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A tabu status is assigned to an element for θ iterations, where θ is randomly selected
from a uniform interval. Any move declared tabu cannot be performed unless it would
yield a solution improving the current best solution. Generally, the tabu status of a move
should stay so for a number of iterations proportional to the number of possible moves.
Consequently, we define different intervals for selecting the duration of the tabu tenure
for leg and routing moves.

There are O(m′ ∗ |S|) possible leg moves. Consequently, the interval of the tabu list
size for leg moves is set to [m′*|S|/a1, m

′*|S|/a2], where m′ is the number of vehicles
used in the initial solution, a1 and a2 are user-defined parameters where a1 > a2.

There are different tabu tenure intervals for routing moves depending on whether
delivery- or pickup-customer demands are considered. As delivery-customer demands
are pre-assigned to a particular supply point, moves involving delivery-customer demands
may only occur within the same customer zone. Consequently, the tabu tenure interval for
delivery-customer demand routing moves depends on the supply point s and its associated
delivery-customer demands |CDs |, and is calculated as [a3log10(|C

D
s |), a4log10(|C

D
s |)], where

a3 and a4 are user defined parameters, and a3 < a4. The number of iterations during
which such a move remains tabu is increased only when the algorithm deals with delivery-
customer demands in the corresponding zone.

In contrast, pickup-customer-demand-to-supply point assignments are not known in
advance, rather, each pickup-customer demand has a list of available supply points that
can service it. The routing moves we defined are thus modifying not only the position
of the pickup-customer demands within work assignments, but also their assignments
to supply points. Consequently, routing moves for pickup-customer demands are not
restricted to a single supply point (as for delivery-customer demands above), but rather
to a number of shared supply points. Hence, the tabu tenure interval for pickup-customer
demand routing moves is proportional to the total number of pickup-customer demands
(|CP |), and is calculated as [a5log10(|C

P |), a6log10(|C
P |)], where a5 and a6 are user defined

parameters, a5 < a6.

4.8 Diversification strategy

The diversification strategy, based on an elite set and a frequency memory, directs the
search to potentially unexplored promising regions when the search begins to stagnate.
In a nutshell, diversification aims to capitalize on the best attributes obtained so far by
selecting a new working solution from the elite set and perturbing it based on long-term
trends.

In more details, we use the elite set as a diversified pool of high-quality solutions
found during the tabu search. The elite set starts empty and is limited in size. The
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quality and diversity of the elite set is controlled by the insertion of new best solutions
produced by the tabu search and the elimination of existing solutions in the elite set. The
elimination is based on the Hamming distance ∆(z1, z2) measuring not only the number
of customer demand positions that differ between solutions z1 and z2 (as for the TMZT-
VRPTW), but also the differences between supply-point assignments of pickup-customer
demands. This distance is computed according to Equation (1), where T(cond) is a
valuation function that returns 1 if the condition cond is true, 0, otherwise; Nz[i] is the
next location (a customer demand, the garage, or a supply point) visited by the vehicle
after servicing customer demand i in solution z; and Sz[i] is the supply point assigned to
pickup-customer demand i in solution z.

∆(z1, z2) =
∑

i∈{CP∪CD}

T(Nz1 [i] 6= Nz2 [i]) +
∑

i∈CP

T(Sz1 [i] 6= Sz2 [i]) (1)

The elimination of a solution from the elite set is considered each time a new best
solution zbest is inserted. There are two cases. If the elite set is not yet full, we delete
only when there exists a solution very similar to the new zbest, i.e., we delete the solution
z with the smallest ∆(z, zbest) ≤ 0.05(|CD| + 2|CP | + |S|). When the elite set is full,
zbest replaces the solution z that is the most similar to it, i.e., the one with the smallest
∆(z, zbest).

The long-term frequency memory keeps a history of the arcs most frequently added
to the current solution, as well as of the supply-point assignments of pickup-customer
demands most frequently used. Let tij be the number of times arc (i, j) has been added
to the solution during the search process. The frequency of arc (i, j) is then defined as
ρij = tij/T , where T is the total number of iterations executed so far. Similarly, let t′ps
be the number of times pickup-customer demand p has been assigned to supply point s
during the search. The frequency of the supply-point assignment of customer demand p
to s is defined as χps = t′ps/T .

Diversification then proceeds to perturb the search that starts from the solution taken
from the elite set by removing arcs with high frequency, inserting arcs with low frequency
and promoting never-seen supply-point assignments. Thus, the evaluation of neighbor
solutions is biased to penalize the arcs most frequently added to the current solution
and the supply-point assignment most frequently used. The corresponding two penalties,
g1(z̄) and g2(z̄), which are added to the fitness evaluation f(z̄) (Section 4.2) of a neighbor
z̄ of the current solution z are given by equations 2 and 3, respectively,

g1(z̄) = C̄(
∑

(i,j)∈Aa

ρij +
∑

(i′,j′)∈Ar

(1− ρi′j′)) (2)
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g2(z̄) = C̄
∑

p∈CP















∑

s∈Sp

Sz(p)=Sz̄(p)=s

χps +
∑

s∈Sp

Sz(p)6=s
Sz̄(p)=s

χps +
∑

s∈Sp

Sz(p)=s
Sz̄(p)6=s

(1− χps)















, (3)

where C̄ is the average cost of all arcs in the problem, and Aa and Ar are the sets of arcs
that are added to and removed from the solution z in the move to z̄, respectively. The
diversification mechanism is executed ITdiv iterations.

4.9 Post optimization

The best solution obtained during the tabu search is enhanced by applying a local-
search Supply-point-improvement procedure followed by a Leg-improvement procedure.
The purpose of these two procedures is to improve the routing and the supply-point
assignments of the solution.

The Supply-point-improvement procedure proceeds by assigning a new supply point to
each pickup-customer demand, keeping those that actually improve the solution. Pickup-
customer demands are handled in random order. Then, for each pickup-customer demand
p and each of its unassigned supply point s ∈ Sp (if any), p is removed from its current
leg (i.e., current assigned supply point) and the cheapest fitness insertion is performed
to insert p into each pickup leg assigned to s. The best feasible improvement is executed
(if any). The procedure then proceeds to the next unassigned supply point or, if all have
been tried out, to the next pickup-customer demand.

Leg-improvement consists in applying a number of well-known local-search route im-
provement techniques. Two are intra-route operators, the 2-opt of Lin (1965) and the
Or-opt of Or (1976). The others are inter-route operators, the λ-interchange of Osman
(1993), and the CROSS-exchange of Taillard et al. (1997). For the λ-interchange, we only
consider the cases where λ = 1 and λ = 2 corresponding to the (1,0), (1,1), (2,0), (2,1),
and (2,2)-interchange operators. A delivery-customer demand is re-allocated only to legs
with the same initial supply point. This procedure is therefore executed for each delivery
customer zone separately. For pickup-customer demands, the procedure is executed for
all pairs of pickup-customer demands satisfying the supply-point assignment.

The Leg-improvement procedure starts by applying in random order the five λ-
interchange and CROSS-exchange inter-route operators. Each neighborhood is searched
on all possible pairs of legs (in random order) and stopped on the first feasible im-
provement. The solution is then modified and the process is repeated until no further
improvement can be found. The search is then continued by locally improving each leg
of each vehicle in turn. The intra-route 2-opt and Or-opt neighborhoods are sequentially
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and repeatedly applied until no more improvement is found.

5 Experiments

The goal of the numerical experiments is threefold: 1) to study the impact of a number
of major parameters and search strategies on the performance of the proposed algorithm
in order to identify the best design (Section 5.2); 2) to evaluate the performance of the
method through comparisons with published results for the MZMT-VRPTW-DC and
the VRPB with and without time windows (Section 5.4); and 3) to analyze the impact
on solution behavior and quality of sharing the same fleet of vehicles and synchronization
schemes (Sections 5.5 and 5.6, respectively).

The tabu search algorithm is implemented in C++. Experiments were run on a 2.8
GHz Intel Xeon 4-core processor with 16GB of RAM. We initiate this part of the paper
with the description of the instances used for the experiments.

5.1 Test data generation

We generated MT-PDTWS test instances by adding pickup-customer demands to the
TMZT-VRPTW instances of Crainic et al. (2009).

The quantity of pickup demand injected into an instance was determined by the
ratio BH = |

∑

p∈CP qp/
∑

i∈{CP∪CD} qi| of the total pickup demand over the total demand

(delivery and pickup). Based on the general observation that the volume of goods moving
out of the city is relatively lower compared to the volume of goods moving in, we set the
values of BH at {0.1, 0.3, 0.5}. For the sake of simplification, we have also used BH as
the ratio of the number of pickup-customer demands over the total number of customer
demands.

The attributes of each pickup-customer demand p for a given problem instance were
generated as follows:

• Coordinates [Xp, Yp]: uniformly distributed in the same interval used to generate
the coordinates of the delivery-customer demands in the corresponding TMZT-
VRPTW;

• Volume of demand qp: randomly generated in the same interval as for delivery-
customer demands, i.e., [5, 25], with respect to the value of BH;

• Service time δ(p): set to 20 as for TMZT-VRPTW;
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• Number of supply points admissible for the pickup-customer demand p: selected
randomly in the range [1, MSP ], where MSP = maxp∈CP ‖Sp‖. Let x denote this
number. Then, the list of permissible supply points for p was determined by ran-
domly selecting s1, s2, ..., sx supply points, sorted in increasing order of opening
times;

• Time window [ep, lp]: ep and lp chosen randomly in the intervals [Ep - 300, Ep] and
[Lp - 300, Lp], respectively (to ensure feasibility), where Ep = t(s1)− δ(p)− ⌈cp,s1⌉
and Lp = t(sx)− δ(p)− ⌈cp,sx⌉.

All other attributes are the same as in the TMZT-VRPTW instances. We thus
generated six sets of 15 instances each, for a total of 90 problem instances. The six
sets are called A1, A2, B1, B2, C1, and C2. Each set is further divided into three
groups of 5 instances, each group being defined by one of the three different values
of BH = {0.1, 0.3, 0.5}. Table 2 summarizes the parameters of all the MT-PDTWS
instances. First and last columns give the instance name for the MT-PDTWS and for the
original TMZT-VRPTW data, respectively. The next five columns display the numbers
of supply points and waiting stations, respectively, the BH value, and the numbers of
delivery and pickup customer demands. The X and Y coordinates of the square where
supply points, waiting stations, and customers are uniformly distributed are shown in
the next column, followed by the value of MSP .

Table 2: Summary of test instances

Instance Instance # supply # waiting BH # customers [X,Y] MSP Original

set names points stations Delivery Pickup coordinates instances

A1

A1-1 ... A1-5

4 4

0.1

400

44

[0,100] 2 A1-1 ... A1-5A1-6 ... A1-10 0.3 171

A1-11 ... A1-15 0.5 400

A2

A2-1 ... A2-5

8 4

0.1

400

44

[0,100] 2 A2-1 ... A2-5A2-6 ... A2-10 0.3 171

A2-11 ... A2-15 0.5 400

B1

B1-1 ... B1-5

16 16

0.1

1600

177

[0,200] 3 B1-1 ... B1-5B1-6 ... B1-10 0.3 685

B1-11 ... B1-15 0.5 1600

B2

B2-1 ... B2-5

32 16

0.1

1600

177

[0,200] 3 B2-1 ... B2-5B2-6 ... B2-10 0.3 685

B2-11 ... B2-15 0.5 1600

C1

C1-1 ... C1-5

36 36

0.1

3600

400

[0,300] 4 C1-1 ... C1-5C1-6 ... C1-10 0.3 1542

C1-11 ... C1-15 0.5 3600

C2

C2-1 ... C2-5

72 36

0.1

3600

400

[0,300] 4 C2-1 ... C2-5C2-6 ... C2-10 0.3 1542

C2-11 ... C2-15 0.5 3600

The opening times of supply points were generated randomly in the [1000, 15,400]
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range, while the limited allowable waiting time at supply points was set to η = 100.
The vehicle-loading and vehicle-unloading times at supply points were set to 30, for all
supply points. The fixed cost and the capacity of each vehicle were set to 500 and 100,
respectively, for all instance sets.

5.2 Algorithm design and calibration

We aim for a general algorithmic structure avoiding instance-related parameter settings.
We therefore defined settings as function of the problem size for the main parameters of
the proposed algorithm, the tabu tenures, the neighborhood selection probabilities, and
the diversification.

5.2.1 Tabu tenure calibration

The intervals for the tabu list tenures for leg, delivery, and pickup routing moves were de-
fined in Section 4.7 as [m′*|S|/a1,m

′*|S|/a2], [a3log10(|C
D
s |), a4log10(|C

D
s |)], and [a5log10(|C

P |),
a6log10(|C

P |)], respectively. Using a large interval for routing moves, [10, 20], we tested
different values for a1 in the integer interval [7, 10] and for a2 in the integer interval [4,
6]. We observed that too large an interval is not productive as low values cannot prevent
cycling, while high ones overly restrict the search path. We have therefore set a1 and a2
to 7 and 5, respectively.

A similar process was used to explore different values for a3, a4, a5, a6 in the integer
intervals [4, 6], [7, 9], [6, 8] and [10, 12], respectively, using delivery and pickup routing
tabu as defined above. We used a larger value of tabu tenure for routing moves on
pickup-customer demands as they are not restricted to one customer zone as those on
delivery-customer demands. We found that the most appropriate values for a3, a4, a5
and a6 are 6, 8, 7 and 10, respectively.

5.2.2 Calibration of the neighborhood selection probabilities

The adjustments to the neighborhood selection probabilities follow two parameters:
ITcNS, the number of consecutive iterations without improvement of the best solution
(this number triggers the execution of the Control procedure that modifies probabilities),
and ∆r, the amplitude of the adjustment of the neighborhood-selection parameter r.

The value of ITcNS should be large enough to give each customer and supply point
in each leg the possibility to be moved. We define it as a function of the problem
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size, ITcNS = e1 ∗ (m
′ ∗ |S| + n), where m′ is the number of vehicles used in the initial

solution, |S| and n are the numbers of supply points and customer demands, respectively,
and e1 is a user defined parameter. Similarly, ∆r is defined to be proportional to the
ratio of the number of customer demands relative to the number of supply points, i.e.,
∆r = e2 log10(n/|S|), where e2 is a user defined parameter.

Searching for a good combination of values for e1 and e2 concerns the balance of the
search process between exploration and exploitation. On one hand, the higher the value
of ITcNS, the more chances customers and supply points are to be moved between routes,
thus favoring exploration. On the other hand, too high a ITcNS value may waste time in
useless moves. We have experimented with different values of e1 in the integer interval
[1,5] and e2 in the integer interval [1, 7]. Three runs were performed for each instance
for one million iterations. Computational results for each combination of values (e1, e2)
over all instances are summed up in Table 3, which displays the average gaps between
the best solutions obtained by each combination and the best combination.

Table 3: Performance comparison between (e1, e2) combinations

e1
e2

1 2 3 4 5 6 7

1 1.25% 1.04% 0.43% 0.34% 0.32% 0.28% 0.28%

2 1.14% 0.98% 0.21% 0.23% 0.26% 0.31% 0.31%

3 1.12% 0.73% 0.09% 0.06% 0% 0.08% 0.17%

4 0.97% 0.71% 0.14% 0.08% 0.04% 0.18% 0.21%

5 1.05% 0.68% 0.12% 0.07% 0.05% 0.17% 0.28%

Table 3 indicates that (3,5) is the most appropriate combination for (e1, e2), giving
best solutions on average. We have also observed that executing the algorithm with r
greater than 60 log10(n/|S|) yields an average improvement of the best solution of less
than 0.1%, while requiring about 41% more time. Based on these results, we used (e1,
e2) = (3, 5) and rmax = 60 log10(n/|S|), the maximum value of r, in the remaining
experiments.

5.2.3 Diversification and the elite set

We now turn to the parameters characterizing the diversification procedure and the elite
set utilization, and examine their impact on the performance of the algorithm. Four
variants of the algorithm were studied corresponding to the different ways to set up an
elite solution as the new working solution and the inclusion, or not, of the diversification
phase. The first two variants simply select an elite solution z at random and re-start the
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algorithm from it. The Diversification mechanism described in Section 4.8 is applied in
the last two variants to diversify from the elite solution z.

The initialization of the r parameter following the selection of z is common to the
four variants. We have studied two alternatives where r was set to either the full or half
the value at which z was found, respectively (i.e. r = rz or r = rz/2). The size of the
elite set is relevant for the Diversification mechanism only. Three values were tested, 1,
5, and 10.

Similar to previous experiments, we have used formulas dependent on the problem
dimensions for ITdiv and CcNS, which determine for how long exploration can proceed.
Thus, the number of diversification phases is set to ITdiv = m′ ∗ |S|+ n, where m′ is the
number of vehicles used in the initial solution, and |S| and n are the numbers of supply
points and customer demands, respectively.

We have also set the number of consecutive executions of the Control procedure
without improvement of the best solution to CcNS = min(3 log10(n/|S|), (rmax− r)/∆r),
which keeps the value of CcNS sufficiently high during the course of the algorithm,
even though Control procedure is started with different values of r (remember that
rmax = 60 log10(n/|S|)). Intuitively, in the beginning, r is small and CcNS takes the value
3 log10(n/|S|), while when r becomes large enough, CcNS takes the value (rmax − r)/∆r.

Table 4 displays the performance comparison between the four variants with the three
different values for the elite set size. For each variant and size of the elite set, the table
shows the average gaps to the value of the best solutions obtained by it from those
obtained without using the elite set and diversification, together with the corresponding
average computation time in minutes over 10 runs.

Table 4: Performance comparison between diversification settings

Elite set

Without diversification With diversification

size

1st variant 2nd variant 3rd variant 4th variant

r = rz r = rz/2 r = rz r = rz/2

GAP (%) Time GAP (%) Time GAP (%) Time GAP (%) Time

0 0 50 - - - - - -

1 -0.37 66 -0.36 92 -1.02 88 -1.05 103

5 -0.64 95 -0.69 117 -1.54 157 -1.48 194

10 -0.78 121 -0.74 139 -1.55 223 -1.50 260

As expected, results indicate that guidance using elite solutions contributes signifi-
cantly to improve the performance of the algorithm. Without using the elite set, the
algorithm requires the lowest computation effort but produces worst solutions compared
to all the variants using the elite set. Comparing the two variants corresponding to the
two values at which r is reset, one observes that the solution quality is not very sen-
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sitive to this value, but the computing effort is increasing when the value of r is lower
(r = rz/2).

One observes that the third and fourth variants are significantly better in terms of
finding high quality solutions. This indicates that the long-term memory and the diversi-
fication mechanism added to the algorithm are important features for high performance.
Moreover, setting the size of the elite set to 5 achieves a better balance between solution
quality and computation time, compared to a larger size of 10. Indeed, doubling the size
of the elite set improves only slightly the solution quality, 0.01%, but requires 42% more
time. We therefore set the size of the elite set to 5 and reset r = rz.

5.3 Tabu Search performance

Table 5 displays the results obtained by the proposed tabu search meta-heuristic over
10 runs for each group of instances. It gives the average (Avg 10 column) and best
(Best 10 column) objective value, the number of vehicles (Number Vehicles column),
the percentage of times vehicles move directly to supply points without using waiting
stations (DM (%) column), and the percentage of times vehicles perform unload & load
operations once they arrive at supply points (PD (%) column). Average computation
times in minutes are displayed in the Time column.

Table 5: Performance of Tabu Search on all instances

Instance BH Avg 10 Best 10 Number DM (%) PD (%) Time
set vehicles (min)

0.1 19873.29 19758.67 21.8 10.45 21.89 20
A1 0.3 21007.60 20854.25 22 27.44 60.93 34

0.5 23455.87 23245.62 22.2 51.29 87.1 58
0.1 16884.05 16756.85 16.4 14.77 21.52 12

A2 0.3 18462.56 18295.76 16.4 31.75 56.75 19
0.5 21150.77 20981.06 17.2 45.28 88.05 33
0.1 66979.79 66763.80 46.8 19.33 15.01 66

B1 0.3 75587.05 75398.22 47.8 31.3 46.73 139
0.5 99155.77 99025.96 54.8 38.31 80.39 231
0.1 59828.68 59717.48 36.4 19.06 16.53 42

B2 0.3 72098.73 71945.56 40 23.64 46.76 97
0.5 94024.35 93838.52 46 32.63 78.41 198
0.1 153335.20 153106.40 90.4 17.65 13.84 172

C1 0.3 200072.40 199848.80 99.4 21.78 46.01 310
0.5 292032.84 291836.60 119.8 30.91 82.58 705
0.1 141018.12 140803.04 76.2 18.26 15.65 112

C2 0.3 195573.18 195206.00 94.4 24.59 41.92 213
0.5 278354.82 278058.20 106.8 26.45 77.77 348

Average 102716.39 102524.49 54.16 26.94 49.88 156.06
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The experimental results in Table 5 show that, overall, 4874 vehicles are used in the
90 problem instances, servicing a total of 39,790 legs. Hence, on average, each vehicle
services 8 legs. Table 5 also shows that the percentage of times vehicles perform unload &
load operations increases proportionally to the percentage of pickup-customer demands
(i.e., the value of BH). On average, in almost 50% of the cases, vehicles perform both
unloading and loading once they arrive at supply points. The number of unload & load
operations at supply points not only reduces the number of empty moves but also reduces
the traveling cost. Moreover, experiments show that the traveling cost and the number
of vehicles in the initial solutions are 32.45% and 20.76% greater than those of the best
solutions on average, respectively, illustrating the significant solution-improvement effect
of the proposed algorithm. The Appendix B provides detailed results.

5.4 Comparison with results in the literature

The MT-PDTWS is considered for the first time in the literature and there are no pre-
vious results to compare to. Therefore, in order to provide an assessment of the perfor-
mance of the proposed algorithm, we run it on instances of the MZMT-VRPTW-DC and
the VRPB, and compared the results of the proposed tabu search algorithm to results
available in the literature for these two problems.

5.4.1 Comparison with the MZMT-VRPTW-DC

The comparison with the branch-and-cut-and-price algorithm proposed by Bettinelli et al.
(2015) for the MZMT-VRPTW-DC required slightly modifying both problem settings to
merge them into a single one the two algorithms could address in a relatively straight-
forward manner. Two modifications were made to the MZMT-VRPTW-DC problem
setting: 1) vehicles are not allowed to stop at waiting stations when moving between two
customer demands, i.e., vehicle must go directly from one customer demand to another;
and 2) vehicles cannot wait at supply points. The modifications to the MT-PDTWS
were: 1) each pick-up customer demand is pre-assigned to a supply point; 2) the depar-
ture time from each supply point s is fixed to t(s); and 3) the waiting time is included
into the objective function.

Both algorithms were then applied to the 60 instances proposed in Bettinelli et al.
(2015) and grouped into six subsets (D1 to D6) of 10 instances each. The best solutions
obtained over 10 runs of the tabu search algorithm are used for the performance com-
parisons displayed in Table 6. Columns 2 to 4 describe the data sets (identified in the
first column): the number of supply points, the number of pickup or delivery customer-
demands per supply point, and the total number of customer demands, respectively. The
rest of the table consists of two major columns, each divided into two sub-columns, one

31

Multi-Trip Pickup and Delivery Problem with Time Windows and Synchronization

CIRRELT-2015-11



Table 6: Performance comparison for the MZMT-VRPTW-DC

Data |S| Cust/ Customer GAP to lower bound (%) CNV/CTD

set zone demands BCP TS BCP TS

D1 5 5 50 0 0.51 38/20304.68 38/20504.54

D2 5 7 70 0 1.00 64/23791.44 63/24855.07

D3 5 9 90 0.6 1.95 43/21194.93 43/21746.44

D4 5 6 60 0 0.96 43/22979.74 42/23901.18

D5 10 6 120 0 2.57 64/45367.54 59/49880.16

D6 15 6 180 0 3.29 72/61900.42 69/66589.68

Average 8 7 95 0.1 1.71 252/133638.33 245/140887.39

for the Branch-and-Cut-and-Price (Bettinelli et al., 2015) and the other for the tabu
search algorithm proposed in this paper. The column GAP to lower bound (%) displays
the average gaps between the best solutions obtained and the lower bounds identified
by Bettinelli et al. (2015), while column CNV/CTD displays the cumulative number of
vehicles (CNV) and the cumulative total distance (CTD) for the best solutions obtained
of each instance set.

All instances, except 3 instances of D3, were solved to optimality by the Branch-
and-Cut-and-Price. The optimality gaps for the three unsolved instances (D3-02, D3-06
and D3-10), were 1.47%, 0.97%, and 3.56%, respectively, yielding an average gap of
0.6% for the 10 instances of the set D3. The tabu search algorithm yielded solutions
with an average optimality gap of 1.71%, which supports the high-performance claim.
As expected, the difference grows with the problem dimensions, but stays within very
reasonable margins. It is revealing to try explore where the difference comes from. This
may be inferred from by examining the performances in terms of number of vehicles and
total distance. The results displayed in the last column clearly indicate that the tabu
search targets more the former while the Branch-and-Cut-and-Price aims to minimize
the latter. On average for instances of sets D5 and D6 (with 10 and 15 supply points,
respectively), the tabu search produces solutions with 5.88% lower number of vehicles
for, but requiring 8.57% higher operating cost. Such a behavior is compatible with the
objective of City Logistics systems, which was the initial motivation of our work.

5.4.2 Comparison with the VRPB

We compared the performance of the proposed tabu search algorithm with existing algo-
rithms in the literature for the VRPB, with and without time windows. Recall that in
the VRPB vehicles perform a single tour delivering first, and picking up on the “return”
path to the depot. There are no multi-tours, no synchronization (no waiting stations),
and no need to determine the assignment of pickup-customer demands to supply points.
We therefore discarded all parameters and algorithmic components related to these char-
acteristics, runing the tabu search using the routing neighborhoods only.
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TheVehicle Routing problem with Backhauls and Time windows (VRPBTW)
considers time windows at customers and limits on the duration of routes. Experiments
were carried out on the 15 VRPBTW 100-customer instances proposed by Gélinas et al.
(1995), broadly used in the literature. The results of the proposed tabu search meta-
heuristic are compared to GDDS95, the branch-and-bound method based on column
generation proposed by Gélinas et al. (1995), which found optimal solutions to 6 test prob-
lems; PDG96, the heuristic proposed by Potvin et al. (1996), which first uses a genetic
algorithm to identify an ordering of customers that produces good routes, and then greed-
ily builds routes by inserting customers into routes based on this ordering; TPS96, the
construction followed by improvement heuristic (λ-interchange and 2-opt*) of Thangiah
et al. (1996); RDH02, the ant system approach (with only global pheromone updating)
of Reimann et al. (2002); ZC05, the two-phase heuristic of Zhong and Cole (2005), which
first clusters customers, and then improves routes (2-opt, 1-move, 1-exchange) within
a guided local search framework; RU06, the ant colony optimization of Reimann and
Ulrich (2006); RP06, the large neighborhood search of Ropke and Pisinger (2006); and
VCGP14, the unified hybrid genetic algorithm proposed by Vidal et al. (2014) for a very
broad set of vehicle routing problem settings.

Table 7 displays the results of the comparison for each of the 15 instances and each
competing algorithm, in terms of the number of vehicles and the total travel distance of
the best reported solutions. The 15 instances are divided into five groups, R101, R102,
R103, R104, and R105, with three different percentages of backhaul customers (%BH)
in each group. In the bottom group of rows, CNV and CTD, indicate the cumulative
number of vehicles and the cumulative total distance over the 15 instances, respectively.
The last three rows provide average measures over all instances: the original computation
time, the scaled computational time, using the Dongarra (2014) factors and our machine
(Xeon 2.8 GHz) as the baseline, and the type of processor used by each algorithm. Times
are in CPU minutes.

Most algorithms in the literature (except Gélinas et al., 1995) aim to first reduce the
number of vehicles, while there are no vehicle fixed costs in the VRPBTW instances.
On the other hand, the MT-PDTWS formulation minimizes the generalized cost of the
system, vehicle fixed usage costs plus routing cost, and the tabu search we propose
does not aim to enforce one dimension over the other. Applying the tabu search to the
VRPBTW instances therefore corresponds to minimizing the routing cost only, without
taking into account the number of vehicles. The proposed meta-heuristic proves to be
very competitive with respect to the total distance, outperforming five meta-heuristics
and being very close to the best ones (with an average gap of 1.00%, a maximal gap of
2.81% and a minimal gap of -0.34%). We run a second series of tests to better understand
the role of the vehicle fixed cost on reducing the number of vehicles. We set the vehicle
fixed cost to a multiple of the average arc cost F̄ , and repeatedly solved the VRPBTW
instances increasing this multiplying factor. Table 8 displays the results for each value
of the vehicle fixed cost: the number of vehicles (CNV) and cumulative total distance
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(CTD) over the 15 instances, as well as the increase (in %) in the total distance with
respect to the case without fixed costs. The results show that increasing the fixed cost
on the use of vehicles, decreases the number of vehicles used and increases the total
distance traveled. This corresponds to what is generally observed in VRP solutions, as is
the observation that increasing the fixed cost yields decreasing returns passed a certain
threshold (equal to 10 ∗ F̄ for these problem instances). The proposed tabu search yields
now solutions that are very close (less than 0.58% of average gap) to those of the best
methods in the literature for the VRPBTW (Ropke and Pisinger, 2006; Vidal et al.,
2014), which is remarkable for a solution method not designed for the particular problem
setting.

Table 7: Performance comparison for the VRPBTW

Instance %BH GDDS95 TPS96 PDG96 RDH02 ZC05 RU06 RP06 VCGP14 TS

Best Best Best Best Best Best Best Best

5 versions 2 versions 5 runs 10 runs 10 runs 10 runs

R101 10 - 24 23 22 24 22 22 22 22

1767.9 1842.3 1815.0 1831.68 1848.04 1853.45 1818.86 1818.86 1823.64

30 - 24 23 23 24 23 23 23 24

1877.6 1928.6 1896.6 1999.16 2034.61 1985.23 1959.56 1959.52 1903.21

50 - 25 24 24 25 24 24 24 24

1895.1 1937.6 1905.9 1945.29 2057.05 1964.04 1939.1 1939.1 1917.87

R102 10 - 20 20 19 - 19 19 19 19

1600.5 1654.1 1622.9 1677.62 - 1663.16 1653.19 1653.18 1665.93

30 - 21 20 22 - 22 22 22 22

1639.2 1764.3 1688.1 1754.43 - 1759.02 1750.7 1750.7 1758.31

50 - 21 21 22 - 22 22 22 22

1721.3 1745.7 1735.7 1782.21 - 1782.91 1775.76 1775.76 1781.46

R103 10 - 15 16 16 - 15 15 15 15

- 1371.6 1343.7 1348.41 - 1454.25 1387.57 1385.38 1397.02

30 - 16 15 16 - 15 15 15 15

- 1477.6 1381.6 1395.88 - 1407.29 1390.33 1390.32 1382.08

50 - 17 17 17 - 17 17 17 17

- 1543.2 1456.6 1467.66 - 1478.48 1456.58 1456.48 1471.43

R104 10 - 13 12 11 - 11 11 10 11

- 1220.3 1117.7 1205.78 - 1153.06 1084.17 1204.57 1102.21

30 - 12 12 12 - 11 11 11 11

- 1302.5 1169.1 1128.3 - 1228.62 1154.84 1154.84 1181.17

50 - 13 13 12 - 11 11 11 12

- 1346.6 1203.7 1208.46 - 1306.97 1191.38 1190.2 1204.59

R105 10 - 17 17 16 17 16 15 15 16

- 1553.4 1621 1544.81 1590.54 1570.11 1561.28 1560.15 1571.42

30 - 18 16 16 17 16 16 16 16

- 1706.7 1652.8 1592.23 1667.92 1646.11 1583.3 1583.3 1586.66

50 - 18 18 17 19 17 16 16 17

- 1657.4 1706.7 1633.01 1699.88 1689.74 1710.19 1709.66 1648.32

CNV - 274 267 265 - 261 259 258 263

CTD - 24051.9 23317.1 23514.93 - 23942.44 23416.81 23532.02 23395.32

Avg origin time(min) - 0.35 3.37 2.50 - 1.25 1.90 4.10 1.74

Avg scaled time(min) - 0.003 0.08 0.63 - 0.51 0.80 2.87 1.74

Processor - NeXT 33MHz Sun Sparc 10 P3 900MHz P2 450MHz P4 1.5GHz P4 1.5GHz Opt 2.2GHz Xeon 2.8GHz

The next round of experiments focused on the Vehicle Routing problem with

Backhauls (VRPB), which is obtained by removing from the VRPBTW the constraints
on time windows at customers and the route duration. The performance of our tabu
search is evaluated through comparisons with results of other tabu search algorithms on
two sets of instances in the VRPB literature. The first set of 62 instances was proposed in
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Table 8: Performance with different values of vehicle fixed cost on the VRPBTW in-
stances

Fixed cost of vehicle CNV CTD GAP (%)

0 263 23395.32 0

F̄ 261 23965.28 2.44

1.1 *F̄ 261 23978.43 2.49

1.2 *F̄ 261 23974.53 2.48

1.3 *F̄ 261 23983.16 2.51

2 *F̄ 261 23996.17 2.57

10 *F̄ 260 24233.06 3.58

100 *F̄ 260 24256.24 3.67

1000 *F̄ 260 24275.62 3.76

Goetschalckx and Jacobs-Blecha (1989). The instances range in size between 25 and 150
customers with backhauls ranging between 20 and 50%. The second set of 33 instances
was proposed by Toth and Vigo (1997), with the number of customers ranging between
21 and 100, and backhauls percentages of 20, 34 or 50%. Two ways of computing the
Euclidean distances between pairs of customers are used in the VRPB literature, namely
real-valued and integer-valued, respectively. The former was used for the three tabu
search algorithms with which we compare our method, and is therefore, used for our
tabu search method as well.

Table 9 sums up the comparisons with respect to the average of the best solutions for
the two sets of instances. The first two columns give the references and the processors
used for each study. Then, in groups of four columns for each instance set, the table
displays the average of the best solutions obtained by each method (Columns Cost), the
gaps to the average of the best known solutions (Column GAP to BKS (%)), as well
as the original and the scaled (to equal Xeon 2.8GHZ Dongarra, 2014) CPU times in
minutes. One observes that the proposed tabu search performs well, outperforming all
three other tabu search algorithms on Goetschalckx and Jacobs-Blecha (1989) instances
(with an average gap of 0.05% and a maximal gap of 0.1%), and two out of three methods
on Toth and Vigo (1997) instances, and being not far from Brandão (2006) (with a gap of
-0.47%). This is, again, remarkable for a solution method not designed for the particular
problem setting.

Table 9: Performance comparison for the VRPB

Authors Processor Goetschalckx and Jacobs-Blecha (1989) Toth and Vigo (1997)

Cost GAP to Avg time Avg time Cost GAP Avg time Avg time

BKS (%) original (m) scaled (m) BKS (%) original (m) scaled (m)

Osman and Wassan (2002) Sun Sparc 1000 291261.7 0.25 67.1 1.6 708.42 1.09 26.5 0.7

Brandão (2006) P3 500MHz 291160.5 0.21 13.6 2.3 702.15 0.19 5.0 0.9

Wassan (2007) Sun Sparc 1000 290981.8 0.15 30.6 0.7 706.48 0.81 10.1 0.2

TS Xeon 2.8GHz 290964.7 0.14 1.6 1.6 705.49 0.67 0.8 0.8
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5.5 Combining linehauls and backhauls

Combining linehaul and backhaul-customer demands on each vehicle is expected to reduce
the total number of vehicles and the total travel cost with respect to the case where
linehauls and backhauls are serviced by separate vehicles. Table 10 compares the best
solutions for these alternatives for all instances over 10 runs. The LH-BH columns report
results for the combined service case: average number of vehicles (Column #Vehicles),
travel cost (Travel cost), and total cost (Total cost). The LH+BH columns refer to the
summing the solutions to the problems with only linehaul- and only backhaul-customer
demands, respectively. Each entry under this heading gives the gap with respect to the
corresponding LH-BH measure (average number of vehicles, and average travel and total
cost). As expected, the results indicate that assigning linehauls and backhauls to separate
fleets leads to significant increases in all performance measures. This increase becomes
increasingly significant when more backhauls need service.

Table 10: Comparison of separate and combined linehaul and backhaul solutions in the
number of vehicles, traveling cost, and total cost

Problem set BH
LH-BH LH+BH

#Vehicles Travel cost Total cost GAP (%)

0.1 21.8 8858.67 19758.67 12.84 9.08 11.16

A1 0.3 22 9854.25 20854.25 45.45 26.25 36.38

0.5 22.2 12145.62 23245.62 89.19 38.06 62.48

0.1 16.4 8556.85 16756.85 13.41 10.14 11.74

A2 0.3 16.4 10095.76 18295.76 35.37 21.91 27.94

0.5 17.2 12381.06 20981.06 69.77 34.57 49.00

0.1 46.8 43363.80 66763.80 8.55 11.52 10.48

B1 0.3 47.8 51498.22 75398.22 35.98 29.50 31.55

0.5 54.8 71625.96 99025.96 48.18 33.71 37.71

0.1 36.4 41517.48 59717.48 10.99 10.65 10.76

B2 0.3 40 51945.56 71945.56 38.00 28.73 31.31

0.5 46 70838.52 93838.52 57.39 29.76 36.53

0.1 90.4 107906.40 153106.40 0.22 14.68 10.41

C1 0.3 99.4 150148.80 199848.80 24.55 28.87 27.79

0.5 119.8 231936.60 291836.60 39.07 26.11 28.77

0.1 76.2 102703.04 140803.04 0.79 22.56 16.67

C2 0.3 94.4 148006.00 195206.00 10.59 31.48 26.43

0.5 106.8 224658.20 278058.20 35.39 29.00 30.23

Average 54.16 75446.71 102524.49 31.98 24.25 27.63

5.6 Synchronization at supply points

We model supply points as combinations of a satellite and a time period availability.
The vehicles must thus arrive at supply points during these predefined periods to un-
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load or load freight. We analyze in this section the impact on solution quality of this
synchronization requirement on operations.

The time period availability at each supply point s was characterized in all previous
experiments by a single time window [es, ls] used for both unloading and loading opera-
tions. In order to analyze the impact of the availability requirements without modifying
the time windows at customer demands, we introduce two time windows at each supply
point, one for unloading and one for loading, but keep the availability time periods of
the supply points unchanged. More precisely, we define [eus , l

u
s ] and [els, l

l
s], specifying the

earliest and latest times at which a vehicle has to be available at s for unloading collected
demands and loading delivery demands, respectively, where lus + ϕ′(s) ≤ lls, e

u
s = es and

lls = ls. Activities of a vehicle at s may then be described as follows:

• Unload only. The vehicle arrives with pickup demands at time t within its unloading
time window [eus , l

u
s ], i.e., the vehicle must not arrive at s sooner than eus nor later

than lus ; it takes ϕ
′(s) for unloading and leaves s empty at time t+ ϕ′(s);

• Load only. The vehicle arrives empty at time t within its loading time window
[els, l

l
s], i.e., the vehicle must not arrive at s sooner than els nor later than lls; it takes

ϕ(s) for loading the delivery demands, with a total load not exceeding the vehicle’s
capacity Q, and leaves s at time t + ϕ(s) to perform the delivery to a subset of
delivery customers in CDs ;

• Unload and load. The vehicle arrives with pickup demands at time t within its
unloading time window [eus , l

u
s ] and takes ϕ′(s) to unload; when t+ ϕ′(s) < els, the

vehicle has to wait at the supply point until els to start loading freight; otherwise
it starts loading at t + ϕ′(s); it takes ϕ(s) to loading, then the vehicle leaves s to
deliver the loaded freight to a subset of customers in CDs .

Operations at a supply point s are then guided by the length of each time window,
noted lenu and lenl for unloading and loading, respectively, and the separation time Dif
between the end of the unloading time window els and the beginning of the loading time
window lus (see Figure 9; Dif = 0 when the two time windows split equally the total
activity time). Recalling that the activity time is 100 in the case of the single time
window, we set lenu = lenl, and run three experiments with values (20, 60), (30, 40) and
(40, 20) for (lenu = lenl, Dif).

The experiment was run on all instances and Table 11 sums up the impact on solution
quality of splitting the operation times at supply points, for each of the three cases
compared to the base case of a single time window and no separation of operations. The
table displays the increase, in %, in the number of vehicles, travel cost, and total cost.
It also gives the percentage of times the vehicles perform unload & load operations at
supply points (PD(%) row) and the percentage of times vehicles move directly to a supply
point without using waiting stations (DM(%) row).
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Figure 9: Illustration of two time windows at a supply point s

Table 11: Impact of synchronization at supply points on solution quality

One time window Two time windows

(20,60) (30,40) (40,20)

#Vehicles (%) 0 1.03 0.79 0.52

Travel cost (%) 0 2.17 0.82 0.74

Total cost (%) 0 1.94 0.88 0.75

PD (%) 49.88 45.40 46.98 48.31

DM (%) 26.94 22.45 23.95 24.01

Results clearly indicate that solutions with two time windows are worse than those
with a single time window with respect to all performance measures. Allowing to mix
operations at supply points results, in particular, in vehicles moving directly to supply
points more frequently and undertaking more unload & load operations (26.94% and
49.88% respectively, for the single time window case). Such operations may result in
more complex operations management at supply points, but increases efficiency and
decreases the presence of vehicles within the system. This could be very beneficial in
many cases, City Logistics in particular.

6 Conclusions

We introduced the Multi-trip Pickup and Delivery Problem with Time Windows and
Synchronization, MT-PDTWS, a new class of vehicle routing problems variant in which
each vehicle performs multiple sequences of delivery and pickup operations through sup-
ply points within hard time synchronization restrictions. The MT-PDTWS generalizes
several classes of pickup and delivery with backhauls problem settings, as well as a num-
ber of problems defined within City Logistics applications. We proposed a first model
formulation and a tabu search meta-heuristic integrating multiple neighborhoods for the
MT-PDTWS.

The computational study was performed on a new set of instances with up to 72
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supply points and 7200 customer demands. By restricting the model, the tabu search
meta-heuristic was also compared to exact and meta-heuristic methods for the pickup and
delivery with backhauls problems with and without time windows. Test instances present
in the literature for the latter problems were used for this evaluation. Our experiments
showed that the proposed meta-heuristic performs very well, being competitive with the
other methods within their particular settings, and efficiently addressing all the new
instances.

The tabu search meta-heuristic provided the tools to evaluate a number of problem
characteristics, in particular the value of servicing pickup and delivery customers with
the same vehicle and routes, as well as strategies in setting up the service time windows
at supply points. The experiments revealed that integration of customer types within a
single service is beneficial, as is the integration of the two types of operations within the
activity period of supply points.
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A Model Formulation

The MT-PDTWS is defined on a space-time network G = (V ,A), where V is the set of
nodes, and the arcs in A stand for the possible movements between these nodes. Set V
is made up of the main depot g and the sets of customer demands, supply points and
waiting stations, i.e., V = {g ∪CP ∪CD ∪S ∪W}. The set of arcs A can be described by
the following types of arcs (i, j):

• From the garage g to

– supply point s ∈ S,

– pickup-customer demand p ∈ CP .

• From each supply point s ∈ S to

– its delivery-customer demand d ∈ CDs ,

– pickup-customer demand p ∈ CP such that t(s)− η+ϕ′(s) + csp ≤ lp (i.e., the
vehicle could arrive at p from s before the due time lp when it only unloads
at s),

– waiting station w ∈ W ,

– another supply point s′ ∈ S such that t(s′)− η ≤ t(s)− η+ϕ′(s) + css′ ≤ t(s)
(i.e., the vehicle could travel directly from s to s′ when it only unloads at s),

– the depot g.

• From each waiting station w ∈ W to supply point s ∈ S.

• From each pickup-customer demand p ∈ CP to

– supply point s ∈ Sp,

– another pickup-customer-demand p′ ∈ CP such that (1) Sp ∩ Sp′ 6= ∅ (i.e., p
′

has at least one admissible supply point in common with p), and (2) ep +
δ(p) + cpp′ ≤ lp′ ,

– waiting station w ∈ W .

• From each delivery-customer demand d ∈ CDs , s ∈ S to

– another delivery-customer-demand d′ ∈ CDs such that ed + δ(d) + cdd′ ≤ ld′ ,

– pickup-customer demand p ∈ CP such that ed + δ(d) + cdp ≤ lp,

– waiting station w ∈ W ,

– another supply point s′ ∈ S such that ed + δ(d) + cds′ ≤ t(s′),

– the garage g.
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Let F stand for fixed cost for operating a vehicle, and K for the set of available
vehicles. The maximal number of arcs included in any work assignment is given by e,
and we define U as {1,...,e}. Let Qmin

d and Qmin
p be the minimal demand of delivery- and

pickup-customer demands, respectively. M is a large positive constant. We define the
following decision variables:

• xu
ijk, a binary variable that takes value 1 if arc (i, j) ∈ A is traversed by vehicle k

and appears in the uth position of the work assignment of vehicle k, and value 0
otherwise;

• yps, a binary variable that takes value 1 if pickup-customer demand p ∈ CP is
assigned to supply point s ∈ S, and value 0 otherwise;

• zsk, a binary variable that takes value 1 if vehicle k unloads at supply point s, and
value 0 otherwise.

Note that we preliminary set yps = 0, ∀p ∈ CP , s /∈ Sp given that such s does not service
p. Demands at each supply point s ∈ S, waiting station w ∈ W and the garage g are
equal to zero, i.e., qs = qw = qg = 0. For convenience, we set demand at each delivery
node d ∈ CD: qd = −qd < 0. In addition,

• Bik is the starting time of service at customer demand i ∈ {CP ∪ CD} by vehicle k;

• Bsk is the arrival time of vehicle k at supply point s ∈ S;

• Tiwk is the arrival time of vehicle k at waiting station w ∈ W from either a supply
point or a customer demand i ∈ {S ∪ CP ∪ CD};

• Qik is the load of vehicle k when leaving i ∈ V ;

• Lsk is the load of vehicle k when arriving at supply point s ∈ S.

We set Qgk = 0, ∀k ∈ K as the vehicle leaves the depot empty. The MT-PDTWS can
then be formulated as:

Minimize
∑

k∈K

∑

(i,j)∈A

cij
∑

u∈U

xu
ijk + F

∑

k∈K





∑

s∈S

x1
gsk +

∑

p∈CP

x1
gpk



 (4)

Subject to
∑

k∈K

∑

u∈U

∑

j∈V

xu
ijk = 1 ∀i ∈ {CP ∪ CD} (5)
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∑

u∈U

∑

j∈V

xu
sjk ≤ 1 ∀s ∈ S, k ∈ K (6)

∑

u∈U

∑

j∈V

xu
jik =

∑

u∈U

∑

j∈V

xu
ijk ∀i ∈ {V \ g}, k ∈ K (7)

∑

i∈{V\g}

x1
gik =

∑

u∈U

∑

{i∈V\g}

xu
igk ∀k ∈ K (8)

∑

s∈Sp

yps = 1 ∀p ∈ CP (9)

∑

k∈K

∑

u∈U

xu
psk ≤ yps ∀p ∈ C

P , s ∈ S (10)

xu
pwk + yps ≤ xu+1

wsk + 1 ∀p ∈ CP , s ∈ Sp, w ∈ W , u ∈ U , k ∈ K (11)
∑

k∈K

∑

u∈U

xu
pp′k + yps ≤ yp′s + 1 ∀p, p′ ∈ CP , p 6= p′, s ∈ Sp (12)

Qjk ≥ (Qik + qj)−Q(1−
∑

u∈U

xu
ijk) ∀(i, j) ∈ A, j /∈ S, k ∈ K (13)

Lsk ≥ Qik −Q(1−
∑

u∈U

xu
isk) ∀(i, s) ∈ A, s ∈ S, k ∈ K (14)

max{0, qi} ≤ Qik ≤ min{Q,Q+ qi} ∀i ∈ V , k ∈ K (15)

Qsk ≤ Q
∑

d∈CD
s

∑

u∈U

xu
sdk ∀s ∈ S, k ∈ K (16)

Qsk ≥ Qmin
d

∑

d∈CD
s

∑

u∈U

xu
sdk ∀s ∈ S, k ∈ K (17)

Lsk ≥ Qmin
p

∑

i∈{V\CD}

∑

u∈U

xu
sik ∀s ∈ S, k ∈ K (18)

Qsk ≤ Q(1−
∑

i∈{V\CD}

∑

u∈U

xu
sik) ∀s ∈ S, k ∈ K (19)

∑

k∈K

Lsk =
∑

p∈CP

qpyps ∀s ∈ S (20)

Bjk ≥ Bik + δ(i) + cij −M(1−
∑

u∈U

xu
ijk)

∀(i, j) ∈ A, i ∈ {CP ∪ CD}, j ∈ {CP ∪ CD ∪ S}, i 6= j, k ∈ K
(21)

Bik ≥ Bsk + ϕ′(s) + csi −M(1−
∑

u∈U

xu
sik) ∀s ∈ S, i ∈ {C

P ∪ S \ s}, k ∈ K (22)

Bdk ≥ Bsk + ϕ(s) + zskϕ
′(s) + csd −M(1−

∑

u∈U

xu
sdk) ∀s ∈ S, d ∈ C

D
s , k ∈ K (23)
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Tiwk ≥ Bik + δ(i) + ciw −M(1−
∑

u∈U

xu
iwk) ∀w ∈ W , i ∈ {CP ∪ CD}, k ∈ K (24)

Tswk ≥ Bsk + ϕ′(s) + csw −M(1−
∑

u∈U

xu
swk) ∀w ∈ W , s ∈ S, k ∈ K (25)

If
∑

u∈U\e

(

xu
iwk xu+1

wsk

)

= 1 then Bsk ≥ Tiwk + cws

∀w ∈ W , s ∈ S, i ∈ {CP ∪ CD ∪ S \ s}, k ∈ K
(26)

zsk = 1 if and only if
∑

p∈CP





∑

u∈U

xu
psk +

∑

u∈U\e

∑

w∈W

xu
pwk xu+1

wsk



 = 1

∀s ∈ S, k ∈ K

(27)

(t(s)− η)
∑

u∈U

∑

i∈V

xu
isk ≤ Bsk ≤ t(s)

∑

u∈U

∑

i∈V

xu
sik ∀s ∈ S, k ∈ K (28)

ei
∑

u∈U

∑

j∈V

xu
ijk ≤ Bik ≤ li

∑

u∈U

∑

j∈V

xu
jik ∀i ∈ {C

P ∪ CD}, k ∈ K (29)

0 ≤ Lsk ≤ Q ∀s ∈ S, k ∈ K (30)

xu
ijk ∈ {0, 1} ∀(i, j) ∈ A, u ∈ U , k ∈ K (31)

yps ∈ {0, 1} ∀p ∈ C
P , s ∈ S (32)

zsk ∈ {0, 1} ∀s ∈ S, k ∈ K (33)

The objective function (4) minimizes the total transportation cost, including the fixed
costs incurred for using vehicles. Constraints (5) ensure that each customer demand is
visited exactly once. The conservation of flow at nodes except the garage is completed
by constraints (6) and (7). Constraints (8) ensure that each vehicle starts and ends at
the garage. Constraints (9) impose that each pickup-customer demand must be assigned
to exactly one admissible supply point. Constraints (10) - (12) forbid the illegal pickup
legs that either bring loads of pickup-customer demands to the supply point to which
they are not assigned or consist of pickup-customer demands not to be assigned to the
same supply point.

Consistency of load variables is ensured through constraints (13) and (14), while
constraints (15) enforce the restrictions on the vehicle capacity. Constraints (16) and
(17) ensure that the vehicle k brings load from a supply point s to a delivery-customer
demand d of the customer zone CDs if and only if it loads freight at supply point s, i.e.,
Qsk > 0. Constraints (18) and (19) ensure that the vehicle k goes directly from the supply
point s to either a pickup-customer demand, another supply point, a waiting station, or
the garage g if it only unloads at s and then leaves s empty. Constraints (20) guarantee
that the total pickup loads entering each supply point equals to the total demands of
pickup-customer demands assigned to it.
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Consistency of the time variables is ensured through constraints (21) - (26). Note that
when a waiting station w is reached in the uth position of the work assignment of vehicle
k, the outgoing arc (w, s) should be in the (u+1)th position of the same work assignment.
Constraints (26) can be linearized by introducing new variables vuiwsk ∈ {0, 1} such that
vuiwsk = xu

iwkx
u+1
wsk ∀w ∈ W , s ∈ S, i ∈ {CP ∪ CD ∪ S \ s}, k ∈ K. Constraints (26) can be

made explicit by means of the following linear constraints:

xu
iwk ≥ vuiwsk ∀u ∈ U , w ∈ W , s ∈ S, i ∈ {CP ∪ CD ∪ S \ s}, k ∈ K (34)

xu+1
wsk ≥ vuiwsk ∀u ∈ U , w ∈ W , s ∈ S, i ∈ {CP ∪ CD ∪ S \ s}, k ∈ K (35)

xu
iwk + xu+1

wsk ≤ 1 + vuiwsk ∀u ∈ U , w ∈ W , s ∈ S, i ∈ {CP ∪ CD ∪ S \ s}, k ∈ K (36)

Bsk ≥ Tiwk + cws −M(1−
∑

u∈U

vuiwsk) ∀w ∈ W , s ∈ S, i ∈ {CP ∪ CD ∪ S \ s}, k ∈ K

(37)

Constraints (27) ensure that the vehicle k unloads at a supply point s if and only if
it brings loads of pickup-customer demands to s. Because each pickup-customer demand
p is serviced only once, these constraints can be linearized and rewritten as follows:

zsk =
∑

p∈CP

(

∑

u∈U

xu
psk +

∑

u∈U

vupwsk

)

∀s ∈ S, k ∈ K

(38)

The respect of time windows at supply points and customer demands is enforced
through constraints (28) and (29), respectively. Constraints (30) are bounding constraints
for variables Lsk. Finally, constraints (31) - (33) define the decision variables.

B Detailed Results

Tables A12, A13, A14, A15, A16, and A17 display the detailed results obtained by
the proposed tabu search, the average values (Avg10 column), standard deviations (Std
column), and the best solution values (Best10 column) over 10 runs, the number of
vehicles (#Vehicles column), the number of times vehicles move directly to a supply point
without passing through waiting stations (DM column), the number of times waiting
stations are used for moving between customer zones (MWS column), the number of
times vehicles perform unload & load operations once they arrive at supply points (PD
column), the number of legs (#Legs column).
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Table A12: Detailed results on problem instances set A1

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

A1-1 19125.65 35.52 19052.70 18 3 42 8 70

A1-2 20627.00 41.79 20532.30 24 2 35 9 68

A1-3 17555.37 77.06 17438.78 18 0 42 9 68

A1-4 24232.20 95.98 24027.82 31 0 31 9 69

A1-5 17826.23 44.93 17741.77 18 16 30 9 72

A1-6 19768.53 40.51 19694.70 18 17 33 27 89

A1-7 21709.69 67.39 21572.62 24 9 30 25 85

A1-8 18536.57 87.90 18292.37 18 13 33 26 85

A1-9 25565.77 100.09 25382.80 31 1 32 26 87

A1-10 19457.42 92.58 19328.76 19 19 28 27 90

A1-11 21572.33 79.16 21399.10 18 43 19 57 123

A1-12 24223.69 93.21 23978.20 24 28 31 46 119

A1-13 20797.80 70.05 20652.90 18 31 32 55 118

A1-14 28375.16 112.27 28136.80 31 18 40 55 118

A1-15 22390.35 139.26 22061.10 20 39 29 57 125

Average 21450.92 78.51 21286.18 22.00 15.93 32.47 29.67 92.40

Table A13: Detailed results on problem instances set A2

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

A2-1 18577.68 98.24 18410.01 19 6 40 12 76

A2-2 19725.88 87.47 19590.37 21 12 30 8 70

A2-3 15885.33 87.89 15767.75 16 9 40 10 74

A2-4 14923.72 42.97 14859.18 13 1 49 11 72

A2-5 15307.64 91.77 15156.95 13 7 43 10 72

A2-6 20286.66 97.82 20113.70 19 16 32 30 95

A2-7 21459.12 99.36 21321.10 21 21 25 29 92

A2-8 17541.52 97.37 17339.61 16 17 35 28 91

A2-9 16378.68 80.03 16209.82 13 6 47 28 89

A2-10 16646.85 88.86 16494.59 13 20 33 28 90

A2-11 22422.22 91.86 22195.60 20 24 41 55 127

A2-12 23920.24 56.28 23823.10 21 38 27 55 124

A2-13 21312.70 97.21 21079.20 18 23 39 58 126

A2-14 19055.70 90.23 18901.30 14 22 40 57 121

A2-15 19043.00 84.86 18906.10 13 37 27 55 124

Average 18832.46 86.15 18677.89 16.67 17.27 36.53 31.60 96.20
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Table A14: Detailed results on problem instances set B1

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

B1-1 83561.38 35.75 83498.7 77 30 151 30 282

B1-2 62675.24 70.27 62513.8 40 50 158 33 277

B1-3 59566.89 103.07 59281.3 36 45 171 30 276

B1-4 66674.47 119.30 66454.1 41 39 168 31 273

B1-5 62420.99 139.67 62071.1 40 33 174 29 271

B1-6 94815.97 105.30 94634.4 77 47 171 104 358

B1-7 70117.71 123.55 69773.4 43 72 150 104 349

B1-8 69328.12 113.24 69139.9 37 82 148 106 356

B1-9 72630.66 74.17 72449.4 40 79 150 103 352

B1-10 71042.78 32.74 70994 42 69 147 104 347

B1-11 115479.33 105.64 115313.5 80 70 205 219 495

B1-12 90142.91 85.73 90053.1 46 120 146 211 484

B1-13 93478.07 73.38 93389.9 49 119 152 213 492

B1-14 99444.83 72.84 99349.3 46 87 176 216 485

B1-15 97233.69 97.95 97024 53 114 142 211 480

Average 80574.20 90.17 80395.99 49.80 70.40 160.60 116.27 371.80

Table A15: Detailed results on problem instances set B2

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

B2-1 57606.41 97.85 57406.8 31 48 174 40 291

B2-2 64177.54 68.39 64048 45 47 165 36 285

B2-3 61249.92 90.45 61096.2 36 43 182 38 292

B2-4 58321.89 108.80 58286.9 32 35 194 33 289

B2-5 57787.64 77.15 57749.5 38 38 181 36 288

B2-6 69084.69 68.22 68991.4 38 45 178 104 353

B2-7 77033.95 85.71 76810.3 48 68 169 112 366

B2-8 73010.21 70.96 72821.9 36 59 174 106 360

B2-9 70535.79 58.06 70448.2 36 52 174 103 353

B2-10 70829.02 96.03 70656 42 46 177 109 361

B2-11 91315.56 98.60 91199.3 41 86 180 211 487

B2-12 100857.73 60.85 100728.3 60 95 177 220 493

B2-13 97624.36 102.62 97410.2 41 85 192 209 493

B2-14 89699.15 131.32 89332.2 42 91 191 219 504

B2-15 90624.95 47.31 90522.6 46 92 187 220 500

Average 75317.25 84.16 75167.19 40.80 62.00 179.67 119.73 381.00
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Table A16: Detailed results on problem instances set C1

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

C1-1 154322.30 72.45 154127 93 89 374 65 616

C1-2 150028.70 142.39 149835 92 82 374 65 607

C1-3 152287.90 135.71 152100 83 95 386 65 619

C1-4 154935.90 57.31 154805 97 68 393 63 616

C1-5 155101.20 161.33 154665 87 78 395 65 619

C1-6 203099.00 120.09 202994 101 116 372 225 786

C1-7 196721.20 165.82 196335 101 100 397 228 786

C1-8 200641.20 33.40 200559 91 120 395 231 787

C1-9 198211.80 110.56 197954 107 106 375 232 792

C1-10 201688.80 162.98 201402 97 99 404 227 799

C1-11 293262.00 153.85 293078 123 156 426 501 1106

C1-12 285020.80 81.31 284801 121 203 391 484 1086

C1-13 293493.00 155.59 293226 112 221 370 491 1100

C1-14 286054.90 91.54 285829 119 162 423 497 1098

C1-15 302333.50 48.99 302249 124 172 433 469 1112

Average 215146.81 112.89 214930.60 103.20 124.47 393.87 260.53 835.27

Table A17: Detailed results on problem instances set C2

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

C2-1 142736.00 109.07 142511 77 114 391 78 655

C2-2 141224.60 55.47 141095 77 97 414 80 663

C2-3 147322.30 61.62 147219 82 86 426 80 657

C2-4 134630.60 42.95 134567.2 73 83 416 79 642

C2-5 139177.10 196.80 138623 72 83 426 80 655

C2-6 188064.70 202.55 187501 89 144 392 232 817

C2-7 224601.60 118.17 224486 103 222 408 236 900

C2-8 191738.70 210.74 191220 98 113 433 232 817

C2-9 183440.30 166.22 183034 92 100 428 233 812

C2-10 190020.60 87.56 189789 90 106 440 235 833

C2-11 290027.30 75.65 289826 117 198 451 484 1142

C2-12 265985.50 210.68 265391 88 148 479 494 1132

C2-13 276053.30 107.45 275884 122 177 455 477 1126

C2-14 274952.90 137.77 274742 110 148 482 485 1132

C2-15 284755.10 160.20 284448 97 167 463 524 1157

Average 204982.04 129.53 204689.08 92.47 132.40 433.60 268.60 876.00
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