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Abstract. In this paper, we propose a methodological framework based on column 

generation to solve large problem instances of the berth allocation problem (BAP) at port 

terminals. In past research, it has been conclusively shown that the BAP can be effectively 

modeled and solved as a set partitioning (SP) problem for relatively large problem size. 

However a major drawback of this approach is the explosion in the number of feasible 

assignments of vessels with increase in problem size. This is because the assignments 

(columns) are generated apriori in a static manner and provided as an input to the 

optimization model, which causes the optimization solver to run out of memory. In this 

study, we show how this issue can be resolved by generating the assignments in a 

dynamic fashion. We propose a column generation based algorithm to address the 

problem that can be easily adapted to solve any variant of the BAP based on different 

spatial and temporal attributes. We test our approach on a discrete berth allocation model 

with dynamic vessel arrivals and berth dependent handling times. Computational 

experiments on a set of artificial instances indicate that the proposed methodology can 

solve even very large problem sizes to optimality or near optimality in computational time 

of only a few minutes. 
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1 Introduction

A port terminal provides transfer facilities for containers among sea vessels and land trans-
portation modes. It is a zone of the port where vessels dock on a berth and containers are
loaded, unloaded and stored in a buffer area called yard. The berth allocation problem (BAP)
is one of the most critical and widely studied problems in seaside port operations planning.
It refers to the problem of assigning a set of vessels to a given berth layout in a given plan-
ning horizon with a certain objective. The objectives include minimization of the service
times to vessels, minimization of port stay time, minimization of number of rejected vessels,
minimization of deviation between actual and planned berthing schedules etc. The existing
models for BAP in operations research literature can be classified on the basis of the tempo-
ral attributes such as vessel arrival process and handling times of vessels as well as spatial
attributes relating to the berthing layout and draft restrictions. We refer the reader to Bier-
wirth and Meisel (2010) to study the different classification schemes for the berth allocation
problem.

In the operations research literature on port operations planning, there are several studies
on the BAP. While most of these studies have focused on heuristics to obtain good sub-
optimal solutions to the BAP, a few recent studies propose exact methods to solve realistic
sized instances of the BAP in reasonable computation time. In this paper, we focus on the
set partitioning (SP) approach to solve the BAP, with the objective to address the limitations
of this approach in solving large problem instances. In such cases, the method can be very
slow or can cause the optimization solver to run out of memory owing to an explosion
in the number of variables and constraints in the SP formulation. The main contribution
of this study is to propose a novel dynamic column generation scheme that is capable of
solving very large problem size to optimality or near optimality in small computation time.
Moreover the approach can be easily adapted to solve any variant of the BAP with respect
to the berthing layout or any other attribute(s).

The remainder of the paper is organized as follows. In section 2 we provide a literature
review of the past studies on the BAP with a focus on exact algorithms to solve the BAP. In
section 3, we provide a mathematical definition of the problem. In section 4, we describe
the SP method and propose the dynamic column generation based algorithm to address the
limitations of the SP approach. Results and analysis from computational experiments on a
set of artificial instances are presented in section 5. Finally in section 6, the key findings of
the study are summarized and some possible directions for future research are discussed.
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2 Literature review

The berth allocation problem (BAP) has been extensively covered in the past literature. Some
of the important works include Imai et al. (1997), Imai et al. (2001), Imai et al. (2003), Imai
et al. (2005), Kim and Moon (2003), Cordeau et al. (2005), Buhrkal et al. (2011) and Umang
et al. (2013). Comprehensive literature surveys covering optimization based approaches to
the BAP can be found in Bierwirth and Meisel (2010), Steenken et al. (2004), Stahlbock and
Voss (2008) and more recently Bierwirth and Meisel (2015).

In this section, we focus on literature on exact algorithms to solve the BAP. Buhrkal et al.
(2011) show that the SP method outperforms the previously known best models including
the multi-depot vehicle routing problem with time windows (MDVRPTW) based formula-
tion by Cordeau et al. (2005) and the re-formulation of Monaco and Sammarra (2007) of an
earlier model by Imai et al. (2001), to solve the dynamic discrete berth allocation problem.
In Buhrkal et al. (2011), the SP model is able to solve all instances to optimality containing
up to 60 vessels in computational time of less than 30 seconds.

Umang et al. (2013) demonstrate the superiority of the SP approach for a slightly more
complex variant of the dynamic BAP with a hybrid berthing layout in the context of bulk
terminals. In this study, the SP approach can solve instances up to 40 vessels within a com-
putational time limit of 2 hours. However for some large instances with 40 vessels, the
CPLEX solver runs out of memory, and to fix this issue, the planning horizon is partitioned
into larger time buckets of 2 hours to make the method affordable.

In a few other studies, authors propose exact algorithms to solve the BAP in integration
with other optimization problems. For example, Vacca et al. (2013) study the integrated
berth allocation and quay crane assignment problem, and propose a branch-and-price algo-
rithm based on Dantzig-Wolfe decomposition of the original MIP formulation. The maxi-
mum problem size in this study contains 20 vessels and 5 berths over a planning horizon of
one week. Turkogullari et al. (2013) propose a cutting plane algorithm to derive an optimal
solution for the berth allocation quay crane assignment and scheduling problem (BACASP)
from the optimal solution of the berth allocation and quay crane assignment problem (BA-
CAP). The authors are able to solve large instances of BACASP containing up to 60 vessels in
few hours when multiple cuts are applied. Closely related to our work, Robenek et al. (2014)
propose a branch-and-price approach to solve the dynamic hybrid BAP in integration with
the yard assignment problem in bulk terminals. The authors apply column generation to
the integrated model re-formulated as a set-partitioning problem, and show that instances
containing up to 40 vessels can be solved in computational time of few hours.

In this research, our objective is to present a general methodological framework based on
column generation to solve large problem instances of the BAP. We focus on addressing the
limitations of the SP method when it is not affordable to generate all the columns apriori and
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feed them as input to the optimization model. We propose a dynamic column generation
scheme in which the SP model is the master problem and test our approach on a discrete dy-
namic BAP model. Results of computational experiments on artificial instances containing
up to 120 vessels and 10 berths show that the proposed methodology can easily solve very
large problem instances to optimality in small computational time of few minutes.

3 Problem statement

The column generation based approach proposed in this paper can be easily adapted to
solve any variant of the BAP based on spatial attributes such as the berthing layout and
draft restrictions, and temporal attributes such as vessel arrival times and handling times.
In this study, to test and validate our approach, we consider a berth allocation model with
dynamic vessel arrivals where a vessel can be berthed only after its arrival at the port. The
berthing layout is discrete implying that a given vessel can occupy exactly one discrete berth
section at a given time. The handling time of a vessel is assumed to depend on the berthing
location of the vessel along the quay. The planning horizon is considered to be fixed and
partitioned into discrete time buckets. A single variable co-ordinate system is defined along
the quay, with the origin at the left extreme of the quay, as shown in Figure 1.

Figure 1: Discrete berthing layout, showing a feasible assignment of vessels to
berth sections at a single point in time

For a given set of vessels N and set of berths M, the problem can be formulated as a
mixed integer linear program (MILP) as described in this section. The decision variables in
the problem include

mi ≥ 0, starting time of processing of vessel i ∈ N;
xik binary, equals 1 if vessel i ∈ N is berthed at section k ∈ M, 0 other-

wise;
yij binary, equals 1 if vessel i ∈ N is berthed to the left of vessel j ∈ N

without any overlapping in space, 0 otherwise;
zij binary, equals 1 if handling of vessel i ∈ N finishes before the start of

handling of vessel j ∈ N, 0 otherwise

The objective is to minimize the sum of the service times of all vessels berthing at the
port, mathematically expressed as
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min
∑
i∈N

(mi − ai +
∑
k∈M

(hikxik)) (1)

(2)

where ai is the arrival time of vessel i ∈ N and hik is the handling time of vessel i ∈ N
berthed at section k ∈M.

The dynamic arrival constraints can be simply stated as

mi − ai ≥ 0 ∀i ∈ N (3)

In any feasible solution, each vessel should occupy exactly one berth, expressed as fol-
lows ∑

k∈M

xik = 1 ∀i ∈ N (4)

Let li and di be the length and draft of vessel i ∈ N respectively, and Lk and Dk be the
length and draft of berth k ∈M respectively. Constraints (5)-(6) ensure that length and draft
of any vessel do not exceed the length and draft of it’s occupied berth.∑

k∈M

(Lk − li) xik ≥ 0 ∀i ∈ N (5)∑
k∈M

(Dk − di) xik ≥ 0 ∀i ∈ N (6)

Finally to ensure that two vessels do not occupy the same berth at any given time, we
have constraints (7) that define variables yij, constraints (8) that define variables zij, and the
non-overlapping constraints (9) that link variables yij to zij.∑

kεM

(kxjk) + B(1− yij) ≥
∑
kεM

(kxik) + 1 ∀i, j ∈ N, i 6= j (7)

mj + B(1− zij) ≥ mi +
∑
k∈M

(hikxik) ∀i, j ∈ N, i 6= j (8)

yij + yji + zij + zji ≥ 1 ∀i, j ∈ N, i 6= j (9)

, where B is a large positive constant.

4 Methodology

In this section, we present the set partitioning (SP) method to solve realistic sized instances of
the BAP, and propose a dynamic column generation based scheme to address the limitations
of generating columns apriori for the SP approach. Note that the methods discussed in this
section are easily extendable to any variant of the BAP.
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4.1 Set partitioning model: Static column generation

As shown in previous research (Umang et al. (2013), Buhrkal et al. (2011)), the berth alloca-
tion problem with known arrival and handling times can be effectively modeled and solved
as a set-partitioning (SP) problem for relatively large problem size. Since our primary goal in
this paper is to address the limitations of the SP approach, we briefly describe the approach
in this section. In the SP method, the set of all feasible single-vessel berthing assignments is
generated a priori and is denoted by the set P. Note that a berthing assignment for a single
vessel specifies the berth sections that will be occupied by the vessel, its berthing time, and
its completion time (equal to the berthing time plus the handling time). The assignment ma-
trix contains a column for each of the |P| assignments, and is composed of upper submatrix
A and lower submatrix B. Each column p in submatrixA has a single non-zero value, where
row i contains the value one if the berthing assignment is for vessel i ∈ N. Submatrix B
contains a single row for each (berth section, time bucket). Non-zero values in submatrix B
are equal to one if the vessel berthing assignment specified by column p requires that the
vessel occupies the (section, time) represented by the row.

To illustrate this idea, consider an example with two vessels, two discrete berth sections
and three discrete time periods in the planning horizon with the input data shown in Tables
(1)-(2). Vessel 1 cannot occupy berth 2 because of length restrictions and vessel 2 cannot be
berthed before time t=1. The draft restrictions in this example are redundant since the depth
of each section is greater than the draft of both the vessels. The resulting assignment matrix
comprising of two feasible assignments of vessel 1 and three feasible assignments of vessel 2
is shown in Table 3. The first column represents the berthing assignment of vessel 1 to berth
1 from time 0-2, the third column represents the berthing assignment of vessel 2 to berth 1
from time 1-3 and so on.

Table 1: Input data for vessels for a toy example

Vessel Arrival Time Length (m) Draft (m) Handling Time
Vessel 1 0 180 6 2
Vessel 2 1 80 6 2

Table 2: Input data for berth sections for a toy example

Berth Length (m) Draft (m)
Berth 1 200 8
Berth 2 100 8
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Figure 2: Toy example of set partitioning to solve the BAP with |N| = 2, |M| = 2 and |H| = 3

Table 3: Assignment matrix for a toy example of SP model

Vessel 1 1 1 0 0
Vessel 2 0 0 1 1

Berth 1, Time 0-1 1 0 0 0
Berth 1, Time 1-2 1 1 1 0
Berth 1, Time 2-3 0 1 1 0
Berth 2, Time 0-1 0 0 0 0
Berth 2, Time 1-2 0 0 0 1
Berth 2, Time 2-3 0 0 0 1

We assume the following input data to be available for the SP model:

H = set of discrete time intervals in the planning horizon
P = set of feasible assignments
t = 1, ..., |H| discrete time intervals in the planning horizon
p = 1, ..., |P| feasible assignments
dp = delay associated with assignment p
hp = handling time associated with assignment p

The assignment matrix coefficients are defined as follows.

Aip =

{
1 if assignment p represents a feasible assignment for vessel i;
0 otherwise.

bktp =

{
1 if section k is occupied at time t in assignment p;
0 otherwise.

There is only a single decision variable in the SP model for selection of feasible assign-
ments in the optimal solution which is defined as follows.
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λp =

{
1 if assignment p is part of the optimal solution;
0 otherwise.

The SP model is formulated as shown below:

min
∑
p

(dpλp + hpλp) (10)

s.t.
∑
p

(Aipλp) = 1 ∀i ∈ N (11)∑
p

(bktp λp) ≤ 1 ∀k ∈M, ∀t ∈ H (12)

λp ∈ {0, 1} ∀p ∈ P (13)

The objective (10) is to minimize the total service cost of the vessels berthing at the port,
which includes the total berthing delays and the total handling cost of the vessels. Con-
straints (11) ensure that each vessel has exactly one feasible assignment in the optimal solu-
tion. Constraints (12) ensure that a given section at a given time is occupied by at most one
vessel.

A major limitation of the set partitioning approach is the explosion in the number of
variables and constraints with increase in problem size, because of which the method may
be very slow and the solver can run out of memory when the number of feasible assignments
is too large as determined by the problem size defined by the number of vessels and number
of sections along the quay, the length of the planning horizon, the redundancy of one or
more constraints such as the draft restrictions etc. In some such cases it is possible to make
the method affordable at the risk of losing optimality by partitioning the planning horizon
into fewer discrete time buckets of larger size. The root cause of this problem is that the
assignments (columns) are generated apriori and fed as an input to the model. To address
this shortcoming of the model, we propose a dynamic column generation (CG) scheme in
the following section.

4.2 Dynamic column generation

We now propose a novel scheme to solve the the SP formulation (10)-(13), in which the
feasible assignments (columns) are generated in a dynamic way, to reduce the computational
load on the solver. In the dynamic scheme, the SP formulation is referred to as the restricted
master problem. It is called restricted since the active pool of columns, denoted by Ω, does
not contain all possible feasible assignments to the problem instance, but only a subset of
the assignments.
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We start with an initial feasible solution obtained from a first-come-first-served ordering
of the vessels based on the vessel arrival times. The algorithm used to generate an initial
feasible solution is described by Algorithm 1.

Algorithm 1 Heuristic to obtain an initial feasible solution for the dynamic CG

Require: Set N of vessels sorted by arrival times, setM of berths
for i = 1→ N do

if BerthIsAvailable then
Assign vessel to berth with lowest handling time for vessel i

end if
if BerthIsNotAvailable then

Assign vessel to berth with earliest completion time for vessel i
end if

end for

The initial solution comprising of |N| columns is added toΩ, so thatΩ contains |N| active
columns at the start of the column generation process. We relax the integrality constraints
(13) in the SP formulation, to obtain the the LP relaxation of the restricted master problem
as shown below.

min
∑
p

(dpλp + hpλp) (14)

s.t.
∑
p

(Aipλp) = 1 ∀i ∈ N (15)∑
p

(bktp λp) ≤ 1 ∀k ∈M, ∀t ∈ H (16)

λp ∈ [0, 1] ∀p ∈ Ω (17)

The LP relaxation is solved and the dual variable values corresponding to constraints
(15)-(16) are calculated. In each iteration of the CG algorithm, |N| subproblems are solved,
one for each vessel in the problem instance. The idea is to price out columns with negative
reduced cost that can potentially improve the solution, and add them to the current pool of
active columns Ω. We now describe the subproblem formulation in detail. Note that since
the subproblem is solved separately for each vessel, the index i is dropped from all parame-
ters and decision variables. The following input data is used to solve the subproblem.
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π = the dual variables corresponding to constraints (15)
τkt = the dual variables corresponding to constraints (16)
a = the arrival time of the vessel
l = the length of the vessel
d = the draft of the vessel
Lk = length of berth k
Dk = draft of berth k
hk = handling time at berth k
B = large positive constant

The decision variables in the subproblem are

m ≥ 0, starting time of processing of the vessel;
xk binary, equals 1 if berth k ∈M is occupied by the vessel, 0 otherwise;
θt binary equals 1 if the vessel is served at time t, 0 otherwise;
σkt binary equals 1 if berth k is occupied at time t, 0 otherwise;

The subproblem is formulated as follows

min(m− a+
∑
k∈M

(hkxk) − π−
∑
t∈H

∑
k∈M

(τktσkt)) (18)

m− a ≥ 0 (19)∑
k∈M

(Lk − l)xk ≥ 0 (20)∑
k∈M

(Dk − d)xk ≥ 0 (21)∑
k∈M

xk = 1 (22)∑
t∈H

θt =
∑
k∈M

(hkxk) (23)

t+ B(1− θt) ≥ m ∀t ∈ H (24)

t ≤ m+
∑
k∈M

(hkxk) + B(1− θt) − 1 ∀t ∈ H (25)

σkt ≥ xk + θt − 1 ∀t ∈ H, ∀k ∈M (26)

σkt ≤ xk ∀t ∈ H, ∀k ∈M (27)

σkt ≤ θt ∀t ∈ H, ∀k ∈M (28)

xk ∈ {0, 1} ∀k ∈M (29)

θt ∈ {0, 1} ∀t ∈ H (30)

σkt ∈ {0, 1} ∀k ∈M, ∀t ∈ H (31)

A Column Generation Framework for Berth Scheduling at Port Terminals

CIRRELT-2015-15 9



The subproblem (18)-(31) can be easily solved using a polynomial time heuristic or di-
rectly using an optimization solver. When solving the subproblem for a given vessel i ∈ N,
the objective (18) is to price out the most negative reduced cost column for that vessel. Con-
straints (19)-(22) are as described earlier for the original formulation in Section 3. Constraints
(23)-(25) are used to mathematically define the variables θt. The decision variables σkt are
linked to variables xk and θt using (26)-(28).

The |N| columns that are priced out in each iteration of the column generation, one for
each vessel, are added to the active pool of columns Ω, and the restricted master problem
(14)-(17) is re-solved. The dual variable values are obtained, the |N| subproblems are solved
and the process is continued iteratively until there are no negative reduced cost columns
for any vessel. The main steps in the proposed dynamic column generation algorithm are
shown schematically in Figure 3 below.

Figure 3: The dynamic column generation scheme for the BAP

Obtaining an integer solution

The solution of the LP relaxation obtained after the convergence of the column genera-
tion algorithm is typically fractional, and is a lower bound to the original problem. To obtain
an integer solution, we use a simple approach, that based on our numerical results, works
extremely well for the problem studied in this paper. Once the column generation termi-
nates, the integrality constraints (13) are reinforced and the problem is re-solved using the
active pool of columns Ω at the end of the column generation process. The integer solution
obtained is a valid upper bound to the problem we are interested in solving. If the gap be-
tween the upper bound and the lower bound is zero, then the upper bound is also the optimal
solution. If the gap is non-zero, the optimal solution can be determined through a branch-
and-bound (B&B) algorithm, where column generation needs to be applied at each node of
the B&B tree.
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5 Computational study

In this section, we compare the different formulations presented earlier in the paper. All al-
gorithms are implemented in JAVA programming language. The computation experiments
were run on an Intel(R) Core(TM) i7 -3770 CPU(3.40 GHz) processor and used a 64-bit ver-
sion of CPLEX 12.6.

5.1 Generation of test instances

We generate a test bed of 56 instances with 7 different instance sizes of 8 instances each. The
instance size is defined by the number of vessels in the instance, the largest instance size
contains |N| = 120 vessels. The vessel lengths lie in the range 80 to 200 meters and the vessel
drafts vary between 6 to 12 meters. The berthing layout used in the model is given in Table
4. The number of berths in all instances is |M|=10 berths, the berth length varies between
120 to 220 meters, and the berth depth is between 8 to 15 meters. For each instance size,
there are four congested instances in which all vessel arrivals are within the time window
t=0 and t=|N|, and four mildly congested instances in which vessel arrivals are within t=0
and t=2*|N|. The handling times of the vessels are dependent on the berthing position of the
vessel and vary between 6 to 20 hours.

Table 4: Berthing layout used in the model

Berth Length (m) Depth (m)
1 217 15
2 215 15
3 189 14
4 191 8
5 136 13
6 174 14
7 178 8
8 178 12
9 182 14

10 213 8

5.2 Results

The results from the computation experiments are shown in Tables 5-6. The following infer-
ences can be drawn from the results’ tables.
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• The MIP (1)-(9) is able to solve all instances containing up to 25 vessels in few seconds,
except instance B4 for which the computation time is a bit higher. All mildly congested
instances belonging to instance sets C, D and E, except instance D6, could be solved
to optimality within the CPLEX time limit of 1800 seconds. However not even one
congested instance could be solved within this time limit. For large problem instances
in sets F and G containing 100 and 120 vessels respectively, the optimality gaps are very
large for the congested instances, and much smaller for the mildly congested instances.

• The SP model clearly outperforms the MIP and is able to solve all instances containing
up to 80 vessels within few seconds. However for larger sized instances containing 100
and more vessels, the CPLEX solver runs out of memory owing to an explosion in the
number of feasible assignments in those problem instances.

• For the dynamic CG algorithm, we report the number of iterations and the num-
ber of columns generated in the column generation process as indicated by #iter and
#columns respectively, the solution of the LP relaxation indicated by lb, the integer
feasible solution obtained at the end of the column generation process indicated by ub,
the optimality gap, and the computation time in minutes and seconds. The results look
very promising, the algorithm is able to solve all instances to optimality in computa-
tion time of few minutes. The highest computation time is only a little over 15 minutes
for the congested instance G4. It is interesting to note that the optimality gap is zero or
very close to zero for all instances. This means that for each instance, the pool of active
columns at the end of the CG process contains the set of feasible columns that corre-
spond to the optimal (or near optimal) solution, and it is not required to implement
branch and bound to further close the gap between the lower bound and the upper
bound.

The above observations clearly establish the superiority of the proposed dynamic column
generation algorithm to solve large problem instances of the BAP in small computation time.
Note that while for the berth allocation model considered in this study the SP approach is
able to solve instances containing up to 80 vessels, the solver can run out of memory for a
smaller number of vessels for other berthing layouts, for a higher number of berths, for a
longer planning horizon and/or when one or more constraints such as the draft restrictions
are redundant. For example, as shown in Umang et al. (2013), the SP model runs out of
memory for instances containing 40 vessels and 30 berthing sections for the dynamic hybrid
BAP model considered in their paper.

Furthermore it is clear from the computational results that the time complexity of the
BAP increases with both the problem size as given by the number of vessels in this study,
and the level of congestion as determined by the inter-arrival times for given problem size.
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6 Conclusions and future work

In this paper, we have proposed a dynamic column generation framework to solve the berth
allocation problem (BAP). The most important contribution of this study is to demonstrate
the superiority of the proposed algorithm in solving large problem instances of BAP to op-
timality in computation time of only a few minutes. We were successfully able to solve
instances containing up to 120 vessels and 10 berths for the dynamic discrete berth allo-
cation model considered in this paper. Interestingly the optimality gap at the end of the
proposed dynamic column generation method is zero or almost zero for all instances. Thus
the algorithm returns the optimal or near-optimal integer solution, and no further branching
is required. Furthermore the approach can be easily adapted to solve other variants of the
BAP based on different spatial and temporal attributes.

In previous research (Umang et al. (2013), Buhrkal et al. (2011)), the set partitioning (SP)
method was shown to outperform other state-of-the-art algorithms to solve the BAP. How-
ever the SP model runs out of memory when the number of feasible assignments is too large
as determined by the problem size given by the number of vessels and berths, length of the
planning horizon, redundancy of draft restrictions etc. For example, as shown in Umang
et al. (2013), the SP model runs out of memory for |N|=40 vessels and |M|=30 berths for
the dynamic hybrid berth allocation problem considered in their paper. Our approach ad-
dresses the limitations of the SP model in which the columns are generated apriori and fed
as an input to the optimization model.

As part of future work, the proposed column generation framework should be tested on
other more complex variants of the BAP based on different berthing layouts and other at-
tributes. For problem instances where the computation time is large, acceleration techniques
based on adding multiple negative reduced cost columns per iteration of the column gen-
eration, dynamic constraint aggregation, dual stabilization and heuristic pricing should be
investigated.
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