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Abstract. Stochastic programs and stochastic integer ones in particular, are usually hard 
to solve when applied to realistic sized problems. A common approach is to consider the 
simpler deterministic program in which random parameters are replaced by their expected 
values, with a loss in terms of the quality solution. In this paper we investigate the reason 
of the gap between the deterministic and the stochastic solutions and which information 
can be inherited by the deterministic solution also in such a cases. In details, this paper 
provides a comprehensive understanding of the structure of the optimal solution of 
stochastic problems and its links to the one of the corresponding deterministic version (or 
its linear relaxation for integer formulations). A new measure of goodness/badness of the 
deterministic solution with respect to the stochastic one, namely Generalized Loss Using 
Skeleton Solution, GLUSS, is introduced. It is based on the reduced costs of the 
deterministic solution, which enable the identification of the good variables to inherit. The 
possible usage of GLUSS, as well as its interest and value in addressing stochastic 
programming models, are investigated by means of an extensive experimental campaign. 
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1 Introduction

Stochastic programs, in particular stochastic integer programs, are often close to impos-
sible to solve for realistically sized problems. Thus, even though a stochastic approach
modeling is appropriate, all we may have access to, is the deterministic solution (where all
random variables are replaced by their means). In stochastic programming, a standard
measure of the expected gain from solving a stochastic model rather than its determinis-
tic counterpart is given by the Value of the Stochastic Solution – VSS [4]. A high value
of VSS is mostly used to argue that stochastic programming models are necessary despite
the computational efforts involved, since uncertainty is important for the optimal solu-
tion. Consequently, the deterministic solution is considered “bad”. However, we think
that stopping at this point is a bit simplistic and we should go deeper to understand why
the deterministic solution is inappropriate.

A qualitative understanding of the expected value solution with respect to the stochas-
tic one, also in case of high VSS, has been analyzed in [12] in terms of its structure and
upgradeability, by means of the Loss Using the Skeleton Solution LUSS and the Loss of
Upgrading the Deterministic Solution LUDS in relation to the standard VSS. Compared
to the VSS, LUSS and LUDS give broader information on the structure of the problem
and could be of practical relevance to make a fast “good” decision instead of using ex-
pensive direct techniques. In detail, they work in the following way: LUSS is obtained
by fixing at zero (or at the lower bound) all first stage variables which are at zero (or
at the lower bound) in the expected value solution and then solve the stochastic pro-
gram. Hence, LUSS allows to see if the deterministic model produced the right non-zero
variables, but possibly was off on the values of the basic variables. On the other hand,
LUDS is measured by first solving a restricted stochastic model obtained by fixing the
lower bound of all variables to their corresponding values in the expected value solu-
tion. LUDS is then defined as the difference between the optimal value of this restricted
stochastic model and the optimal value of the original stochastic problem. Therefore,
LUDS tests if the expected value solution is upgradeable to become good (if not optimal)
in the stochastic setting. From these results the main causes of badness/goodness of the
expected value solution can be summarized as follows:

� Wrong choice of variables, that is, different variables are set to zero (or at the lower
bound) in the deterministic and the stochastic solutions, measured by a positive
loss using the skeleton solution 0 < LUSS ≤ V SS.

� Wrong values, when the choice of variables is the same but the values of the non-
zeros differ; this case is reflected by LUSS = 0 and V SS > 0. Obviously, a wrong
choice of variables leads to wrong values too (LUSS > 0). Situations where the
skeleton is good, but the deterministic solution is bad, are of particular interest as
the deterministic solution is very useful.

� Non-upgradeability of the deterministic solution to the stochastic measured by a
positive loss of upgrading the deterministic solution LUDS > 0.
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In this paper, we seek a deeper understanding of the expected value solution and
the possible links between the deterministic and stochastic solutions. What could be
identified as “inherited” from the former to the latter? For example, can we identify
a subset of variables with zero value in the deterministic solution to fix at zero in the
stochastic formulation in order to guide the search for the optimal stochastic solution?
In the affirmative, are the reduced costs of the continuous relaxation of the deterministic
solution a good estimation of bad/good variables? Can we infer a general trend from
the cases considered or the behavior of the deterministic solution is problem dependent?
Such understanding could help predict how the stochastic model will perform in two
important cases, problems actually solvable but that must be run very often, and in-
tractable problems, and thus reduce the computational time of the stochastic solution
process. This applies to algorithmic developments as well as practical use of models in
industry and government. In essence, we seek the means to identify what is potentially
wrong with a solution coming from a deterministic model even when the optimum of the
stochastic formulation cannot be found within reasonable computing effort.

To achieve our overall goal, we introduce the Generalized Loss Using the Skeleton
Solution, GLUSS, a measure of the badness/goodness of deterministic solutions based on
the information brought by the reduced costs of the continuous relaxation of the deter-
ministic solution. GLUSS helps to identify the good variables that should be inherited
from the deterministic solution and thus, provides better insights, when compared to VSS
and LUSS, into what defines the structure of the solution to the stochastic programming
model. Basic inequalities in relation to VSS and LUSS are also presented. A large set of
problems from the literature are analyzed using GLUSS, the results illustrating its per-
formance and interest. To keep the paper length within reasonable limits, our analysis
is focused on the two-stage stochastic case. This being said, the proposed approach and
investigation can easily be extended to multi-stage models as well.

To sum up, the main contributions of this paper are

1. To provide a more comprehensive understanding of the structure of the optimal
solution of stochastic problems and its links to the optimal solution of the corre-
sponding deterministic version (its linear relaxation for integer formulations);

2. To define a new measure of goodness/badness of the deterministic solution with
respect to the stochastic formulation (that complements the information provided
by VSS and LUSS ), which is based on the reduced costs in the deterministic
solution and that enables the identification of the good variables to inherit from
the solution;

3. To provide an extensive experimental campaign that illustrates possible utilization
of GLUSS and underlines its interest and value in addressing stochastic program-
ming models.

The paper is organized as follows. The state of the art is reviewed in Section 2, while

2
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Section 3 defines the GLUSS measure. The experimental plan is described in Section
4, including how we use GLUSS and the problems and formulations considered in the
experimentation. Numerical results are presented and analyzed in Section 5. In Section
6, we sum up the highlights and general trends observed from the case studies considered.
Finally, we conclude in Section 7.

2 State of the Art

Let us define the standard notation used in this paper. The following mathematical
model represents a general formulation of a stochastic program [6]-[3] in which a decision
maker needs to determine x in order to minimize (expected) costs or outcomes:

min
x∈X

Eξz (x, ξ) = min
x∈X

{
f1(x) + Eξ [h2 (x, ξ)]

}
, (1)

where x is a first-stage decision vector restricted to the set X ⊂ Rn
+ (where Rn

+ is the set
of non negative real vectors of dimension n), Eξ denotes the expectation with respect to

a random vector ξ, defined on some probability space (Ω,A , p) with support Ω and given
probability distribution p on the σ−algebra A . The function h2 is the value function of
another optimization problem defined as

h2 (x, ξ) = min
y∈Y (x,ξ)

f2 (y;x, ξ) , (2)

which is used to reflect the costs associated with adapting to information revealed through
a realization ξ of the random vector ξ. The term Eξ [h2 (x, ξ)] in (1) is referred to as the

recourse function. We make the assumption in this paper that functions f1 and f2 are
linear in their unknowns. The solution x∗ obtained by solving problem (1), is called the
here and now solution and

RP = Eξz(x∗, ξ), (3)

is the optimal value of the associated objective function.

A simpler approach is to consider the Expected Value Problem, where the decision
maker replaces all random variables by their expected values and solves a deterministic
program:

EV = min
x∈X

z(x, ξ̄), (4)

where ξ̄ = E(ξ). Let x̄(ξ̄) be an optimal solution to (4), called the Expected Value
Solution and let EEV be the expected cost when using the solution x̄(ξ̄):

EEV = Eξ
(
z
(
x̄(ξ̄), ξ

))
. (5)

3
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The Value of the Stochastic Solution is then defined as

V SS = EEV −RP, (6)

measuring the expected increase in value when solving the simpler deterministic model
rather than its stochastic version. Relations and bounds on EV , EEV and RP can be
found for instance in [4] and [3].

It is well known that, in general, the expected value solution can behave very badly
in a stochastic environment. We studied empirically the structural differences between
the two solutions within the context of particular combinatorial optimization problems
[7, 15, 17, 16], observing both the general bad behaviour of the expected value solution
and hints that some structures from the deterministic solution find their way into the
stochastic one. Thus, it is generally not clear where this badness comes from: is it because
the wrong variables are fixed at non-zero levels or because they have been assigned wrong
values? We tried to answer this question in [12] by means of the Loss Using Skeleton
Solution LUSS. The extension to the multi-stage setting is in [8]. We fix at zero (or at
the lower bound) all first stage variables which are at zero (or at the lower bound) in the
expected value solution (i.e., for linear programs, the non basis variables) and then solve
the stochastic program. Hence, we want to see if the deterministic model produced the
right non-zero variables (activities), but possibly was off on the values.

Let J = {1, . . . , J} be the set of indices for which the components of the expected
value solution x̄(ξ̄) are at zero or at their lower bound (non basis variables). Then let x̂
be the solution of:

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ J . (7)

We then compute the Expected Skeleton Solution Value

ESSV = Eξ (z (x̂, ξ)) , (8)

and we compare it with RP by means of the Loss Using Skeleton Solution

LUSS = ESSV −RP. (9)

A LUSS close to zero means that the variables chosen by the expected value solution
are the correct ones but their values may be off. We have:

RP ≤ ESSV ≤ EEV, (10)

and consequently,
V SS ≥ LUSS ≥ 0. (11)

Notice that the case LUSS = 0 corresponds to the perfect skeleton solution in which
the condition xj = x̄j(ξ̄), j ∈ J , is satisfied by the stochastic solution x∗ even without

4
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being enforced by a constraint (i.e., x̂ = x∗); on the other hand, 0 < LUSS < V SS if
there exists j ∈ J such that x∗j 6= x̄j(ξ̄). Finally, one observes LUSS = V SS, if the
x̂ = x̄(ξ̄).

Notice also that if the original problem is a:

� Linear program, then ESSV leads to solving a linear program but of smaller size
than the original one;

� Mixed binary program, then the test implies fixing all the binary variables (at 0 or
1) and solving an easier linear program;

� Mixed integer program (MIP), then we still solve a MIP but of smaller dimension.

3 Does the Stochastic Solution Inherit Properties

from the Deterministic One?

One of the main contributions of this paper is to provide a tool to analyze and compare
the expected value solution with respect to the stochastic one. The EEV is often far
from the optimal stochastic solution, meaning that the expected value and the stochastic
solutions are different. The research questions we address are: Can we derive knowledge
relative to the stochastic solution from the deterministic one? Can we guide the stochastic
problem towards an optimal solution starting with the information given by the expected
value model?

To answer these questions, we introduce a new measure, the Generalized Loss Using
the Skeleton Solution, GLUSS, which is a generalization of the Loss Using Skeleton So-
lution LUSS introduced in [12]. GLUSS allows us to investigate, even in the case of
a large V SS, what can be inherited from the structure of the expected value solution
in its stochastic counterpart, by taking into account the information on reduced costs
associated to the variables at zero (or lower bound) in the expected value solution.

Let R = {r1, . . . , rj, . . . , rJ} be the set of reduced costs, with respect to the recourse
function, of the components x̄j(ξ̄), j ∈ J , of the expected value solution x̄(ξ̄) at zero or
at their lower bound (i.e., out of basis variables). We recall that a reduced cost is the
amount by which an objective function coefficient would have to improve (increase, for
maximization problems and decrease for minimization ones) before it would be possible
for the corresponding variable to assume a positive value in the optimal solution and
become a basis variable. Reduced costs of basis variables are zero.

Let rmax = maxj∈J {rj : rj ∈ R} and rmin = minj∈J {rj : rj ∈ R} be respectively
the maximum and the minimum of the reduced costs of the variables x̄j(ξ̄), j ∈ J . We
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divide the difference rmax − rmin into N classes R1, . . . ,RN of constant width rmax−rmin

N

such that the p−class is defined as follows

Rp =

{
rj : rmin + (p− 1) · (rmax − rmin)

N
≤ rj ≤ rmin + p · (rmax − rmin)

N

}
, p = 1, . . . , N.

(12)
Let Jp be the set of indices associated to the variables x̄j(ξ̄) with reduced costs rj ∈ Rp.
Then let x̃p be the solution of

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ Jp, . . . ,JN , (13)

where we fix at zero or lower bounds only the variables with indices belonging to the last
p classes Jp, . . . ,JN , i.e., with the highest reduced costs.

We then compute the Generalized Expected Skeleton Solution Value

GESSV (p,N) = Eξ (z (x̃p, ξ)) , p = 1, . . . , N, (14)

and we compare it with RP by means of the Generalized Loss Using the Skeleton Solution

GLUSS(p,N) = GESSV (p,N)−RP , p = 1, . . . , N. (15)

Notice that GESSV (1, N) = ESSV and consequently GLUSS(1, N) = LUSS.
Furthermore, the following inequalities hold true:

Proposition 1. For a fixed N ∈ N\ {0, 1} (where N is the set of natural numbers),

GLUSS(p,N) ≥ GLUSS(p+ 1, N) , p = 1, . . . , N − 1. (16)

Proof
Any feasible solution of problem GESSV (p,N) is also a solution of problem GESSV (p+
1, N), since the former is more restricted than the latter, and the relation (16) holds true.
If GLUSS(p,N) =∞, the inequality is automatically satisfied.

Proposition 2. For a given N ∈ N\ {0} and a fixed p ∈ N\ {0} such that p = 1, . . . , N ,

GLUSS(p,N + 1) ≥ GLUSS(p,N). (17)

Proof
If p = 1 then GLUSS(p,N + 1) = GLUSS(p,N) = LUSS. Furthermore, any feasible
solution of problem GESSV (p,N + 1) is also a solution of problem GESSV (p,N),
since the former is more restricted than the latter, and the relation (17) holds true. If
GLUSS(p,N + 1) =∞, the inequality is automatically satisfied.

The two previous properties can be generalized in the following proposition:
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Proposition 3. For given N1, N2 ∈ N\ {0} and p1, p2 ∈ N\ {0}, with p1 = 1, . . . , N1,
p2 = 1, . . . , N2 and such that p1

N1
≤ p2

N2

GLUSS(p1, N1) ≥ GLUSS(p2, N2). (18)

Proof
If p1 = p2 = 1 then GLUSS(p1, N1) = GLUSS(p2, N2) = LUSS. Furthermore, if
p1
N1
≤ p2

N2
then the number of variables at zero with highest reduced cost to be fixed is

respectively N1−p1
N1
|R| ≥ N2−p2

N2
|R|. Consequently GESSV (p1, N1) is more restricted than

GESSV (p2, N2), and the relation (18) holds true.

In the following, we make the assumption that in the case of a problem with first
stage integer variables, we compute the reduced costs on the continuous relaxation.

GLUSS measures how much we loose in terms of solution quality when we consider
the generalized skeleton solution. But how can one use it in order to analyze and derive
the structure of the stochastic solution? How should we choose the number of classes
N and p? We answer these questions in the following sections, by presenting a possible
procedure using GLUSS and applying it to a wide set of problems from the literature.

4 Experimental plan and instance sets

This section describes the experimental plan and the instance sets considered. Our goal
is to study the possibility to use GLUSS and inject information about the skeleton of the
stochastic solution from the expected value one. We therefore perform an experimental
analysis according to three axes:

� Computational effort : what number of variables can we can fix in order to drasti-
cally reduce the effort of the stochastic solution computation?

� Feasibility : what are the effects of fixing a subset of the variables from the expected
value solution with regards to the feasibility of the stochastic model?

� Optimality : how to use the GLUSS to find an optimal or near optimal stochastic
solution?

The experimental campaign was carried out using two main sets of problem instances.
The first set includes three stochastic optimization models related to three real-case ap-
plications: a single-sink transportation problem, a power generation scheduling case, and
a supply transportation problem. The second set consists of instances from SIPLIB [1],
which is a collection of standard test problems to facilitate computational and algorith-
mic research in stochastic integer programming. The original instances included in this
collection were of limited size. However, SIPLIB has recently been updated with a set
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of large-scale highly combinatorial stochastic problems that are relevant to the field of
city logistics. As benchmarks, available solutions for some of the instances included in
the collection are also reported in [1]. Finally, it should be noted that all numerical
experiments were conducted using CPLEX 12.5.

Section 4.1 presents our methodology, including a proposed approach to set up the
number of classes N and the class parameter p of GLUSS(p,N). The following four
subsections describe the test problems. In each subsection we describe the problem and
we give the mathematical problem. The corresponding numerical data are summarized
in Annex 1.

4.1 Using GLUSS in stochastic programming

We computed V SS, LUSS and GLUSS(p,N) for each instance set. When available,
the optimal solutions from the literature were used, otherwise, we computed them. We
now briefly describe the procedure we adopted, which can be applied and extended to
any stochastic programming problem.

Let us recall that parameter N defines the number of sets in which the out of basis
variables of x̄(ξ̄) are grouped. These sets provide a characterization of the variables with
respect to their reduced costs. The higher the value of N is and the closer the reduced
cost values of the variables included in each set are. Therefore, we start by considering
only three classes, N = 3, with the exception of the “single-sink transportation problem”
for which only two variables in the deterministic solution are at zero (we set N = 2).
The use of three classes defines a rough characterization, where the out of basis variables
of x̄(ξ̄) are included in a higher, lower or medium range reduced cost set. It should be
noted that a sensitivity analysis where parameter N is increased was performed using
the “power generation scheduling” problem (for N = 4 given the four variables that are
fixed to zero in the deterministic solution) and the “supply transportation” problem (for
N = 3, 10, 50, 100), which enabled a more refined study.

For a given value N , generating sets R1, . . . ,RN and the partition of the variables
J1, . . . ,JN , our objective is to identify which out of basis variables of x̄(ξ̄) should be
fixed in the stochastic model to produce an optimal, or near-optimal, solution. To do so,
the parameter p is first fixed to its upper limit (i.e., p = N) to compute GLUSS(N,N).
We know, from Proposition 1 that, for a fixed N , GLUSS(p,N) can only increase when
p decreases. Therefore, parameter p is then iteratively decreased by a value of one
as long as the following condition is verified: GLUSS(p,N) = GLUSS(p − 1, N). This
process is stopped when parameter p reaches a certain value p such that GLUSS(p,N) >
GLUSS(p + 1, N). At this point, we define J =

⋃
p=p+1,...,N

Jp as the set of out of basis

variables of x̄(ξ̄) that should be fixed to their respective limit in the stochastic model. The
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process to obtain J is summarized in Algorithm 1. The procedure begins by initializing
parameter p and set J (lines: 1 and 2). In the main loop (lines: 3 to 9), set J is updated
until either the following condition is observed: GLUSS(p,N) > GLUSS(p+ 1, N), or,
parameter p reaches the value zero.

It is important to realize that the value to which parameter N is fixed greatly influ-
ences the results obtained by Algorithm 1 (i.e., set J ), as well as the overall numerical
effort involved in applying the procedure. As previously mentioned, a high value of N
leads to a more refined characterization of the out of basis variables. In turn, this will
help to include in J a larger number of these variables. However, a refined characteriza-
tion also entails a higher computational effort to run the algorithm. For one, measuring
GLUSS(p,N) for high values of p will be more time consuming, considering that the
restriction defined by xj = x̄j(ξ̄), j ∈ Jp, . . . ,JN will tend to be smaller. Furthermore,
the GLUSS measure will be evaluated a potentially higher number of times, given the
larger number of considered classes R1, . . . ,RN . Therefore, a careful analysis should be
applied to find the appropriate value of N for the specific problem being solved. Towards
this end, we should mention that the proposed approach can be recursively applied on
any class R1, . . . ,RN . Therefore, a specific class can be further divided into subclasses
to perform a more systematic localized exploration.

Algorithm 1 Defining set J
Require: N , J1, . . . ,JN
1: p = N
2: J = Jp
3: while p > 1 do
4: p = p− 1
5: if GLUSS(p,N) > GLUSS(p+ 1, N) then
6: return J
7: end if
8: J = J ∪ Jp
9: end while
10: return J

4.2 A single-sink transportation problem

This problem is inspired by a real case of clinker replenishment, provided by the largest
Italian cement producer located in Sicily [9]. The logistics system is organized as follows:
clinker is produced by four plants located in Palermo (PA), Agrigento (AG), Cosenza
(CS) and Vibo Valentia (VV) and the warehouse to be replenished is in Catania. The
production capacities of the four plants, as well as the demand for clinker at Catania,
are considered stochastic.

9
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All the vehicles are leased from an external transportation company, which we assume
to have an unlimited fleet. The vehicles must be booked in advance, before the demand
and production capacities are revealed. Only full-load shipments are allowed. When
the demand and the production capacity become known, there is an option to cancel
some of the bookings against a cancellation fee α. If the quantity delivered from the
four suppliers using the booked vehicles is not enough to satisfy the demand in Catania,
the residual quantity is purchased from an external company at a higher price b. The
problem is to determine, for each supplier, the number of vehicles to book in order to
minimize the total costs, given by the sum of the transportation costs (including the
cancellation fee for vehicles booked but not used) and the costs of the product purchased
from the external company. The notation adopted is:

I = {i : i = 1, . . . , I} : set of suppliers (AG, CS, PA, VV) ;

S = {s : s = 1, . . . , S} : set of scenarios.

ti : unit transportation costs of supplier i ∈ I ;

ci : unit production costs of supplier i ∈ I ;

b : buying cost from an external source (we assume that b > maxi(ti + ci)) ;

q : vehicle capacity ;

g : maximum capacity that can be booked ;

l0 : initial inventory level at the customer ;

lmax : storage capacity at the customer ;

ps : probability of scenario k ∈ S ;

asi : production capacity of supplier i ∈ I in scenario s ∈ S ;

ds : customer demand at scenario s ∈ S ;

α : cancellation fee ;

with the decision variables

xi ∈ N : number of vehicles booked from supplier i ∈ I ;

zsi ∈ N : number of vehicles actually used from i ∈ I in s ∈ S ;

ys : product to purchase from an external source in scenario s ∈ S ;

In the two-stage (one-period) case, we get the following mixed-integer stochastic pro-
gramming model with recourse:

min q

I∑
i=1

tixi +
S∑
s=1

ps
[
b ys − (1− α)q

I∑
i=1

ti (xi − zsi )
]

(19)

10

The Generalized Skeleton Solution: A New Measure of the Quality of the Deterministic Solution in Stochastic Programming

CIRRELT-2015-21



s.t. q
I∑
i=1

xi ≤ g, (20)

l0 +
I∑
i=1

qzsi + ys − ds ≥ 0 , s ∈ S , (21)

l0 +
I∑
i=1

qzsi + ys − ds ≤ lmax , s ∈ S , (22)

zsi ≤ xi , i ∈ I , s ∈ S , (23)

qzsi ≤ asi , i ∈ I , s ∈ S , (24)

xi ∈ N , i ∈ I , (25)

ys ≥ 0 , s ∈ S , (26)

zsi ∈ N , i ∈ I , s ∈ S . (27)

The first sum in the objective function (19) is the booking costs of the vehicles, while
the second sum represents the expected cost associated to the recourse actions, consisting
of buying extra clinker (ys) and canceling unwanted vehicles. Constraint (20) guarantees
that the number of booked vehicles from the suppliers to the customer is not greater than
g/q. Constraints (21) and (22) ensure that the second-stage storage level is between zero
and lmax. Constraints (23) guarantee that the number of vehicles serving supplier i is at
most equal to the number of vehicles booked in advance, and constraints (24) control that
the quantity of clinker delivered from supplier i does not exceed its production capacity
asi . Finally, (25)–(27) define the decision variables of the problem (both for the first and
second stages).

The goal is to find, for each supplier, the number of vehicles to book at the beginning
of the first period.

4.3 Power generation scheduling

The second real-case problem is based on an economic scheduling model formulated in [18]
and [5] as a deterministic mixed integer program. Power generation scheduling involves
the selection of generating units to be put into operation and the allocation of the power
demand among the units over a set of time periods. In the problem considered, there are
two types of generating units available (i.e., four units of type 1 and four units of type
2). Each type is defined according to specific technical characteristics and operational
costs. Therefore, a generating unit will run at a level that is between a minimum and
a maximum threshold, these threshold values being type specific. When a unit is used,
there is a base hourly cost that is charged for running it at the minimum level. In the
case where a unit runs above the minimum threshold, an extra hourly cost is applied for
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each additional megawatt. There is also a starting up cost that is charged each time a
new generating unit is used. Once again, all specific cost values vary according to the
unit types.

At any considered time period, there must be a sufficient number of operating gen-
erators to meet a possible increase in the overall demand of up to 15%. In the event of
an increase, the running levels of the used units are simply adjusted to meet the new
demand requirements. In the present problem, two time periods are considered. While
the demands of the first time period are assumed known, the demands in the second
time period are stochastic. Therefore, the problem is formulated as a two-stage stochas-
tic model. In the first stage, a set of generating units are chosen and their operating
levels are fixed for the two time periods defined in the problem (an estimate is used here
for the demands in the second period). In the second stage, the actual values of the
demands in the second period are observed and the number units and their operating
levels are adjusted accordingly. Production decisions are thus made after the demands
have been revealed. Instead of writing the model in terms of scenarios, we consider a
node formulation defined on the structure of the scenario tree (see Table 19 in Annex).
Therefore, nodes n = 1, 2 represent the first stage of the model, while nodes n = 3, . . . , 22
define the 20 considered scenarios that can be observed in the second stage. For each
node n in the scenario tree, value pa(n) defines its predecessor.

We now define the model that is considered. To do so, let us first define the general
notation that is used:

I = {i : i = 1, . . . , I} : types of generating units;

N = {n : n = 1, . . . , N} : ordered set of nodes of the scenario tree;

mi : minimum output level for generator of type i ∈ I ;

Mi : maximum output level for generator of type i ∈ I ;

Dn : demand in node n ∈ N ;

pn : probability of node n ∈ N ;

Ci : cost per hour per megawatt (mw) of unit i ∈ I for operating above minimum level;

Ei : cost per hour per megawatt (mw) of unit i ∈ I for operating at minimum level;

Fi : start-up cost of unit i ∈ I ;

ui,max : upper bound on the total number of generators of type i ∈ I ;

u0i : starting value of open units of type i ∈ I ;

The decision variables are:

uni : number of generating units of type i ∈ I working in node n ∈ N ;

sni : number of generators of type i ∈ I started up in node n ∈ N \ {1} ;

xni : total output rate from generators of type i ∈ I in node n ∈ N ;
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The formulation of the generator scheduling problem as an integer program including
start-up costs is now defined as follows:

∑
n∈N

pn

[∑
i∈I

Ci (x
n
i −miu

n
i ) +

∑
i∈I

Eiu
n
i +

∑
i∈I

Fis
n
i

]
(28)

s.t.
∑
i∈I

xni ≥ Dn, n ∈ N , (29)

xni ≥ miu
n
i , i ∈ I , n ∈ N , (30)

xni ≤ Miu
n
i , i ∈ I , n ∈ N , (31)∑

i∈I

Miu
n
i ≥

115

110
Dn , n ∈ N , (32)

sni ≥ uni − u
pa(n)
i , i ∈ I , n ∈ N \ {1} , (33)

u1i = u0i , i ∈ I , (34)

uni ≤ ui,max , i ∈ I , n ∈ N , (35)

xni ≥ 0 , i ∈ I , n ∈ N , (36)

sni ∈ N , i ∈ I , n ∈ N , (37)

uni ∈ N , i ∈ I , n ∈ N . (38)

The objective function (28) consists in the minimization of the total costs, which
include the starting up costs of units and their operational costs (both at the minimum
level and above it) for each period. Constraints (29) guarantee that the demand in each
period is met, whereas (30) and (31) make sure that the output lies within the limits of
the operating generators at all times. Constraints (32) guarantee that, for each period,
the additional load requirement of 15% is met without the need to resort to additional
generators, while constraints (33) ensure that the number of generators that are started
up in node n be equal to the increase in the number of operating units with respect to the
node pa(n). Finally, constraints (34)-(35) define the starting values and upper bounds
for the number of started up units and (36)-(38) impose the necessary non-negativity
and integrality requirements on the decision variables of the problem.

4.4 Supply transportation problem

This problem is inspired by a real case of gypsum replenishment in Italy, provided by
the primary Italian cement producer, see [11] for more details. The logistic system is
organized as follows: 24 suppliers, each of them having several plants located all around
Italy, are used to satisfy the demand for gypsum of 15 cement factories belonging to
the same company. The demands for gypsum at the 15 cement factories are considered
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stochastic. As in the first problem considered, shipments are performed by capacitated
vehicles, which have to be booked in advance, before the demand is revealed. When the
demands become known, there is the option to discount vehicles that were booked but
not actually used. However, if the quantity shipped from the suppliers using the booked
vehicles is not enough to satisfy the observed demands, vehicle services to transport the
extra demand of gypsum directly to the factories can be purchased from an external
company at a premium price. The problem is to determine for each of the supplier
plants, the number of vehicles to book to replenish in gypsum the factories in order to
minimize the total cost. The total cost is defined as the sum of the booking costs
for the vehicles used to perform the distribution operations between the plants and the
factories (including the discount for vehicles booked but not used), and the costs of the
extra vehicles added to satisfy the observed demand. It should be noted that, in all
cases, the cost of a vehicle is obtained by multiplying its capacity by a unit cost that
either reflects the transportation cost between a plant and a factory (for the vehicles
booked in advance), or, the premium rate charged by the external company for a direct
transportation service to a factory. Regarding the discount for the vehicles booked but
not used, it is expressed as a fixed percentage of the cost associated to the number of
unused vehicles.

The notation adopted is the following:

K = {k : k = 1, . . . , K} : set of suppliers;

Ok = {i : i = 1, . . . , Ok} : set of plant locations of supplier k ∈ K ;

D = {j : j = 1, . . . , D} : set of cement factories (destinations);

S = {s : s = 1, . . . , S} : set of scenarios;

tij : unit transportation cost from plant i ∈ Ok, k ∈ K to factory j ∈ D ;

bj : the premium rate charged by the external company for a vehicle assigned to factory j ∈ D ;

q : the capacity of a vehicle;

gj : maximum capacity which can be booked for the factory j ∈ D ;

vk : maximum requirement capacity of supplier k ∈ K ;

ak : minimum requirement capacity of supplier k ∈ K ;

lmax : storage capacity at the factories;

α : discount;

ps : probability of scenario s ∈ S ;

dsj : demand of factory j in scenario s ∈ S .
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The decision variables are

xij ∈ N : number of vehicles booked between plant i ∈ Ok, k ∈ K and factory j ∈ D ;

zsij ∈ N : number of vehicles actually used between plant i ∈ Ok, k ∈ K and factory j ∈ D ,

for scenario s ∈ S ;

ysj ∈ N : number of extra vehicles used from the external company for factory j ∈ D ,

for scenario s ∈ S .

The two-stage integer stochastic programming model with recourse can now be defined
as follows:

min q
K∑
k=1

Ok∑
i=1

D∑
j=1

tijxij+
S∑
s=1

ps

[
D∑
j=1

qbj y
s
j− αq

K∑
k=1

Ok∑
i=1

D∑
j=1

tij
(
xij−zsij

)]
(39)

s.t. q
K∑
k=1

Ok∑
i=1

xij ≤ gj , j ∈ D , (40)

0 ≤ l0j + q
( K∑
k=1

Ok∑
i=1

zsij + ysj

)
− dsj ≤ lmax , j ∈ D , s ∈ S , (41)

zsij ≤ xij , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S , (42)

ak ≤ q

Ok∑
i=1

D∑
j=1

zsij ≤ vk , k ∈ K , s ∈ S , (43)

xij ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (44)

ysj ∈ N , j ∈ D , s ∈ S , (45)

zsij ∈ N , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S . (46)

The first sum in the objective function (39) denotes the booking costs of the vehicles
between the plants and the factories, while the second sum represents the expected
recourse costs, which include the cost of the extra vehicles provided by the external
company and the discount for the unused booked vehicles. Constraints (40) guarantee
that, for each factory j ∈ D , the number of booked vehicles from the suppliers to the
factory does not exceed gj/q. Constraints (41) ensure that the storage levels of factories
j ∈ D are between zero and lmax. Constraints (42) guarantee that the number of vehicles
used by the suppliers are at most equal to the number vehicles booked in advance.
Constraints (43) ensure that, for all suppliers k ∈ K , the number of vehicles used allow
the volume of product transported to be between the minimum (i.e., ak) and maximum
(i.e., vk) established requirements. Finally, (44)–(46) define the decision variables of the
problem.
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Table 1: SIPLIB instance size

Size Integer Variables
S [0,100]
M [100,1000]
L > 1000

4.5 SIPLIB

SIPLIB is an available collection of test problems that are used to facilitate computa-
tional and algorithmic research in stochastic integer programming. The test problem
data is provided in the standard SMPS format unless otherwise mentioned. When avail-
able, information on the underlying problem formulations and known solutions are also
included, see [1]. The problems that we use are the ones characterized by a two-stage
formulation and the presence of integer, or binary, variables in the first stage:

DCAP test set is a collection of stochastic integer programs arising in dynamic capacity
acquisition and allocation under uncertainty. All problem instances have complete
recourse, mixed-integer first-stage variables, pure binary second-stage variables,
and discrete distributions.

SSLP test set consists of two-stage stochastic mixed-integer programs arising in server
location under uncertainty. The problems have pure binary first-stage variables,
mixed-binary second-stage variables, and discrete distributions.

SEMI test set consists of instances of a two-stage multi-period stochastic integer prob-
lem arising in the planning of semiconductor tool purchases. The instances have
mixed-integer first-stage variables and continuous second-stage variables.

mpTSPs test set. Instances of the multi-path Traveling Salesman Problem with stochas-
tic travel times (mpTSPs), a variant of the deterministic TSP, where each pair of
nodes is connected by several paths and each path entails a stochastic travel time.
The problem, arising in the domain of City Logistics, aims to find an expected
minimum Hamiltonian tour connecting all nodes [10, 14].

Instances are grouped by size in terms of integer/binary variables. The three groups,
namely Small (S), Medium (M), and Large (L), and their range in terms of integer/binary
variables are given in Table 1. Table 2 shows the main characteristics of the instances
where, for each problem set, Columns 2-3 give the number of instances and their type in
terms of number of integer/binary variables, Columns 4-5 display the number of variables
in the first and second stage, respectively, Columns 6-7 show the number of integer/binary
variables in the first and the second stage, respectively, and Column 8 gives the number
of scenarios.
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Table 2: SIPLIB instance set description

Problem Inst # Type 1-stage v. 2-stage v. Int. 1-stage v. Int. 2-stage v. |S|
DCAP 12 S 12 [25,35] 6 [25,35] [200,500]
SSLP 10 M [5,15] [100,700] [5,15] [100,700] [5,2000]
SEMI 3 M 614 9800 612 0 [2,4]
mpTSPs 5 L [50,100] [7500, 30000] [50,100] [7500, 30000] 100

5 Numerical results

We now present and analyze the results obtained by applying the GLUSS(p,N) mea-
sure to the problems described above. We followed the procedure described in 4.1,
computing each time V SS, LUSS and GLUSS(p,N), p = 1, . . . , N . Detailed so-
lutions of the different instances for the first three test problems may be found at:
http://www.matapp.unimib.it/∼maggioni/GLUSS.html. Also, the results obtained on
the SIPLIB problems have been integrated to the SIPLIB library [1].

5.1 The single-sink transportation problem

The single-sink transportation problem (SSTP) (see Section 4.2) aims to find the number
of vehicles to book for each supplier at the beginning of January 2007. We run the model
for 10 different instances with a demand randomly generated in the interval [dmin, dmax],
where dmin = 20000 and dmax = 30000 are respectively the minimum and maximum
demand observed in the historical data.

The deviation (in %) from the optimal solution of the stochastic model, (19)-(27),
are reported in Table 3. In Table 4, the optimal solution (optimal number of booked
vehicles for each supplier and total optimal cost) for the deterministic and the stochastic
models, as well as for the various quality measures are reported for instance 9 (similar
observations and arguments apply to the other instances).

The deterministic model always books the exact numbers of vehicles needed (x̄i = z̄ki ,
i ∈ I , k ∈ K ); it sorts the suppliers according to the transportation costs and books
a full production capacity from the cheapest one (AG), followed by the next-cheapest
(PA). The deterministic model thus books much fewer vehicles than the stochastic one,
resulting in a solution costing only two-thirds of the stochastic counterpart. However,
EEV is much higher (e 481 484.25 instead of the predicted cost of e 287 874) resulting
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Table 3: Results for the SSTP

Instance % from RP
V SS GLUSS(p, 2)

p = 1 p = 2
1 12.28 5.41 0
2 16.18 6.95 0
3 12.93 6.03 0
4 13.405 6.05 0
5 18.11 4.37 0
6 14.27 7.32 0.17
7 17.46 9.13 0.03
8 12.97 4.95 0
9 17.27 8.11 0
10 13.91 3.95 0
Mean 14.88 6.23 0.02

in
V SS = 481 484.25− 410 573 = 70910.36, (47)

which shows that we can save about 17% of the cost by using the stochastic model,
compared to the deterministic one.

Table 4: Optimal solutions for the quality measures of SSTP instance 9
Instance Problem Type AG CS PA VV Objective value (e)
9 deterministic 206 0 514 0 287 874=EV

stochastic 377 0 533 200 410 573=RP
V SS 206 0 514 0 481 484.25=EEV
LUSS 390 0 633 0 443 881.93= GESSV (1, 2) = ESSV
GLUSS(2, N) 377 0 533 200 410 573= GESSV (2, 2)

Why is the deterministic solution bad? Is this due to a shortsighted guess on the
randomness (leading to too few booked vehicles from the four suppliers), or, can it be
explained by the fact the wrong suppliers were chosen? Therefore, we compute the LUSS
following the skeleton solution from the deterministic model, not allowing vehicles to be
booked from either CS or VV. The Expected Skeleton Solution Value ESSV is then
e 443 881.93, still higher than RP with a consequent Loss Using the Skeleton Solution of

LUSS = 443 881.93− 410 573 = 33 308.04, (48)

which measures the loss when vehicles are booked exclusively from suppliers AG and PA
as suggested by the deterministic model. We can thus conclude that the deterministic
solution is bad because it books the wrong number of vehicles from the wrong suppliers.
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It should be noted that this approach simply requires solving a MIP of smaller dimension
when compared to the original problem.

Since the skeleton solution from the deterministic model sets to zero only the vehicles
from CS and VV (formulation (13)), we compute their reduced costs in the continuous
relaxation, rCS = 495 and rV V = 277.5. Let be R1 = {rV V } and R2 = {rCS}. Fix-
ing at zero only the variables at zero in the expected value solution with the highest
reduced cost, we obtain R2 = {rCS} the Generalized Expected Skeleton Solution Value
GESSV (2, N) = RP with a consequent Generalized Loss Using Skeleton Solution:

GLUSS(2, N) = GESSV (2, N)−RP = 0. (49)

Not allowing vehicles to be booked both from CS and VV (i.e., fixing at zero the
variables at zero in the expected value solution, with associated reduced costs R1 =
{rV V }, and R2 = {rCS}), we again compute the Expected Skeleton Solution Value
GESSV (1, N) = ESSV = 443 881.93 and

GLUSS(1, N) = LUSS = 33 308.04. (50)

It should be noticed that, since the number of variables at zero in the deterministic
solution is 2, the maximum number of classes is N = 2.

From the measures computed, we can conclude that the deterministic solution does
not perform well in a stochastic environment. This is explained by the insufficient number
of vehicles that are booked in the fist stage (720 instead of 1110) from the suppliers AG
and PA. However, by following the skeleton solution with highest reduced costs (i.e., not
booking vehicles from CS) we reach the stochastic solution.

5.2 The power generation problem

The power generation problem (PGP) (Section 4.3) selects power units of type 1 or 2 to
operate and allocates the power demand among the selected units. We run the model
for 10 different instances with demand randomly generated in the interval [dmin, dmax],
where dmin = 33 and dmax = 687 are respectively the minimum and maximum demand
observed in the historical data. Results are reported in Tables 5 and 6. The former
reports the deviations (in %) with respect to RP for V SS, GLUSS(p, 3), p = 1, . . . , 3,
and GLUSS(p, 4). The latter illustrates the discussion that follows with the results
obtained for the first instance, displaying the first stage solutions of generating units u2i ,
the number of started up generators s2i , total output rate x2i (i ∈ I ) and the total cost.

We evaluated the Expected Value solution under the mean scenario D̄ in the stochastic
environment (model (28) - (38)). As illustrated in the case of instance 1 (Table 6), the
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Table 5: Results for the PGP (% deviation from RP )

Instance V SS GLUSS(p, 3) GLUSS(p, 4)
1 2 3 1 2 3 4

1 10.17 10.17 0 0 10.17 0 0 0
2 10.03 10.03 0 0 10.03 0 0 0
3 7.05 0 0 0 0 0 0 0
4 10.66 10.66 0 0 10.66 0 0 0
5 10.07 10.07 0 0 10.07 0 0 0
6 6.78 0 0 0 0 0 0 0
7 6.14 0 0 0 0 0 0 0
8 5.93 0 0 0 0 0 0 0
9 6.84 6.84 0 0 6.84 0 0 0
10 7.44 7.44 0 0 7.44 0 0 0
Mean 8.11 5.44 0 0 5.44 0 0 0

deterministic model closes down as many units as possible to simply cover the considered
demand, ending up with only four units of type 1. Because the deterministic solution only
keeps 4 units running, instead of the 8 (4 units of type 1 and 4 of type 2) included in the
stochastic solution, the associated total cost reduces to 104 285 e compared to 117 927.5
e for the stochastic counterpart. However, the 4 units working in the deterministic
solution are not enough to satisfy the high demand scenarios, yielding

V SS = 129 927.5− 117 927.5 = 12 000, (51)

causing a loss of 10.17% given the need to restart some units at the second stage. We
now investigate why the deterministic solution is bad by means of the following LUSS
and GLUSS tests.

Table 6: Optimal solutions from measures V SS, LUSS and GLUSS for PGP instance 1

Problem type u21 u22 s21 s22 x21 x22 Objective value (e)
Deterministic 4 0 0 0 300 0 104 285=EV
Stochastic 4 4 0 0 180 120 117 927.5=RP
V SS 4 0 0 0 300 0 129 927.5 =EEV
LUSS 4 0 0 0 300 0 127 877.5=ESSV
GLUSS(p,N), p = 2, . . . , N 4 4 0 0 180 120 117 927.5=GESSV (p,N) = RP
GLUSS(p,N), p = 1 4 0 0 0 300 0 129 927.5=GESSV (p,N) = ESSV

To apply the LUSS, we follow the skeleton solution from the deterministic model
and close units of type 2, not required to satisfy the deterministic demand. The stochas-
tic model reacts by opening units of type 2 at the second stage at higher cost. As
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a consequence, the associated Expected Skeleton Solution Value ESSV = EEV and
LUSS = V SS, confirming that deterministic solution has a bad structure (required
units for the stochastic environment are closed).

To apply the GLUSS(p,N), we compute the reduced costs of the decision variables
at zero in the skeleton solution from the deterministic model, which closes units of type
2, u22 = 0, yielding x22 = 0, and do not start up any generator, s2i = 0; thus ru22 = 500
and rs21 = 14000, rs22 = 16000 and rx22 = 50. We also define rmax = rs22 = 16000 and

rmin = rx22 = 50.

Notice that, since the number of variables at zero in the deterministic solution is 4, the
maximum number of classes to consider is N = 4. We computed two measures, dividing
the difference rmax − rmin into N = 3 and N = 4 classes of constant width, respectively.
With the two values of N we have that GLUSS(p,N) = 0, with p ∈ {2, . . . , N}, while
the percentage gap between GLUSS and RP becomes 10.17 % when p = 1. This shows
how the wrong choice from the deterministic solution is in the selection of variable u22.

The results obtained on instances 3, 6, 7 and 8 show a different behavior since
GLUSS(1, N) = LUSS is able to perfectly reproduce the value of RP , where the V SS
is around 6.5% (see Table 5). This means that, in these instances, the EV problem is
able to identify the appropriate structure in terms of zero and non-zero variables, but
fails in providing the correct first-stage non zero values.

In conclusion, the deterministic solution is bad because it tends to follow in every
period the market profile, thus closing units that could be needed in the following time
periods. However, by following the skeleton of the deterministic solution with highest
reduced costs (i.e., do not starting up any generator, s2i = 0) we reach the stochastic
solution.

5.3 The supply transportation problem

V SS, LUSS and GLUSS(p,N), p = 1, . . . , N were performed for the supply transporta-
tion problem (STP), see Section 4.4, which identifies the number of vehicles to book for
each plant of each supplier, for the replenishment of gypsum at minimum total cost. Data
represents the first week of March 2014. We run the model for 10 different instances with
demand randomly generated in the interval

[
dminj , dmaxj

]
, j ∈ J , where dminj and dmaxj

are the minimum and maximum demand observed in the historical data, respectively (see
Columns 3 and 4 of Table 7).

The cost values associated to the solutions of the deterministic model, the expected
value problem (4), and the stochastic formulation (39)-(46) are reported in Table 8 for
the 10 instances The deterministic model will always book the exact number of vehicles
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Table 7: Destinations with minimum & maximum observed demand and deterministic
& stochastic solution values averaged over 10 instances

Demand Solution
Destination Minimum Maximum EEV Stochastic
j ∈ D dminj dmaxj x̄ij xij
1 27.45 298.43 6 9
2 202.01 1479.89 29 26
3 171.78 680.16 14 21
4 0 216.96 4 7
5 0 101.26 2 3
6 0 196.93 4 6
7 0 216.20 4 7
8 0 200.43 4 6
9 0 545.19 10 15
10 0 234.37 4 7
11 0 318.89 6 9
12 0 430.36 7 11
13 0 199.42 4 6
14 0 223.50 4 7
15 0 723.46 12 20
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needed for the next period and so, x̄ij = z̄sij, i ∈ Ok, k ∈ K , j ∈ J , s ∈ S ; it sorts
the suppliers and their plants according to the transportation costs and books a full
production capacity from the cheapest one, followed by the next-cheapest, and so on. As
long as there is sufficient transportation capacity, the model will never purchase extra
gypsum from external sources, i.e. yj = 0, ∀j ∈ D . The total cost then reduces to the
booking cost at the first stage.

The last two columns of Table 7 show the total number of booked vehicles at each
cement factory averaged over the 10 instances,

∑
k∈K

∑
i∈Ok

xij, ∀ j ∈ D , for the ex-
pected value solution and the optimal solution of the stochastic problem, respectively.
The deterministic model books much fewer vehicles than the stochastic one, resulting
in a solution costing only 83% of the stochastic counterpart (Table 8). The EEV is
infeasible, however, resulting in V SS =∞, which shows that the expected value solution
is not appropriate in a stochastic setting.

Table 8: Optimal solution values for the STP

Instance Problem Type 1st stage cost (e) Objective value (e)
1 Deterministic 79 709.30 79 709.30=EV

Stochastic 123 673.00 95 738.53=RP
2 Deterministic 76 768.80 76 768.79=EV

Stochastic 119 626.00 93 468.32=RP
3 Deterministic 77 386.50 77 386.50=EV

Stochastic 121 147.00 93 297.18=RP
4 Deterministic 74 332.00 74 332.00=EV

Stochastic 122 054.00 90 734.68=RP
5 Deterministic 76 101.30 76 101.30=EV

Stochastic 119 638.00 93 014.14=RP
6 Deterministic 75 066.10 75 066.10=EV

Stochastic 118 657.00 91 661.99=RP
7 Deterministic 76 992.00 76 992.00=EV

Stochastic 119 004.00 94 066.06=RP
8 Deterministic 78 859.30 78 859.30=EV

Stochastic 123 980.00 94 306.65=RP
9 Deterministic 75 111.80 75 111.80=EV

Stochastic 119 033.00 91 966.36=RP
10 Deterministic 80 344.30 80 344.30=EV

Stochastic 123 781.00 96 296.00=RP
Mean Deterministic 77 067.14 77 067.14=EV

Stochastic 121 059.35 93 454.99=RP

Why is the deterministic solution bad? Is it because of an overly optimistic guess on
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the randomness, leading to too few booked vehicles from the plants i ∈ Ok of suppliers
K , or is it because of wrong choices being made regarding the suppliers and plants? To
answer these questions, we again perform the LUSS and GLUSS measures.

To compute the LUSS, we follow the skeleton solution from the deterministic model,
not allowing vehicles to be booked from the plants i ∈ Ok (for all suppliers k ∈ K ),
such that xij = x̄ij(ξ̄) = 0 in the expected value solution. The Expected Skeleton Solu-
tion Value ESSV is still infeasible with an associated Loss Using the Skeleton Solution
LUSS = ∞. Therefore, the chosen suppliers and associated plants, derived from the
solution to the deterministic model, are unsuited for the stochastic case. We can thus
conclude that the deterministic solution is inappropriate because the wrong number of
vehicles are booked from the the wrong suppliers and plants.
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Figure 1: Reduced costs of the variables at zero in the EV solution of STP instance 1

In applying GLUSS(p,N), we analyze the reduced costs of the variables at zero in
the deterministic solution, illustrated in Figure 1 for the first instance. The range of
reduced costs, which is from rmin = 131 to rmax = 683, is sufficiently broad to allow
testing the sensitivity of the results with a large number of classes N . We therefore
divide the difference rmax − rmin = 552 into N = 3, 10, 50, 100, classes R1, . . . ,RN of
constant width, respectively. Results are reported in Tables 10, 11 and 12, respectively.

Contrary to the V SS and LUSS, the GLUSS(p,N) is able to find optimal re-
sults when a limited subset of variables are fixed. In the case of GLUSS(p, 3), for
p = 1, 2, 3, the appropriate variables from the deterministic solution are identified as

the ones included in the last two classes (i.e.,
[
rmin + rmax−rmin

3
, rmax

]
), considering that

GLUSS(2, 3) = GLUSS(3, 3) = 0. On the other hand, fixing at zero all the variables
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Table 9: CPU time (seconds) for the computation of EV , RP . GLUSS(p, 3), p = 1, . . . , 3
and GLUSS(p, 10), p = 1, . . . , 10, for the STP

Measure CPU time (ss)
EV 0.0780005
RP 3.07322
GLUSS(3, 3) 1.49761
GLUSS(2, 3) 0.748805
GLUSS(1, 3) 0.140401
Total GLUSS(p, 3) 2.246415

GLUSS(10, 10) 1.794011
GLUSS(9, 10) 1.809612
GLUSS(8, 10) 1.48201
GLUSS(7, 10) 1.357209
GLUSS(6, 10) 1.294808
GLUSS(5, 10) 0.920406
GLUSS(4, 10) 0.608404
GLUSS(3, 10) 0.390002
GLUSS(2, 10) 0.140401
GLUSS(1, 10) 0.156001
Total GLUSS(p, 10) 9.952864

at zero in the deterministic solution yields GLUSS(1, 3) =∞. It should also be noticed
that GLUSS(p, 3), p = 2, 3 is able to replicate the optimal values of the stochastic prob-
lem while reducing the computational effort by 50% when p = 3 and by 75% when p = 2;
see Table 9.

One obtains more refined information on the wrong variables from the deterministic
solution by increasing the number of classes to N = 10, and identifying the good variables

to fix as the ones belonging to the classes in the interval
[
rmin + 3(rmax−rmin)

10
, rmax

]
. These

results are displayed in Table 10. Furthermore, by also fixing the variables belonging to

the interval
[
2(rmax−rmin)

10
, 3(rmax−rmin)

10

]
, one obtains a nearly optimal solution. Adding

the class p = 2, results in GLUSS(2, 10) = ∞ and consequently GLUSS(1, 10) = ∞.
As previously observed, GLUSS(4, 10) is able to replicate the optimal values of the
stochastic problem while reducing the computational effort by a significant margin (i.e.,
80%), see Table 9.

Increasing the number of classes to N = 50, see Table 11, further refines the informa-
tion deduced from the deterministic-model solution regarding the good variables to fix,
as GLUSS(p, 50) = 0, with p = 15, . . . , 50. In terms of the computational effort, the ob-
served gains increase to 84% with p = 15. By setting N = 100, two extra variables from
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Table 10: Results of GLUSS(p, 3) and GLUSS(p, 10) for the STP as % from RP

Instance V SS GLUSS(p, 3) GLUSS(p, 10)
1 2 3 1 2 3 4 5 6 7 8 9 10

1 ∞ ∞ 0 0 ∞ ∞ 0.006 0 0 0 0 0 0 0
2 ∞ ∞ 0 0 ∞ ∞ 0.006 0 0 0 0 0 0 0
3 ∞ ∞ 0 0 ∞ ∞ 0.008 0 0 0 0 0 0 0
4 ∞ ∞ 0 0 ∞ ∞ 0.084 0 0 0 0 0 0 0
5 ∞ ∞ 0 0 ∞ ∞ 0.001 0 0 0 0 0 0 0
6 ∞ ∞ 0 0 ∞ ∞ 0 0 0 0 0 0 0 0
7 ∞ ∞ 0 0 ∞ ∞ 0.01 0 0 0 0 0 0 0
8 ∞ ∞ 0 0 ∞ ∞ 0.006 0 0 0 0 0 0 0
9 ∞ ∞ 0 0 ∞ ∞ 0.002 0 0 0 0 0 0 0
10 ∞ ∞ 0 0 ∞ ∞ 0.002 0 0 0 0 0 0 0
Mean ∞ ∞ 0 0 ∞ ∞ 0.0129 0 0 0 0 0 0 0

the deterministic solution can be detected, GLUSS(p, 100) = 0, with p = 28, . . . , 100,
see Table 12). In this case, the gain in computational effort is 81% with p = 28.

5.4 SIPLIB

In this subsection we discuss the results of GLUSS(p,N) with respect to LUSS and
V SS for the set of SIPLIB library instances. Results are obtained using the best known
solutions of the RP , i.e., the proven optima for all the instances. For the GLUSS(p,N),
we used the number of classes set to N = 3. Notice that the definition of LUSS is
equivalent to GLUSS(1, 3). Table 13 summarizes the results obtained for the DCAP
instances, where Column 1 gives the instance name, Columns 2-5 show the gaps (in %)
relative to the optimal values of the stochastic formulation (the RP ) for the V SS and the
GLUSS(p,N), p = 1, 2, 3, while Columns 4-9 display the corresponding computational
times in CPU seconds.

The results illustrate how the first-stage solution obtained by solving the mean value
problem fails to provide a good solution in the stochastic case, with a V SS mean error fo
31%. LUSS (and GLUSS(1, 3)) reduces the error to 23%, which remains unacceptable
in many practical situations. This behavior is observed until we fix p to a value that
reduces the number of fixed variables in our modified stochastic formulation. We obtain
a deviation from the proven optima of 4% when p = 3. In this case, we also obtain a
large reduction of the computational effort (about 7 times on average). These reductions
reach one order of magnitude on the largest instances.
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Table 11: Results of GLUSS(p, 50) for the STP as % from RP

Instance V SS GLUSS(p, 50)
1 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.0066 p ≥ 15 : 0
2 ∞ p ≤ 8 : ∞ 9 ≤ p ≤ 10 : 0.1644 11 ≤ p ≤ 14 : 0.0063 p ≥ 15 : 0
3 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.00806 p ≥ 15 : 0
4 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.084 p ≥ 15 : 0
5 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.0012 p ≥ 15 : 0
6 ∞ p ≤ 10 : ∞ p ≥ 11 : 0
7 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.0103 p ≥ 15 : 0
8 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.0069 p ≥ 15 : 0
9 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.0029 p ≥ 15 : 0
10 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.0029 p ≥ 15 : 0

Table 12: Results of GLUSS(p, 100) for the STP as % from RP

Instance V SS GLUSS(p, 100)
1 ∞ p ≤ 19 : ∞ p = 20 : 0.0355 21 ≤ p ≤ 27 : 0.0066 p ≥ 28 : 0
2 ∞ p ≤ 15 : ∞ p = 16 : 0.1733 17 ≤ p ≤ 19 : 0.1644 p = 20 : 0.0391

21 ≤ p ≤ 27 : 0.0063 p ≥ 28 : 0
3 ∞ p ≤ 19 : ∞ p = 20 : 0.021 21 ≤ p ≤ 27 : 0.00806 p ≥ 28 : 0
4 ∞ p ≤ 19 : ∞ p = 20 : 0.1881 21 ≤ p ≤ 27 : 0.0849 p ≥ 28 : 0
5 ∞ p ≤ 19 : ∞ p = 20 : 0.017 21 ≤ p ≤ 27 : 0.0012 p ≥ 28 : 0
6 ∞ p ≤ 19 : ∞ p = 20 : 0.0278 p ≥ 21 : 0
7 ∞ p ≤ 19 : ∞ p = 20 : 0.0424 21 ≤ p ≤ 27 : 0.0103 p ≥ 28 : 0
8 ∞ p ≤ 19 : ∞ p = 20 : 0.0492 21 ≤ p ≤ 27 : 0.0069 p ≥ 28 : 0
9 ∞ p ≤ 19 : ∞ p = 20 : 0.0204 21 ≤ p ≤ 27 : 0.0029 p ≥ 28 : 0
10 ∞ p ≤ 19 : ∞ p = 20 : 0.0273 21 ≤ p ≤ 27 : 0.0029 p ≥ 28 : 0
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Table 13: Results of SIPLIB DCAP instances

Instance % from RP CPU time (ss)
V SS GLUSS(p, 3) RP GLUSS(p, 3)

1 2 3 1 2 3
dcap233.200 12.6 3.49 3.49 0 18.15 1.89 5.75 5.56
dcap233.500 44.2 10.93 10.93 0 15.89 13.23 28.73 29.85
dcap243.200 32.9 30.65 30.65 1.28 51.68 1.94 1.9 3.03
dcap243.300 1.6 1.38 1.38 0.01 23.48 6 6.04 46.38
dcap243.500 17.4 16.59 16.59 0.86 83.84 16.07 16.88 24.68
dcap332.200 57.3 50.95 50.95 7.16 133.34 6.28 3.7 5.4
dcap332.300 28.9 28.09 28.09 3.84 141.32 4.34 5.75 14.39
dcap332.500 24.7 23.62 23.62 8.82 199.67 8.6 8.55 48.2
dcap342.200 35.4 33.42 33.42 9.41 131.94 2.11 2.26 8.15
dcap342.300 48.6 28.26 28.26 6.96 493.15 5.51 6.92 15.68
dcap342.500 61.5 27.84 27.84 6.5 349.98 26.98 26.29 25.1
Mean 33.17 23.20 23.20 4.08 149.31 8.45 10.25 20.58

The SSLP results are reported in Table 14 (same column definitions as the previous
table). The results of GLUSS(p, 3), computed with p = 1, are reported to show that
LUSS = GLUSS(1, 3) reproduces exactly the value fo RP , while the V SS is very high
(50% on average). This means that, the EV problem preserves the structure in terms of
zero and non zero variables, but fails in providing the correct first-stage non zero values.
Thus, in this case, the gain in using the GLUSS(1, 3) resides in the reduction of the
computational time by a factor of 2. This is far from marginal considering that, when
the size of the instances increases, solving the full stochastic formulation reaches 10 000
seconds, whileGLUSS(p,N) and LUSS find the optimal solution within a computational
time that reduces up to 5 times.

A completely different behavior regarding LUSS is observed in the results obtained
for the SEMI instances, displayed in Table 15 (same organization as the previous table).
In this case, the performance obtained with the LUSS is equal to the V SS, which provide
a relatively good gap (close to 5% on average). The GLUSS(3, 3) is able to find optimal
results when a limited subset of variables are fixed. When the number variables set to
0 increases (p = 2), the gap remains small (0.15%). In this case, the gain in terms of
computational effort is somewhat limited when p = 3, while becoming significant, almost
2 orders of magnitude, when p = 2.

Up to now, we have examined the effect of the GLUSS(p,N) on small and medium-
sized instances. However, what about larger-sized instances? Is GLUSS(p,N) able to
replicate optimal or near optimal values while reducing the computational effort? The
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Table 14: Results for SIPLIB SSLP instances

Instance % from RP CPU time (ss)
V SS GLUSS(p, 3) RP GLUSS(p, 3)

1 1
sslp5.25.50 43.36 0 0.8 0.6
sslp5.25.100 42.83 0 1.5 1.5
sslp10.50.50 30.43 0 920.8 498.6
sslp10.50.100 31.64 0 3608.9 2711.8
sslp10.50.500 32.24 0 3620 2702.2
sslp10.50.1000 32.16 0 10936 2705.2
sslp10.50.2000 32.93 0 40683 4618.4
sslp15.45.5 78.68 0 3.8 9.8
sslp15.45.10 74.24 0 8.5 6.3
sslp15.45.15 73.48 0 262.2 83.1
Mean 47.199 0 6004.6 1333.7

Table 15: Results for SIPLIB SEMI instances

Instance % from RP CPU (ss)
V SS GLUSS(p, 3) RP GLUSS(p, 3)

1 2 3 1 2 3
semi2 3.59 3.59 0.17 0 2164 24.2 81.1 1701.1
semi3 4.38 4.38 0.23 0 8914 22.2 149 5568
semi4 5.68 5.68 0.06 0 27519 40.3 757.7 15923
Mean 4.55 4.55 0.15 0 12865.67 28.9 329.26 7730.62
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Table 16: Results for SIPLIB mpTSPs instances

Instance % from RP CPU (ss)
V SS GLUSS(p, 3) RP GLUSS(p, 3)

1 2 3 1 2 3
D0.50 4.22 4.22 2.54 0 473.3 2.8 58.25 265.05
D1.50 4.88 4.88 2.78 0 137.4 0.9 86.1 127
D2.50 2.05 2.05 0.64 0 655.5 0.7 79.8 411.1
D3.50 3.75 3.75 1.71 0 2069.1 0.8 129.5 567.8
D1.100 4.22 4.22 2.54 0 12376 2.6 58.3 256.1
Mean 3.82 3.82 2.04 0 3142.26 1.56 82.39 325.41

answer is yes to both questions, as can be seen in Table 16 for the SIPLIB mpTSPs
instances. Once again, GLUSS(p,N), with p = 3, is able to replicate the optimal values
while reducing the computational effort by an order of magnitude.

To conclude, it is clear how the GLUSS(p,N) can be effectively used to find high
quality solutions to stochastic problems by starting from the EV solutions. Furthermore,
when compared to the effort needed to find the optimal solution to the full stochastic
formulation, GLUSS(p,N) considerably reduces the computational times.

6 Highlights and general trends

The detailed results presented in Section 5 show how the GLUSS can be used to derive
a structure of the stochastic solution starting from data extracted from the continuous
relaxation of the expected value solution. In this section, we summarize the lessons
learned from our experiments applying GLUSS to different problems, considering the
issues of computational effort, feasibility and optimality. Finally, trends and perspectives
are also highlighted.

One of the main issues that emerges when using the GLUSS is how to choose the
number N of classes dividing the reduced costs of out-of-basis variables. While on one
hand, in order to reduce the problem size, it would be preferable to fix the largest possible
number of variables, on the other hand, fixing too large a number may result in errors
in terms of feasibility and optimality. The general trend emerging from the empirical
observations is that fixing to 0 about 33% of the non-basic variables with the highest
reduced costs is a good compromise. Indeed, applying this policy, we reached the optimal
stochastic solutions without feasibility issues and reducing the computational time up to
two orders of magnitude for the largest instance (Table 16).
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From the point of view of problem optimality, it seems that, as already noted for
deterministic combinatorial models, the reduced costs obtained from a continuous re-
laxation of an integral problem hint to the variables to make inactive in order to guide
the search for optimal solutions to stochastic programs [13]. Moreover, the results show
that, even when the V SS is high and, then, the objective function of the expected value
deterministic model is far from the one of the stochastic problem, the expected value
deterministic solution is providing correct information about the optimal stochastic solu-
tion. On the other hand, problems with just a few variables with positive reduced costs
in their deterministic solution structure (e.g., the DCAP instances in SIPLIB, Table 13),
highlight the need to extend the GLUSS approach by defining a measure for ranking
also the basic variables associated to the continuous relaxation of the expected value
deterministic problem.

Regarding the distribution of the reduced costs in the expected value deterministic
solution, one idea is to compute them, and plot them or pass them through a statistical
package, to see if one can observe a trend referable to a known probability distribution.
Unfortunately, the answer appears to be “no”, even though the distribution seems to have
a certain regularity for low values of the number of classes N . For larger numbers of sets
into which to categorize the variables, this regularity is less evident. We illustrate this
phenomenon with the results obtained for instance 1 of the supply transportation prob-
lem. Figure 2 displays the histograms of the reduced cost distribution. The graphs show
how, up to N=10, the reduced cost distribution has almost a Gumbel shape. Increasing
the number of classes to 50 and then to 100, its behavior becomes very irregular and a
reduced costs probability distribution is difficult to be identified. Similar observations
were made for other instances and problem classes (e.g., the mpTSPs).

We observed feasibility issues when fixing subsets of variables from the deterministic
solution of the supply transportation problem, following the computation ofGLUSS(1, 3),
GLUSS(p, 10), with p = 1, 2, GLUSS(p, 50) with p = 1, . . . , 10 and GLUSS(p, 100) with
p = 1, . . . , 19. We therefore performed a sensitivity analysis on values of a number of
parameters, the stochastic demand dsj and the minimum capacity requirement capacity
ak of supplier k ∈ K , aiming to obtain the largest set of variables from the deterministic
solution that cause infeasibility in the stochastic one.

The results of this analysis show that the infeasibility comes out in classesGLUSS(p, 100),
with p = 1, . . . , 19, for ak < 16.13% vk, k = 4, 6, 10, 11, 15, 16 and a1 < 2000 (see Table 23)
since too large a number of variables have been fixed not allowing to satisfy the constraint
(43) on the minimum capacity requirement. For ak = 16.13% vk, k = 4, 6, 10, 11, 15, 16
and a1 = 2000, the stochastic problem itself becomes infeasible and, consequently, also
all GLUSS(p, 100), p = 1, . . . , 100. The reason of the infeasibility is the following: if the
value of the minimum capacity requirement ak is increased in constraint (43), the model
decides to transport at least for the required quantity. Consequently, for a scenario with
low demand, constraint (41) is no longer satisfied, since the maximum storage capacity
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Figure 2: Absolute frequency of reduced costs of out of basis variables at zero in the EV
solution for the STP instance 1, for N = 3, 10, 50, 100
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at the customer is overtaken, generating the infeasibility. On the other hand, high de-
mand scenarios will not bring infeasibility to the model since constraint (41) is satisfied
by acquiring extra product from external sources at a higher price.

Histograms of the reduced-cost distributions are plotted in Figure 3, forN = 3, 10, 50, 100.
First, one can notice how, when considering higher values of N , the classes containing
the largest number of variables become the ones in the middle and in the left tail, i.e., the
classes characterized by the lowest reduced costs. Moreover, the results show that there
is empirical evidence that the GLUSS is stable also from the point of view of feasibility,
if one does not try to fix p close to 1, i.e., one fixes to 0 the largest part of out-of-basis
variables.
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Figure 3: Absolute frequency of reduced costs of out of basis variables at zero in the
EV solution for the STP instance 1, for N = 3, 10, 50, 100, with a1 = 2000 and ak =
16.13% vk, k = 4, 6, 10, 11, 15, 16.

Another interesting empirical evidence comes from the computational results. Recall
that in the literature on deterministic combinatorial optimization, there exists similar
approaches to the GLUSS [2, 13]. Indeed, in order to reduce the computational time, one
may fix to zero the largest part of the out-of-basis variables in the continuous relaxation
of the problem. Then, to identify the appropriate core set of out-of-basis variables to be
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included in the restricted problem, the search is performed starting from the ones with the
smallest reduced cost. This is exactly the opposite of the GLUSS. This may be explained
by the fact that, in order to obtain a substantial reduction of the computational effort
in the deterministic combinatorial case, one has to remove a lot of out-of-basis variables.
In stochastic programming, on the contrary, just removing a small subset of out-of-basis
variables pays a lot in terms of computational effort (see the results in Table 16). This
is probably due to the particular structure of two-stage models with recursion and the
effect of fixing first-stage variables in the second-stage scenario sub-problems.

From all the case studies considered, we derive a hint on how to proceed when we
want to apply the GLUSS to a new problem. Thus, an empirical method is the following:

� Divide the reduced costs in N = 3 intervals and fix in the stochastic first stage
solution only the variables belonging to the third class, i.e., with highest reduced
costs;

� If there are feasibility issues, consider the removed interval and split it again into
three intervals;

� If one desires a greater precision (and the number of zero variables appearing in
the continuous relaxation of the deterministic approximation is sufficiently large),
split the out-of basis variables into 10 bids and try the values p = 2, 3, and 4.

7 Conclusions and future directions

In this paper, we analyzed the quality of the expected value solution with respect to the
stochastic one, and introduced the Generalized Loss Using Skeleton Solution GLUSS, a
measure that goes beyond the standard Value of the Stochastic Solution V SS and the
Loss Using Skeleton Solution, LUSS [12].

GLUSS takes into account the information on reduced costs of out-of-basis variables
in the deterministic expected value optimal solution. Reduced costs of first stage out-of-
basis variables from EV are sorted, grouped into homogeneous classes, and then fixed
in the associated stochastic problem from highest to lowest, significantly reducing the
computational effort.

We performed a wide range of experiments on instances drawn both from the Stochas-
tic Programming literature and real cases. The results show that the GLUSS can help
identify the good and bad variables to keep from the deterministic to the stochastic so-
lution. In all the cases considered, fixing the variables with high reduced costs from the
EV when solving the RP allowed us to reach exactly the stochastic solution. We could
thus identify the main causes of goodness of the expected value solution in the variables
with highest reduced cost in the deterministic solution, measured by a zero Generalized
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Loss Using the Skeleton Solution 0 = GLUSS(p,N) ≤ LUSS ≤ V SS. These results
also show how a smart usage of the information coming from the linear programming
theory can be effectively incorporated in a Stochastic Programming resolution approach
in order to build accurate solutions.

The proposed GLUSS measure and procedure can then be effectively used both for
problems actually solvable but that must be run very often, and for intractable real-world
problems, to reduce the computational time of solving the stochastic problem, without
loosing in terms of solution quality.

The introduction of the GLUSS opens a number of interesting future research di-
rections, including how to extend and incorporate this idea into various algorithmic
frameworks, such as progressive hedging, diving procedures [13], etc. The computational
analysis performed in this paper points to a second avenue. We have seen when classifying
the non-basis variables in term of their reduced cost that whose with the highest values
can be hard-fixed to zero without affecting the final quality of the stochastic solution.
On the other side, the variables with the lowest reduced costs should be present in the
stochastic model. But what about the variables which are in between these two extreme
classes? Can we define a way to identify those hedging variables and to incorporate
this? What is the appropriate number N of classes needed and their usage (which ones
to be fixed and which ones no)? A related, but different research avenue concerns the
case, studied within the branch-and-bound literature for deterministic formulations, of
identifying a measure of the willingness to fix a non-zero variable and how to fix it. We
expect to report on some of these issues in the near future.
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1 Annex

1.1 A single-sink transportation problem

Problem data are presented in Tables 17–18. Table 17 presents the production and
transportation costs for each supplier, together with its distance from the customer in
Catania, while Table 18 reports the monthly production capacity of each supplier in
the considered period (zero entries represent production site closures due to equipment
failure or maintenance).

Table 17: Production costs ci and transportation costs ti from Catania.

Supplier ci (e/t) ti (e/t)
Porto Empedocle (AG) 18.79 11.40

Castrovillari (CS) 9.55 33.00
Isola d. Femmine (PA) 11.00 14.10

Vibo Valentia (VV) 11.54 18.50

We used in our computational experiment, the vehicle capacity q = 30 tonnes (t), the
storage capacity lmax = 35 kilotonnes (kt) and the daily unloading capacity of 1800 t,
giving us the monthly unloading capacity g = 21× 1800 t = 37.8 kt, or 1260 full vehicles.
The cost of clinker from an external source was set to b =e 45/t and the cancellation fee
to α = 0.5. For the initial inventory level l0 at the customer, we have taken the value at
the beginning of January 2007, that is l0 = 2000 t.

1.2 Power generation scheduling

Table 19 reports energy demands at the nodes n ∈ N of the scenario tree, while the
characteristics of the two types of generators are shown in Table20. Value D̄ is the mean
demand considered in the deterministic model. We assume that the number of running
units as we enter the modelling period is u0i , i ∈ I . These units have a capacity of 800
mw, which is well above the expected need of D̄ = 300 mw during the first time period.
Consequently, no generators are started up in period one (s1i = 0, i ∈ I ) independently
of the considered start up cost. The aim of the model is to select and allocate the power
demands among an optimal number of operating units of types 1 and 2.
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Table 18: Monthly production capacity ai of suppliers i ∈ I, January 2003 to May 2007,
in kilotonnes (kt).

i Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
’03 9.1 4.0 11.1 14.6 21.7 14.2 17.4 8.4 24.9 17.4 12.3 13.0
’04 0.0 4.1 9.0 10.5 9.3 12.2 11.6 13.6 9.4 11.0 9.7 0.0

AG ’05 0.0 9.1 8.3 21.1 15.0 15.1 12.1 13.2 11.3 13.0 7.1 1.2
’06 1.7 9.5 4.5 14.0 12.5 15.2 11.3 15.9 6.2 11.9 7.2 9.0
’07 13.0 13.0 19.0 4.0 10.0
’03 10.9 14.0 13.9 19.1 14.1 13.0 4.5 0.0 4.0 13.7 9.1 4.5
’04 8.3 6.3 3.0 0.0 16.2 14.2 12.3 14.4 19.8 19.3 20.0 15.2

CS ’05 15.1 10.8 21.9 19.7 15.3 10.8 6.3 0.0 9.1 23.2 11.7 0.9
’06 18.7 0.0 8.9 16.0 17.6 13.9 4.8 5.0 14.1 24.3 14.5 8.1
’07 17.0 8.0 0.0 0.0 10.0
’03 15.5 18.1 23.3 12.4 0.5 5.7 12.5 13.5 12.3 10.2 8.3 12.0
’04 27.1 10.0 12.8 13.8 13.7 14.0 10.6 1.4 10.3 12.6 11.5 16.9

PA ’05 16.0 3.8 10.6 16.6 23.0 27.7 16.7 13.4 16.8 11.1 19.0 22.4
’06 27.5 21.5 18.6 20.4 0.0 14.0 14.3 11.2 18.4 16.9 9.4 11.1
’07 11.0 9.0 7.0 6.0 10.0
’03 4.9 1.2 12.7 2.7 19.3 11.9 5.4 3.0 14.6 3.4 15.2 2.5
’04 4.0 9.4 18.3 10.5 13.9 8.6 6.2 4.3 7.2 12.4 9.5 0.0

VV ’05 3.5 21.1 20.8 13.0 23.5 19.1 8.2 8.6 4.6 9.2 16.2 16.0
’06 8.5 22.3 21.7 15.1 7.4 10.3 0.0 2.5 4.3 5.2 18.3 6.3
’07 0.0 0.0 0.0 0.0 10.0
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Table 19: Predecessor pa(n), energy demand Dn and probability pn at node n ∈ N of
the two-period scenario tree.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
pa(n) - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dn 300 300 605 630 580 650 600 520 100 180 130 100 120 102 50 41 100 102 125 69 600 596

pn 1 1
1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20
D̄ 300 300 300

Table 20: Costs and production characteristics for generators of type i ∈ I .
Ci (e) Ei (e) Fi (e) mi (mw) Mi (mw) u0i ui,max

i = 1 100 2500 14000 20 80 4 4
i = 2 150 5000 16000 30 120 4 4

1.3 Supply transportation problem

Deterministic and stochastic parameter values are reported below. Table 21 lists the
set of suppliers K and the sets of their plants Ok, k ∈ K . The list of destinations
(cement factories) is shown in Table 22 with the premium rates charged by the external
company and the unloading capacities (expressed in tons of gypsum). Table 23 provides
the minimum and maximum requirements for suppliers k ∈ K (again expressed in tons
of gypsum). It is assumed that an initial inventory level of l0j = 0 is available for all
the destinations j ∈ D . The capacity for all vehicles is fixed to q = 31 tons. The
discount α is set to the value 0.7. The values of the transportation costs tij over all
origins and destinations are in the following range: [tminij , tmaxij ] = [10.80, 73.52]. Finally,
the demand scenarios were obtained using historical data. Scenarios were built using
the weekly demand values for the months of March, April, May and June of 2011, 2012
and 2013. Thus, a set of 48 weekly demand scenarios were obtained and assumed to be
equiprobable.
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Table 21: Set of suppliers K with their sets of plants Ok, k ∈ K .
Supplier k ∈ K Plant i ∈ Ok

1 1, . . . , 6
2 7
3 8
4 4
5 9
6 6, 10
7 1
8 1, 2
9 11
10 12
11 13
12 14
13 15
14 12
15 8
16 16
17 17
18 9
19 5, 15
20 5
21 18
22 19
23 7
24 12
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Table 22: List of destinations (cement factories) with emergency costs bj and unloading
capacities gj, j ∈ D .

Destination j ∈ D emergency cost bj Unloading capacity gj
1 72.61 422.95
2 70.58 2054.55
3 68.01 1330.67
4 64.94 453.64
5 73.52 613.41
6 58.57 695.24
7 69.83 443.14
8 66.32 815.36
9 62.63 933.33
10 68.22 319.79
11 48.92 443.11
12 50.04 760.11
13 73.07 381.20
14 59.93 498.33
15 55.63 232411.75

Table 23: Minimum ak and maximum vk requirement capacity of supplier k ∈ K .
Supplier k ∈ K ak vk
1 1057.69 -
4 0 96.15
6 0 576.92
10 0 194.23
11 0 480.76
15 0 192.30
16 0 384.61
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