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Abstract. In this paper we propose a way to estimate static Multivariate Extreme Value 

(MEV) models with very large choice sets in short computational time. Similar to the 

network MEV model (Daly and Bierlaire, 2006) the correlation structure is defined by a 

rooted, directed graph where each node without successor is an alternative. We show 

how to compute choice probabilities based on the graph using a dynamic programming 

approach. This allows us to estimate the models by maximum likelihood using the Nested 

Fixed Point algorithm proposed by Rust (1987). Moreover, we show that, under some 

conditions, the resulting models are consistent with MEV theory and generalize the 

network MEV model. We present numerical results based on simulated data with varying 

number of alternatives and nesting structures. We show that we can estimate large 

models, for example, a cross-nested model with 200 nests and 500,000 alternatives, 

2,000,000 observations and 210 parameters needs between 100-200 iterations to 

converge (4.3 hours on an Intel(R) 3.2GHz machine using a non-parallelized code). 
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1 Introduction

Dynamic discrete choice models are in general more complex to estimate and to
apply than static discrete choice models. The reason is that dynamic program-
ming problems need to be solved in order to evaluate the log-likelihood function.
Recently, Fosgerau et al. (2013) and Mai et al. (2015) showed that a dynamic
discrete choice formulation of the path choice problem is actually simpler to deal
with than the classic, path based, static discrete choice model. This paper builds
on a similar idea but in a different context. We propose a dynamic discrete choice
approach that allows to estimate large Multivariate Extreme Value (MEV) models
(McFadden, 1978) in short computational time.

The correlation structure of the alternative specific utilities is defined by a
rooted, directed and connected graph where each node without successors is an
alternative. Choice probabilities are defined by paths in this graph. In turn, path
probabilities are computed by a dynamic discrete choice model, in a way similar
to the route choice model proposed by Mai et al. (2015). This work is however
different from a route choice setting since the graph corresponds to a correlation
structure (not a transport network), has many destinations and more importantly,
cost-less arcs (except for nesting parameters). Given some assumptions, the re-
sulting choice model is equivalent to the network MEV model proposed by Daly
and Bierlaire (2006). Our main objective is to estimate these models in short com-
putational time. The main challenge lies in the definition and the computation of
the expected maximum utility (value function) from a node in the graph to the
nodes representing the alternatives and the computation of choosing alternatives
as well as their gradients.

We use the nested fixed point algorithm proposed by Rust (1987) to estimate
the model. The value functions are computed by using a value iteration method as
in Mai et al. (2015). The choice probability of a given alternative is decomposed
into sequences of node probabilities in the graph and we show that they can be
computed by using the expected flows from the root to destinations, leading to a
system of linear equations. In order to have efficient optimization algorithms for
the maximum likelihood estimation we derive the derivatives of the value functions
as well as the choice probabilities. We show that they are also solutions to linear
systems of equations. Moreover, we derive demand elasticities. We present com-
putational times for the estimation of a cross-nested and a network MEV models
with different simulated data.

We make three main contributions. First we apply a dynamic discrete choice
model to graphs of correlation structures and show that the model generalizes the
network MEV model. Second, we propose efficient methods for the estimation of
the model, i.e. a value iteration method to compute the value functions, systems
of linear equations for the computations of the choice probabilities, gradients and
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elasticities. Third, the estimation code is implemented in MATLAB and is freely
available upon request.

The paper is structured as follows. Section 2 presents a dynamic discrete
choice approach for static discrete choice models. Section 3 provides an illustrative
example using a cross-nested logit model. Section 4 discusses the properties of the
model related to the MEV models and Section 6 derives the demand elasticities.
We present the numerical results in Section 7 and finally Section 8 concludes.

2 A dynamic discrete choice approach for static

discrete choice models

We consider a directed connected graph G = (N ,A) where N and A are the set
of nodes and arcs, respectively. A subset of the nodes have no successors and
define an alternative j in a choice set C. We assume that the graph does not
have multiple links for any given node pair and there is only one node with no
predecessor that we call the root. Considering the root as an origin, the nodes
representing the alternatives can therefore be viewed as destinations in G and
there are paths connecting the root and the destinations. The graph is used to
define the correlation structure and a simple example is the well-known tree of a
nested logit model where each leaf is an alternative.

For each node k ∈ N , we denote the set of node successors N (k). The utility
of node a ∈ N (k) conditional on its predecessor k is

u(a|k; β) = v(a|k; β) + µk(ε(a)− γ), (1)

where v(a|k; β) is a deterministic utility associated with a given k, β is a vector of
parameters to be estimated, µk is a strictly positive scale parameter, ε(a) is extreme
value type I and i.i.d over a ∈ N (k) and γ is Euler’s constant. The Euler’s constant
is used in order to ensure that the random terms have zero mean. We note that
the utilities can include nesting parameters and attributes of alternatives. This is
different from the utilities considered in route choice applications (Fosgerau et al.,
2013, Mai et al., 2015) where the graph is a road network, utilities are defined for
arcs based on road attributes and there is only one path per observation.

The probability of j ∈ C is the sum of the probabilities of all paths connecting
r and j, and we denote the set of all such paths Ω(j). A path is defined by a
sequence of nodes k0, k1, . . . , kJ such that ki+1 ∈ N (ki), ∀i = 0, . . . , J − 1, where
k0 is the root r and kJ represents alternative j. Path probabilities are defined
based on the probability of each node in the path and the probability of choosing
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j over choice set C is

P (j) =
∑

[k0,...,kJ ]∈Ω(j)

J−1∏
i=0

P (ki+1|ki), j ∈ C (2)

where P (ki+1|ki) is the probability of node ki+1 given node ki.
The key here is how to compute the node probabilities since they depend

on nodes that are available downstream. Similar to Mai et al. (2015) this is
the expected maximum utility (or value functions) V (k) from a node k to the
destinations. We assume each node j ∈ C associates with an deterministic utility
of the respective alternative Uj and we define V (j) = Uj. The model can be
considered as an infinite horizon dynamic programming problem with absorbing
states j ∈ C, thus the value function V (k) for k ∈ N\C is recursively defined by
Bellman’s equation

V (k; β) = E

[
max
a∈N (k)

{v(a|k; β) + V (a; β) + µk(ε(a)− γ)}

]
,∀k ∈ N\C (3)

or equivalently

1

µk
V (k; β) = E

[
max
a∈N (k)

{ 1

µk

(
v(a|k; β) + V (a; β)

)
+ ε(a)− γ

}]
,∀k ∈ N\C (4)

which in this case is the logsum

1

µk
V (k; β) = ln

( ∑
a∈N (k)

e
1
µk

(v(a|k;β)+V (a;β))
)
∀k ∈ N\C (5)

and for notational simplicity we also omit from now on β from the value functions
V and the node-based utilities v. The probability of node a given node k is given
by the MNL model

P (k|a) = δ(a|k)e
1
µk

(V (a)+v(a|k)−V (k))
, ∀k, a ∈ N (6)

where δ(a|k) equals one if a ∈ N (k) and zero otherwise so that the probability is
defined for all a, k ∈ N . The utilities of other nodes in the network and the scale
parameters µk, k ∈ N , are related to the correlation structure.

According to (5), if we define a vector Y of size |N | with entries

Yk = e
V (k)
µk , ∀k ∈ N (7)
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then the value functions are the solutions to the following non-linear system

Yk =

{∑
a∈N (k) e

v(a|k)/µkY
µa/µk
a if k ∈ N\C,

eUk if k ∈ C.
(8)

Using (6), the choice probability of a node a given k can be written as

P (a|k) = δ(a|k)
∑

a∈N (k)

ev(a|k)/µk
Y
µa/µk
a

Yk
, ∀k, a ∈ N (9)

It is convenient to compute choice probabilities using (2) and (6) because we
only need to compute a vector of value functions of size |N | for each alterna-
tive. This can easily be done using the same techniques as for the route choice
applications (Mai et al., 2015).

3 Illutrative example

In this section we use a cross-nested model as illustration. In this case the graph
consists of three layers: a root r, a set of nodes M representing the nests and a
set of nodes C representing the alternatives (see Figure 2).

r

m

a

M

C

Figure 1: A cross-nested structure

There is an arc between the root and each nest and arcs between the nests and
the alternatives. Assuming that αam is the cross-nested parameters for a given nest
m and an alternative a, and considering the network, given two nodes m, a ∈ N ,
m ∈ M and a ∈ C, we define v(a|m) = µm ln(αam) if a ∈ N (m). Moreover we
assume that v(m|r) = 0, ∀m ∈M . According to (5) and (6), given a nest m ∈M
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and alternative a, we have

P (a|m) =
e(Ua+v(a|m))/µm∑

a′∈N (m) e
(Ua′+v(a′|m))/µm

=
αame

Ua/µm∑
a∈C αame

Ua/µm

and

P (m|r) =
eV (m)/µr∑

m′∈M eV (m′)/µr
.

Moreover, for each nest m ∈M the respective value function is given by (5) as

V (m) = µm ln
( ∑
a∈N (m)

e
1
µm

(v(a|m)+V (a))
)
. (10)

Using (5), the choice probability is

P (a) =
∑
m∈M

P (m|r)P (a|m)

=
∑
m∈M

(∑
a∈C αame

Ua/µm
)µm/µr∑

m∈M
(∑

a∈C αame
Ua/µm

)µm/µr αame
Ua/µm∑

a∈C αame
Ua/µm

which is equivalent to the choice probability given by Ben-Akiva and Bierlaire
(1999). We note that other specifications of the cross-nest logit model can be
obtained by defining a graph such that the choice probabilities are equivalent,
for instance the paired combinatorial logit model (Koppelman and Wen, 2000),
the generalised nested logit model Wen and Koppelman (2001), the ordered GEV
model Small (1987), the link-nested logit model (Vovsha and Bekhor, 1998), the
GenL model (Swait, 2001). In the next section we show that that if the graph G
and scale parameters µk ∀k ∈ N satisfy some conditions, the resulting model is
an additive random utility MEV model.

4 MEV consistency

We explore the properties of the model presented above by showing that under
some conditions the resulting model is an additive random utility MEV model.
We prove the MEV consistency for the case when the graph is cycle-free. (It is
possible to extend this result graphs with cycles, it is work in progress.)

Theorem 1 If the graph G is a non-empty, cycle-free and µk ≥ µa, ∀k, a ∈ N , a ∈
N (k), then the model is an additive random utility MEV model with the generating
function G(eUi , i ∈ C) = Yr, and Yr is a

1
µr
−MEV function.
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Proof. The proof is based on the network MEV model (Daly and Bierlaire,
2006). We assume each arc (k, a), a ∈ N (k), is associated with a parameter
αka = ev(a|k)/µk and each node k ∈ N associates with a positive scale parameter
δk = 1/µk. We denote yk = eUk , ∀k ∈ C. We also define

Gk(yk) = yδkk , k ∈ C (11)

and
Gk(y) =

∑
a∈N (k)

αkaG
a(y)δk/δa ,∀k ∈ N\C (12)

Daly and Bierlaire (2006) show that if δk ≤ δa, ∀a, k ∈ N , a ∈ N (k), the func-
tion Gk() associated with a node k ∈ N is a δk − MEV function. This result
allows the network MEV model to be consistent with McFadden’s MEV theory
and hence with additive random utility maximization (ARUM) (see for instance
Mogens Fosgerau, 2013).

Therefore, we can prove the theorem by showing that

Yk = Gk, ∀k ∈ N . (13)

Indeed, according to (11)
Yk = Gk, ∀k ∈ C. (14)

For k ∈ N\C, from (5) we have

V (k) = µk ln

 ∑
a∈N (k)

e
1
µk

(v(a|k)+V (a))

 (15)

so, from (7),

Yk =
∑

a∈N (k)

αkae
V (a)
µk =

∑
a∈N (k)

αkaY
µa/µk
a

or equivalently

Yk =
∑

a∈N (k)

αkaY
δk/δa
a . (16)

The result then follows from (11), (12), (14) and (16). In other words, Yk associated
with a node k ∈ N is a 1

µk
−MEV function.

We now analyze the probabilities given by a MEV model with the generating
function G(y) = G(yi, i ∈ C) = Yr, where r is the root of the network. Each
alternative i is associated with the utility Ui+εi, where vector ε is MEV distributed
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with the generating function G(y). Since Yr is a 1
µr
−MEV function, the choice

probability (McFadden, 1978) is

P (i) =
yi
∂G
∂yi

(y)

1/µrG(y)

=
µryi
Yr

∂Yr
∂yi

, i ∈ C
(17)

From (8), the partial derivative of Yk with respect to yi, i ∈ C is

∂Yk
∂yi

=
∑

a∈N (k)

evka/µk
µa
µk
Y µa/µk
a

∂Ya
Ya∂yi

, k ∈ N\C. (18)

Denote Sik = µkyi
Yk

∂Yk
∂yi

, i ∈ C, k ∈ N . Based on (42), we obtain a recursive formulas

for Sik as

Sik =
∑

a∈N (k)

evka/µk
Y
µa/µk
a

Yk
Sia =

∑
a∈N (k)

P (a|k)Sia, ∀k ∈ N\C. (19)

Note that

Sii =
µiyi
Yi

∂Yi
∂yi

=
µiyi

y
1/µi
i

1

µi
y

1/µi−1
i = 1,

so the choice probability given by the MEV model is

P (i) = Sir =
∑

[kl,...,k0=i]∈Ω(i)

l−1∏
i=0

P (ki|ki+1), ∀i ∈ C (20)

which is equivalent to the probability given in (2). So basically when the graph
is cycle-free the resulting model is equivalent to the network MEV model, so the
properties presented in Daly and Bierlaire (2006) apply i.e. the model generalizes
many MEV models proposed in the literature.

In the following section we present how to estimate the model by using the
nested fixed point algorithm (Rust, 1987).

5 Maximum likelihood estimation

There are different ways to estimate a dynamic discrete choice model (see for
instance Aguirregabiria and Mira, 2010). We use the nested fixed point algorithm
proposed by Rust (1987). The algorithm combines an outer iterative non-linear
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optimization algorithm searching over the parameter space with an inner algorithm
solving the value functions. The computation of the choice probabilities as well
as the likelihood requires the value functions. In the following we discuss how to
solve the value functions, compute the choice probabilities and the log-likelihood
function.

5.1 Solving the the value functions

The probability of a path in the graph can be computed by using the value func-
tions based on (2) and (6). In the following we describe a simple value iteration
method which is efficient for our problem.

We define a matrix M of size |N |× |N | and a vector b of size |N |, with entries

Mka = δ(a|k)ev(a|k)/µk ; bk =

{
eUk if k ∈ C
0 if k ∈ N\C

(21)

and a matrix X(Y ) of size |N | × |N |, with entries X(Y )ka = Y
µa/µk
a , ∀k, a ∈ N .

The non-linear system (8) can be written as

Yk =
∑
a∈N

MkaY
µa/µk
a + bk, ∀k ∈ N (22)

or equivalently
Y = [M ◦X(Y )]e+ b (23)

where ◦ is the element-by-element operation and e is a vector of size |N | with
value one for all nodes. This equation can be solved by a value iteration. We start
with an initial vector Y 0 and compute a new vector for each iteration i

Y i+1 ← [M ◦X(Y i)]e+ b. (24)

In general, we iterate until a fixed point is found using ||Y i+1 − Y i||2 < τ for a
given threshold τ > 0 as stopping criteria. It can be shown that if the Bellman’s
equation has a solution, the value iteration method converges after a finite number
of iterations (see for instance Rust, 1987, 1988). Mai et al. (2015) use value
iteration with dynamic accuracy to efficiently compute the vector of the value
functions in a real road network which contains cycles. In a cycle-free graph it
can be shown that the value iteration method converges to the fixed point solution
after few iterations i.e. there exist K > 0 such that Y i+1 = Y i, ∀i > K. For
instance, in the case of cross-nested logit models, the value iterations only needs
3 iterations to converge, independently of the number of nodes and the structure
of the graph.
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5.2 Choice probabilities

Based on (2), the choice probability of a given alternative can be computed by
enumerating all the paths connecting the root r with the destination i ∈ C repre-
senting the alternative. This can be cumbersome if the graph is dense, or contains
cycles, or the number of observations is large. In order to compute the choice
probabilities in short computational time we use a method from route choice ap-
plications. Namely, we compute the flows in the graph from the root (origin) to
destinations.

We consider the graph as a road network. We denote the demand for trips
originating at node k ∈ N as D(k). Denote the expected flow on node a as F (a).
This comprises the flow that originates on a and the expected incoming flow, so
we have

F (a) = D(a) +
∑
a∈N

P (a|k)F (k)

and equivalently in matrix form as

(I − P T )F = D (25)

where I is the identity matrix, P is a matrix of size |N | × |N | with elements
Pka = P (a|k), ∀k, a ∈ N . This leads to

F = (I − P T )−1D. (26)

In order to obtain the choice probabilities we define an origin specific demand
vector D with zero-valued elements except for the root which equals one. The
expected flows can be written as

F (k) =


∑

{h0,...,hl}
h0=r,hl=k

ht+1∈N (ht),t=0,...,l−1

∏l−1
t=0 P (ht+1|ht) if k ∈ N\{r}

1 if k = r

(27)

and note that according to (2) the probability of choosing an alternative is

P (i) = F (i),∀i ∈ C, (28)

where i ∈ C is the destination representing the alternative. So the choice proba-
bilities for all alternatives are the solutions to the the system of linear equations
in (26).
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5.3 Estimation

We assume that the utilities associated with alternatives, the deterministic utility
associated with a pair of nodes v(a|k), a ∈ N (k) and the scales of the model µk,
k ∈ N are functions of parameters β to be estimated. The log-likelihood function,
defined over the set of observations n = 1, . . . , N , is

LL(β) =
N∑
n=1

P (in|Cn) (29)

where in is the chosen alternative and Cn the the choice set with respect to indi-
vidual n. The choice probability is defined in (2) and can be computed efficiently
using (26) and (28).

For the maximum likelihood estimation, the network G generates MEV models
with many parameters. That is, the scale parameters associated with each node
µk, k ∈ N and the utility v(a|k) for each node pair (k, a) in the network. Not all
of them are identifiable from data. The scale parameters µk relevant only in terms
of their ratio, exactly as for the nested logit model. Inspired by the cross-nested
logit model, conditions for the utilities v(a|k) would be (see for instance Daly and
Bierlaire, 2006, Papola, 2004)

κ(a) =
∑

k∈W (a)

ev(a|k)/µk = 1, ∀a ∈ N\{r} (30)

where W (a) is the set of all predecessor nodes of a, ∀a ∈ N\{r}. Furthermore,
according to Theorems 1 and ?? the constraints µk ≥ µa > 0, ∀a ∈ A(k) need to
be satisfied for the MEV consistency. In summary, the maximum log-likelihood
estimation can be formulated as a constrained non-linear optimization problem as

max
µk≥µa>0,∀a∈A(k)
κ(a)=1,∀a∈N\{r}

LL(β). (31)

Efficient nonlinear techniques for the problem require analytical derivatives of the
log-likelihood function. They are provided in Appendix A. We note that the
derivatives of the log-likelihood function can be computed efficiently by solving
systems of linear equations.

6 Demand responses and elasticities

The elasticity of demand for alternative i with respect to an attribute xj of alter-
native j is

ei,xj =
∂P (i)

∂xj

xj
P (i)

=
∂P (i)

∂Uj

∂Uj
∂xj

xj
P (i)

, i, j ∈ C. (32)
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If the utility Uj is linear in x,
∂Uj
∂xj

is a constant. We now analyze the model

structures in terms of the responses of demand to changes in the utility of alter-
natives ∂P (i)

∂Uj
. Similar to the previous section we derive formulas for the elasticity

of demand so that they can be computed efficiently.
Note that ∂P (i)

∂Uj
= ∂Fi

∂Uj
and the Jacobian of vector F with respect to Uj can be

derived using (26)
∂F

∂Uj
= (I −Q)−1 ∂Q

∂Uj
F, (33)

where Q = P T . Using (38), the derivative of an element Qak, k, a ∈ N with
respect to Uj is

∂Qak

∂Uj
= Qak

(φka
Ya

∂Ya
∂Uj
− ∂Yk
Yk∂Uj

)
(34)

and hence requires the first derivatives of Yk, ∀k ∈ N , with respect to Uj. Taking
the derivative of (22) with respect to Uj we obtain

∂Yk
∂Uj

=
∑
a∈N

φkaMkaY
φka−1
a

∂Ya
∂Uj

+
∂bk
∂Uj

, ∀k ∈ N . (35)

And we note that
∂bk
∂Uj

=

{
0 if k 6= j

Yj/µj if k = j
.

So if we denote a matrix T (|N |×|N |) with entries Tka = φkaMkaY
φka−1
a , ∀k, a ∈ N ,

then the Jacobian of vector Y can be written as system of linear equations

∂Y

∂Uj
= (I − T )−1d (36)

where d is a vector of size |N | with zero values for all nodes except for node j that
equals Yj/µj. Therefore, the elasticity of demand for alternative i with respect to
an attribute xj can be computed by solving the linear systems (33) and (36).

7 Numerical results

In this section we report the performance of the new approach based on simulated
data with the purpose to evaluate computational times when estimating MEV
models with very large choice sets. We first provide the performance results for a
cross-nested logit model and then a network MEV model based on simulated data
sets. Our code is implemented in MATLAB 2015 and we have used an Intel(R)
machine, CPU 3.20GHz, running Window 8, 64-bit Operating system, x64-based
processor. The machine has a multi-core processor but we only use one processor
to estimate the model as the code has not been parallelized.
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7.1 Cross-nested logit models

We consider the cross nested logit model presented in Section 3. The network
contains a set of nests which connect to the alternatives and a root that connects
to all the nest as in Figure 2.

r

alternatives

nests

Figure 2: A cross-nested structure

We generate choice sets of sizes 10000, 100000 and 500000. The attributes are
generated uniformly in interval [0, 5] and we note that the alternative utilities are
individual independent. We use a cross-nested logit model with 5 and 200 nests.
In this application we estimate 6 parameters associated with alternative utilities
and the scale parameters µk, k ∈ N\C. We estimate 4 α parameters associated
with two different alternatives, the other parameters are fixed to their true values.
For the optimization we use the interior point algorithm with BFGS to solve the
constrained optimization problems. There are some models with large number of
parameters to be estimated i.e. more than 200, we use the limited memory BFGS
algorithm (L-BFGS) (for instance Nocedal and Wright, 1999, Chapter 9) to solve
the large-scale problems. For the data with 5 and 200 nests, the optimization
algorithms need around 100 to 300 iterations to converge. We report the data
sets, and the computational time to compute the LL function and its gradient, for
computing the elasticities for a given alternative and the total estimation time in
Tables 1 and 2. For the data with 10000 alternatives we need around 5 seconds to
estimate the model with 5 nests and less than 2 minutes for estimating the model
with 200 nests. For the largest data (500000 alternatives), the estimation times
are about 20 minutes for estimating the model with 5 nests and around 4 hours for
the model with 200 nests. We note that the computational times for solving the
elasticities for a given alternative are small (few seconds for the most complicated
case).
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Data Model # alters # nests # arcs # Obs
in network

D1 M1 104 5 17262 105

D1 M2 104 200 30011 105

D2 M3 105 5 172376 106

D2 M4 105 200 298237 106

D3 M5 5× 105 5 862597 2× 106

D3 M6 5× 105 200 1490207 2× 106

Table 1: Simulated data sets

Computational time
Data Model # params LL and Estimation Elasticities

gradient
D1 M1 16 0.14 4.61 0.04
D1 M2 210 1.44 84.62 0.06
D2 M3 16 1.75 301.55 0.48
D2 M4 210 18.29 1073.93 0.59
D3 M5 16 7.84 1462.9 2.27
D3 M6 210 88.52 15566.32 3.08

Table 2: Computational time (in seconds)

7.2 Multi-level cross-nested logit models

In this section we provide numerical results for a multi-level cross nested logit
(or network MEV) model. Figure 3 shows the correlation structure given by the
model, where there is a root connecting with 1st-level nests and the 1st-level nests
connect with the nests in 2nd level.

We use the data sets generated in the previous section. The model is defined
with 5 nests in the first level and 50 nests in the second level. The nests in
the first level connect to all the nests in the second level. We estimate 56 scale
parameters µk, k ∈ N\C and all parameters αka, a ∈ N (k) and k, a ∈ N\C.
In total the model has 305 constraints and 312 parameters to be estimated. The
networks representing the multi-level cross-nested models are more dense compared
to the cross-nested model and the optimization algorithms require from 300 to 500
iterations to converge. Note that if we do not estimate the scale parameters µk, the
optimization algorithm needs less than 50 iterations to converge. We report the
computational times in Table 3. The results show that we can estimate the multi-
level cross-nested logit models with large choice sets in reasonable times (about
14 hours for the model with 200 nests and the data with 500000 alternatives).
The computational times for the multi-level cross-nested logit models are twice the
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Figure 3: A tree logit structure

cross-nested logit models considered in the previous section. It is important to note
that in the simulated data sets, the utilities are not individual specific. The number
of observations therefore does not affect much the computational times. For some
real problems, for instance mode-destination choice models, the alternative utilities
depend on each individual and the value functions are individual specific, leading
to a more expensive log-likelihood function. The estimation is therefore more
costly, especially when dealing with large numbers of observations.

Computational time
Data # arcs LL and Estimation Elasticities

gradient
D1 56972 2.74 715.6 0.12
D2 566751 38.47 11464.06 1.14
D3 2831668 162.52 52168.92 5.52

Table 3: Computational time (in seconds)

8 Conclusion

In this paper we have introduced a novel approach for the estimation of static
discrete choice models based on the graph of correlation structure and the dy-
namic discrete choice framework. We have shown that under some conditions the
resulting models is consistent with McFadden’s MEV theory and equivalent to the
network MEV model. We show how large scale MEV models can be estimated by
maximum likelihood using the nested fixed point algorithm. Choice probabilities
can be easily computed using the expected flows in the graph.

We have presented numerical experiments using simulated data. The results

15

A Dynamic Programming Approach for Quickly Estimating Large Scale MEV Models

CIRRELT-2015-24



indicate that we are able to very quickly estimate the cross-nested and multi-levels
cross-nested models with large choice sets and large number of observations. The
estimation code is implemented in MATLAB and is available upon request.
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A Derivatives of the log-likelihood function

In this appendix, we derive the derivatives of the log-likelihood function defined in
(29). The gradient of the choice probability P (in|Cn) can be obtained by taking
the Jacobian of vector F which can be derived based on (26). The Jacobian of F
with respect to parameter βj is

∂F

∂βj
= (I −Q)−1 ∂Q

∂βj
F (37)

where we denote Q = P T for notational simplicity. Hence it requires the first
derivative of each element of matrix Q with respect to parameter βj. Note that

Qak = P (a|k) = Mka
Y
µa/µk
a

Yk
, ∀k, a ∈ N . (38)

We define φka = µa/µk and take the derivative of a given Qak and obtain

∂Qak

∂βj
=
∂Mka

∂βj

Y φka
a

Yk
−Mka

Y φka
a

Y 2
k

∂Yk
∂βj

+Mka
Y φka
a

Yk

(∂φka
∂βj

lnYa +
φka
Ya

∂Ya
∂βj

)
.

(39)

Hence it requires the derivative of Yk, ∀k ∈ N . We take the derivative of a given
value Yk, k ∈ N as defined by (22) and obtain

∂Yk
∂βj

=
∑
a∈N

(
∂Mka

∂βj
Y φka
a +MkaY

φka
a

(∂φka
∂βj

lnYa +
φka
Ya

∂Ya
∂βj

))
+
∂bk
∂βj

. (40)

We introduce two matrices S and H of size |A| × |A| which has entries{
Ska = ∂Mka

∂βj
Y φka
a +MkaY

φka
a

∂φka
∂βj

lnYa

Hka = MkaY
φka
a

φka
Ya

∀k, a ∈ N . (41)
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So (40) becomes

∂Yk
∂βj

=
∂bk
∂βj

+
∑

a∈N (k)

(
Ska +Hka

∂Ya
∂βj

)
, ∀k ∈ N . (42)

This allows us to define the Jacobian of vector Y as a system of linear equation

∂Y

∂βj
= Se+H

∂Y

∂βj
+

∂b

∂βj
⇒ ∂Y

∂βj
= (I −H)−1(Se+

∂b

∂βj
) (43)

which looks complicated but efficient to use to compute the gradient of Yk, ∀k ∈ N .
Nevertheless, as suggested by Mai et al. (2015) we can derive the Jacobian of V
instead of Y to avoid numerical issues. Note that Yk = eV (k)/µk , the gradient of Yk
with respect to βj can be written as

∂Yk
∂βj

=
∂V (k)

∂βj

Yk
µk
− ∂µk
∂βj

V (k)Yk
µ2
k

∀k ∈ N . (44)

Using (18) we get

∂V (k)

∂βj
=
∑
a∈N

Rka +
∑
a∈N

Lka
∂V (a)

∂βj
+ hk ∀k ∈ N , (45)

where

Rka = µk
∂Mka

∂βj

Y φka
a

Yk
+ µkMkaY

φka
a

∂φka
Yk∂βj

lnYa −Mka
V (a)Y φka

a

µkYk

∂µa
∂βj

Lka = Mka
Y φka
a

Yk

hk =
µk
Yk

∂bk
∂βj

+
V (k)

µk

∂µk
∂βj

.

We denote R,L and h be three matrices and vector of size |N | × |N |, |N | × |N |,
|N |, with entries Rka, Lka and hk, ∀k, a ∈ N , respectively. The Jacobian of the
vector of value functions can be written as a linear system

∂V

∂βj
= (I − L)−1(Re+ h). (46)

Although (46) and (43) are theoretically equivalent, we now discuss the numerical
differences between the two formulas. We consider the definition of matrix L
where each element is defined as Lka = Mka

Y
φka
a

Yk
. According to (22) we have

Yk > MkaY
φka
a > 0, leading to the fact that the elements of L vary in (0,1).
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However, each element of H is Hka = MkaY
φka−1
a φka which varies in (0,∞). So the

the elements of matrix L are closer in value, compared to matrix H, meaning that
using (46) to compute the gradient of LL function is better than (43) for numerical
reasons. Note that Mai et al. (2015) has a similar conclusion when comparing two
formulas of the derivative of the value functions in route choice applications.

We note that the derivative of each element of matrix M with respect to pa-
rameter βj is

∂Mka

∂βj
= δ(a|k)e

v(a|k)
µk

(
∂v(a|k)

µk∂βj
− v(a|k)

∂µk
µ2
k∂βj

)
, ∀k, a ∈ N .

In summary, the derivatives of the model have complicated form but can be com-
puted efficiently for large-scale problems using the linear systems in (37) and (46).
The model derivatives allow us to use classic Hessian approximations such as
BHHH and BFGS (see for instance Berndt et al., 1974, Nocedal and Wright, 2006)
to efficiently maximize the log-likelihood function.
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