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Abstract. Location-routing, inventory-routing, multi-echelon routing, routing problems with 

loading constraints are classes of problems that are receiving increasing attention in the 

scientific community. Problems in these classes generalize classical vehicle routing 

problems enlarging the decision space to optimize a broader system. The resulting 

problems are computationally harder to solve but offer opportunities to achieve 

remarkable additional savings. In this paper we address the issue of quantifying the 

potential benefit deriving from tackling such complex problems instead of sequentially 

solving the individual problems they integrate. To this aim, we consider as a proof of 

concept the Capacitated Vehicle Routing Problem (CVRP) with Two-dimensional Loading 

constraints (2L-CVRP), a variant of the CVRP where rectangular-shaped items have to be 

delivered to customers and loading constraints have to be satisfied. We consider the 2L-

CVRP in an integrated manner and compare the solutions with those obtained from two 

not integrated approaches based on addressing sequentially and therefore separately, the 

routing and the loading problems. The importance of an integrated approach for the 2L-

CVRP is validated through the study of the worst-case performance of the not integrated 

approaches, and conducting computational experiments on benchmark and new 

instances. 
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1 Introduction

In recent years, the study of more realistic and involved variants than the classical Capacitated
Vehicle Routing Problem (CVRP) is attracting an increasing academic attention. This growing
body of literature is stimulated by the desire of bridging the gap between academic problems and
real-world applications, on the one side, and the recent advances in optimization methods and
computer capabilities, on the other side, that are making it possible to jointly solve strongly in-
terdependent problems that have been, until recently, addressed independently. Integrated vehicle
routing problems is the term increasingly used to denote the class of problems where the Vehicle
Routing Problem (VRP) arises in combination with other optimization problems within the broader
context of logistics and transportation (Bektaş et al. [6]). Some examples of problems in this class
are the location-routing problems where decisions of location and routing are jointly optimized (see
the surveys by Prodhon and Prins [34] and by Drexl and Schneider [21]); the production-routing
problems which jointly optimizes production, inventory, and routing decisions (see the survey by
Adulyasak et al. [1]); the inventory-routing problems which combines routing and inventory man-
agement problems (see the survey by Coelho et al. [14]); the multi-echelon routing problems that
study how to optimally route freight in distribution systems comprising several levels (see the
survey by Cuda et al. [18] on two-echelon routing problems); and routing problems with loading
constraints where the routing of vehicles and the loading of goods onto them are simultaneously
optimized (see the survey by Iori and Martello [27]). A remarkable number of surveys, such as
those cited above, as well as special issues in international journals, including the recent one edited
by Bektaş et al. [6], that recently appeared in the literature testify the increasing attention that
this research area is attracting among academics.

As integrated vehicle routing problems combine optimization problems that are usually NP-
hard by themselves, the prevailing attitude among operations researchers has been, until recently,
to tackle each problem independently, at the expense of global optimization. In fact, solving each
problem independently, even by means of an exact method, and then combining the partial solu-
tions obtained, typically leads to a sub-optimal solution for the integrated (global) problem. On
the other side, combining two, or more, hard problems causes a significant increase of the compu-
tational burden required, but tends to provide considerably better solutions than solving optimally
each problem independently, often even if the integrated problem is solved with a heuristic. It is im-
portant to motivate an integrated approach, quantifying the magnitude of the benefits that can be
achieved addressing the integrated problem directly instead of tackling each problem independently.
To the best of our knowledge, only few papers appeared in the literature along this line of research.
Salhi and Rand [36] show that ignoring routing aspects when location decisions are taken leads to
sub-optimal solutions. Chandra and Fisher [12] provide a computational study aimed at investi-
gating the potential benefits of coordinating production, inventory and routing decisions. Their
findings show that a cost reduction ranging from 3% to 20% can be achieved integrating the above
decisions within a single model rather than sequentially solving the separate problems. Bertazzi
and Speranza [8] show an illustrative example that motivates the need of combining routing and
inventory management problems, whereas Archetti and Speranza [4] present a computational study
that focuses on the analysis of the benefits of an integrated policy applied to an inventory-routing
problem.

The VRP is one of the most important and investigated class of combinatorial optimization
problems. It calls for the determination of an optimal set of routes to be performed by a fleet of
vehicles to serve a given set of customers (e.g., see Toth and Vigo [37]). In the CVRP, which is
the simplest and most studied member of the class of VRPs, customer demands are deterministic,
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known in advance, and cannot be split. The vehicles are all identical, based at a single depot, and
have a maximum capacity. In the CVRP, the demand of each customer is expressed by a single
value, usually representing the total weight of the items to be transported. Thus, a solution is
feasible for the CVRP if the sum of the demands of the customers assigned to each vehicle does not
exceed its capacity. Nevertheless, in many real-world freight transportation applications it cannot
be neglected that the items are characterized not only by a weight but also by a shape. Examples of
these applications include the transportation of large and heavy items, such as furniture, household
appliances, and some mechanical components (e.g., see Wang et al. [38]). In these situations, a
solution that is feasible for the CVRP may prove to be infeasible in practice since it is impossible to
determine a feasible loading pattern to allocate all the items within the loading area of the vehicles.
These loading issues are closely related to multi-dimensional packing problems, especially extensions
of the classical (one dimensional) Bin Packing Problem (BPP). Several operational restrictions often
complicate the problem further (see Iori et al. [28]). Among other restrictions, since the size (and
weight) of the items in the related applications is usually large, load rearrangements at a customer
location can be complicated, overly time consuming, or even impossible. Additionally, it may be
necessary to impose that the unloading of the items of a customer must not be blocked by any item
belonging to a customer to be visited later along the route. The latter requirement (called ‘Last-In
First-Out’ (LIFO) or, sometimes, ‘sequential loading’ or ‘rear loading’ constraint) is introduced to
model, among other situations, the impossibility for a forklift truck to perform substantial lateral
shifts while unloading an item. As a consequence, the sequence of customers to be visited in a vehicle
route has to be designed to avoid unnecessary unloading and rearrangements operations. All the
former observations motivate the growing interest that routing problems with loading constraints
is attracting among academics and practitioners.

In this paper we consider the CVRP with Two-dimensional Loading constraints, henceforth
referred to as 2L-CVRP, that is a variant of the CVRP where rectangular-shaped items have to be
transported and loading constraints have to be satisfied. The assumption that characterizes the 2L-
CVRP is that the items cannot be stacked on top of each other. The latter assumption differentiates
the 2L-CVRP from the other major class of routing problems with loading constraints, the CVRP
with three-dimensional loading constraints where some items can be superposed (e.g., see Gendreau
et al. [24]). The 2L-CVRP models applications concerning the transportation of heavy or fragile
items, such as refrigerators or pieces of catering equipment, such as food trolleys (Iori and Martello
[27]), or when customer orders are loaded onto pallets which cannot be stacked on top of each other.
In the 2L-CVRP the demand of each customer is composed of a set of rectangular-shaped items
such that, for each item, its weight, shape and orientation are given. A fleet of identical vehicles
based at a single depot is available to deliver these items. The vehicles have a given weight capacity
and a rectangular loading area that can be accessed only from one side (we assume that vehicles
are rear-loaded). The 2L-CVRP calls for the determination of a minimum-cost set of routes to
be traveled by the given fleet of vehicles to serve the customers, subject to the following set of
constraints:

a) Weight capacity constraints: the total weight of the items loaded onto a vehicle cannot exceed
its capacity;

b) Classical BPP constraints: there must exist a non-overlapping loading pattern of all the items
into the loading area of the vehicles;

c) Item clustering constraints: all the items of a given customer must be assigned to the same
vehicle;
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d) Item orientation constraints: each item has a fixed orientation and cannot be rotated;

e) Orthogonality constraints: each item has to be loaded with its edges parallel to those of the
vehicle;

f) LIFO constraints: items of the current customer must be directly available by pulling them out
from the rear doors without moving any item of other customers.

The 2L-CVRP reduces to the classical CVRP by assigning to each customer a single item having
both sizes equal to 1, and by setting the dimension of the loading area of each vehicle equal to the
total number of customers (Iori et al. [28]). The literature on the 2L-CVRP is still rather limited.
Iori et al. [28] propose the first exact algorithm for a 2L-CVRP where single-customer routes are
not allowed and all the available vehicles have to be routed. The solution method proposed is
based on a Branch-and-Cut (B&C) algorithm that iteratively calls an inner branch-and-bound for
the solution of the loading sub-problem. Computational results are given for instances generated
from benchmark test problems for the CVRP that comprise up to 35 customers and 114 items. The
only other exact method that we are aware of has been proposed in Côté et al. [15] for a stochastic
variant of the 2L-CVRP, where the size and weight of some items are not known with certainty
when the routes are planned. The authors show that their method can also be applied to solve the
deterministic counterpart of the stochastic 2L-CVRP, i.e., the 2L-CVRP addressed in Iori et al.
[28], reducing to a B&C. To this aim, they conduct some computational experiments on the set of
benchmark instances introduced in [28] and a subset of those proposed in [25]. The results indicate
that the algorithm introduced in Côté et al. [15] is the current state-of-the-art exact method for
the solution of the 2L-CVRP studied in Iori et al. [28], being able to solve to optimality instances
with up to 71 customers and 226 items. On the other side, a larger number of authors propose
heuristics for the 2L-CVRP as defined above. These algorithms are often tested to solve also
slightly different variants, obtained removing or replacing some of its constraints. Among the most
important variants we mention the one where the LIFO constraints are removed (the unrestricted
2L-CVRP), and the one where items can be rotated (the non-oriented 2L-CVRP). Gendreau et
al. [25] design a tabu search algorithm for the 2L-CVRP. An ant colony optimization algorithm
is proposed in Fueller et al. [23], whereas Zachariadis et al. [39] develop a guided tabu search.
More recently, Duhamel et al. [22] design a multi-start evolutionary local search, whereas Leung
et al. [31] implement an extended version of the guided tabu search proposed in [39]. Variants
of the 2L-CVRP with a heterogeneous fleet of vehicles are addressed in Leung et al. [30] and in
Dominguez et al. [20].

The packing problem associated with the loading of items inside a vehicle is formally known as
the Two-dimensional Orthogonal Packing Problem with Unloading Constraints (2OPPUL). Given
a sequence of customers, the 2OPPUL calls for the determination of a feasible packing of the
items that do not violate the above set of constraints. Most heuristic algorithms proposed for the
solution of the 2L-CVRP use simple heuristics such as Bottom-Left, Bottom-Left Fill, and Touching
Perimeter heuristics for tackling the packing problems (see Zachariadis et al. [39]). In da Silveira
et al. [19] a GRASP heuristic for the strip packing problem with unloading constraints is proposed.
In this variant, a strip of fixed width and infinite height is given and the objective of the problem
is to minimize the height of the occupied area. To the best of our knowledge, only two exact
methods are available in the literature to tackle the 2OPPUL. Specifically, Iori et al. [28] design
a branch-and-bound algorithm based on the exact method for the strip packing problem described
in Martello et al. [33]. More recently, Côté et al. [16] describe a Benders decomposition approach
which can solve instances with up to 52 items. Relaxing the LIFO constraints, the problem reduces
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to a Two-dimensional Orthogonal Packing Problem (2OPP), that is found as a sub-problem of the
Two-dimensional Strip Packing Problem (2SPP) and of the two-dimensional bin packing problem.
Recent algorithms for these problems can be found in [2, 3, 7, 10, 11, 13, 17, 33]. We refer the
interested reader to the surveys by Bortfeldt and Wäscher [9] and by Iori and Martello [27] for a
literature review on the three-dimensional case.

Contributions of the paper. The contributions of this paper are the following. We mentioned
above that exact algorithms for a 2L-CVRP where single-customer routes are not allowed and all
the vehicles available have to be routed have been proposed in Iori et al. [28] and in Côté et
al. [15]. In the present paper, we consider a more general definition for the 2L-CVRP where
single-customer routes are possible, and some vehicles can be unused if this is cost-effective. We
describe a mathematical formulation for this version of the 2L-CVRP, and we solve it by means
of the exact method described in Côté et al. [15] after some minor adaptations. We propose two
not integrated approaches for the solution of the 2L-CVRP based on considering sequentially, and
therefore separately, the routing and the loading aspects of the problem. The first approach tries to
mimic the possible behavior of a logistic operator, whereas the second is more sophisticated and is
based on the solution of a routing problem with profits. We provide evidence of the importance of
an integrated approach for the 2L-CVRP, studying the worst-case performance of the not integrated
approaches, as well as reporting on extensive computational experiments conducted on benchmark
and new instances.

Structure of the paper. The structure of the paper is as follows. Section 2 provides a formal
description of the 2L-CVRP, as well as of the approach used to solve it in an integrated manner.
Two not integrated solution approaches for the 2L-CVRP are detailed in Section 3, whereas section
4 gives an overview of the methodology implemented to address the packing problems that are
generated during the execution of all the approaches. Section 5 studies the worst-case performance
of the proposed not integrated approaches. Computational experiments are presented and discussed
in Section 6. Finally, Section 7 draws some conclusions and discusses future research directions.

2 The Integrated Problem

The 2L-CVRP considered in this paper can be described as follows. Let G = (V,E) be a complete
undirected and weighted graph. Set V = {0, 1, 2, ..., n} is a set of vertices with cardinality |V | = n+1
(|B| denotes the cardinality of set B), where vertex 0 corresponds to the depot, and set C = V \{0}
denotes a set of |C| = n customers. Set E = {{i, j} : i, j ∈ V, i < j} is a set of edges, and a non-
negative traveling cost cij is associated with each edge {i, j} ∈ E. We assume that the traveling
costs cij satisfy the triangle inequality.

Each customer j ∈ C has a known and deterministic demand comprising mj two-dimensional
items, each one having a specific width and height denoted as wl

j and hlj (l = 1, . . . ,mj), respectively.
Henceforth, the total area covered by the mj items associated with customer j ∈ C is denoted as
aj =

∑mj

l=1w
l
jh

l
j , whereas qj indicates their total weight (recall that the demand of each customer

cannot be split among different vehicles).
A fleet of Kmax homogeneous and capacitated vehicles is available at the depot to serve all

the customers. Vertex 0 is the starting and ending point of any route. Each vehicle has a maxi-
mum weight capacity Q, and a rectangular loading area that is accessible from the back for load-
ing/unloading operations. The loading area of each vehicle has a given width and height denoted
as W and H, respectively, such that the total area available in each vehicle to carry the items
is A = WH. The 2L-CVRP calls for the determination of a minimum-cost set of no more than
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Kmax routes to serve the demand of the customers, such that the constraints a)-f) described in the
Introduction are not violated. Let Rinf be the set composed of all routes that do not satisfy the
loading constraints b)-f).

We model the 2L-CVRP using two-index vehicle flow variables as main decision variables,
inspired by classical formulations for the CVRP. Let xij ∈ {0, 1}, with 1 ≤ i < j, be a binary
variable that takes value 1 if edge {i, j} ∈ E is traversed by a vehicle, and 0 otherwise. In order
to allow single-customer routes, we introduce the integer variables x0j ∈ {0, 1, 2}, with j ∈ C,
that represent the number of times that each edge {0, j} incident to the depot is traversed. The
possibility to use less than Kmax vehicles is modeled as follows. Let Kmin be a lower bound on
the number of vehicles required to serve all the customers in set C. Then, we introduce the binary
variable zk ∈ {0, 1}, with k = Kmin,Kmin+1, . . . ,Kmax, that takes values 1 if k vehicles are routed,
and 0 otherwise. The 2L-CVRP can be cast as the following Integer Linear Programming (ILP)
model:

min z =
∑

i∈V \{n}

∑
j∈V :j>i

cijxij (1)

subject to∑
j∈C

x0j =

Kmax∑
k=Kmin

2kzk (2)

Kmax∑
k=Kmin

zk = 1 (3)

∑
i∈V :i<j

xij +
∑

h∈V :h>j

xjh = 2 j ∈ C (4)

∑
i∈S

∑
j∈S:j>i

xij ≤ |S| −
⌈

max

{∑
j∈S aj

A
,

∑
j∈S qj

Q

}⌉
S ⊆ C, 2 ≤ |S| ≤ n (5)

∑
(i,j)∈R

xij ≤ |R| − 1 R ∈ Rinf (6)

xij ∈ {0, 1} 1 ≤ i < j ≤ n (7)

x0j ∈ {0, 1, 2} j ∈ C (8)

zk ∈ {0, 1} k = Kmin,Kmin + 1, . . . ,Kmax. (9)

Objective function (1) minimizes the total traveling cost. Constraints (2), along with constraints
(3) and (9), impose that the number of vehicles used in any feasible solution is at least equal to Kmin

and at most equal to Kmax. The minimization of the objective function leads to the selection of the
most appropriate number of vehicles to use in the interval [Kmin,Kmax]. The degree constraints (4)
state that exactly two edges incident to each vertex associated with a customer must be selected.
Constraints (5) are the subtour elimination and rounded-capacity constraints. Each route that
does not satisfy the loading constraints, i.e., each route in set Rinf , is forbidden by constraint (6).
In these inequalities, hereafter referred to as infeasible path constraints, route R is defined as the
set of edges traversed in an infeasible route belonging to set Rinf . Finally, constraints (7), (8), and
(9) define the decision variables.

The problem tackled in this paper generalizes the problem addressed in Iori et al. [28] and in
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Côté et al. [15]. The problem we consider reduces to the problem studied in the latter papers by
setting Kmin = Kmax, and defining x0j as binary variables. The exact algorithm described in Côté
et al. [15] has been adapted to solve optimization model (1)-(9). As mentioned above, this exact
algorithm was originally proposed to solve the stochastic 2L-CVRP and reduces to a B&C when
applied to its deterministic counterpart. We briefly summarize the structure of the algorithm and
refer to [15] for more details.

At the beginning of the algorithm, the subtour and rounded-capacity inequality (5) and infea-
sible path constraints (6) are relaxed. The resulting problem (1)-(4) and (7)-(9) is then solved by
means of a Mixed Integer Linear Programming (MILP) general-purpose solver. At each node of the
branching tree, the algorithm first checks for the presence of violated subtour and rounded-capacity
inequalities using the CVRPSEP package described in [32]. If any violated inequality is found, it
is added to the model and the node is solved again. Otherwise, the following two alternatives may
occur:

1. the solution is fractional, and then the algorithm branches on fractional variables;

2. the solution is integer, and then the algorithm proceeds as follows. First, each route in the
solution is considered as an unordered set S of customers. The packing problem associated
with an unordered set of customers is a 2OPP (see the Introduction) and is solved using the
methods described in the following Section 4. If the 2OPP is infeasible, the route violates the
loading constraints, and the following inequality is added to the model:∑

i∈S

∑
j∈S:j>i

xij ≤ |S| − 1. (10)

This inequality is a stronger form of the infeasible path constraint (6) as it forbids any path
visiting all the customers in S. After that all the inequalities found of type (10) have been
added to the model, the node is solved again. On the other hand, if the 2OPP is feasible,
the 2OPPUL associated with each path is solved using the methods described in Section 4
and constraints (6) are added, if necessary. If no violated constraint is found, the solution is
feasible.

The introduction of single-customer routes requires only marginal modifications of the B&C
described above. On the other hand, the lower bound Kmin on the number of vehicles is computed
as the maximum value among the following lower bounds:

1.
⌈∑

i∈C qi
Q

⌉
;

2. two lower bounds based on the solution of a relaxation of the 2SPP. As mentioned in the
Introduction, in the 2SPP a given set of two-dimensional items have to fit inside a strip of
infinite height and fixed width. The 2SPP aims at minimizing the height of the occupied
area. Dividing the resulting height by H, i.e., the height of each vehicle, and rounding up
this value gives a bound on the required number of vehicles. Instead of solving the 2SPP, we
solve the linear relaxation of the Gilmore-Gomory formulation (see [26]) of the cutting stock
problem on the height and the width;

6

The Value of Integrating Loading and Routing

CIRRELT-2015-31



3. we solve the linear relaxation of the following formulation:

min
∑
K∈K

ξK

subject to
∑
K∈K

biKξK ≥ 1 i ∈ C

ξK ∈ {0, 1} K ∈ K,

where K = {S ⊆ C |
∑

i∈S qi ≤ Q,
∑

i∈S ai ≤ A}, i.e., it contains sets of customers whose
sums of demand weights and areas are smaller than the weight capacity and loading area
available. Parameter biK ∈ {0, 1} is equal to 1 if customer i is present in set K, and 0
otherwise. The above model is solved by column generation where the sub-problem is a
knapsack problem with 2 constraints that is modeled as a MILP and solved using a general-
purpose solver.

Parameter Kmax is set equal to the number of vehicles indicated in the original instance.
Henceforth, we will say that the problem is solved with an Integrated Solution Approach (ISA)

when the optimization model (1)-(9) is used.

3 Not Integrated Solution Approaches

The broad idea of a not integrated solution approach for the 2L-CVRP is to address separately
the CVRP and the loading problem, instead of tackling the problem as a whole. We consider two
Not Integrated Solution Approaches (NISA). Both approaches follow the same general scheme: use
a two-phase algorithm where the CVRP and the loading constraints are sequentially taken into
consideration. The general scheme followed by the two NISAs is sketched in Algorithm 1.

The first phase (hereafter called Phase 1 ) is common to both NISAs, and it mainly consists
in solving a relaxation of optimization model (1)-(9) where the infeasible path constraints (6) are
neglected. The resulting optimization model is a formulation for the CVRP that is solved along
the lines described earlier for the ISA. Indeed, the subtour and rounded-capacity inequalities (5)
are first relaxed. Then, problem (1)-(4) and (7)-(9) is solved by means of a general-purpose solver.
At each node of the branching tree, the algorithm checks for the presence of violated subtour
and rounded-capacity inequalities using the CVRPSEP package described in [32]. Any violated
inequality found is added to the model, and the node is solved again. Otherwise, two alternatives
may occur:

1. the solution is fractional, and then the algorithm branches on fractional variables;

2. the solution is integer, and then the solution found is feasible.

Once the above CVRP model is solved and an optimal solution is found, the loading feasibility
of each route is assessed using the procedures described in Section 4. Each route that violates a
loading constraint is hereafter called infeasible route. Let R′inf denote the set containing all the
infeasible routes in the CVRP solution.

The second phase (henceforth referred to as Phase 2 ) is different between the two NISAs and
is therefore described separately below.
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Algorithm 1 General Scheme of the Not Integrated Solution Approaches.

/* Phase 1. */

1. Solve a CVRP.
2. Identify infeasible routes for the 2L-CVRP.

/* Phase 2. */

1. Remove infeasible customers from the infeasible routes to make them feasible.
2. Determine new routes to serve the removed customers.

3.1 NISA: Phase 2

In this section, we first provide a general description of Phase 2, which is valid for both NISAs.
Subsequently, we detail separately the structure of each NISA.

The general idea of Phase 2 is the following. Firstly, a subset of the customers that are visited
in each infeasible route R′ ∈ R′inf is identified, such that their removal makes the route feasible for
the loading constraints. These customers are hereafter referred to as infeasible customers. Let Cinf

be the set of all the infeasible customers for all the infeasible routes in R′inf . Subsequently, each
infeasible customer is removed from the corresponding infeasible route, along with the edges that
connect the customer with its two adjacent vertices in the route. The edge incident to the latter
two vertices is introduced to replace the removed edges. Finally, a set of routes is determined to
serve the infeasible customers in set Cinf .

NISA with Nearest Customers

In general terms, the first approach, henceforth referred to as the NISA with Nearest Customers
(NISA-NC ), begins with removing from each infeasible route an adequate number of customers
starting from the vertex nearest to the depot. Then, optimization model (1)-(9) is solved restricted
to set Cinf . The basic rationale of this approach is to create a set of infeasible customers that are,
hopefully, located in proximity to the depot. As a consequence, the routes to be determined have
to visit vertices that are likely to be close to each other.

More formally, at the beginning of Phase 2 set Cinf is empty, i.e., Cinf = ∅. Each infeasible
route R′ ∈ R′inf is modified as follows. Between the two vertices adjacent to the depot, the nearest
to the depot, say i′, is removed and added to set Cinf . Let R′′ denote route R′ where the two edges
incident to node i′ are replaced with the edge connecting the depot with the successor of node i′ in
the route. The feasibility of route R′′ is then checked. If R′′ is not feasible, we remove the successor
of node i′ in route R′, and iterate the process until the route becomes feasible. Conversely, if R′′ is
feasible, another infeasible route from set R′inf , if any, is considered. Once all infeasible routes have
been made feasible, optimization model (1)-(9) is solved restricted to set Cinf . Parameter Kmin is
computed as described in Section 2, whereas parameter Kmax is computed as follows. Each instance
is solved by means of the Adaptive Large Neighborhood Search heuristic (ALNS) introduced in [35],
where we set the maximum number of iterations equal to 15000. The value Kmax is then set equal
to the number of vehicles used in the heuristic solution plus 2. We add 2 because in preliminary
experiments we found that for some instances a better objective function could be achieved adding
few vehicles to those selected in the solution found by the heuristic.

The rationale of the NISA-NC is to mimic the behavior of a logistic operator that, once a set of
routes is determined solving a CVRP, loads each vehicle starting from the customer that, between
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the two adjacent to the depot, is the farthest. This will be the last customer visited in the route.
If the route is infeasible, the items of some customers will not be loaded on that vehicle.

NISA with Optimization Model

In the second approach, hereafter referred to as the NISA with Optimization Model (NISA-OM ),
the identification of the infeasible customers and the subsequent determination of the routes to
serve them are simultaneously carried out solving an optimization model, as detailed below. The
rationale of the NISA-OM is to solve the second phase of a not integrated solution approach with
a sophisticated method. Eventually, we will show that the benefits achieved using an integrated
approach are remarkable, even if a sophisticated method is used to address both phases of a NISA.

We model the problem of identifying and routing the infeasible customers as a VRP with profits
(see Archetti et al. [5] for a recent overview on this class of problems). In contrast with the classical
VRP where it is mandatory to serve all the given customers, in a VRP with profits the customers to
serve have to be determined among those belonging to a given set. A profit is in general associated
with each customer that makes the visit of such a customer more or less attractive.

To model the problem considered in this section as a VRP with profits, we introduce the
concept of options. Particularly, for each infeasible route R′ ∈ R′inf we identify a set of options
OR′ , where each option o ∈ OR′ represents a subset of the customers visited in route R′ that,
if removed, makes the resulting route, say R′′, feasible for the loading constraints. Intuitively
speaking, choosing option o ∈ OR′ indicates that the customers composing that option have been
identified as infeasible customers. Therefore, exactly one option has to be chosen for each infeasible
route in set R′inf , and a minimum-cost set of routes has to be determined to serve the customers
composing the selected options.

The set of options for each infeasible route is generated as follows. Let R′ be an infeasible
route. Note that the graph is undirected and, therefore, route R′ can be traveled in two directions.
The algorithm starts choosing one of the two directions, and then removes one customer at a time
from the beginning of the route, until the resulting tour is feasible for the loading constraints. Let
η1 be the number of customers removed. Then, the same procedure is repeated considering the
opposite direction. Let η2 be the number of customers removed. Note that, given the heterogeneity
of the customer demands, η1 and η2 can be different. In the computational experiments, these two
numbers are often equal and, if different, they differ in most of the cases by just one unit (e.g.,
η1 = η2+1). The algorithm evaluates each possible subset of customers whose cardinality is between
1 and the maximum among η1 and η2. The algorithm checks if, after removing those customers,
the resulting route is feasible or not. If the route is feasible, then this subset of customers is an
option and is added to set OR′ .

Each option o ∈ OR′ , with R′ ∈ R′inf , is associated with a profit. This profit represents the
savings, in terms of traveling costs, resulting from the removal of the customers composing option
o from route R′. In other words, let c(R′) denote the cost of a generic infeasible route R′ ∈ R′inf ,
and let R′′ be the route obtained removing from R′ the customers in option o. Then, profit po
associated with option o is computed as po = c(R′)− c(R′′).

We model the problem of identifying the infeasible customers and determining how to serve
them, henceforth referred to as the Selective CVRP with Two-dimensional Loading constraints
(2L-SCVRP), making use of a further set of binary variables, in addition to variables xij , x0j , and
zk as defined in Section 2. Let yo ∈ {0, 1} be a binary variable that takes value 1 if option o ∈ OR′ ,
with R′ ∈ R′inf , is chosen, and 0 otherwise. Furthermore, in order to avoid an unnecessarily
large number of variables and constraints, the following optimization model considers only the set
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of n′ customers served in the infeasible routes, denoted hereafter as C ′, and, consequently, set
V ′ = C ′ ∪ {0} as the set of vertices, with cardinality |V ′| = n′ + 1. Correspondingly, K ′min and
K ′max denote the lower and upper bounds, respectively, on the number of vehicles required to serve
all the customers in set C ′. K ′min is set equal to 1, whereas K ′max is computed along the lines
described above for the NISA-NC. The 2L-SCVRP can be cast as the following ILP model:

min w =
∑

i∈V ′\{n′}

∑
j∈V ′:j>i

cijxij −
∑

R′∈R′inf

∑
o∈OR′

poyo (11)

subject to∑
j∈C′

x0j =

K′max∑
k=K′min

2kzk (12)

K′max∑
k=K′min

zk = 1 (13)

∑
i∈V ′:i<j

xij +
∑

h∈V ′:h>j

xjh = 2yo j ∈ o, o ∈ OR′ , R′ ∈ R′inf (14)

∑
o∈OR′

yo = 1 R′ ∈ R′inf (15)

∑
j∈S

∑
i/∈S:i<j

xij +
∑
j∈S

∑
h/∈S:h>j

xjh ≥ 2
∑

o∈OR′ :o
⋂

S=∅

yo S ⊂ V ′, 0 ∈ S, R′ ∈ R′inf (16)

∑
i∈S

∑
j∈S:j>i

xij ≤ |S| −
⌈

max

{∑
j∈S aj

A
,

∑
j∈S qj

Q

}⌉
S ⊆ C ′, 2 ≤ |S| ≤ n (17)

∑
(i,j)∈R

xij ≤ |R| − 1 R ∈ Rinf (18)

xij ∈ {0, 1} 1 ≤ i < j ≤ n′ (19)

x0j ∈ {0, 1, 2} j ∈ C ′ (20)

zk ∈ {0, 1} k = K ′min,K
′
min + 1, . . . ,K ′max (21)

yo ∈ {0, 1} o ∈ OR′ , R′ ∈ R′inf . (22)

Objective function (11) aims at minimizing the difference between the total cost of routing the
infeasible customers and the total profit associated with the options selected. Constraints (12),
(13), (17), and (18) have the same meaning of constraints (2), (3), (5), and (6), respectively.
Constraint (14) ensures that if option o ∈ OR′ is chosen for infeasible route R′ ∈ R′inf , then each
vertex j included in that option is incident to exactly two edges in any feasible solution. For each
infeasible route R′ ∈ R′inf , constraint (15) imposes that exactly one option is selected, i.e., each
infeasible route has to be made feasible removing the customers included in one option. Constraints
(16) force each subset of customers corresponding to a selected option to be reachable from vertex
0 by means of two edge-disjoint paths. Note that constraints (16) are redundant given constraints

(17), but are stronger than the latter when
⌈
max

{∑
j∈S aj
A ,

∑
j∈S qj
Q

}⌉
= 1. Finally, constraints

(19), (20), (21) and (22) define the decision variables.
Following the classification of the VRPs with profits provided in Archetti et al. [5], the above
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2L-SCVRP can be classified as a capacitated profitable tour problem with multiple vehicles.

4 Packing problems

In this section we discuss the methodology designed to solve the packing problems that are generated
during the execution of the algorithms described above. Different approaches are used to quickly
detect if a route is feasible or infeasible. As detailed in the following, the 2OPP and the 2OPPUL are
sequentially considered. The 2OPP is considered first because is a simpler problem to handle than
the 2OPPUL (the former is a relaxation of the latter obtained removing the unloading constraints).

The procedures listed below are called sequentially until the infeasibility of the 2OPP (and,
consequently, of the 2OPPUL) is proven:

1. a simple lower bound is obtained by summing up the areas of all items corresponding to the
customers visited in the route. This route is infeasible if the sum exceeds the loading area;

2. the more sophisticated lower bound LBM
dff on the required height of the loading area, taken

from Boschetti and Montaletti [10], is then used. If this bound is larger than the height H
of the loading area, the route is infeasible. It should be noted that only the first three dual
feasible functions are used here (see [10] for more details). The fourth one, which proved to
be time consuming and not really effective during preliminary tests, has been disregarded;

3. another lower bound on the required height of the loading area is obtained by invoking the
alternating constructive procedure reported in Alvarez-Valdes et al. [2];

4. two additional lower bounds on the height and width of the loading area are based on the
Gilmore-Gomory formulation (see [26]) of the cutting stock problem. They correspond to LH

3

and LW
3 detailed in Côté et al. [16]. If these bounds are larger than H and W , respectively,

the route is infeasible;

5. the One-dimensional Contiguous Bin Packing problem (1CBP), a tight relaxation of the
2OPP, is finally solved with the branch-and-bound algorithm in Côté et al. [17]. If the 1CBP
has no feasible solution, the route is infeasible.

If, after carrying out the procedures described above, the 2OPP has not been proven to be
infeasible, we consider the 2OPPUL and apply sequentially the following procedures to determine
whether a feasible solution exists:

1. the 2OPPUL is first solved by means of an approximate method, namely a variant of the
heuristic reported in Leung et al. [29], originally developed for the 2SPP. The heuristic is a
two-phase algorithm, where a solution is first constructed and then improved with a simulated
annealing algorithm. In our procedure, the original construction heuristic is replaced by the
Bottom-Left and Max-Touching Parameter heuristics described in Dominguez et al. [20] to
address the unloading constraints. If a feasible packing is found with this heuristic, the route
is feasible;

2. the lower bound L2 for the 2OPPUL, reported in Côté et al. [16], is used to estimate the
required area. If the value of L2 exceeds the loading area A, the route is infeasible;
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3. the branch-and-bound algorithm described in Boschetti and Montaletti [10], originally de-
veloped for the 2SPP, has been adapted to the 2OPPUL. It is applied with the following
additional fathoming criterion: if an item does not fit in any position among a set of previ-
ously calculated positions, the current partial solution cannot lead to any feasible solution,
and then the node can be fathomed. In practice, this algorithm can often find feasible solu-
tions very quickly. We allow the generation of a maximum of 1000000 nodes in the branching
tree before stopping the algorithm. If the algorithm returns a feasible packing, the route
is feasible. If the algorithm ends without finding any feasible packing, two situations may
occur. If the algorithm stops because it explored the maximum number of nodes allowed
without finding a feasible packing, the packing problem is not proved to be infeasible and the
algorithm performs the procedure described below. Conversely, if the algorithm ends without
the need to explore all the nodes allowed, the packing problem is proved to be infeasible and,
consequently, the route is infeasible;

4. the exact algorithm designed in Côté et al. [16] for solving the 2OPPUL is finally applied.
It is based on a mathematical formulation for the 1CBP where some constraints are added
to satisfy the unloading requirements. In practice, this algorithm proved to be very good in
detecting infeasibility in short computation times.

After running the procedures described above, the algorithm has determined if the packing
problem is feasible or infeasible and, if feasible, the corresponding solution.

5 Worst-Case Analysis

In this section we study the worst-case performance of the not integrated approaches described in
Section 3. To the sake of clarity, the analysis is provided for the NISA-NC. Nevertheless, the same
analysis applies to the NISA-OM, after some straightforward adjustments that are mentioned at
the end of this section.

To simplify the exposition, we assume that each customer demands exactly 1 item.
Henceforth, z∗ denotes the cost of an optimal solution of the 2L-CVRP, whereas we refer to the

cost of the best solution found by the NISA-NC as zHNISA. We first show that this not integrated
approach finds an optimal solution for the 2L-CVRP whenever it is applied to solve an instance
comprising at most 2 customers. Then, we prove that the worst-case ratio is bounded by 2 in the
general case that considers n ≥ 3, and, finally, that this bound is tight.

Theorem 1 If n ≤ 2, then zHNISA = z∗.

Proof. The claim is trivial for n = 1 since the cycle (0,1,0) is the optimal route for both the
CVRP and the 2L-CVRP.

For n = 2, two cases can occur.
Case 1. If the cycle (0,1,2,0) is feasible for the 2L-CVRP, then it also feasible (and optimal)

for the CVRP, and zHNISA = z∗.
Case 2. If the cycle (0,1,2,0) is not feasible for the 2L-CVRP, then the optimal solution for the

latter problem consists of the two cycles (0,1,0) and (0,2,0). On the other side, cycle (0,1,2,0) can
be either not feasible for the CVRP, or feasible for the CVRP but not feasible when the loading
constraints are considered. In both cases, the aforementioned two cycles (0,1,0) and (0,2,0) form
the solution found applying the not integrated approach.
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We now prove that the worst-case ratio for the NISA-NC is bounded by 2. Let us denote the
cost of an optimal solution of the CVRP obtained in Phase 1 as zP1, whereas let zP2 denote the
optimal cost of the routes traveled to serve the infeasible customers identified in Phase 2. Trivially,
the cost of the solution found using the NISA-NC is less or equal than the sum of the former two
costs, i.e., zHNISA ≤ zP1 + zP2, where the equality holds if the CVRP solution is feasible for the
loading constraints, i.e., zP2 = 0.

Theorem 2 If n ≥ 3, then
zHNISA

z∗ ≤ 2, and this bound is tight.

Proof. We can write the following chain of inequalities
zHNISA

z∗ ≤ zP1+zP2
z∗ ≤ z∗+z∗

z∗ = 2,
where the first inequality is due to the remark reported above, whereas the second inequality is due
to the observation that both zP1 and zP2 are lower bounds to the optimal cost of the 2L-CVRP.

To prove that the bound is tight, see the instance shown in Figure 1. Graph G is depicted in
Figure 1(a). Figure 1(b) shows the size and orientation of each item demanded by the customers,
whereas Figure 1(c) illustrates the loading area of a vehicle. Items are loaded from the top of the
picture. To the sake of simplicity, we assume that the total weight of the items is not binding.

We first consider the NISA-NC. Figure 2(a) shows an optimal route for the CVRP of the
instance depicted in Figure 1. Let us choose customer 1 as the first customer to be visited in the
route (the opposite case, i.e., when customer 3 is chosen, is symmetric). The route in Figure 2(a)
corresponds to an infeasible loading pattern, as shown in Figure 2(b). Let customer 1 be the vertex
to remove (customers 1 and 3 are both located at the same distance from the depot). A feasible
solution for the 2L-CVRP obtained applying the NISA-NC is illustrated in Figure 2(c). Its cost is
zHNISA = 4M+2ε. Note that an alternative solution having the same cost can be obtained removing
customer 3 instead of customer 1. A feasible solution for the 2L-CVRP is shown in Figure 3. Its
cost is z∗ = 2M + 3ε.

The proofs of Theorem 1 1 and of the bound in 2 hold also for the NISA-OM. The instance
depicted in Figure 1 can be used to prove that the worst-case ratio of 2 is tight also for the NISA-
OM. Given the optimal route for the CVRP shown in Figure 2(a), three options are available that
consist in removing customer 1, or customer 2, or customer 3, respectively. The profit associated
with each of the former options is 0, ε, and 0, respectively, whereas the corresponding values of
objective function (11) are 2M , 2M + ε, and 2M , i.e., either the first or the third option is chosen
leading to the same set of solutions found using the NISA-NC.

6 Experimental analysis

This section is devoted to the presentation and discussion of the computational experiments. They
were conducted on an Intel 2.67 GHz processor running Scientific Linux 6.3 as Operating System.
The algorithms were coded in C++, and the B&C algorithm was embedded within the framework
provided by the CPLEX 12.6.0.1 solver using the default parameters. In Section 6.1 we describe
the instances we tested, whereas Section 6.2 provides detailed computational results.

6.1 Testing Environment

In the computational experiments we used two data sets. The first data set comprises a subset of
the benchmark instances for the 2L-CVRP, whereas the second one is composed of test problems
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εε

1 3
ε

1 3

M+ε

ε

MM

M+ε

0

(a) Graph G with 3 customers.

1 31

2

3

2

(b) Size and orientation of each
item demanded by the cus-
tomers.

(c) Loading area of a vehicle.

Figure 1: Instance with n = 3 where distances satisfy the triangle inequality and
zHNISA

z∗ → 2 for
ε→ 0.

that we generated as detailed in the following. Altogether, the different approaches were compared
on 148 instances, ranging from small-scale (i.e., 15 customers and 24 items) to instances with 75
customers and 202 items.

The set of benchmark instances for the 2L-CVRP (publicly available at http://www.or.deis.
unibo.it/research.html) currently includes 180 instances. A subset of these instances were first
tested in Iori et al. [28], where test problems comprising up to 35 customers and 114 items were
solved to proven optimality by means of a B&C algorithm. The remaining benchmark instances were
first solved in Gendreau et al. [25] by means of a tabu search heuristic able to solve instances with up
to 255 customers and 786 items. Since large-scale instances for the 2L-CVRP can be currently solved
only by means of a heuristic algorithm, we limited the experiments to the benchmark instances that
include no more than 75 customers and 202 items. In order to make the paper self-contained, we
briefly describe the characteristics of the benchmark instances, and refer the reader to Iori et al.
[28] for any further detail. The benchmark instances were generated by extending to the 2L-CVRP
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MM

0

(a) Optimal route for the CVRP, zP1 = 2M + 2ε.

22

1

3

(b) Infeasible loading pattern corresponding to the
route in Figure 2(a).

2

ε

1 31 3

M+ε

M

M
M

M+ε

0

(c) Feasible solution for the 2L-CVRP.

Figure 2: Feasible solution for the 2L-CVRP of the instance in Figure 1 obtained applying the
NISA-NC, zHNISA = 4M + 2ε.

classical instances for the CVRP. In each 2L-CVRP instance, the coordinates of each vertex, the
total weight qj associated with each customer j ∈ C, as well as the maximum weight capacity Q
of the vehicles, are those of the corresponding CVRP instance. The traveling cost cij associated
with each edge {i, j} ∈ E is an integer value computed by rounding down to the next integer
the Euclidean distance between vertex i and vertex j. From each CVRP instance, 5 2L-CVRP
instances were created according to 5 different modes used to generate the items demanded by each
customer. This gives rise to 5 different classes of instances, out of which we did not consider those
belonging to Class 1 (as called in [28]) since they correspond to the original CVRP instances (i.e.,
the loading constraints are not binding) and, therefore, do not provide any insight on the benefits of
integration. As for the remaining four classes (from Class 2 to Class 5), the size of the loading area
of each vehicle is computed setting W = 20 and H = 40. The number of items associated with each
customer (i.e., parameter mj), the shape of each item (i.e., vertical, homogeneous, or horizontal),
as well as its height and width, were randomly generated within the intervals reported in Table 1.
The subset of benchmark instances that we considered in the computational experiments consists
of 84 instances.
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M+ε
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(a) Optimal route for the 2L-CVRP.

1 31 3

2

(b) Loading pattern for the solution in Figure 3(a).

Figure 3: Feasible solution for the 2L-CVRP of the instance in Figure 1, z∗ ≤ 2M + 3ε.

Vertical Homogeneous Horizontal
Class mj Height Width Height Width Height Width

2 [1, 2] [.4H, .9H] [.1H, .2H] [.2H, .5H] [.2H, .5H] [.1H, .2H] [.4H, .9H]
3 [1, 3] [.3H, .8H] [.1H, .2H] [.2H, .4H] [.2H, .4H] [.1H, .2H] [.3H, .9H]
4 [1, 4] [.2H, .7H] [.1H, .2H] [.1H, .4H] [.1H, .4H] [.1H, .2H] [.2H, .7H]
5 [1, 5] [.1H, .6H] [.1H, .2H] [.1H, .3H] [.1H, .3H] [.1H, .2H] [.1H, .6H]

Table 1: Intervals used to generate the benchmark instances (from Iori et al. [28]).

In order to validate the importance of an integrated approach for the 2L-CVRP testing a large
set of instances, we created an additional set of test problems that comprises 64 instances. These
instances, referred in the following as the new instances, are derived from the benchmark instances
for the 2L-CVRP selecting a subset of the customers from the instances having from 75 to 255
customers. The number of selected customers ranges from 22 to 71, and correspond to the first
customers listed in the instances.

Finally, we set a maximum computing time equal to 14400 seconds (i.e., 4 hours) for the ISA,
as well as for both the NISA-NC and the NISA-OM.

6.2 Computational Results

In this section we provide and comment the foremost outcomes of the computational experiments.
As the largest-scale instances that we tested were not solved to proven optimality by the ISA and,
for some of them, both NISAs reached the time threshold before terminating the computation, we
decided to organize the exposition of the experimental results as follows. Table 2 summarizes a set
of statistics that were computed over only the instances solved to proven optimality by the ISA
within the time limit. On the other hand, Table 3 considers all the instances such that both NISAs
found a feasible solution for the 2L-CVRP within the time limit (this condition happened for both
NISAs on approximately the same subset of instances). Finally, the detailed computational results
for each of the benchmark and of the new instances can be found in Tables 4 and 5, respectively.

In Table 2 we present the results for the benchmark and the new instances, and, within each
of these two groups, we summarize the results for each of the four classes of instances that we
mentioned earlier. Specifically, in Table 2 we report, for each class, the number of instances tested
(column with header # Tot. Inst.) and the number of instances solved to proven optimality by the
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ISA (column # Opt. Sol.). The latter figure represents the number of instances considered when
computing the statistics described below. The following three columns in the table are devoted to
the ISA. Columns %weight and %area give the average load factors of the vehicles routed in terms
of the weight capacity used and the loading area occupied, respectively. Column CPU (sec.) shows
the average computing time in seconds. The subsequent 5 columns illustrate the average results
for the NISA-NC. In addition to the three statistics described for the ISA, we report two further
figures. Column zUB Gap % refers to the average error of the best solution value found by the
NISA-NC compared to the optimal solution value found by the ISA. The error for each instance

is computed as 100
zHNISA−z

UB

zUB , where zHNISA denotes the cost of the best feasible solution found by

the NISA-NC and zUB refers to the value of the optimal solution determined using the ISA. The
error computed for each instance is then averaged over all the instances considered for a given class
to obtain statistic zUB Gap %. Statistic Worst Gap % shows the worst error computed out of
all the selected instances in the class. The last 5 columns show the same set of statistics for the
NISA-OM, with the only difference that here zHNISA refers to the cost of the best feasible solution
found by the NISA-OM.

The figures reported in Table 2 show that the error committed adopting one of the proposed
NISAs is, on average, large. Indeed, considering the NISA-NC, statistic ‘zUB Gap %’ is on average
equal to 7.45% for the benchmark instances, whereas it is approximately 8.6% for the new instances.
The same statistic takes a rather large value, even if slightly smaller, also for the NISA-OM (ap-
proximately 6.1% and 6.6% for the benchmark and the new instances, respectively). This result
indicates that even a heuristic that does not provide very accurate results but that addresses the
2L-CVRP as an integrated problem, say one that finds on average solutions that are within 3-4%
from the optimum, can halve the error committed by the two NISAs. The worst error commit-
ted using the NISA-NC is always larger than 12.90% and, often, larger than 20% (see the figures
reported in column ‘Worst Gap %’). The values concerning the worst error improve using the
NISA-OM, sometimes quite significantly (e.g., see the figures referred to Class 2 for the benchmark
instances where the worst error is reduced by approximately 10%), but remain remarkably large.
Addressing the 2L-CVRP by means of the integrated approach often provides solutions where a
smaller number of vehicles is routed compared to those found using the proposed NISAs. To this
aim, one can compare in Tables 4 and 5 the number of vehicles routed in the best solution found by
the ISA (column # Veh.) with the additional number of vehicles routed in each solution computed
with the two NISAs (column Add. Veh.). As a consequence, the average load factors computed
for the solutions obtained using the ISA are considerably better than those concerning the NISAs,
both in terms of weight and area. Indeed, adopting the ISA instead of the NISA-NC, the average
improvement achieved for the benchmark instances is approximately equal to 7% for both load
factors, while for the new instances it is almost equal to 6% for statistic ‘%weight’ and larger than
8.7% for statistic ‘%area’. Almost negligible improvements were found for both load factors using
the NISA-OM instead of the NISA-NC. As expected, solving the 2L-CVRP by means of the ISA
requires considerably larger computing efforts than using any NISA. The new instances resulted
to be the most challenging in terms of average CPU times spent. As far as these instances are
considered, both NISAs found a solution within few seconds, whereas the ISA took, on average,
approximately 26 minutes to solve to optimality an instance. Nevertheless, it is worth noting that
the ISA solved to proven optimality within fractions of a second most of the benchmark instances
comprising up to 25 customers (see Table 4).

Table 3 summarizes the results computed over all the instances where both NISAs found a
feasible solution for the 2L-CVRP within the time limit. In other words, compared to the results
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described above, some instances that were not solved to proven optimality by the ISA are also
included. In addition to the statistics described above, this table reports, for each class, the
number of instances considered while computing the statistics (# Solv. NISA) and two further
performance measures for the ISA. Specifically, statistic Opt. Gap % shows the average optimality
gap computed, for each instance, as 100 zUB−zLB

zLB , where zUB and zLB are the best upper and lower
bounds, respectively, found by the ISA within the time limit. Statistic Worst Gap % reported in
the fifth column indicates the worst optimality gap computed out of all the instances considered in
the class.

The importance of adopting an integrated approach to address the 2L-CVRP is even more
evident from the figures reported in Table 3. Indeed, although the computation of the statistics
reported in this table also considers some instances that were not solved to proven optimality by
the ISA, if compared to the figures shown in Table 2 the average errors for both NISAs increase
in almost all classes of instances, and for the new instances in particular. Additionally, the worst
errors also deteriorate significantly, especially for the NISA-NC where statistic ‘Worst Gap %’ takes
values larger than 25% in five classes out of eight. The comments about the remaining statistics are
similar to those reported above for Table 2. Given these results, we feel we can draw the following
conclusions. On the one hand, even when the solution found by the ISA is not proven to be optimal,
it is a high-quality solution and, likely, very close to the optimum (or the optimum itself). In these
situations, the ISA probably tends to spend an excessive amount of computing time to prove the
optimality of the solution found. On the other hand, the magnitude of the benefits achieved using
an integrated approach is quite remarkable on all the instances where the NISAs have been able to
find a feasible solution for the 2L-CVRP.

As mentioned above, Tables 4 and 5 report the detailed computational results for each of the
benchmark and of the new instances, respectively. Note that in columns ‘CPU (sec.)’ we indicated
with T.L. whenever the corresponding approach did not terminate the computation within the time
threshold. It is worth highlighting that in the large majority of these cases, for both NISAs the
time limit was reached while still solving a CVRP. On the other side, in all the instances that were
not solved by the NISA-OM, but were by the NISA-NC, the time limit was reached by the former
approach while solving the 2L-SCVRP. As a consequence, for all these instances the NISAs did
not find any feasible solution for the 2L-CVRP within the time limit allowed (n/a indicates this
occurrence). This remark gives rise to another crucial concern about the use of a not integrated
approach. When one of the problems that is addressed independently is computationally hard to
solve, as for the CVRP, and limited computing resources are available (not only in terms of time
but also memory) it may happen that a not integrated approach is not able to find any feasible
solution for the integrated problem. This situation can occur even for some instances for which an
integrated approach, which searches from the beginning for a solution of the integrated problem,
obtains a feasible solution, sometimes without proving its optimality.

7 Conclusions

A growing body of literature focuses on the study of integrated vehicle routing problems, where
classical vehicle routing problems are considered in combination with other optimization problems.
This recent trend is motivated by the desire of bridging the gap between academic research and
real-world applications, on the one side, and by the advances in optimization methods and computer
capabilities, on the other side. The integrated problems are, however, computationally very hard
and, to motivate the use of an integrated approach, the savings that can be achieved by tackling
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ISA NISA-NC NISA-OM

Instance Details Opt. # CPU zUB Add. CPU zUB Add. CPU

Name n m zUB Gap % Veh. (sec.) Gap % Veh. (sec.) Gap % Veh. (sec.)

0102 15 24 277 0.00% 4 0.3 6.14% 0 1.1 6.14% 0 4.4
0103 15 31 280 0.00% 3 0.9 10.71% +1 1.3 2.86% +1 9.4
0104 15 37 288 0.00% 4 0.4 6.94% +1 1.3 6.25% +1 5.4
0105 15 45 273 0.00% 3 0.5 0.00% 0 1.3 0.00% 0 1.3
0202 15 25 337 0.00% 6 0.2 8.31% +1 1.3 7.72% +1 5.2
0203 15 31 345 0.00% 6 0.6 7.25% +1 1.4 6.38% +1 5.1
0204 15 40 326 0.00% 6 0.1 0.00% 0 0.8 0.00% 0 1.1
0205 15 48 326 0.00% 6 0.1 0.00% 0 0.9 0.00% 0 0.9
0302 20 29 396 0.00% 5 172.1 21.97% +2 8.0 11.87% +1 17.7
0303 20 46 387 0.00% 5 5.5 10.59% +1 3.1 10.59% +1 52.0
0304 20 44 360 0.00% 5 2.9 15.28% 0 2.5 6.11% 0 28.5
0305 20 49 351 0.00% 4 0.3 0.00% 0 1.4 0.00% 0 1.6
0402 20 32 434 0.00% 6 0.9 7.14% +1 1.7 7.14% +1 4.2
0403 20 43 432 0.00% 7 0.8 7.64% 0 1.8 4.86% 0 8.5
0404 20 50 433 0.00% 7 0.7 0.00% 0 2.0 0.00% 0 2.8
0405 20 62 423 0.00% 6 0.1 0.00% 0 1.5 0.00% 0 1.5
0502 21 31 380 0.00% 4 0.3 7.37% +1 1.8 7.11% +1 19.0
0503 21 37 373 0.00% 4 0.1 12.33% +1 1.6 12.33% +1 6.2
0504 21 41 377 0.00% 4 0.2 3.18% +1 1.9 2.92% +1 6.3
0505 21 57 367 0.00% 4 0.2 0.00% 0 1.5 0.00% 0 1.6
0602 21 33 491 0.00% 6 0.4 12.02% +1 2.1 9.57% +1 6.8
0603 21 40 492 0.00% 7 0.9 7.93% 0 1.8 7.93% 0 7.0
0604 21 57 489 0.00% 6 0.3 0.00% 0 1.6 0.00% 0 1.7
0605 21 56 488 0.00% 6 0.2 0.00% 0 1.7 0.00% 0 1.7
0702 22 32 724 0.00% 5 87.2 12.43% +1 4.4 7.60% +1 39.2
0703 22 41 693 0.00% 4 7.8 8.51% +1 3.9 7.50% +1 55.3
0704 22 51 693 0.00% 4 2.6 8.23% +1 2.6 8.23% +1 51.6
0705 22 55 647 0.00% 4 12.0 6.03% +1 7.0 6.03% +1 30.1
0802 22 29 716 0.00% 4 119.3 15.50% +2 6.3 7.68% +1 29.9
0803 22 42 730 0.00% 5 6.3 7.67% +1 2.6 7.67% +1 32.0
0804 22 48 687 0.00% 4 3.8 14.12% +1 3.6 14.12% +1 49.1
0805 22 52 605 0.00% 3 237.9 10.58% +1 304.2 9.75% +1 346.7
0902 25 40 598 0.00% 8 0.3 8.19% +1 2.3 8.19% +1 3.5
0903 25 61 601 0.00% 8 0.7 4.83% +1 2.5 4.83% +1 6.0
0904 25 63 609 0.00% 9 3.4 6.24% 0 2.5 6.24% 0 6.6
0905 25 91 595 0.00% 8 0.2 0.00% 0 1.9 0.00% 0 3.0
1002 29 43 687 0.00% 6 12900.0 23.00% +1 6.5 13.10% +1 79.5
1003 29 49 616 0.00% 5 60.8 23.70% 0 7.0 15.75% 0 155.3
1004 29 72 703 0.00% 6 11.7 15.79% +1 4.0 15.79% +2 33.4
1005 29 86 675 0.00% 6 9735.3 21.63% 0 8.6 21.63% 0 101.1
1102 29 43 708 6.47% 6 T.L. 17.37% +1 7.5 15.82% +1 157.5
1103 29 62 705 0.00% 6 1885.5 24.11% +1 7.4 22.84% +1 52.9
1104 29 74 781 2.40% 7 T.L. 9.60% 0 12.3 9.60% 0 97.8
1105 29 91 613 0.00% 6 78.6 0.00% 0 5.4 0.00% 0 7.5
1202 30 50 591 0.00% 10 102.4 7.61% +1 38.6 7.61% +1 42.2
1203 30 56 587 0.00% 10 25.6 0.00% 0 51.0 0.00% 0 45.3
1204 30 82 598 0.00% 10 721.7 5.35% +1 225.7 5.35% +1 231.6
1205 30 101 587 0.00% 10 31.4 0.00% 0 23.4 0.00% 0 23.5
1302 32 44 2656 7.35% 6 T.L. 30.23% +1 29.4 n/a n/a T.L.
1303 32 56 2472 0.20% 6 T.L. 8.54% 0 6.7 6.63% 0 136.3
1304 32 78 2595 0.00% 6 64.9 5.82% +1 6.2 5.05% +1 97.6
1305 32 102 2333 0.78% 5 T.L. 2.79% +1 165.0 2.79% +1 269.2
1402 32 47 1071 5.41% 5 T.L. 28.29% +2 10.1 13.63% +1 3792.1
1403 32 57 1023 4.49% 5 T.L. 13.10% +1 5.8 12.02% +1 69.2
1404 32 65 965 0.39% 5 T.L. 15.75% +1 20.6 14.09% +1 226.0
1405 32 87 907 6.46% 5 T.L. 3.64% 0 882.8 3.64% 0 499.3
1502 32 48 1028 3.99% 5 T.L. 19.26% +2 23.3 11.96% +1 171.4
1503 32 59 1165 6.23% 6 T.L. 18.28% +2 16.0 10.30% +1 221.7
1504 32 84 1226 7.01% 6 T.L. 8.81% +1 17.3 8.48% +1 192.3
1505 32 114 1143 0.00% 6 87.9 6.30% +1 30.4 6.30% +1 68.0
1602 35 56 682 0.00% 11 145.7 0.00% 0 141.1 0.00% 0 143.4
1603 35 74 682 0.00% 11 71.4 0.00% 0 63.3 0.00% 0 60.7
1604 35 93 691 0.00% 11 333.9 6.66% +1 182.8 6.66% +1 167.7
1605 35 114 682 0.00% 11 105.2 0.00% 0 90.5 0.00% 0 91.3
1702 40 60 847 3.30% 15 T.L. n/a n/a T.L. n/a n/a T.L.
1703 40 73 839 2.21% 15 T.L. n/a n/a T.L. n/a n/a T.L.
1704 40 96 839 2.01% 15 T.L. n/a n/a T.L. n/a n/a T.L.
1705 40 127 839 2.07% 15 T.L. n/a n/a T.L. n/a n/a T.L.
1802 44 66 1032 5.59% 9 T.L. 18.02% +1 19.5 7.46% +1 1055.7
1803 44 87 1082 4.32% 9 T.L. 10.44% +2 28.4 8.87% +2 12001.9
1804 44 112 1110 1.93% 9 T.L. 9.19% +2 22.8 8.74% +2 326.7
1805 44 122 910 0.92% 8 T.L. 1.32% 0 1656.3 1.32% 0 1746.8
1902 50 82 773 15.01% 10 T.L. 14.75% +2 589.9 n/a n/a T.L.
1903 50 103 782 11.42% 11 T.L. n/a n/a T.L. n/a n/a T.L.
1904 50 134 779 8.83% 11 T.L. 8.34% +1 188.2 5.13% +1 589.3
1905 50 157 634 0.79% 8 T.L. 7.41% +1 1992.3 6.62% +1 2119.2
2002 71 104 526 17.20% 14 T.L. n/a n/a T.L. n/a n/a T.L.
2003 71 151 518 10.71% 14 T.L. n/a n/a T.L. n/a n/a T.L.
2004 71 178 527 6.30% 15 T.L. n/a n/a T.L. n/a n/a T.L.
2005 71 226 460 4.62% 12 T.L. 12.17% +1 9119.8 11.74% +1 10094.5
2102 75 114 1037 18.93% 14 T.L. n/a n/a T.L. n/a n/a T.L.
2103 75 164 1121 15.08% 17 T.L. n/a n/a T.L. n/a n/a T.L.
2104 75 168 965 10.24% 13 T.L. n/a n/a T.L. n/a n/a T.L.
2105 75 202 859 6.70% 11 T.L. n/a n/a T.L. n/a n/a T.L.

Average (NISA solveda) 1.01% 6.40 4083.5 8.56% +0.71 221.1 6.81% +0.66 514.6

Average (Totalb) 2.37% 7.54 5799.8 2251.0 2832.8
a: the average is computed over the instances solved by both NISAs.
b: the average is computed over all the instances.

Table 4: Benchmark instances: A comparison of the different approaches.
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ISA NISA-NC NISA-OM

Instance Details Opt. # CPU zUB Add. CPU zUB Add. CPU

Name n m zUB Gap % Veh. (sec.) Gap % Veh. (sec.) Gap % Veh. (sec.)

2102 22 22 38 388 0.00% 5 225.7 5.67% 0 2.9 1.80% 0 45.9
2103 22 22 47 382 0.00% 5 32.2 11.78% +1 8.6 4.45% 0 85.3
2104 22 22 49 351 0.00% 5 2.0 3.42% 0 2.8 3.42% 0 36.1
2105 22 22 58 316 0.00% 3 22.4 6.33% +1 320.5 6.33% +1 405.3
2202 22 22 34 380 0.00% 5 148.9 1.32% +1 3.9 1.32% +1 57.0
2203 22 22 42 350 0.00% 5 3.5 6.86% 0 2.3 6.86% +1 43.3
2204 22 22 58 390 0.00% 5 5.9 10.00% +1 2.9 7.95% +1 22.0
2205 22 22 67 336 0.00% 4 5.8 0.00% 0 4.6 0.00% 0 4.1
2302 25 25 37 403 0.00% 5 559.2 12.90% +1 6.2 3.97% 0 41.6
2303 25 25 50 422 0.00% 5 7.1 14.22% +1 4.6 11.85% +1 58.8
2304 25 25 61 401 0.00% 5 7.9 5.99% +1 5.3 5.99% +1 54.8
2305 25 25 76 384 0.00% 5 33.3 0.00% 0 10.9 0.00% 0 18.0
2402 29 29 48 544 10.86% 8 T.L. 19.30% +2 156.3 9.74% +1 214.9
2403 29 29 61 491 0.00% 7 1858.9 7.33% +1 14.1 5.09% +1 49.2
2404 29 29 77 486 0.00% 7 1179.3 5.35% 0 5.2 5.35% 0 68.2
2405 29 29 84 458 0.00% 6 14.8 0.00% 0 10.9 0.00% 0 12.0
2502 29 29 45 529 6.44% 7 T.L. 15.12% 1 11.6 6.05% +1 40.9
2503 29 29 57 452 0.00% 6 63.2 9.51% 0 7.1 9.29% 0 110.3
2504 29 29 72 484 0.00% 6 14.4 10.33% +1 5.9 10.33% +1 113.3
2505 29 29 91 430 0.00% 5 17.5 n/a n/a T.L. n/a n/a T.L.
2602 30 30 47 338 2.35% 6 T.L. 25.74% +2 7.7 19.82% +1 1204.9
2603 30 30 59 320 2.96% 6 T.L. 11.88% +1 23.3 9.06% 0 172.5
2604 30 30 80 393 6.99% 7 T.L. 19.08% +1 15.6 9.16% 0 193.2
2605 30 30 99 316 0.00% 6 854.3 27.53% +1 69.4 20.25% +1 233.1
2702 32 32 51 544 5.30% 7 T.L. 13.42% +1 18.7 8.82% +1 295.9
2703 32 32 71 555 6.30% 7 T.L. 12.61% +2 41.8 11.89% +2 192.4
2704 32 32 92 571 4.80% 8 T.L. 11.91% +1 15.5 7.88% +1 104.8
2705 32 32 105 488 0.00% 6 668.4 7.17% +1 587.8 7.17% +1 734.7
2802 32 32 52 928 7.46% 7 T.L. 20.91% +1 22.9 n/a n/a T.L.
2803 32 32 66 836 4.16% 6 T.L. 26.08% +2 11.4 15.31% +1 93.1
2804 32 32 78 871 0.00% 6 10288.4 34.21% +2 10.7 11.83% +1 131.3
2805 32 32 98 712 0.00% 5 6118.1 22.47% +1 43.2 21.91% +1 590.8
3502 32 32 49 110 0.00% 8 2429.0 7.27% +1 134.2 6.36% +1 139.9
3503 32 32 65 110 0.00% 8 1564.2 3.64% +1 56.2 3.64% +1 59.9
3504 32 32 86 110 0.00% 8 4146.7 9.09% +1 41.0 7.27% +1 64.5
3505 32 32 99 108 0.00% 8 70.5 0.00% 0 55.5 0.00% 0 53.2
2902 35 35 59 478 6.58% 7 T.L. 15.90% +2 15.5 8.37% +1 1816.9
2903 35 35 63 426 4.88% 7 T.L. 14.55% +1 13.7 n/a n/a T.L.
2904 35 35 85 428 4.33% 7 T.L. 15.42% +1 18.4 9.58% 0 495.1
2905 35 35 114 432 0.00% 6 1905.6 14.12% +1 21.7 13.43% +1 199.9
3002 35 35 52 571 7.01% 7 T.L. 8.76% +1 13.0 8.23% +1 241.0
3003 35 35 69 575 4.80% 8 T.L. 9.57% +1 16.0 7.13% +1 109.4
3004 35 35 76 528 0.00% 6 104.6 9.66% +1 8.4 9.66% +1 154.3
3005 35 35 100 505 0.00% 6 1816.7 3.56% 0 83.9 3.56% 0 344.6
3102 40 40 63 702 11.41% 9 T.L. 16.38% +2 1069.3 n/a n/a T.L.
3103 40 40 87 672 6.09% 9 T.L. 6.85% +1 750.7 6.70% +1 998.9
3104 40 40 100 620 1.83% 8 T.L. 9.35% 0 62.3 5.16% 0 231.6
3105 40 40 127 588 0.00% 7 318.3 4.59% +1 48.9 4.59% +1 79.0
3202 44 44 65 723 11.43% 9 T.L. 14.25% +2 39.5 n/a n/a T.L.
3203 44 44 94 715 6.66% 9 T.L. 11.47% +2 171.3 7.69% +1 860.7
3204 44 44 112 703 4.00% 9 T.L. 10.24% +1 96.9 7.97% +1 496.7
3205 44 44 143 633 0.00% 8 8572.2 6.79% +1 2596.8 6.79% +1 4010.8
3302 50 50 75 681 13.06% 10 T.L. n/a n/a T.L. n/a n/a T.L.
3303 50 50 101 738 12.57% 11 T.L. n/a n/a T.L. n/a n/a T.L.
3304 50 50 118 670 4.79% 10 T.L. 7.61% 0 132.2 6.42% 0 211.7
3305 50 50 132 567 0.00% 7 5156.9 5.82% +1 22.0 4.76% +1 198.1
3402 71 71 110 270 14.59% 15 T.L. n/a n/a T.L. n/a n/a T.L.
3403 71 71 151 266 10.91% 15 T.L. n/a n/a T.L. n/a n/a T.L.
3404 71 71 175 263 8.09% 15 T.L. 15.21% +2 11473.4 n/a n/a T.L.
3405 71 71 215 212 0.55% 12 T.L. 10.85% +1 1126.1 9.91% +2 1382.8
3602 71 71 104 241 22.27% 12 T.L. n/a n/a T.L. n/a n/a T.L.
3603 71 71 143 283 30.28% 15 T.L. n/a n/a T.L. n/a n/a T.L.
3604 71 71 179 273 15.91% 14 T.L. n/a n/a T.L. n/a n/a T.L.
3605 71 71 221 222 9.83% 12 T.L. n/a n/a T.L. n/a n/a T.L.
Average (NISA solveda) 1.94% 6.64 6428.2 10.56% +0.90 138.0 7.60% +0.72 351.5

Average (Totalb) 4.21% 7.63 7940.9 2332.1 3432.0
a: the average is computed over the instances solved by both NISAs.
b: the average is computed over all the instances.

Table 5: New instances: A comparison of the different approaches.
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an integrated problem directly rather than decomposing it and addressing each problem separately
must be assessed.

In this paper we have considered the capacitated vehicle routing problem with two-dimensional
loading constraints, which is an integrated problem where the capacitated vehicle routing problem
is combined with the problem of finding a feasible loading pattern for a set of rectangular-shaped
items. We have proposed a solution approach that addresses the integrated problem by means of an
exact algorithm and compared such approach with two not integrated approaches that consider the
routing and the loading aspects of the problem sequentially. We have shown that the cost of solution
obtained with a not integrated approach may be as large as twice the cost of an optimal integrated
solution. We have also shown empirically the importance of the integration for this problem. The
computational results have shown that the integrated problem provides better solutions, both in
terms of total cost, number of vehicles routed and loading factors achieved. In particular, on the
instances where an optimal solution is found for the integrated approach, the average cost increase
of the two not integrated approaches is 7.45% and 6.11%, respectively, for the benchmark instances,
whereas it is 8.61% and 6.62% for the new test problems.

The results obtained suggest that it is worthwhile to jointly tackle strongly interdependent
problems that have been, until recently, addressed separately and that this is true even in the
cases the integrated problems cannot be solved exactly, provided the error generated by a heuristic
remains smaller than the cost increase of a not integrated approach. The line of research proposed
in this paper can be extended to other integrated problems to motivate their scientific study and
to evaluate the potential benefit of their implementation in practice.
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