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Abstract.  This paper presents a general and operational representation of the recursive 
models for route choice analysis. We extend the nested recursive logit model (NRL) (Mai 
et al., 2015) by allowing the choice at each stage to be a network multivariate extreme 
value (MEV) model (Daly and Bierlaire, 2006) instead of the multinomial logit (MNL) 
model. Similar to the NRL model, the choice of path is modeled as a sequence of state 
choices and the model does not require any sampling of choice sets. Furthermore, the 
model can be consistently estimated and efficiently used for prediction. The main 
challenge is on the computation of the value functions which are solutions to a complex 
non-linear system. We present a novel approach where a new network is created by 
integrating the networks of correlation structures given by the network MEV models into 
the transport network. We show similarities between the RNMEV model and the NRL 
model on the integrated network. This allows us to use the methods proposed in Mai et al. 
(2015) to quickly estimate the RNMEV model on a real network. We propose a recursive 
cross-nested logit (RCNL) model, a member of the RNMEV model, where the choice 
model at each stage is a cross-nested logit. We show that the RCNL allows to exhibit a 
more general correlation structure at each choice stage. We report estimation results and 
a prediction study for a network comprising more than 3000 nodes and 7000 links. The 
results show that the RCNL model yields sensible parameter estimates and the in-sample 
and out-of-sample fit are significantly better than the NRL model. 
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1 Introduction

Discrete choice models are generally used for analyzing route choices in real net-
works. There are two main issues associated with the estimation of the parameters
of such models. First, choice sets of paths are unknown to the analyst. Second,
path utilities may be correlated, for instance, due to physical overlap in the net-
work. In this paper we propose a general and operational representation of the
recursive route choice models. Similar to Mai et al. (2015), the choice of path is
modeled as a sequence of state choices and can be consistently estimated without
sampling choice sets of paths, it is straightforward to apply for prediction and al-
lows the choice model at each stage to be any member of the network MEV model
(Daly and Bierlaire, 2006).

The recursive logit (RL) model proposed by Fosgerau et al. (2013a) can be
consistently estimated on real data without sampling any choice sets of paths. It
is assumed that travelers choose states (nodes or links) in a sequential manner.
At each state they maximize the sum of the random utility of successor states
(instantaneous utility) and the expected maximum utility from the states to the
destination (value functions). The random terms of the instantaneous utilities
are assumed to be independently and identically distributed (i.i.d.) extreme value
type I and the RL model is equivalent to a multinomial logit (MNL) model over an
infinite number of path alternatives. The RL model hence inherits the IIA property
which is undesirable in a route choice setting (Mai et al., 2014). Recently, Mai
et al. (2015) proposed the nested RL (NRL) model that relaxes the IIA property
over paths by assuming that scale parameters are link specific. The model however
assumes that the random terms of instantaneous utilities at each choice stage are
i.i.d. extreme value type I and the choice at each stage is hence given by a logit
model. So the correlations between the utilities of successor states cannot be
captured.

In this paper, we generalize these works by allowing the choice model at each
stage to be any member of the network MEV model. A computational advantage
of the NRL model is that the value functions can be computed by using a value
iteration method, which can be expressed as a sequence of matrix operations that
are fast to compute. The network MEV model forms complicated expected max-
imum utility and choice probabilities. Therefore, in the case of the RNMEV, the
value functions are a solution to a complex non-linear system which is substan-
tially more difficult to deal with and the methods proposed in Mai et al. (2015)
cannot be used directly. We deal with this challenge by using the NRL model but
based on a new artificial network to simplify the estimation of the RNMEV. More
precisely, the new network is created by integrating the networks of correlation
structures given by the network MEV models into the road network and we show
that the estimation of the RNMEV model can be simplified by applying the NRL
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model on the integrated network. The methods in Mai et al. (2015) then can
be applied to obtain the value functions as well as the likelihood of the RNMEV
model. Moreover, we also propose a recursive cross-nested logit (RCNL) model,
a member of the RNMEV model, which allows the choice model at each stage to
be a cross-nested logit model. We show that with the RCNL model, the variance-
covariance matrix at each choice stage is no longer diagonal as in the RL or NRL
model. This model therefore allows to exhibit a more general correlation structure
at each choice stage, compared to the NRL and RL models.

This paper makes a number of contributions. First, we propose a general rep-
resentation of the recursive route choice models that can be consistently estimated
and used for prediction without sampling choice sets while allowing the random
terms to be correlated. Second, we show that the generalized model can be esti-
mated quickly by using the NRL model based on an integrated network. Third,
we propose the RCNL model that can flexibly capture correlation structures at
each choice stage. Fourth, we provide estimation and cross-validation results for a
real network using simulated and real observations. Finally, the estimation code
is implemented in MATLAB and is freely available upon request.

The paper is structured as follows. Section 2 presents the RNMEV model.
Section 3 show the similarities between the RNMEV and RNL model. Section 4
discusses the maximum likelihood estimation. Section 5 presents the RCNL model.
We present the numerical results in Section 6 and finally Section 7 concludes.
The detailed proofs for the theorems proposed in the paper are provided in the
Appendix.

2 Recursive network MEV model

In the RL model (Fosgerau et al., 2013a) and NRL model (Mai et al., 2015), the
path choice problem is formulated as a sequence of link choices and modeled in
a dynamic discrete choice framework. At each sink node of a link the decision
maker chooses the utility-maximizing outgoing link with link utilities given by the
instantaneous utility and the expected maximum utility to the destination. The
random terms at each state are independently and identically distributed (i.i.d.)
extreme value type I, so the choice model at each stage is MNL. In this section,
we generalize the RL and NRL models by allowing the choice at each stage to be
a network MEV model. The model is derived based on a dynamic discrete choice
model with a discount factor of 1 as in Mai et al. (2015). However, in order to
better describe the model, we consider the road network as a set of states and
arcs connecting states. The states can be nodes in the network, or links as in Mai
et al. (2015) and Fosgerau et al. (2013a). The instantaneous utilities are defined
for states conditional on other states and the path choice problem is formulated as
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a sequence of state choices, and there are states representing destinations in the
road network.

A directed connected graph (not assumed acyclic) G = (S,A) is considered,
where S and A are the sets of states and arcs, respectively. For each state k ∈ A,
we denote the set of successor states of k by S(k) (if states are links, S(k) is
the set of the outgoing links from the sink node of k). Moreover, we associate
an absorbing state with the destination of a given individual by extending the
network with a dummy state d that has no successor (see Figure 1). The set of
all states is therefore S̃ = S ∪ {d} and the corresponding deterministic utility is
v(d|k) = 0 for all k that connects to d.

k

a2

a1

d··
·S(k)

v(a1|k) + ϵ(a1|k) V (a1)

Figure 1: Illustration of notation

Given two states a, k ∈ S̃ and individual n, the following instantaneous utility
is associated with state a conditional on k

un(a|k; β) = vn(a|k; β) + ϵ(a|k; β)− γ

µk(β)
, ∀k ∈ S, a ∈ S(k),

where β is a vector of parameters to be estimated and random terms (ϵ(a|k), a ∈ S(k))
follow a MEV distribution, with the generating function Gk of homogeneous degree
µk > 0 generated by the network MEV model (Daly and Bierlaire, 2006). Note
that the term γ

µk
is used in order to ensure that the random term has zero mean

as in Fosgerau et al. (2013a), Mai et al. (2015). The deterministic term vd(a|k),
a ∈ S(k), is assumed negative for all states except for the dummy d that equals 0,
i.e., vd(d|k) = 0 ∀k ∈ S. For notational simplicity, we omit an index for individual
n but note that the utilities can be individual specific. Given a state k ∈ S, the
next state is chosen by taking the maximum utility as

a∗ = argmaxa∈S(k)

{
v(a|k; β) + V d(a; β) + ϵ(a|k; β)− γ

µk(β)

}
, ∀k ∈ S,

where V d(a; β), ∀a ∈ S̃, is the expected maximum utility (or value function) from
the state a to the destination, which is recursively defined as

V d(k; β) = E
[
max
a∈S(k)

(
v(a|k; β) + V d(a; β) + ϵ(a|k; β)− γ

µk(β)

)]
, ∀k ∈ S (1)
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and V d(d) = 0. The superscript d indicates that the value functions are destination
specific and they also depend on parameters β. However, for notational simplicity
we omit from now on β and superscript d from the value functions V () and the
utilities v(). According to McFadden (1978) the value functions can be computed
as

V (k) =
lnGk

(
ev(a|k)+V (a), a ∈ S(k)

)
µk

, ∀k ∈ S, (2)

and note that V (d) = 0. If we define a vector of size |S̃| (| · | is the cardinality
operator) with entries

Yk = eµkV (k), ∀k ∈ S̃,

then the system in (1) can be written as

Yk =

{
Gk(e

v(a|k)Y
1/µa
a , a ∈ S(k)), ∀k ∈ S if k ∈ S

1 if k = d
. (3)

Moreover, the probability of choosing state a given state k is given by the MEV
model

P (a|k) = δ(a|k)
y(a|k) ∂Gk

∂y(a|k)(y(a|k), a ∈ S(k))

µkG(y(a|k), a ∈ S(k))
, ∀k, a ∈ S̃ (4)

where y(a|k) = ev(a|k)Y
1/µa
a , ∀a ∈ S(k). Note that we include δ(a|k) that equals

one if a ∈ S(k) and zero otherwise so that the probability is defined for all states
a, k ∈ S̃. Moreover, the probability of a path σ defined by a sequence of states
σ = [k0, k1, . . . , kI ] has a more complicated form than the ones given by the RL
and NRL models. In general, it can be expressed as

P (σ) =
I−1∏
i=0

P (ki+1|ki), (5)

in which P (ki+1|ki) can be computed using Equation (4).
Now we turn our attention to the network MEV model at each stage. We

assume that for each state k ∈ S, the respective generating function Gk(y) is
generated by a network MEV model based on a cycle-free graph of correlation
structure Gk = (Sk,Ak, Ck), where Sk is the set of states, Ak is the set of arcs
and Ck is the set of states that represent alternatives. Here we remark that in
order to be consistent we defined the network MEV model based on states instead
of nodes as in Daly and Bierlaire (2006). Note that the set of states representing
alternatives in this network MEV model is also the set of next states from k that is
S(k). So each state i ∈ Ck corresponds to only one state a ∈ S(k) and vice versa.
Figure 2 shows a network of correlation structure at state k. Each arc (i, j) ∈ Ak is
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associated with a positive parameter αk
ij and each state i ∈ Sk is associated with a

positive scales ξki . The choice probability generating functions (CPGF) (Fosgerau
et al., 2013b) (with respect to a vector of parameters y) associated with each state
in Sk are defined as

Gi
k(y) = y

ξki
i , i ∈ Ck, (6)

and
Gi

k(y) =
∑

j∈Sk(i)

αk
ij(G

j
k(y))

ξki /ξ
k
j ,∀i ∈ Sk\Ck, (7)

where Sk(i) is the set of the successors of state i in network Gk. We obtain

r

a1 ... aK

y(a1|k) y(aK |k)...

Figure 2: A network of correlation structure at state k

the CPGF Gk(y) as Gk(y) = Gr
k(y), where r is the root of network Gk. Daly

and Bierlaire (2006) show that Gk(y) = Gr
k(y) is a ξkr -MEV CPGF and µk is the

homogeneous degree of Gk(y), so indeed ξkr = µk.
Moreover, Daly and Bierlaire (2006) show that the probability Pk(i|Ck; y) of

choosing alternative i ∈ Ck can be expressed based on the CPGFs defined in (6)
and (7) as

Pk(i|Ck; y) =
∑

[j0,...,jI ]∈Ωk(i)

I−1∏
t=0

αk
jtjt+1

(G
jt+1

k (y))
ξkjt

/ξkjt+1

Gjt
k (y)

(8)

where Ωk(i) is the set of all paths connecting the root r and i. A path is defined
by a sequence of states [j0, . . . , jI ] such that jt+1 ∈ Sk(jt), ∀t = 0, . . . I − 1 ,where
j0 is the root r and jI represents alternative i. If we denote yk a vector of size
|S(k)| with entries (yk)a = y(a|k) = ev(a|k)Y

1/µa
a , ∀a ∈ S(k), then according to

(3) we have Yk = Gk(yk) and the probability P (a|k) for a state a ∈ S(k) can be
computed by using (8). In other words, P (a|k) = Pk(ia|Ck; yk), where ia is the
state in Ck corresponding to state a ∈ S(k).
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Daly and Bierlaire (2006) show that the network MEV model generalizes many
MEV models in the literature and examples are the MNL, the nested logit (Ben-
Akiva, 1973), the paired combinatorial logit (Koppelman and Wen, 2000), the
generalized nested logit (Wen and Koppelman, 2001), the ordered MEV model
(Small, 1987), the link-nested logit model (Vovsha and Bekhor, 1998) and the
GenL model (Swait, 2001) models. So the RNMEV model allows to capture the
correlations at each choice stage in many different ways. Indeed, if all the Gk

functions, ∀k ∈ S, refer to the MNL model, we obtain the NRL model, and the
model can be estimated quickly for a large network using the methods presented
in Mai et al. (2015).

Basically, function Gk and the choice probability Pk(i|Ck) are complicated,
the value functions become expensive to solve and we cannot use the methods in
Fosgerau et al. (2013a) or Mai et al. (2015). The gradients of the value functions
are also cumbersome to evaluate as well. In the next section we show how to
simplify the estimation of the model by integrating the networks of correlation
structures Gk ∀k ∈ S into the road network G. This allows to use the estimation
methods proposed in Mai et al. (2015) to estimate the RNMEV model.

3 Integrated network and similarities between

the NRL and RNMEV models

In this section we show how to integrate the network Gk, ∀k ∈ S, into the network
G = (S,A) in order to simplify the estimation of the model. More precisely, we
first introduce a method to integrate the networks of correlation structures into
the road network, second we show that the estimation of the RNMEV model can
be done by using the value functions and choice probabilities given by the NRL
model based on the integrated network.

3.1 Integrated network

Given a state k ∈ S, the choice at k is a network MEV model based on a network
or correlation structure Gk = (Sk,Ak, Ck). As mentioned in the above section, the
set of states Ck (representing alternatives) is also the set of next states from k, i.e.,
S(k). So in order to integrate Gk to the road network we assume that Ck ≡ S(k)
and k ≡ r. Hence, the integrated network G∗ = (S∗,A∗) can be created by adding
all sets Sk and Ak, ∀k ∈ S, to the set of states S and set of arcs A. In other words

S∗ =
∪
k∈S

Sk and A∗ =
∪
k∈S

Ak. (9)
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Basically, the new network G∗ is created by adding new states to G. For each
state k ∈ S, we add new states such that the subnetwork between k and all states
a ∈ S(k) is similar to the network of correlation structure Gk. We also denote
S∗(k) be the set of successor states of state k in network G∗.

Note that due to the properties of the network Gk (for instance Daly and
Bierlaire, 2006), G∗ remains connected and there are paths connecting between
any two states k, a ∈ S̃, a ∈ S(k). For the sake of illustration we show in Figure 3
a small example where state k has three successors a1, a2 and a3 as illustrated in
the left part of Figure 3. The network of correlation structure Gk is given in the
middle of the figure and in the right we show the integrated network G∗ at state
k.

Gk

a1 a2 a3

Gkr

Ck

G∗k

m1 m2 m3

a1 a2 a3

Figure 3: Original and integrated network

We introduce the following proposition related to the properties of the network
G∗, which are easy to verify.

Proposition 1 Network G∗ has the following properties

(i) Given a state i ∈ S∗, there is a state k ∈ S such that i ∈ Sk.

(ii) Given a state i ∈ S∗, if i /∈ S̃ then there exits only one state k ∈ S such that
i ∈ Sk.

(iii) Given a state i ∈ Sk, if i ∈ S̃ then i = k or i ∈ S(k).

(iv) Given a state i ∈ Sk, if i /∈ Ck then Sk(i) = S∗(i).

(v) S̃ ∩ Sk = {k} ∪ S(k) and |S∗| = |S̃|+
∑

k∈S (|Sk| − |S(k)| − 1).

(vi) Ak ∩ Ah = ∅ ∀k, h ∈ S, k ̸= h and |A∗| =
∑

k∈S |Ak|.
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Proof. (i), (iii), (v) and (vi) are obviously verified by the definition in (9). We
have the fact that given a state i, if i ∈ Sk ∩ Sh (with k, h ∈ S, k ̸= h) then i ∈ S̃.
So if state i /∈ S̃ then there is only one state k ∈ S such that i ∈ Sk. This proves
(ii).

For proving (iv) we note that given i ∈ Sk\Ck and if j ∈ Sk(i) for a given
j ∈ S∗ then (i, j) ∈ Ak, meaning that (i, j) ∈ A∗ by (9), or equivalently j ∈ S∗(i).
Moreover, if j ∈ S∗(i) then (i, j) ∈ A∗. From (vi) there is only a state k′ ∈ S such
that (i, j) ∈ Ak′ . Moreover, (ii) leads to the fact that k = k′, so (i, j) ∈ Ak or
j ∈ Sk(i). Finally, we obtain Sk(i) ⊂ S∗(i) and S∗(i) ⊂ Sk(i). Hence, Sk(i) = S∗(i)
and (iv) is proved.

3.2 Integrated network with NRL model

We consider network G∗ = (S∗,A∗). We note that d ∈ S∗ and S∗(d) = ∅. We
associate each state i ∈ S∗ a positive parameter µ∗

i as

µ∗
i =

{
µi if i ∈ S̃,
ξki if i /∈ S̃, i ∈ Sk, k ∈ S

. (10)

Recall S̃ = S ∪ {d}. Note that due to Proposition 1(ii), for i /∈ S̃, there is only
one set Sk such that i ∈ Sk, so there is only one value ξki such that i ∈ Sk, k ∈ S.

For each arc (i, j) ∈ Ak, k ∈ S, the following deterministic utility is associated
with state j conditional on i

v∗(j|i) =


lnαk

ij

µ∗
i

if j /∈ S(k)
lnαk

ij

µ∗
i

+ v(j|k) if j ∈ S(k)
, (11)

here we recall that v(j|k), k ∈ S, j ∈ S(k), is a deterministic utility associated
with state j conditional on k and αk

ij are positive parameters of the network MEV
model at state k.

Now we apply the NRL model (Mai et al., 2015) to network G∗. Given two
states k, a ∈ S∗, a ∈ S∗(k), the following instantaneous utility associated with
state a given k

u∗(a|k) = v∗(a|k) + ϵ(a)− γ

µ∗
k

, (12)

where ϵ(a) are i.i.d extreme value type I and v∗(a|k), µ∗
k are defined in (11) and

(10). Note that, in order to be consistent with the RNMEV model, the scales of
the random terms in the NRL model are 1

µ∗
k
instead of µ∗

k in Mai et al. (2015).

The expected maximum utility from the sink node of k, k ∈ S∗, to the des-
tination is the value function V ∗(k) that is recursively defined by the Bellman’s
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equation

V ∗(k) = E
[
max

a∈S∗(k)

{
v∗(a|k) + V ∗(a) +

ϵ(a)− γ

µ∗
k

}]
, (13)

or equivalently (by the logsum)

µ∗
kV

∗(k) = ln

 ∑
a∈S∗(k)

eµ
∗
k(v

∗(a|k)+V ∗(a))

 ,∀k ∈ S∗\{d}, (14)

and note that V ∗(d) = 0. If we define a vector Y ∗ of size |S∗| with entries Y ∗
k =

eµ
∗
kV

∗(k), ∀k ∈ S∗, then the Bellman’s equation becomes

Y ∗
k =

{∑
a∈S∗(k) e

µ∗
kv

∗(a|k)(Y ∗
a )

µ∗
k/µ

∗
a if k ̸= d

1 if k = d
. (15)

Moreover, the probability of choosing state a given k is given by the MNL as

P ∗(a|k) = δ∗(a|k)e
µ∗
kv

∗(a|k)(Y ∗
a )

µ∗
k/µ

∗
a

Y ∗
k

,∀k, a ∈ S∗, (16)

where δ∗(a|k) equals one if a ∈ S∗(k) and zero otherwise so that the probability
is defined for all k, a ∈ S∗. We note that the system in (15) is non-linear but can
be solved quickly for a large network using the approach proposed in Mai et al.
(2015), namely a value iteration method with dynamic accuracy.

3.3 Similarities between the NRL on network G∗ and RN-
MEV on network G

This section presents similarities between the value functions and choice probabil-
ities given by the the NRL on network G∗ and RNMEV on network G. We first
introduce a theorem related to the value functions.

Theorem 1 If vector Y ∗ is a solution to the non-linear system (15) then

Y ∗
k = Gk

(
ev(a|k)(Y ∗

a )
1/µa , a ∈ S(k)

)
, ∀k ∈ S. (17)

In other words, Yk = Y ∗
k , ∀k ∈ S̃, is a solution to the Bellman’s equation of the

RNMEV model in (3).

The next theorem shows that the state choice probabilities under the RNMEV
model can be expressed via the probabilities given by the NRL model on network
G∗.
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Theorem 2 If vector Y ∗ is a solution to the non-linear system (15), and if Yk =
Y ∗
k ∀k ∈ S̃ then

P (a|k) =
∑

[a0,...,aI ]∈Ωk(a)

I−1∏
t=0

P ∗(at+1|at), ∀k ∈ S, a ∈ S(k). (18)

We recall that Ωk(a) is the set of sequences of states connecting k and a: [k =
a0, . . . , aI = a] such that at ∈ Sk(at−1), ∀t = 1, . . . , I, and at+1 ∈ Sk(at), ∀t =
0, . . . I − 1.

We provide the proofs of the two theorems in Appendixes 1 and 2. Theorems
1 and 2 indicate that the value functions and choice probabilities in the RNMEV
model can be computed by using the respective values from the NRL model ap-
plying on network G∗. So the methods proposed in Mai et al. (2015) can be used.
In the next section we discuss in detail the maximum likelihood estimation.

4 Maximum likelihood estimation

Aguirregabiria and Mira (2010) discuss different ways of estimating a dynamic
discrete choice model. Similar to Fosgerau et al. (2013a) and Mai et al. (2015) the
nested fixed point algorithm (Rust, 1987) can be used to estimate the RNMEV
model. This algorithm combines an outer iterative non-linear optimization algo-
rithm for searching over the parameter space with an inner algorithm for solving
the Bellman’s equation to obtain the value functions. We have shown that the
computation of the value functions and choice probabilities given by the RNMEV
model can be simplified by applying the NRL model to the integrated network.
The NRL model can be estimated efficiently using the methods in Mai et al. (2015),
namely estimating the value functions with dynamic accuracy and computing the
gradient of the log-likelihood function by solving systems of linear equations. In
the following we briefly describe the computations of these values in the NRL
model based on the integrated network.

4.1 Computation of the value functions

The main challenge associated with the NRL model is to solve the large-scale
system of non-linear to obtain the value functions. Similarity to Mai et al. (2015),
we define a matrix M∗(|S∗| × |S∗|) with entries

M∗
ka = δ∗(a|k)eµ∗

kv
∗(a|k) ∀k, a ∈ S∗, (19)

and matrix X of size |S∗| × |S∗| with entries

X(Y ∗)ka = (Y ∗
a )

µ∗
k/µ

∗
a , ∀k, a ∈ S∗ (20)
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and b is a vector of size |S∗| with zero values for all states except for the dummy
state d with a value of 1. The Bellman’s equation in (15) can be written in a
matrix form as

Y ∗ = [M∗ ◦X(Y ∗)]e+ b, (21)

where e is a vector of size (|S∗|) with value one for all states, and ◦ is the element-
by-element product. A value iteration method can be used to solve this system
i.e. we start with a initial vector (Y ∗)0 and then for each iteration i we compute a
new vector (Y ∗)i+1 ← [M∗ ◦X((Y ∗)i)]e+ b, and iterate until a fixed point solution
is found using ||(Y ∗)i+1 − (Y ∗)i|| ≤ γ, for a given threshold γ > 0 as stopping
criteria. Mai et al. (2015) show that the value iteration can be improved by using
dynamic accuracy. The choice of initial vector is also important for the rate of
convergence. Mai et al. (2015) use the solution to the system of linear equations
corresponding to the RL model (Fosgerau et al., 2013a) which is fast to compute.
This choice can be improved by taking into account the solution of the previous
iteration of the outer optimization algorithm (the algorithm for searching over the
parameters space) and using a switching approach to select the best initial vector.
More precisely, at iteration t− 1 of the outer algorithm we suppose that the fixed

point solution is (Y ∗)
t−1

. At the next iteration t we suppose (Y ∗)0 is the fixed
point solution of the RL model. For solving the value functions, the initial vector
for the inner algorithm can be chosen by considering

err = ||(Y ∗)0 − [M∗ ◦X((Y ∗)0)]e+ b|| − ||(Y ∗)
t−1
− [M∗ ◦X((Y ∗)

t−1
)]e+ b||.

If err < 0 than vector (Y ∗)0 is chosen, otherwise we select (Y ∗)
t−1

. This switch-
ing approach allows to select the better initial vector (closer to the fixed point
solution).

4.2 Estimation

Now we derive the log-likelihood (LL) function under the RNMEV model. The
LL function defined over the set of path observations n = 1, . . . , N is

LL(β) =
N∑

n=1

lnP (σn, β) =
N∑

n=1

In∑
t=0

lnP (kn
t+1|kn

t ) (22)

We note that the path observations are defined based on states in network G. And
for each probability P (kn

t+1|kn
t ), k

n
t+1, k

n
t ∈ S, can be computed using the result

of Theorems 1 and 2. This leads to the fact that the LL function becomes more
complicated than the one given in Mai et al. (2015)

For the maximum likelihood estimation, the network Gk, ∀k ∈ S generates
MEV models with many parameters. That is ξki and αk

ij, ∀i, j ∈ Sk, j ∈ Sk(i).
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Daly and Bierlaire (2006) show that the constraints ξki ≤ ξkj , ∀i, j ∈ Sk, j ∈ Sk(i)
need to be satisfied in order to ensure that the choice at state k is consistent with
McFadden’s MEV theory. Based on the definition in (10) the constraints can be
written as

µ∗
i ≤ µ∗

j , ∀i, j ∈ S∗, j ∈ S∗(i)\S̃.

Moreover, as suggested by Daly and Bierlaire (2006), a normalization for param-
eters αk

ij for the network MEV model at state k would require as∑
i∈S∗

s.t.j∈S∗(i)

(αk
ij)

ξki /ξ
k
j = 1, ∀j ∈ Sk, k ∈ S.

This normalization, however, remains to be analyzed further.
Efficient nonlinear techniques for the problem require analytical derivatives of

the LL function. The gradient of the LL function is complicated, but can be easily
derived based on (22), (2) and (16). Its requires the gradients of Y ∗

k , ∀k ∈ S∗,
which are given by

∂Y ∗
k

∂βi

= Y ∗
k

(
∂µ∗

k

∂βi

V ∗(k) +
∂V ∗(k)

∂βi

µ∗
k

)
,∀k ∈ S∗, (23)

and
∂V ∗

∂βi

= (I −H)−1(Lie+ h), (24)

where βi is a parameter, Li, H are two matrices of size |S∗|×|S∗| and h is a vector
of size |S∗| with entries

Li
ka =

1

µ∗
k

∂M∗
ka

∂βi

(Y ∗
a )

ϕ∗
ka

(Y ∗
k )

+
1

µ∗
k

M∗
ka ln(Y

∗
a )

(Y ∗
a )

ϕ∗
ka

(Y ∗
k )

∂ϕ∗
ka

∂βi

+M∗
ka ln(Y

∗
a )

(Y ∗
a )

ϕ∗
ka

(Y ∗
k )

∂µ∗
a

(µ∗
a)

2∂βi

and

Hka = M∗
ka

(Y ∗
a )

ϕ∗
ka

(Y ∗
k )

and hk = −
∂µ∗

k

(µ∗)2k∂βi

ln(Y ∗
k ) and ϕ∗

ka = µ∗
k/µ

∗
a.

Mai et al. (2015) suggest that deriving the gradients based on V ∗ is better than
based on Y ∗ for numerical reasons. The system of linear equations in (24) can be
solved quickly for large scale systems.

5 Recursive cross-nested logit model

The cross-nested logit (CNL) model is an instance of the network MEV model that
allows each alternative to belong several different nests. It has been mentioned
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for the first time by Vovsha (1997) in the context of a mode choice survey in
Israel. Papola (2004) has shown that a specific CNL model can be derived for
any given homoschedastic variance-covariance matrix. Therefore, the CNL model,
with closed forms for the choice probabilities, becomes a serious competitor for
the probit model.

In this section we present the RCNL model, which is an instance of the RNMEV
model where the choice at each state is a CNL model based on the formulation
proposed by Ben-Akiva and Bierlaire (1999). In this setting, the CNL model at
state k is a network MEV model given by a network of correlation structure Gk
where the corresponding CPGF Gk(y) is

Gk(y) =
∑

m∈Sk(r)

( ∑
a∈Sk(m)

αk
may

ξkm
a

)ξkr /ξkm
, (25)

(recall that r is the root of the network MEV model at state k). We remark
that Sk(r) is also the set of nests. For each state a ∈ S(k) we denote z(a|k) =
v(a|k) + V (a) and note that a next state is chosen by maximizing the sum of
z(a|k) and the random term ϵ(a|k), ∀a ∈ S(k). In order to model the correlations
between the successor states a ∈ S(k), we define a CNL model where each pair of
states belongs to only one nest, and each nest contains only one pair of states. The
number of pairs in the set S(k) is 1

2
|S(k)|.(|S(k)| − 1), so it is also the number of

nests at choice stage k. Figure 4 shows an example where there are three successor
states from k. Accordingly, there are three nests m12,m13 and m23. Two states ai
and aj belong to nest mij, ∀i, j = 1, 2, 3.

k

m12 m13 m23

a1 a2 a3

z(a1|k) z(a3|k)z(a2|k)

Figure 4: A cross-nest logit model structure at link k

Given this correlation structure, based on Papola (2004), the correlation be-
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tween two given states ai, aj ∈ S(k) can be approximated as

Ĉorr (z(ai|k), z(aj|k)) =
∑

m∈Sk(r)

(αk
mai

αk
maj

)0.5ξ
k
r /ξ

k
m

(
1−

(
ξkr
ξkm

)2
)
. (26)

Since there is only one nest mij that both ai and aj belong to, so

Ĉorr (z(ai|k), z(aj|k)) = (αk
mijai

αk
mijaj

)
0.5ξkr /ξ

k
mij

1−

(
ξkr
ξkmij

)2
 . (27)

So that the correlation between ai, aj ∈ S(k) can be modeled using the parame-
ters αk

mijai
, αk

mijaj
, ξkr and ξkm. It is important to note that if the choice model

at state k is MNL, then for any two states ai, aj ∈ S(k), ai ̸= aj, we have
Corr (z(ai|k), z(aj|k)) = 0, and the variance-covariance matrix is diagonal. So,
the RCNL model allows to exhibit a more general correlation structure at each
choice stage, compared to the NRL and RL models.

Abbé et al. (2007) note that Papola’s approximation in (27) can overestimate
the correlations in some cases and bias the choice probabilities provided by the
CNL model. However, they also comment that these biases do not seem to be
large in their examples.

For the estimation, the RCNL model is a member of the RNMEV model, so
this can be estimated by applying the NRL model to the integrated network G∗ and
using Theorems 1 and 2. According to Papola (2004), a normalization required
for the CNL model given by (25) is∑

m∈Sk(r)

(
αk
ma

)ξkr /ξkm = 1. (28)

Finally, the integrated network has larger state space, compared to the original
one G. Based on Proposition 1, the numbers of states and arcs in the integrated
network are

|S∗| = |S̃|+ 1

2

∑
k∈S

(|S(k)| − 1) |S(k)|,

and

|A∗| = 3

2
×
∑
k∈S

(|S(k)| − 1) |S(k)|.

6 Numerical results

For the numerical results we use the same data as Fosgerau et al. (2013a), Mai
et al. (2015) (also used in Frejinger and Bierlaire, 2007) which has been collected
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in Borlänge, Sweden. The network is composed of 3077 nodes and 7459 links
and is uncongested so travel times can be assumed static and deterministic. The
observations consist of 1832 trips corresponding to simple paths with a minimum
of five links. Moreover, there are 466 destinations, 1420 different origin-destination
(OD) pairs and more than 37,000 link choices in this sample. We present estimation
and prediction results for the RCNL model. For the sake of comparison we include
the results from the NRL model (Mai et al., 2015).

6.1 Model specification

We use the same attributes as Mai et al. (2015) for the instantaneous utilities.
We note that Mai et al. (2015) and Fosgerau et al. (2013a) define the models and
utilities based on links in the network to capture turn attributes. Since the models
presented in this paper are based on a network of states, we then define the utility
specifications based on states and note that each state refers to a link in the real
transport network.

Five attributes are considered. First, travel time TT (a) of action a. Second,
a left turn dummy LT (a|k) that equals one if the turn angle from k to a is larger
than 40 degrees and less than 177 degrees. Third, a u-turn dummy UT (a|k) that
equals one if the turn angle is larger than 177. Fourth, a state constant LC(a). The
fifth attribute is LS(a) (for a detailed description see Fosgerau et al., 2013a) and it
has been computed using a linear in parameters formulation of the aforementioned
four attributes using parameters β̃TT = −2.5, β̃LT = −1, β̃LC = 0.4, β̃UT = −4.

We specify the deterministic utilities for different model specifications with
respect to state a given state k, k ∈ S, a ∈ S(k)

vNRL(a|k; β) = vRCNL(a|k; β) = βTTTT (a) + βLTLT (a|k)
+βLCLC(a) + βUTUT (a|k),

vNRL-LS(a|k; β) = vRCNL-LS(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k) + βLSLS(a).

In the NRL model in Mai et al. (2015), the scale of the random terms are defined
as exponential functions of the model parameters. Mai et al. (2015) use the travel
time, link size and number of successor states to define the scale as

µNRL
k (ω) = eωTTTT (k)+ωLSLS(k)+ωOLOL(k),∀k ∈ S̃,

where OL(k) is the number of successor states from k i.e. OL(k) = |S(k)| (it is
also the number of outgoing links from the sink node of a link in the road network).
Note that this NRL is based on network G and differs from the NRL model based
on the integrated network G∗. The latter is used for the estimation of the RCNL
model.
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The CNL model at each state includes several structure parameters. This fairly
small network contains more than 7000 states/links, leading to more than 7000
CNL models. So it is not possible to estimate all the parameters. Similar to Mai
et al. (2015) we define parameters ξkr and ξkm, ∀m ∈ Sk(r) as exponential functions
of the respective state attributes. More precisely, since at choice stage k, the root
r of the network MEV model is identical to state k, so ξkr is defined as

ξkr (ω) = eωTTTT (k)+ωLSLS(k)+ωOLOL(k),∀k ∈ S. (29)

Indeed, by definition ξkr (ω) > 0, ∀ω. Moreover, Equation 27 suggests that the

correlation between two given states ai, aj depends on the ratio
ξkmij

ξkr
. We therefore

define this fraction as an exponential function of the attributes associated with
states ai and aj as

ξkmij

ξkr
= eλTT (TT (ai)+TT (aj))+λLS(LS(ai)+LS(aj))+λOL(OL(ai)+OL(aj)), (30)

or equivalently the scale ξkmij
associated with nest mij is defined as

ξkmij
= ξkr e

λTT (TT (ai)+TT (aj))+λLS(LS(ai)+LS(aj))+λOL(OL(ai)+OL(aj)), (31)

where ξkr is defined in (29). The CNL model requires constraints on the scale pa-
rameters which are ξkmij

≥ ξkr , ∀mij ∈ Sk(r). We therefore impose these constraints
by restricting the parameter λ to be positive i.e. λTT , λLS, λOL ≥ 0.

In the CNL model at state k, parameter αk
ma reflects the level of membership

of alternative a to nest m. Indeed, it is impossible to estimate all the parameters
α in the network. We therefore assume that each state a ∈ S(k), the levels of a to
all the nests m are equal. Based on the normalization in (28) and as the number of
nests that each node a ∈ S(k) belong to is |S(k)| − 1, the parameters are specified
as

αk
ma =

(
1

|S(k)| − 1

)ξkm/ξkr

. (32)

Hence, the correlation between two states ai, aj ∈ S(k) can be approximated as

Ĉorr (z(ai|k), z(aj|k)) =
1

|S(k)− 1|

1−

(
ξkr
ξkmij

)2
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where ξkr
ξkmij

is defined in (30). In summary, the instantaneous utilities are

uNRL(a|k; β, ω) = vNRL(a|k; β) + 1

µNRL
k (ω)

(ϵ(a)− γ)

uNRL-LS(a|k; β, ω) = vNRL-LS(a|k; β) + 1

µNRL
k (ω)

(ϵ(a)− γ)

uRCNL(a|k; β, ω, λ) = vRCNL(a|k; β) + ϵ(a|k;ω, λ)
uRCNL-LS(a|k; β, ω, λ) = vRCNL-LS(a|k; β) + ϵ(a|k;ω, λ),

where ϵ(a) is i.i.d extreme value type I and ϵ(a|k;ω), a ∈ S(k), have a MEV
distribution with the CPGF Gk(y) specified in (25) and the structure parameters
specified in (29), (31) and (32). Indeed, if ω = 0 then the NRL model becomes
the RL model and if λ = 0 then ξkr = ξkm, ∀k ∈ S, m ∈ Sk(r), so the Gk function
in (25) becomes

Gk(y) =
∑

a∈S(k)

yξ
k
r

a =
∑

a∈S(k)

yµk
a ,

meaning that the choice model at state k is MNL, and the RCNL model becomes
exactly the NRL model. Finally, the maximum likelihood estimation of the RCNL
model is a constrained optimization problem and can be expressed as

max
β,ω,λ
λ≥0

LLRCNL(β, ω, λ).

6.2 Estimation results

We report the estimation results in Table 1 for the four specifications NRL, NRL-
LS, RCNL and RCNL-LS. The results are comparable to those previously pub-
lished using the same data. The β estimates have their expected signs and are
highly significant. For both the NRL and RCNL models, the ω estimates are
negative for travel time and positive for left turns and link constant. All the ω
estimates for the RCNL models are significantly different from zero. However, for
the NRL model, ω̂TT is not significantly different from zero when the LS attribute
is included in the instantaneous utilities.

We now turn our attention to the λ estimates. Interestingly, the λ estimates
are very close to zero for travel time and link size but significantly different from
zero for the parameters associated with the number of successor states Note that
we do not provide standard errors and t-tests for the estimates that are on the
bound (close to 0) since the respective gradient values are not close to zero. The
λ estimates indicate that only the attribute OL affects the correlations between
successor states.
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The final log-likelihood values are reported in Table 1 and we also report the
likelihood ratio test in Table 2. Similar to Fosgerau et al. (2013a) and Mai et al.
(2015), we observe a significant improvement in final log-likelihood values when
we include the LS attribute to the instantaneous utilities. The RCNL models
have better fit than the NRL models and the best model in term of in-sample
fit is the RCNL-LS. Interestingly, the final-log likelihood function given by the
RCNL without the LS is larger than the one given by the NRL model with the LS
attribute.

We note that the estimation of the RCNL model requires estimating the NRL
model on the integrated network. The real network has 7288 states/links and
the integrated network has 31373 states, so there are 24084 new states added
to the original network. The number of arcs in the integrated network is 72252,
compared to 20202 arcs in the original network. So the integrated network is larger
than the original, leading to the fact that the estimation of the RCNL model is
more expensive than the NRL and RL models. Solving the value functions in
the RCNL model needs from 300 to 700 iterations to converge to the fixed point
solutions while the NRL needs less than 300 iterations. We note that using the
dynamic accuracy and switching approaches we are able to double the speed of
the value iteration method.

6.3 Prediction results

In this section we compare the prediction performance of the different models.
Similar to Mai et al. (2015), we use a cross validation approach i.e. the sample
of observations is divided into two sets by drawing observations uniformly with
a fixed probability: one set (80% of the observations) is used for estimation and
the other (20% of the observations) is used as holdout to evaluate the predicted
probabilities by applying the estimated model. We generate 20 holdout samples
of the same size by reshuffling the real sample and we use the log-likelihood loss
to evaluate the prediction performance.

For each holdout sample i, 0 ≤ i ≤ 20, we estimate the parameters β̂i off the
corresponding training sample and this vector of parameters is used to compute
the test errors erri

erri = −
1

|PSi|
∑

σj∈PSi

lnP (σj, β̂i),

where PSi is the size of prediction sample i. Then erri is a random variable that
depends on the holdout sample i. In order to have unconditional test error values
we compute the average of erri values over samples as follows

errp =
1

p

p∑
i=1

erri ∀1 ≤ p ≤ 20. (33)
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Parameters NRL NRL-LS RCNL RCN-LS

β̂TT -1.854 -2.139 -1.378 -1.567
Rob. Std. Err. 0.132 0.145 0.080 0.077
Rob. t-test(0) -14.05 -14.75 -17.296 -20.336

β̂LT -0.679 -0.748 -0.517 -0.568
Rob. Std. Err. 0.043 0.047 0.018 0.019
Rob. t-test(0) -15.79 -15.91 -29.528 -30.105

β̂LC -0.258 -0.224 -0.065 -0.072
Rob. Std. Err. 0.016 0.015 0.013 0.011
Rob. t-test(0) -16.13 -14.93 -4.865 -6.484

β̂UT -3.340 -3.301 -2.907 -2.964
Rob. Std. Err. 0.200 0.207 0.094 0.099
Rob. t-test(0) -16.7 -15.95 -30.963 -30.057

β̂LS - -0.155 - -0.115
Rob. Std. Err. - 0.013 - 0.007
Rob. t-test(0) - -11.92 - -16.140

ω̂TT -0.515 -0.341 -0.637 -0.443
Rob. Std. Err. 0.255 0.288 0.220 0.216
Rob. t-test(0) -2.02 -1.18 -2.898 -2.053

ω̂LS 0.674 0.581 0.192 0.157
Rob. Std. Err. 0.093 0.09 0.031 0.025
Rob. t-test(0) 7.25 6.46 6.224 6.275

ω̂OL 0.086 0.092 0.027 0.021
Rob. Std. Err. 0.015 0.016 0.003 0.002
Rob. t-test(0) 5.73 5.75 9.846 9.167

λ̂TT - - 2.63E-04 1.84E-08
Rob. Std. Err. - - - -
Rob. t-test(0) - - - -

λ̂LS - - 2.85E-05 1.74E-07
Rob. Std. Err. - - - -
Rob. t-test(0) - - - -

λ̂OL - - 0.475 0.483
Rob. Std. Err. - - 0.012 0.012
Rob. t-test(0) - - 41.151 41.230

LL(β̂) -6187.9 -5952 -5885.5 -5675.4

Table 1: Estimation results

20

Recursive Network MEV Model for Route Choice Analysis

CIRRELT-2015-37



Models χ2 p-value
NRL & NRL-LS 471.8 1.30e-104
NRL & RCNL 604.8 9.18e-131

NRL-LS & RCNL-LS 553.2 1.41e-119
RCNL & RCNL-LS 420.2 2.21e-93

Table 2: Likelihood ratio test results
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Figure 5: Average of the test error values over holdout samples

The values of errp, 1 ≤ p ≤ 20 are plotted in Figure 5 and Table 3 reports the
average of the test error values over 20 samples given by the RL, RL-LS, NRL,
NRL-LS models. Indeed, the lower test error values the better the model.

NRL NRL-LS RCNL RCNL-LS
3.34 3.21 3.17 3.07

Table 3: Average of test error values over 20 holdout samples

The prediction results show that the models with the LS attribute perform
better than those without. The RCNL models have better prediction performances
than the NRL models. The RCNL-LS performs the best in fit and prediction
among the considered models.
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7 Conclusion

This paper has presented a general and operational representation of the recursive
route choice models. The RNMEV model is an extension of the NRL model
proposed in Mai et al. (2015) where the choice of each stage is a network MEV
model. We have showed that the model can be estimated by applying the NRL
model to a new network which is created by iterating the networks of correlation
structures at each choice stage into the road network. So the methods proposed
in Mai et al. (2015) can be used to estimate the new model.

We have proposed the RCNL model, a member of the RNMEV model, by
allowing the model at each choice stage to be a CNL model. We showed that
the RCNL can exhibit a more general correlation structure at each choice stage,
compared to the NRL and RL models.

We have provided numerical results using a real data. The parameter estimates
are sensible and the RCNL model has significantly better fit than the NRL model.
We have also provided a cross-validation study suggesting that RCNL and RCNL-
LS are better than the NRL-LS and NRL models.

In this paper we use a unimodal network and observations of trips made by car
but the model is not restricted to this type of network. In the future research, we
plan to apply the RNMEV to different types of network where the correlations at
each choice stage need to be taken into account seriously e.g. dynamic networks
(state is time and location) and multi-modal networks (state is location and mode).

Finally, we note that the methods proposed in this paper are not restricted to
route choice applications. By adapting the network of state space we can deal with
the estimation of complicated dynamic discrete choice models where the choice at
each stage can be the network MEV model instead of MNL.
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A A proof for Theorem 1

Consider the network of correlation structure Gk = (Sk,Ak, Ck) at state k. In order

to prove the result we derive the function Gk

(
ev(a|k)(Y ∗

a )
1/µa , a ∈ S(k)

)
using (6)

and (7) and note that Gk(y) = Gr
k(y), where r is the root of Gk. For notational
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simplicity we denote y∗k be a vector of size |S(k)| with entries ev(a|k)(Y ∗
a )

1/µa , for
all a ∈ S(k). Note that, as discussed in Section 3, state k is also the root r and
the choice set Ck is identical to S(k).

We first introduce some definitions. For each state i ∈ Sk we denote Lk(i) be
the length (defined as number of arcs) of the longest sequences of states (or paths)
connecting i and all j ∈ S(k) via states in Sk. Lk(i) is finite since the network Gk
is cycle-free. For any integer number p ≥ 0 we denote T k(p) the set of state i such
that i ∈ Sk and Lk(i) = p. In other words

T k(p) = {i|i ∈ Sk,Lk(i) = p}, ∀p ∈ N.

We have the following proposition, which is easy to verify

Proposition 2 :

(i) T k(0) = S(k),
∪Lk(r)

t=1 = Sk.

(ii) T k(p) ∩ T k(q) = ∅, p, q ≥ 0, p ̸= q.

(iii) Given state i ∈ T k(p), p ≥ 1, if j ∈ S∗(i) then j ∈
∪p−1

t=0 T k(t).

Proof. (i) and (ii) are trivial to verify. For (iii), we suppose that j /∈
∪p−1

t=0 T k(t),
then there exits a number p′ ≥ p such that j ∈ T k(p′). It means that there exits
a sequence of length p′ connecting j and states in S(k). Moreover, since j ∈ S∗(i)
and from the fact that i /∈ S(k) (because i ∈ T k(p) and p ≥ 1) we have j ∈ Sk(i)
due to Proposition 1(iv). Consequently, there exits a sequence of length p′+1 > p
connecting i and states in S(k). This is in contradiction with the assumption that
i ∈ T k(p). So j has to be in

∪p−1
t=0 T k(t) and (iii) is proved.

For all i ∈ Sk, the values of Gi
k(y

∗
k) can be computed based on (6) and (7) as in

the following

Gi
k(y

∗
k) =

(
ev(i|k)(Y ∗

i )
1/µi
)ξki , ∀i ∈ S(k). (34)

For each i ∈ Sk\S(k) we have

Gi
k(y

∗
k) =

∑
j∈Sk(i)

αk
ijG

j
k(y

∗
k)

ξki /ξ
k
j . (35)

We introduce the following lemma

Lemma 1 Given state k ∈ S, if Gi
k(y

∗
k), ∀i ∈ Sk, are computed based on (34) and

(35) then
Gi

k(y
∗
k) = Y ∗

i , ∀i ∈ T k(p),∀p ∈ Z+. (36)
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Proof. Based on the definitions in (10) and (11), (34) can be written equivalently
as

Gi
k(y

∗
k) = eξ

k
i v(i|k)(Y ∗

i )
ξki /µ

∗
i , ∀i ∈ S(k), (37)

Here we remark that ξki ̸= µ∗
i ∀i ∈ S(k) and ξki = µ∗

i ∀i ∈ Sk\S(k). Due to
Proposition 1(iv) we have Sk(i) = S∗(i), ∀i ∈ Sk\S(k), so (35) can be written as

Gi
k(y

∗
k) =

∑
j∈S∗(i)

αk
ijG

j
k(y

∗
k)

ξki /ξ
k
j

=
∑

j∈S∗(i)
j /∈S(k)

eµ
∗
i v

∗(j|i) (Gj
k(y

∗
k)
)µ∗

i /µ
∗
j +

∑
j∈S∗(i)
j∈S(k)

eµ
∗
i (v

∗(j|i)−v(j|k)) (Gj
k(y

∗
k)
)µ∗

i /ξ
k
j .

∀i ∈ Sk\S(k).
(38)

Substitute (37) into (38) we obtain

Gi
k(y

∗
k) =

∑
j∈S∗(i)
j /∈S(k)

eµ
∗
i v

∗(j|i) (Gj
k(y

∗
k)
)µ∗

i /µ
∗
j +

∑
j∈S∗(i)
j∈S(k)

eµ
∗
i v

∗(j|i)(Y ∗
j )

µ∗
i /µ

∗
j , ∀i ∈ Sk\S(k).

(39)
Now we prove the result by induction. For p = 1, according to Proposition 2(i)-(iii)
we have the fact that for each i ∈ T k(1) if j ∈ S∗(i) then j ∈ T k(0) or equivalently
j ∈ S(k). Thus, Equation 39 can be written as

Gi
k(y

∗
k) =

∑
j∈S∗(i)

eµ
∗
i v

∗(j|i)(Y ∗
j )

µ∗
i /µ

∗
j , ∀i ∈ T k(1). (40)

So from (15) and (40) we have Gi
k(y

∗
k) = Y ∗

i ∀i ∈ T k(1), meaning that (36) is true
for p = 1. Now we assume that the result is true for p = I ≥ 1. In other words

Gi
k(y

∗
k) = Y ∗

i , ∀i ∈
I∪

t=1

T k(t).

For each state i ∈ T k(I + 1), according to Proposition 2(iv) if j ∈ S∗(i)\S(k)
then j ∈

∪I
t=1 T k(t). Consequently, by assumption, Gj

k(y
∗
k) = Y ∗

j ∀j ∈ S∗(i)\S(k).
Equation 39 can be written as

Gi
k(y

∗
k) =

∑
j∈S∗(i)
j /∈S(k)

eµ
∗
i v

∗(j|i) (Y ∗
j

)µ∗
i /µ

∗
j +

∑
j∈S∗(i)
j∈S(k)

eµ
∗
i v

∗(j|i)(Y ∗
j )

µ∗
i /µ

∗
j

=
∑

j∈S∗(i)

eµ
∗
i v

∗(j|i) (Y ∗
j

)µ∗
i /µ

∗
j , ∀i ∈ T k(I + 1),

(41)
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so Gi
k(y

∗
k) = Y ∗

i , ∀i ∈ T k(I+1), because of (15). This validates (36) for p = I+1.
So the lemma is completely proved.
Note that if p = Lk(k) we have Gk

k(y
∗
k) = Y ∗

k , or Y
∗
k = Gk(y

∗
k). Hence, Theorem 1

is proved.

B A proof for Theorem 2

We consider the network Gk = (Sk,Ak, Ck) at state k ∈ S. Under the hypotheses
of Theorem 2 we have the fact that yk = y∗k (we recall that yk is a vector of size
|S(k)| with elements ev(a|k)(Ya)

1/µa , ∀a ∈ S(k)). So from (8) the choice probability
P (a|k) ∀a ∈ S(k) given by the network MEV model at state k is

P (a|k) =
∑

[j0,...,jI ]∈Ωk(a)

I−1∏
t=0

αk
jtjt+1

(G
jt+1

k (y∗k))
ξkjt

/ξkjt+1

Gjt
k (y

∗
k)

(42)

Given two states i, j ∈ Sk, j ∈ S∗(i) we consider two cases: j /∈ S(k) or j ∈ S(k).

• If j /∈ S(k) then according to Lemma 1 we have Gi
k(y

∗
k) = Y ∗

i and Gj
k(y

∗
k) =

Y ∗
j . Furthermore, from the definitions in (10), (11) and Equation 16 we

obtain
αk
ij(G

j
k(y

∗
k))

ξki /ξ
k
j

Gi
k(y

∗
k)

= eµ
∗
i v

∗(j|i) (Y
∗
j )

µ∗
i /µ

∗
j

Y ∗
i

= P ∗(j|i). (43)

• If j ∈ S(k), from (37) we have

αk
ij(G

j
k(y

∗
k))

ξki /ξ
k
j

Gi
k(y

∗
k)

=
eµ

∗
i (v

∗(j|i)−v(j|k))

Y ∗
i

eµ
∗
i v(j|k)(Y ∗

j )
µ∗
i /µ

∗
j

= eµ
∗
i v

∗(j|i) (Y
∗
j )

µ∗
i /µ

∗
j

Y ∗
i

= P ∗(j|i).
(44)

So from (43) and (44) we get

αk
ij(G

j
k(y

∗
k))

ξki /ξ
k
j

Gi
k(y

∗
k)

= P ∗(j|i), ∀i ∈ Sk\S(k), j ∈ S∗(i)

and the choice probability P (a|k) in (42) can be computed as

P (a|k) =
∑

[j0,...,jI ]∈Ωk(a)

I−1∏
t=0

P ∗(jt+1|jt).

Hence, the theorem is proved.
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