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1 Introduction

Discrete choice models are generally used for analyzing path choices in real net-
works based on revealed preference (RP) data. Following the discussion in Fos-
gerau et al. (2013) the route choice models in the literature can be grouped into
three approaches. The classical approach corresponds to path logit (PL) models
where choice sets of paths are generated and treated as the actual choice sets. The
second approach, proposed by Frejinger et al. (2009), is based on the idea that
the choice set can be sampled and the estimation can be consistent if sampling
corrections are added to the choice probabilities. Recently, Fosgerau et al. (2013)
proposed a third approach, called the recursive logit (RL) model which can be
consistently estimated based on RP data and used for prediction without sam-
pling any choice sets of paths. Another extension of the RL model, the nested
RL (NRL) model, has been proposed by Mai et al. (2015) that allows to relax the
independence of irrelevant alternatives (IIA) property. These models are based on
the Random Utility Maximization (RUM) framework.

Recently, Chorus (2010, 2012, 2014) proposed the Random Regret Minimiza-
tion (RRM) framework. It is based on a regret minimization-based decision rule
postulating that when decision makers choose between alternatives, they try to
avoid the situation where a non-chosen alternative outperforms a chosen one in
terms of attributes. We base this paper on the so-called Generalized Random Re-
gret Minimization (GRRM) model proposed by Chorus (2014), and we adapt and
compare the estimation and prediction results of the RL model using RRM and
RUM decision rules.

Prato (2012) analyses the estimation results of path based models using the
model proposed by Chorus (2010) in a route choice context. He focuses on the
two well-known challenges associated with route choice modeling, namely, choice
set generation and correlation. He finds that the RRM performs well on real
data, but in an experimental setting, he finds that the parameter estimates of the
RRM models have the wrong signs when irrelevant alternatives are included in
the choice sets. The RL model does not need choice set generation, being based
on the universal choice set of all paths connecting an origin-destination pair. We
investigate whether RL model presents similar issues to path based models and we
analyze the out-of-sample fit.

This paper makes a number of contributions. First, we adapt and propose two
specifications for random regret. The first model (called Extended Random Regret
Minimization - ERRM) extends the GRRM model by adding factors that allow
to capture the impact of the non-chosen alternatives in a more flexible way and
the second model, called Average Random Regret Minimization (ARRM) model,
modifies the first one by adding a normalization. We prove that by specifying
some parameters, the regret given by the ARRM model model has a linear-in-
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parameters form Rni = −βTxni and the probability is equivalent to a RUM-based
model with utility Vni = βTxni. This model therefore generalizes the RUM-based
RL model. Second, we show how the RRM-based RL models can be estimated.
Third, we provide estimation and cross-validation results for a real network with
over 3000 nodes and 7000 links. The estimation code for the RRM-based RL
models is implemented in MATLAB and is freely available upon request.

The paper is structured as follows. In Section 2 we review the RUM- and
RRM-based models. Section 3 proposes the RL model using the regret decision
rules with two different formulas for the regrets. In Section 6 we give details
about the model estimation by maximum likelihood. Model specifications as well
as estimation and cross-validation results are presented in Section 7, and finally,
Section 8 concludes.

2 Random utility maximization and random re-

gret minimization models

In the context of the RUM-based discrete choice models, we assume that an indi-
vidual n associates a utility Uni with an alternative i within a choice set Cn. The
utility consists of two additive parts Uni = Vni + ϵni : a deterministic Vni part,
observed by the modeler, and a random part ϵni. Typically, a linear-in-parameters
formula associated with a vector of attributes is used i.e. Vni = βTxni, where β
is a vector of parameters to be estimated and xni is a vector of attributes with
respect to individual n and alternative i. A decision maker chooses the alternative
that maximizes his/her utility

i∗ = argmaxi∈Cn
{Vni + ϵni}.

The well-known multinational logit (MNL) model assumes that the random terms
ϵni are independently and identically distributed (i.i.d.) extreme value type I, and

the probability of choosing an alternative i is Pn(i) =
eVni∑

j∈Cn
eVnj

. The MNL model

however retains the IIA property, so other models may be preferred in order to
better capture the correlations between random terms e.g. the nested logit model
(Ben-Akiva, 1973), cross-nested logit model (Vovsha and Bekhor, 1998) or network
multivariate extreme value model (Daly and Bierlaire, 2006). Mai et al. (2015)
propose a nested version of the RL model that relaxes the IIA property. However,
in route choice applications, MNL based models such as path size logit (Ben-Akiva
and Bierlaire, 1999) are often used.

The RRM-based models are based on the assumption that when decision mak-
ers choose between alternatives, they try to avoid the situation where a non-chosen
alternative outperforms a chosen one in terms of one or more attributes. This
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translates into a regret function for a considered alternative that by definition fea-
tures all attributes of all competing alternatives. The random regret RRni can be
written as the sum of a systematic part Rni and a random error term ϵni,

RRni = Rni + ϵni =
∑

j ̸=i,j∈Cn

∑
t

ln
(
1 + eβt(xnj(t)−xni(t))

)
+ ϵni (1)

where t is an attribute. So the regret Rni is computed based on two sums, the
first sum is over all other alternatives in the choice set and the second over all the
attributes. We note that (1) is proposed by Chorus (2012). Other alternative for-
mulations for the regret have been presented in the literature, for instance Chorus
(2014) that we present in the following. Contrary to the RUM-based models, a
decision maker aims to minimize the random regret

i∗ = argmini∈Cn
{Rni + ϵni} = argmaxi∈Cn

{−Rni − ϵni} . (2)

Under the assumption that the random terms −ϵni are i.i.d extreme value type I,
the choice probability is given by the MNL

Pn(i) =
e−Rni∑
j e

−Rni
.

It is important to note that even though this is the logit model, the IIA property
is relaxed since the regrets are not alternative specific. Chorus (2014) recently
presented a generalization of the RRM model given in (1), called Generalized
Random Regret Minimization - GRRM, where the random regret can be expressed
as

GRRni =
∑

j ̸=i,j∈Cn

∑
t

ln
(
λt + eβt(xnj(t)−xni(t))

)
+ ϵni.

Indeed, we can recover the RRM model (1) by fixing λt to 1 for all t. Moreover,
as pointed out in Chorus (2014), if λt = 0 ∀t the resulting regret becomes linear-
in-parameters

GRRni =
∑

j ̸=i,j∈Cn

∑
t

βt(xnj(t)− xni(t)) =
∑
j∈Cn

βTxnj − |Cn|βTxni,

where | · | is the cardinality operator. The term
∑

j∈Cn
βTxjn being the same

whatever the considered alternative i, it does not affect the choice (2). The regret
has a linear-in-parameter formulation but it is different from the RUM-based model
because of |Cn|.

A disadvantage of the RRM or GRRM model, highlighted in Chorus (2012),
is that the running time for computing the choice probabilities increases exponen-
tially as the choice sets become larger. Indeed, every alternative is compared with
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every other in terms of each attribute. This can hence be a problem for route
choice applications which are characterized by large choice sets. The RL model is
based on the universal choice set (of infinite size) but the choice set at each choice
stage is small (outgoing links at a node). This is therefore not an issue for the RL
model.

Finally, we note that the random regrets GRRin and RRin are undefined when
the choice set Cn is singleton. This is an issue for the RL model if the transport
network contains only one outgoing link for some nodes. As we explain in the
following, we deal with this issue by summing over all alternatives.

3 Recursive logit with regret-based models

The RUM-based RL (RL-RUM) model formulates the path choice problem as
a sequence of link choices, represented in a dynamic discrete choice framework.
A utility is associated with each link pair in the network, and is the sum of a
deterministic and a random term. Fosgerau et al. (2013) consider a linear-in-
parameters formulation of the deterministic utility. A traveler maximizes his/her
value function, defined as the sum of the instantaneous link utility at the current
decision stage and the expected maximum utility from the sink node of outgoing
links to the destination. In the following we present the RRM-based RL model.
The derivation is similar to Fosgerau et al. (2013) but the utilities and value
functions are different since they are based on random regret minimization.

A directed connected graph (not assumed acyclic) G = (A;V) is considered,
where A and V are the set of links and nodes, respectively. For each link k ∈ A,
we denote the set of outgoing links from the sink node of k by A(k). We extend
the network with a dummy link d, without successors, per destination, that is, an
absorbing state. The set of all links for a given destination is hence Ã = A∪ {d}.
Given two links a, k ∈ Ã, a ∈ A(k), we associate the following instantaneous
random regret for individual n

rrn(a|k) = rn(a|k) + µϵn(a)

where rn(a|k) is the deterministic regret of link a given k, −ϵn(a) are i.i.d. extreme
value type I distributed error terms and µ is a strictly positive scale parameter. We
ensure that ϵn(a) have zero mean by subtracting Euler’s constant. For notational
simplicity, we omit from now on the index for individual n but note that the regrets
and random terms can be individual specific.

At each current state k the traveler observes the realizations of the random
terms ϵ(a), a ∈ A(k). He/she then chooses link a that minimizes the sum of in-
stantaneous random regret rr(a|k) and expected downstream regret. The latter,
denoted by Rd(k), is defined as the expected minimum regret from state k to the

5

Comparing Regret Minimization and Utility Maximization for Route Choice Using the Recursive Logit Model

CIRRELT-2015-38



D
d

k

r(a|k)
R(a)

··
· A(k)

Figure 1: Illustration of notation

destination (see Figure 1). The superscript d indicates that the expected mini-
mum regrets are destination specific (through dummy link d). Rd(k) is recursively
defined by Bellman’s equation as

Rd(k) = E
[
min

a∈A(k)

{
r(a|k) +Rd(a) + µϵ(a)

}]
, ∀k ∈ A. (3)

We note that Rd(k) and r(a|k) may be conditional on the model parameters so
they can be written as Rd(k) = Rd(k; β) and r(a|k) = r(a|k; β) where β is the pa-
rameters to be estimated. We however omit β for notational simplicity. Equation
(3) can be written as

Rd(k) = E
[
− max

a∈A(k)

{
−r(a|k)−Rd(a)− µϵ(a)

}]
= −E

[
max
a∈A(k)

{
−r(a|k)−Rd(a) + µ(−ϵ(a))

}]
, ∀k ∈ A,

or equivalently

1

µ
Rd(k) = −E

[
max
a∈A(k)

{
1

µ
(−r(a|k)−Rd(a)) + (−ϵ(a))

}]
, ∀k ∈ A (4)

Since −ϵ(a) are i.i.d. standard extreme value type I by assumption, the probability
of choosing link a given k is given by the MNL model

P d(a|k) = ξ(a|k)e−
1
µ
(r(a|k)+Rd(a))∑

a′∈A(k) e
− 1

µ
(r(a′|k)+Rd(a′))

, ∀a, k ∈ Ã. (5)

Note that we include ξ(a|k) that equals one if a ∈ A(k) and zero otherwise so that
the probability is defined for all a, k ∈ Ã (we recall that Ã = A ∪ {d}). Since the
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choice at each state is the MNL model, the expected minimum regrets in this case
are given recursively by the logsum

− 1

µ
Rd(k) = E

[
max
a∈A(k)

{
1

µ
(−r(a|k)−Rd(a)) + (−ϵ(a))

}]

= ln

 ∑
a∈A(k)

e
1
µ(−r(a|k)−Rd(a))

 , ∀k ∈ A,
(6)

and Rd(d) = 0 by assumption. We define a matrix Md of size |Ã| × |Ã| and a
vector z of size |Ã| with entries

Md
ka = ξ(a|k)e−

1
µ
r(a|k), zdk = e−

1
µ
Rd(k), ∀k, a ∈ Ã. (7)

So from (6) we have

zdk =

{∑
a∈AM

d
kaz

d
a k ∈ A

1 k = d
. (8)

The system in (8) can be written in matrix form as

zd =Mdzd + b or zd = (I −Md)−1b, (9)

where b is a vector of size |Ã| with zeros values for all states except for the desti-
nation d that equals 1 and I is the identity matrix. So similar to Fosgerau et al.
(2013) we obtain a system of linear equations which can be solved in short com-
putational time. Fosgerau et al. (2013) discuss the existence of a solution to the
Bellman’s equation for the RL-RUM model and this can be applied in the context
of the RRM-based models. In essence, the existence of a solution depends on the
size of the scaled instantaneous regrets and on the balance between the number of
paths connecting the nodes in the network. It is easy to find a feasible solution by
using large enough magnitude of the model parameters. Note that if the scales µ
are different over links, the system in (8) becomes nonlinear-in-parameters, similar
to the one given in Mai et al. (2015).

Using (5), the probability of choosing link a given a state k can be written as

P d(a|k) = ξ(a|k)e−
1
µ
(r(a|k)+Rd(a)−Rd(k)), ∀k, a ∈ Ã

and the probability of a path defined by a sequence of links σ = [k0, . . . , kJ ] is

P d(σ) =
J−1∏
i=0

P d(ki+1|ki) = e
1
µ
Rd(k0)

J−1∏
i=0

e−
1
µ
r(ki+1|ki) = e

1
µ
Rd(k0)e−

1
µ
r(σ),
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where r(σ) =
∑J−1

i=0 r(ki+1|ki). Given two paths σ1 and σ2, the ratio between two
probabilities is

P (σ2)

P (σ2)
= e

1
µ
(r(σ2)−r(σ1))

and it does not depend only on the attributes of links on paths σ1, σ2. Hence, the
IIA property does not hold for the RRM-based models. In the following section
we discuss different formulations for the link regrets.

4 Link regret formulations

We define the regret r(a|k) of link a ∈ A(k) conditional on link k ∈ A, based
on the GRRM model (Chorus, 2014). It is important to consider that A(k) may
contain only one link. Existing random regret models would in this case assign
a regret zero which could cause numerical issues for the RL model. We therefore
define the regret based on all outgoing links and the slightly modified GRRM is

rGRRM(a|k) =
∑

a′∈A(k)

∑
t

ln
(
λt + eβt(x(a′|k)t−x(a|k)t)

)
, ∀k ∈ A, a ∈ A(k), (10)

where x(a|k) is a vector of attributes associated with link a given k, λ and β are
vector of parameters to be estimated. The only difference here with respect to the
model in Chorus (2014) is that the first sum is over all alternatives.

We also define a new formulation for regret that we call Extended Random
Regret Minimization (ERRM) to capture the impact of non-chosen alternatives in
a more flexible way

rERRM(a|k) =
∑

a′∈A(k)

∑
t

ln
(
λt + eβt(x(a′|k)t−x(a|k)t)+δtx(a′|k)t

)
, ∀k ∈ A, a ∈ A(k).

(11)
The difference lies in the term δtx(a

′|k)t. If δt > 0, the impact of the non-chosen
alternatives becomes larger and if δt < 0, it is smaller, compared to the GRRM
model. Moreover, if δt = 0 we obtain the GRRM formulation.

By specifying λt = 0 and δt = −βt, for all attributes t, the regret given by the
ERRM model becomes

rERRM(a|k) = −|A(k)|βTx(a|k) = −|A(k)|v(a|k),

where v(a|k) are the linear-in-parameters utilities as in Fosgerau et al. (2013). So
the regret is also linear-in-parameters but different from the RUM based model
with a factor |A(k)|. This factor appears because the sum in the regret formula
is over all the outgoing links from the sink node of k. We propose an alternative
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of the ERRM model where a normalization factor is used so that the regret is
averaged over all the alternatives

rARRM(a|k) = 1

|A(k)|
rERRM(a|k), ∀k ∈ A, a ∈ A(k). (12)

We refer to this model as Averaged Random Regret Minimization (ARRM). Ac-
cordingly, by specifying λt = 0 and δt = −βt, ∀t, we obtain rARRM(a|k) = −v(a|k).
Based on (7) the entries of matrix Md becomes

Md
ka = ξ(a|k)e

1
µ
v(a|k), ∀k, a ∈ Ã.

We refer to the definition of the matrixMd in Fosgerau et al. (2013) and note that
zd is a solution to the system of linear equations zd = (I −Md)−1b, therefore it is
straightforward to show that

zdk = e−
1
µ
Rd(k) = e

1
µ
V d(k), ∀k ∈ Ã,

where V d(k) is the expected maximum utility from state k to the destination. The
probability of choosing a link a given link k can be written as

P d(a|k) = ξ(a|k)e−
1
µ
(r(a|k)+Rd(a)−Rd(k))

= ξ(a|k)e
1
µ
(v(a|k)+V d(a)−V d(k)).

This choice probability is equivalent to the one given by the RL-RUM model. So
the RL model based on ARRM model generalizes the RL-RUM model.

5 Illustrative example

In this section, similar to several studies in the literature (for instance Ben-Akiva
and Bierlaire, 1999, Mai et al., 2015), we use a simple three path network shown
in Figure 2 to illustrate how the RRM-based RL model relax the IIA property.
The network consists of three paths connecting link o (origin) and dummy link
d (destination), namely [o, a, d], [o, b, e, d], [o, c, e, d]. We number these paths 1, 2
and 3 and the corresponding path probabilities are P1, P2 and P3, respectively.
Only a link length attribute is included in the deterministic regrets and the values
are given in the parentheses on each arc.

First, we note that both the RL-RUM and path-based MNL RUM and RRM
models assign the probability 1/3 to the three paths. We illustrate the choice
probabilities given by the GRRM, ERRM and ARRM RL models in Figure 3. We
vary λ over the interval [0, 1] for the three models. For the GRRM model, β varies
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a(4)

b(1)

c(1)

e(3)

d(0)o(1)

Figure 2: Classic three paths example network

over [−2, 3] and for the ERRM and the ARRM models we vary δ over the interval
[−1, 5] keeping β fixed to −1. First we note that the path probabilities are indeed
no-longer equal. If the value of β or δ is small, P2 and P3 are close to 1/2 and P1
approaches zero. On the contrary, if β or δ increases, P2 and P3 tend to 0 and
P1 tends to 1. Recall that ARRM becomes the RUM-based model when δ = −β
and λ = 0. This is indeed the case since P1 = P2 = P3 = 1/3 when δ = −β = 1
and λ = 0. Moreover, the results from this example suggest that the impact of
parameter λ on the path probabilities is small, compared to other parameters.

Figure 3: Path probabilities
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Finally, we note that the regrets given by the RRM-based models are nonlinear
function of the model parameters. This could add more complexity to the path
probabilities, compared to the linear-in-parameters RUM models. This becomes
even clearer when we plot them as functions of β and δ (see Figure 4). This leads
to the fact that RRM-based models are more complicated and time consuming to
estimate than linear-in-parameters RUM-based models, which is confirmed by our
numerical results.

Figure 4: P1 as function of β and δ

6 Maximum likelihood estimation

There are different ways of estimating a dynamic discrete choice model (see for
instance Aguirregabiria and Mira, 2010). Similar to Fosgerau et al. (2013) and
Mai et al. (2015) we use the nested fixed point algorithm proposed by Rust (1987).
This algorithm combines an outer iterative nonlinear optimization algorithm for
searching over the parameter space with an inner algorithm for solving the expected
minimum regrets. The expected minimum regrets can be solved quickly using the
system of linear equations in (9). We therefore turn our attention to the definition
of the log-likelihood function as well as its derivatives.

The log-likelihood function defined for N observations σ1, . . . , σN with respect
to the vector of model parameters β is

LL(β) =
N∑

n=1

lnP (σn) =
1

µ

N∑
n=1

Jn−1∑
i=0

(R(kn0 )− r(σn)) .

For notational simplicity we omit the superscript d indicating the destinations but
note that the choice probabilities P (σn) and expected minimum regrets R(kn0 ) de-
pend on the destination of path σn. Efficient nonlinear techniques for the problem
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require analytical derivatives of the log-likelihood function. We therefore derive
the gradient of LL(β) with respect to a parameter βi as

∂LL(β)

∂βi
=

1

µ

N∑
n=1

Jn−1∑
i=0

(
∂R(kn0 )

∂βi
− ∂r(σn)

∂βi

)
,

which requires the derivatives of R(kn0 ). We differentiate (9) which yields

∂z

∂βi
= (I −M)−1∂M

∂βi
z and using

∂R(k)

∂βi
= −µ ∂zk

z∂βi
. (13)

The gradient of the regret value function R(k), k ∈ Ã can be quickly computed
using the system of linear equations (13). The value of r(σ) for a given path σ

is nonlinear-in-parameters, so that ∂r(σ)
∂βi

has a complicated form but is easy to

derive. We note that from (10), (11) and (12) the regret-based models have three
vector of parameters to be estimated i.e. λ, β and δ. The GRRM model requires
0 ≤ λt ≤ 1 for all attributes t. This implies that the MLE becomes a constrained
optimization problem as in the following

max
λ,β,δ

0≤λt≤1, ∀t

LL(λ, β, δ).

We use the interior point algorithm with BFGS to solve this constrained problem.
The code is implemented in MATLAB (available upon request) and we use the
function fmincon for solving the problem. More precisely, the following MATLAB
commands are used to maximize the log likelihood function

options =

optimoptions(@fmincon,’Algorithm’,’interior-point’,’GradObj’,’on’);

[x,fval] = fmincon(@f,x,[],[],[],[],lb,ub,[],options);

where f is the objective function, which is the opposite of the log-likelihood, x is
the vector of the parameters to be estimated and lb, ub are two vectors of the lower
and upper bounds of the model parameters.

7 Numerical results

In order to have comparable numerical results with previous studies, we use the
same data as Fosgerau et al. (2013) (also used in Frejinger and Bierlaire, 2007,
Mai et al., 2014, 2015), collected in the city of Borlänge, Sweden. This network
is composed of 3077 nodes and 7459 links and it is uncongested so travel times
are assumed static and deterministic. There are 1832 observations containing 466
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destinations, 1420 different origin-destination (OD) pairs and more than 37,000
link choices. Moreover, as we explained in the following we specify the link regret
functions using the same attributes as Fosgerau et al. (2013) and Mai et al. (2015).

7.1 Model specifications

Four attributes are included in the regret function: travel time TT (a) of link a,
number of left turn LT (a|k) that equals one if the turn angle from k to a is larger
than 40 degrees and less than 177 degrees, link constant LC(a) that equals one
except the dummy link which equals zero and U-turn UT (a|k) that equals one if
the turn angle is larger than 177.

For the sake of comparison we report the estimation and prediction results for
the RUM-based RL (Fosgerau et al., 2013) and NRL (Mai et al., 2015) models,
their deterministic utility specifications are

vRL(a|k; β) = vNRL(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k)
vRL-LS(a|k; β) = vNRL-LS(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k) + βLSLS(a)

where LS is the link size attribute (for a detailed description see Fosgerau et al.,
2013). It has been computed using a linear-in-parameters formulation of the afore-
mentioned four attributes using parameters β̃TT = −2.5, β̃LT = −1, β̃LC = 0.4,
β̃UT = −4. This attribute can be considered as a correction for the utilities in
order to relax with the IIA property from the RL model. The NRL model has the
same instantaneous utility but the IIA is relaxed by allowing the random terms to
have link specific scale parameters.

The regret specifications for the RRM-based models can be defined based on
(10), (11) and (12), respectively, using the same four attributes as the RUM-based
models. There is however an important difference related to the LC attribute.
In the RUM-based model, the rationale behind using LC(a) in the instantaneous
utilities is to penalize paths with many crossings (links). In the regret context,
the link constant equals one except for the dummy link which equals zero. So this
attribute cancels out when comparing two outgoing links except when comparing
a link in A with dummy link d. More precisely, for each link k ∈ A, the regret for
the ERRM model can be expressed as

rERRM(a|k) =
∑

t,t̸=LC

∑
a′∈A(k)

(
λt + eβt(x(a′|k)t−x(a|k)t)+δtx(a′|k)t

)
+ ψ(a|k)LC , (14)
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where

ψ(a|k)LC =


∑

a′∈A(k) ln(λLC + eδLC ), ∀a ∈ A(k), a ̸= d, d /∈ A(k)∑
a′∈A(k)
a′ ̸=d

ln(λLC + eδLC ) + ln(λLC + e−βLC+δLC ), if d ∈ A(k), a ̸= d∑
a′∈A(k) ln(λLC + eβLC+δLC ), if a = d

(15)
Equations (14) and (15) indicate that the value of βLC only affects the regret
rERRM(a|k) if link k connects directly to dummy link d. The GRRM and ARRM
regrets can be written in a similar way. Consequently, the link constant in the
RRM-based models plays a different role from the one in the RUM-based models;
it is an attraction factor at the destination. Such a factor is actually important for
the RRM-based models to ensure that the probability of choosing the destination
link (once arriving at the destination) is close to one. Such an attraction attribute
is not needed (and does not affect the probabilities) in the RUM-based models
since the instantaneous utilities are negative except for the dummy link that is
zero. In order to make the distinction clear between these attributes, we call it
destination constant (DC) in the RRM-based models. Accordingly, the regrets for
the three RRM models are

rERRM(a|k) =
∑

a′∈A(k)

{
ln(λTT + eβTT (TT (a′)−TT (a))+δTTTT (a′))

+ ln(λLT + eβLT (LT (a′|k)−LT (a|k))+δLTLT (a′|k))

+ ln(λDC + eβDC(DC(a′)−DC(a))+δDCDC(a′))

+ ln(λUT + eβUT (UT (a′|k)−UT (a|k))+δUTUT (a′|k))

}
∀k ∈ A, a ∈ A(k),

rARRM(a|k) = 1

|A(k)|
rERRM(a|k), ∀k ∈ A, a ∈ A(k),

rGRRM(a|k) =
∑

a′∈A(k)

{
ln(λTT + eβTT (TT (a′)−TT (a)))

+ ln(λLT + eβLT (LT (a′|k)−LT (a|k))

+ ln(λDC + eβDC(DC(a′)−DC(a)))

+ ln(λUT + eβUT (UT (a′|k)−UT (a|k)))

}
,

∀k ∈ A, a ∈ A(k).

(16)
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7.2 Estimation results

The estimation results for the three models are presented in Table 2. The β̂ are
significantly different from zero except for the parameter associated with u-turns
in the ARRM model. Moreover, they are, as expected, negative for travel time,
left turns and u-turns. Based on the discussion in the previous section, it is also
expected that β̂DC are positive and with large magnitudes so that P (d|k) are close
to one.

We now turn our attention to the δ estimates. Note that the parameters δ are
designed only for the ERRM and ARRM models. If δ̂t > 0, the impact of non-
chosen alternatives is larger than if δ̂t < 0. The estimation results show that δ̂t
are either not significantly different from zero, or they are significant and positive
(δ̂TT in the ARRM and δ̂TT , δ̂UT in the ERRM model). It means that the impacts
of the non-chosen alternatives in the ERRM is larger than the GRRM model in
terms of travel time and u-turns.

We recall that if λt = 0 the regret associated with attribute t is linear-in-
parameters and if λt = 1 the regret becomes the original RRM model proposed
by Chorus (2012). The four last rows of Table 2 show the λ estimates. We do
not provide standard errors and t-tests for the estimates that are on the bounds
(close to 0 or 1) since the respective gradient values are not close to zero. For the

GRRM model, the λ̂t are only significantly different from zero for the parameters
associated with u-turns and destination constant. The others are very to zero
(on the bound). However, for the ERRM or ARRM models, the λ̂t are either on

the bounds (λ̂LT , λ̂UT for the ARRM and λ̂TT , λ̂LT , λ̂UT for the ERRM), or not

significantly different from zero (λ̂TT , λ̂DC for the ARRM and λ̂DC for the ERRM).
Chorus (2014) provide more detailed discussions on how the regrets change when
parameters λ vary in the interval [0, 1].

We report the final log-likelihood values in Table 1. In general, the differences
in in-sample fit between the RUM-based and RRM-based models cannot be sta-
tistically compared with a likelihood ratio test since they are not nested. In the
RUM-based, the NRL models have significantly better fit than the other RL mod-
els, and the models with LS attribute are better than the ones without. Among the
RRM-based models, the ERRM performs better than the GRRM. Moreover, since
the RL-RUM model is a restricted model of the ARRM model, the results show
that the ARRM has significantly better fit than the RL-RUM. Finally, we note
that the ERRM has the highest and the GRRM has the lowest final log-likelihood
value.

Before discussing the out-of-sample fit of these models in the following section,
we make some remarks about the computational time for estimation. The RRM-
based models are more difficult to estimate than the RUM-based models due to
the nonlinearity in the regrets. The nonlinear optimization algorithm needs ap-
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proximate 30 iterations to converge for the RUM-based models while from 300 to
500 iterations are needed for the RRM-based models.

RL RL-LS NRL NRL-LS GRRM ARRM ERRM
# parameters 4 5 7 8 8 12 12

Final log-likelihood -6303.9 -6045.6 -6187.9 -5952.0 -7931.6 -5661.6 -5500.4

Table 1: Final log-likelihood values

7.3 Prediction results

In this section we report results from a cross-validation study. The objective is to
compare the out-of-sample fit of the models which is useful to detect over-fitting
and assess prediction performance.

Similar to Mai et al. (2015), the sample of observations is repeatedly divided
into two sets by drawing observations at random with a fixed probability: one set
contains 80% of the observations and is used for estimation and the other (20%)
is used as holdout samples to evaluate the predicted probabilities by applying the
estimated model. We generate 40 holdout samples of the same size by reshuffling
the real sample and use the log-likelihood loss as the loss function to evaluate the
prediction performance.

For each holdout sample i, 0 ≤ i ≤ 40 we estimate the parameters β̂i of the
corresponding training sample and these parameters are used to compute the test
errors erri

erri = − 1

|PSi|
∑

σj∈PSi

lnP (σj, β̂i)

where PSi is the size of the prediction sample i. We then compute the average of
erri over samples in order to have unconditional test error values

errp =
1

p

p∑
i=1

erri ∀1 ≤ p ≤ 40. (17)

For comparison we also report the predictions performances of the four RUM-based
models.

The values of errp, 1 ≤ p ≤ 40 are plotted in Figure 5 and Table 3 reports the
average of the test error values over 40 samples. As expected, the value of errp
for each model stabilizes as p increases. The results show that the ERRM model
performs best (lowest value of the loss function). The performance of the ERRM
model is very different from GRRM that has the worst performance. Interestingly,
the ARRM has a final log-likelihood value (in-sample fit) that is almost 300 units
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Parameters GRRM ARRM ERRM

β̂TT -0.15 -1.92 -0.37
Rob. Std. Err. 0.01 0.21 0.09
Rob. t-test(0) -11.46 -8.98 -4.05

β̂LT -0.34 -1.80 -0.31
Rob. Std. Err. 0.02 0.41 0.08
Rob. t-test(0) -15.36 -4.43 -3.84

β̂UT -5.89 -7.32 -5.32
Rob. Std. Err. 0.57 65.32 1.87
Rob. t-test(0) -10.32 -0.11 -2.85

β̂DC 12.92 99.99 23.18
Rob. Std. Err. 1.66 36.03 3.79
Rob. t-test(0) 7.77 2.77 6.11

δ̂TT - 3.75 1.22
Rob. Std. Err. - 0.46 0.21
Rob. t-test(0) - 8.18 5.69

δ̂LT - 0.12 0.09
Rob. Std. Err. - 0.70 0.10
Rob. t-test(0) - 0.17 0.89

δ̂UT - 7.16 4.75
Rob. Std. Err. - 53.66 1.31
Rob. t-test(0) - 0.13 3.62

δ̂DC - -7.16 -1.44
Rob. Std. Err. - 63.49 1.73
Rob. t-test(0) - -0.11 -0.84

λ̂TT 8.13e-6 0.37 1.00
Rob. Std. Err. - 0.31 -
Rob. t-test(0) - 1.20 -

λ̂LT 7.26e-6 1.00 8.29e-5
Rob. Std. Err. - - -
Rob. t-test(0) - - -

λ̂UT 0.76 0.01 1.04e-4
Rob. Std. Err. 0.04 - -
Rob. t-test(0) 17.86 - -

λ̂DC 0.46 0.58 0.48
Rob. Std. Err. 0.02 37.06 0.81
Rob. t-test(0) 21.62 0.02 0.59

Table 2: Estimation results
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Figure 5: Average of the test error values over holdout samples

better than the best RUM-based model (NRL-LS) but the prediction performance
is worse than both NRL-LS and RL-LS.

We note that all the RRM-based models considered in this paper are based on
the sums over all alternatives due to the fact that there can be only one outgoing
at a node, which could cause numerical issues in the RL model. This is, however,
not the case for the Borlänge network.

RL RL-LS NRL NRL-LS GRRM ARRM ERRM
3.39 3.25 3.36 3.20 4.46 3.31 3.00

Table 3: Average of test error values over 40 holdout samples

8 Conclusion

In this paper we have compared estimation results and prediction performance
between RUM– and RRM–based RL route choice models. We adapted the GRRM
model proposed by Chorus (2014) and propose two variants: ARRM and ERRM
models. We provided numerical results and a cross-validation study using real
data and a network with more 3000 nodes and 7000 links. The cross-validation
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results indicated that the ERRM model performs the best (it also has a higher
final log-likelihood value in the estimation) and the performance of the GRRM
model is worse. The superiorities of the ARRM and ERRM models, compared to
the GRRM, suggested that it is important to flexibly capture the impacts of the
non-chosen alternatives in the regrets of the GRRM.

The numerical results indicated that RRM rule may be an interesting avenue
for route choice modeling. Moreover, the results from the ARRM model (the in-
sample and out-of-sample fit is better than the RL-RUM model) showed that non-
linear utility specifications should be investigated for RUM-based RL models. It is
however important to note that the estimation and application of the RRM-based
models are more complicated and time consuming than the RUM ones. Moreover,
the interpretation of the parameter estimates are less straightforward. Finally,
other specifications of the RRM-based models have been recently proposed (for
instance van Cranenburgh et al., 2015), which could be interesting to investigate.
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