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Abstract. We model and solve the Rainbow Cycle Cover Problem (RCCP). Given a 

connected and undirected graph G = (V;E;L) and a coloring function ℓ that assigns a color 

to each edge of G from the finite color set L, a cycle whose edges have all different colors 

is called a rainbow cycle. The RCCP consists of finding the minimum number of disjoint 

rainbow cycles covering G. The RCCP on general graphs is known to be NP-complete. 

We model the RCCP as an integer linear program, we derive valid inequalities and we 

solve it by branch-and-cut. Computational results are reported on randomly generated 

instances. 

Keywords. Rainbow Cycle Cover Problem (RCCP), edge-colored graph, rainbow cycles, 

branch-and-cut. 

Acknowledgements: This research was partly supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under grant 2015-06189. This support 

is gratefully acknowledged. 

 

 

 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Gilbert.Laporte@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
Bibliothèque et Archives Canada, 2015 

© Silvestri, Laporte, Cerulli and CIRRELT, 2015 



1 Introduction and Problem Description

The purpose of this paper is to present a mathematical model and a branch-and-cut algo-

rithm for the Rainbow Cycle Cover Problem (RCCP). The RCCP is defined on a connected,

undirected and edge-colored graph G = (V,E, L) where V is the set of n vertices, E is the

set of m edges, and L is a set of l colors. Let ` : E → L be a coloring function assigning

to each edge a color from the set L. A rainbow cycle of G is a cycle C = (VC , EC), where

VC ⊆ V and EC ⊆ E, in which all edges have different colors, i.e. |`(EC)| = |EC |. A

rainbow cycle cover (RCC ) of G is a collection of rainbow cycles such that each vertex

of the graph G belongs to exactly one cycle. Note that in this context a single vertex is

considered as a degenerate rainbow cycle. From now on, we will refer to these as the trivial

rainbow cycles. The aim of the RCCP is to determine a RCC with the least number of

rainbow cycles.

Edge-colored graphs are used to represent many real-world situations in which is necessary

to distinguish between different types of connections. For example, colors can represent

types of transportations, telecommunication fibers, etc. The Minimum Labeled Spanning

Tree Problem (MLSTP) was the first problem introduced in this area by Chang and Leu

[5]. These authors proved that the problem is NP-hard and since then it has been studied

by numerous reserchers [1], [3], [10], [15]. Many other colored problems have been studied

in the literature, like the Colorful Traveling Salesman Problem [2], [9], [12], [16] and the

Minimum Labeling Steiner Problem [4], [7], [6]. Li and Zhang [11] investigated the com-

plexity of the rainbow tree, cycle and path partition problems and proved that identifying

a RCC with the minimum number of cycles is NP-hard. To the best of our knowledge, no

mathematical formulation for this problem has ever been put forward.

The main contribution of the paper is to propose an integer mathematical formulation

and valid inequalities that will be used within a branch-and-cut algorithm. We will also

consider some properties that a rainbow cycle cover must satisfy. These will allow us to
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preprocess the instances and add some ad hoc constraints that will help to solve the prob-

lems, sometimes in a very effective way.

The remainder of this paper is organized as follows. Section 2 contains the mathematical

formulation and the description of the properties that a RCC must satisfy. The valid in-

equalities are introduced in Section 3. The branch-and-cut algorithm is described in Section

4. Computational results and conclusions are presented in Section 5 and 6, respectively.

2 Rainbow Cycle Cover Problem: Mathematical model and

Properties

In this section we present an integer linear mathematical formulation for the RCCP. We

introduce the set of binary variables γc, for c = 1, . . . , c̄ associated with each non-trivial

cycle c of a RCC, whose value is equal to 1 if and only if c contains at least three vertices.

It is easy to see that the number of variables γc depends on the number of possible non-

trivial cycles, so it is useful to compute a good upper bound on this number. Note that,

according to the definition, the variables γc are equal to one if and only if c contains at

least three vertices, which means that bn/3c is an obvious upper bound on the maximum

number of non-trivial rainbow cycles that a RCC of a graph can contain. We define binary

variables ycv equal to 1 if and only if vertex v belongs to cycle c, and binary variables xce

equal to 1 if and only if edge e belongs to cycle c. In order to introduce constraints that

can help prevent equivalent solutions, it is useful to define an index set Iq = {1, . . . , q}, for

an integer q, and to define the undirected graph G = (V,E, L), with vertex set V = In.

The formulation is then as follows:

minimize z =
c̄∑
c=1

γc +
∑
v∈V

M
(

1−
c̄∑
c=1

ycv

)
(1)
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subject to

∑
v∈V

ycv ≤ l γc c = 1, . . . , c̄ (2)

3 γc ≤
∑
v∈V

ycv c = 1, . . . , c̄ (3)

c̄∑
c=1

ycv ≤ 1 v ∈ V (4)

∑
e∈δ(v)

xce = 2 ycv v ∈ V, c = 1, . . . , c̄ (5)

xce ≤ ycv v ∈ V, e ∈ δ(v) (6)∑
e∈δ(S)

xce ≥ 2(ycv + ycu − 1) S ⊂ V, v ∈ S, {v, u} ∈ {S, V \ S}, c = 1, . . . , c̄ (7)

∑
e∈Ek

xce ≤ 1 c = 1, . . . , c̄, k ∈ L (8)

γc+1 ≤ γc c = 1, . . . , c̄− 1 (9)

c̄∑
c=v+1

ycv = 0 v ∈ V : v < c̄ (10)

ycv ≤
∑
w<v

yc−1
w v ∈ V \ {1}, c = 3, . . . , c̄ (11)

γc ∈ {0, 1} c = 1, . . . , c̄ (12)

ycv ∈ {0, 1} v ∈ V, c = 1, . . . , c̄ (13)

xce ∈ {0, 1} e ∈ E, c = 1, . . . , c̄, (14)

where δ(v) denotes the set of edges incident to v in G, δ(S) = {e = (v, u) ∈ E : v ∈ S u ∈

V \ S}, {S, V \ S} = {{v, u} : v ∈ S, u ∈ V \ S} and Ek = {e ∈ E : `(e) = k}. Note that

the difference between the set δ(S) and {S, V \ S} is that the first one contains only edges

of the graph, whereas the second set contains all the possible pairs between s and V \ S.

The objective function (1) requires the minimization of the number of rainbow cycles. To
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this end, we need an objective function with two terms. The first part minimizes the sum

of the variables γc, that is, the number of non-trivial cycles. The second part forces the

vertices to belong to a cycle, whenever possible, giving a weight M to each isolated vertex.

Without the second part of the objective function the optimal solution would be zero.

Constraints (2) and (3) are logical constraints linking the binary variables γc with the

binary variables ycv. Note that the maximum number of vertices that can belong to the

same cycle is l since this is the number of different colors of the graph. Constraints (4)

and (5) ensure that each vertex belongs to at most one cycle and, if it belongs to a cycle,

it has a degree equal to 2 in that cycle. It is easy to see that to ensure the validity of the

constraints (5), if a variable γc is equal to one, then there must be at least three vertices in

the corresponding rainbow cycle. Constraints (6) impose that if a vertex is not in the cycle

c, the edge incident on such vertex cannot belong to that cycle. Constraints (7) guarantee

solutions with not more than one cycle associated to each variable γc. Constraints (8)

impose that a cycle cannot contain two edges having the same color. These constraints

ensure the rainbow property. Constraints (9), (10) and (11) are not necessary for the

model, but they help eliminate symmetries. Constraints (9), mean that there will never

be a variable γc+1 equal to one if γc is equal to zero, for any c. Constraints (10) impose

that vertices with and index v < c̄ cannot belong to a cycle c such that c > v. Moreover,

constraints (11) mean that a vertex v can belong to a cycle of index c if and only if at least

one vertex w with a lower index belongs to the cycle of index c− 1. The constraints (10)

and (11) are a generalization of the symmetry constraints introduced by Fischetti et al. [8]

in the context of the Vehicle Routing Problem.

2.1 Properties of a Rainbow Cycle Cover

In this section we present some properties that a RCC must satisfy. Let ζv be the colored

degree of vertex v, that is, the number of different colors incidents to v. It is easy to see

that if the colored degree of a vertex v is equal to one, i.e. ζv = 1, then vertex v will be a
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trivial rainbow cycle, that is, it will be isolated:

c̄∑
c=1

ycv = 0 v ∈ V : ζv = 1. (15)

Note that in such a case, all edges incident to that vertex will be equal to 0 in the optimal

solution. In view of these observations, if we denote by n1 the number of vertices whose

colored degree is equal to one, then the upper bound on the number of variables γ reduces

to b(n− n1)/3c.

We can extend this observation to the edges. Suppose that given an edge e = (v, u), the

total number of colors incident to v and u is equal to two, i.e. |{`(δ(v)) ∪ `(δ(u))}| = 2,

then edge e cannot belong to a rainbow cycle. Note that, if |{`(δ(v)) ∪ `(δ(u))}| = 2, then

one of these two colors must be the color of edge e, therefore there will be only one more

color available to connect e with others edges of a RCC which is not possible. We can

state this property through the constraints

c̄∑
c=1

xce = 0 e = (v, u) ∈ E : |{`(δ(v)) ∪ `(δ(u))}| = 2. (16)

We can use this two observations in a preprocessing phase to reduce the size and the

difficulty of the instances. Note that, the last property is included in the following most

general one. Pairs of vertices having a colored degree equal to 2 and the same set of incident

colors cannot belong to the same cycle:

ycv + ycu ≤ 1 v, u ∈ V : `(δ(v)) = `(δ(u)), ζv = ζu = 2, c = 1, . . . , c̄. (17)

Obviously, if two of these vertices are adjacent, the edge linking them cannot belong to a

RCC, which means that all variables associated to the edge will be equal to zero and then

constraints (16) are satisfied. Moreover, for each vertex v such that ζv = 2, the following

constraints are valid for the RCCP:∑
e∈δk(v)

xce −
∑

e∈δh(v)

xce = 0 v ∈ V : ζv = 2, `(δ(v)) = {k, h}, c = 1, . . . , c̄, (18)
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where δk(v) = {e ∈ E : e ∈ {δ(v) ∩ Ek}}, i.e. the set of all the edges incident to v and

having color k.

Another simple observation regarding the properties that a RCC must satisfy is that if

the shortest cycle that includes two fixed vertices v and u contains at least l + 1 edges,

then the two vertices cannot belong to the same rainbow cycle. Note that a rainbow

cycle cannot contain more than l edges. Identifying shortest cycles containing two fixed

vertices can be efficiently achieved by means of Suurballe’s algorithm ([13], [14]). This

algorithm identifies two disjoint paths in a non-negative weighted directed graph so that

both paths connect the same pair of vertices and have a minimum total length. Suurballe’s

algorithm uses Dijkstra’s algorithm to find the first path. It then modifies the weights of the

edges preserving their non-negativity. After this modification Suurballe’s algorithm uses

Dijkstra’s algorithm a second time. Procedure 1 shows the details of Suurballe’s algorithm.

Procedure 1: Suurballe’s algorithm

Input: G(V,A), v ∈ V , u ∈ V , w(A)

Output: SC(v, u) the shortest cycle containing v, u

1 T1 ← DijkstraAlgorithm(v,G,w(A))

2 P1 ← IdentifyPath(v, u, T1)

3 w(A)← updateWeightEdge(T1, G)

4 GP1 ← CreateResidualGraph(P1, G)

5 T2 ← DijkstraAlgorithm(v,GP1 , w(A))

6 P2 ← IdentifyPath(v, u, T2)

7 SC(v, u)← mergePaths(P1, P2)

8 return SC(v, u)

A key point of the algorithm is line 3. The weights of the arcs are modified according to

the following formula

w(i, j) = w(i, j)− d(v, j) + d(v, i) (i, j) ∈ A, (19)

where v is the root vertex of the shortest path tree T1, and d(v, j), d(v, i) are the distances
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from v to j and i in T1. Thanks to Suurballe’s algorithm we can impose the constraints

ycv + ycu ≤ 1 v, u ∈ V : |SC(v, u)| ≥ l + 1, c = 1, . . . , c̄, (20)

where SC(v, u) represents the shortest cycle containing the vertices v and u. It is easy to

see that when two vertices v and u are incompatible, that is, when two vertices cannot

belong to the same cycle because of (17) and (20), then the following inequalities are valid

for the RCCP:

∑
e∈{δ(v)∪δ(u)}

xce ≤ 2 v, u ∈ V : ycv + ycu ≤ 1, c = 1, . . . , c̄ (21)

∑
e∈{δk(v)∪δk(u)}

xce ≤ 1 v, u ∈ V : ycv + ycu ≤ 1, k ∈ L, c = 1, . . . , c̄. (22)

Our last observation about the properties of a RCC is the following: for each color k, if the

edges of color k are incident to fk distinct vertices, i.e. if |{v ∈ V : δ(v) ∩ Ek 6= ∅}| = fk,

then only bfk/2c edges of color k can belong to a RCC. If only one more edge is selected,

then there will be at least two edges having the same color and incident to a same vertex.

We can therefore impose the following constraints:

c̄∑
c=1

∑
e∈Ek

xce ≤ bfk/2c k ∈ L. (23)

3 Valid inequalities

In this section we present some valid inequalities for the RCCP.

Proposition 1. The constraints

ycv − γc ≤ 0 v ∈ V, c = 1, . . . , c̄ (24)

xce − γc ≤ 0 e ∈ E, c = 1, . . . , c̄ (25)

are satisfied by all optimal RCCP solutions.
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Proof. These constraints state that if a vertex or an edge belongs to a cycle, then the

variable representing that cycle must be used.

An example of a solution violating constraints (24) but satisfying constraints (2) is the

following: γ1 = 1, γ2 = 0.34, y1
1 = 1, y1

2 = 1, y1
3 = 1, y1

4 = 0.53, y1
5 = 0.24, y1

6 = 0.71,

y1
7 = 0.41, y2

4 = 0.47, y2
5 = 0.76, y2

6 = 0.29, y2
7 = 0.06, x1

(1,2) = 1, x1
(1,3) = 0.35, x1

(1,5) = 0.06,

x(1,6) = 0.59, x1
(2,3) = 0.76, x1

(2,6) = 0.24, x1
(3,4) = 0.88, x1

(4,6) = 0.18, x1
(5,7) = 0.42,

x1
(6,7) = 0.41, x2

(4,5) = 0.93, x2
(5,6) = 0.53, x2

(5,7) = 0.06, x2
(6,7) = 0.06. It is depicted in

Figure 1:

Figure 1: Solution where γ1 = 1 and γ2 = 0.34 and constraints (24) are violated by v24 and v25 in c = 2.

Proposition 2. The constraints

c̄∑
c=1

{
xce +

∑
f∈{δh(u)∪δh(v)}

xcf

}
≤ 2 e = (v, u) ∈ E : `(e) = k, h ∈ L \ `(e) (26)

are valid for the RCCP.

Proof. These constraints impose that if an edge e = (v, u) having color `(e) = k is selected,

then at most one edge having color h 6= k and belonging to the set {δh(v) ∪ δh(u)} can be

selected.
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Proposition 3. The constraints

∑
e∈δk(v)

xce ≤ ycv k ∈ L, v ∈ V, c = 1, . . . , c̄ (27)

are valid for the RCCP.

Proof. If a vertex v belongs to a cycle c, then at most one edge of color k and incident on

v can be selected. Note that for fixed a vertex v, a cycle c and a color k, the inequality

∑
e∈δk(v)

xce ≤ |δk(v)|ycv k ∈ L, v ∈ V, c = 1, . . . , c̄ (28)

represents an aggregate version of constraints (6), when the color k is fixed. Moreover, due

to (8) the left-hand side of (28) results in

∑
e∈δk(v)

xce ≤
∑
e∈Ek

xce ≤ 1 k ∈ L, v ∈ V, c = 1, . . . , c̄, (29)

and due to (5) all the edges xce, i.e. e ∈ δ(v), are equal to 0 if ycv is equal to 0. Thanks

to these two observations the right-hand side of (28) can be reduced to ycv, i.e. exactly

constraints (27).

Proposition 4. The constraints

∑
e∈δk(v)

xce −
∑

e∈{δ(v)\δk(v)}

xce ≤ 0 v ∈ V, k ∈ L, c = 1, . . . , c̄ (30)

are satisfied by all the optimal RCCP solutions.

Proof. These constraints impose that for each vertex v, for each color k and for each

possible cycle c = 1, . . . , c̄, if an edge incident to v and having color k is selected, then an

edge incident to v and having a different color must be selected.

Proposition 5. The valid inequalities (27) and (30) are equivalent.

10

The Rainbow Cycle Cover Problem

CIRRELT-2015-40



Proof. The valid inequalities (27) state that, fixed k ∈ L and c = {1, . . . , c̄},

∑
e∈δk(v)

xce ≤ ycv

adding and subtracting 1
2

∑
e∈δ(v) x

c
e to the left-hand side, we obtain

∑
e∈δk(v)

xce +
1

2

∑
e∈δ(v)

xce −
1

2

∑
e∈δ(v)

xce ≤ ycv

which, due to (5), is equivalent to

∑
e∈δk(v)

xce −
1

2

∑
e∈δ(v)

xce ≤ 0. (31)

Note that, with easy mathematical operations, one can see that (31) are exactly the valid

inequalities (30). One also observes that without constraints (5), constraints (27) are

stronger than constraints (30).

Proposition 6. The constraints

xce −
∑

h∈L\`(δ(v))

∑
f∈δh(u)

xcf ≤ 0 v : ζv = 2, c = 1, . . . , c̄ (32)

are valid for the RCCP.

Proof. These constraints state that if an edge e = (v, u), incident to a vertex v having

colored degree ζv = 2, is selected, then at least one edge that is incident on the vertex u

and having color h ∈ {L \ `(δ(v))} must be selected.

Proposition 7. The constraints

∑
{v∈V :δk(v)6=∅}

{
ycv −

∑
e∈δk(v)

xce

}
≥ 0 k ∈ L, c = 1, . . . , c̄ (33)

are valid for the RCCP.

11

The Rainbow Cycle Cover Problem

CIRRELT-2015-40



Proof. These constraints impose that for each color k and for each cycle c, twice the number

of edges having color k and belonging to c must be less than or equal to the number of

vertices belonging to c on which those edges are incident, since on a single vertex cannot

incide twice the same color.

An example of a solution violating constraints (33) when k = k2 but satisfying the con-

straints (2 - 11) is depicted in Figure (2):

Figure 2: A constraint (33) is violated for k = k2

Proposition 8. Let F = {(v, u) ∈ E : |`(δ(v)) ∪ `(δ(u))| = 3}}. Moreover, for each edge

e = (u, v), let ∆(e) = {δ(u) ∪ δ(v)} and let ∆k(e) = {δk(v) ∪ δk(u)}. Then the constraints

xc(e) −
∑

f∈∆k(e)

xcf ≤ 0 e = (u, v) ∈ F, k ∈ {`(∆(e)) \ `(e)}, c = 1, . . . , c̄ (34)

are valid for the RCCP.

Proof. These constraints impose that each edge e = (u, v) such that
{
{`(δ(u))∪ `(δ(v))} \

`(e)
}

= {h, k} can belong to a RCC if and only if at least one edge of the set {δh(u)∪δh(v)}

and one of the set {δk(u) ∪ δk(v)} is selected. It is clear that, since we are looking for a

RCC, if an edge of the set F will be selected, then exactly one edge for each set will belong

to the solution.
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We can extend the observation made for constraints (34) to the set of edges F̄ = {(u, v) ∈

E : |`(δ(u)) ∪ `(δ(v))| = 4}.

Proposition 9. The constraints

xce −
∑

f∈∆t(e)∪∆s(e)

xcf ≤ 0 e = (u, v) ∈ F̄ , t, s ∈ {`(∆(e)) \ `(e)}, c = 1, . . . , c̄ (35)

are valid for the RCCP.

The valid inequalities that follow, differently from all the sets described until now, are not

easy to identify. Let P (v, u) be a path between the vertices v and u, where v 6= u, and let P

be the set of all the rainbow paths of the graph G, i.e. P = {P (u, v) : P (u, v) is rainbow}.

Proposition 10. The constraints

c̄∑
c=1

{ ∑
e∈δk(v)∪δk(u)

xce +
∑

e∈P (u,v)

xce

}
≤ |P (u, v)|+ 1 k ∈ L \ `(P (u, v)), P (u, v) ∈ P (36)

are valid for the RCCP.

Proof. These constraints state that if all the edges of the rainbow path P (v, u) belong to the

solution, then at most one edge belonging to the set {δk(v)∪δk(u)}, where k ∈ L\`(P (u, v)),

can be selected.

In the Figure (3) is depicted an example of the structure described above for the valid

inequalities (36). Note that the valid inequalities (26) are a particular case of this set of

inequalities, in which the rainbow path is a single edge.

4 Branch-and-cut algorithm

We solve the RCCP by means of a branch-and-cut algorithm. The description of the steps

is summarized in Procedure 2. The first step of our algorithm consists in a preprocessing
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Figure 3: An example of valid inequalities (36)

phase in which we identify all vertices and edges that satisfy the properties (15) and (16).

We then set the corresponding variables to 0, which allows us to reduce the instance

size. The initial subproblem is obtained by relaxing constraints (6) and (7) as well as the

integrality constraints (12), (13) and (14). Note that, thanks to constraints (5), constraints

(6) are redundant in an integer solution, but we add them as valid cuts. We also add

constraints (17), (18), (20), (21), (22) and (23) to the initial subproblem. From this point,

a search for violated constraints (6) and (7) and violated valid inequalities (24), (25),

(26), (27) and (32) is performed. Valid inequalities (33), (34) and (35) turned out to be

ineffective and were not considered. A subset of the most violated inequalities of each type

is added to the cut-pool. Moreover, since identifing all rainbow paths between all pairs

of vertices in a graph is not possible, a search for violated inequalities (36) is performed

only among the set SP = {P (u, v) ∈ P : P (u, v) is a shortest path}. However, except for

(7) and (36), in order to identify violated inequalities, we consider all of them and verify

which are violated by the current relaxed solution. The algorithm for the identification

of the most violated constraint (7) is a simple max-flow separation problem. Branching

is performed in priority on the ycv and xcv variables with the lower index c and having the

fractional value closest to 0.5.
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Procedure 2: Branch-and-cut algorithm

Input: an integer program P .

Output: an optimal solution of P , if exists.

1 ub←∞, L = ∅

2 Define a first subproblem S0

3 L← S0

4 while L 6= ∅ do

5 Si ← chooseSubproblem(L)

6 L← L \ Si

7 z ← solveSubproblem(Si)

8 if z < ub then

9 if the solution is integer then

10 ub← z

11 else

12 cuts← generateCuts

13 if cuts violated constraints are identified then

14 addCuts (cuts)

15 else

16 {Si1, Si2} ← branching(Si)

17 L← L ∪ {Si1, Si2}

5 Computational results

The algorithm was coded in C and solved using IBM ILOG CPLEX 12.5. The computa-

tional experiments were performed on a 64-bit GNU/Linux operating system, 96 GB of

RAM and one processor Intel Xeon X5675 running at 3.07 GHz.
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Experiments for the RCCP were conducted on randomly generated instances and their

results are reported in Table 1. Each instance is characterized by the number of vertices

n (size), the number of edges m and the number of colors l. For each instance with n ver-

tices, the number of edges is set to m = dn(n− 1)/2× d+ ne, with d ∈ {0.1, 0.2, 0.3}, and

the number of colors is set to dlog(m)/2e, dlog(m)e and d2 log(m)e. The total number of

different scenarios is nine for each size. We have generated five instances for each scenario,

with the same number of nodes, edges and colors and the results reported in each line of

our tables are average values over these five instances. In Table 1 the first four columns

report the characteristics of each scenario: scenario ID, the number of vertices (n), the

number of edges (m) and the number of colors (l), respectively. This table also provides

the number of rainbow cycles (#cycles), the number of non-trivial cycles and the number

of trivial cycles (#non-trivial and #trivial, respectively) the value of the optimal solution

(Obj), the computing time (t(s)) in seconds and the number of nodes in the search tree

(#nodes). We have imposed a time limit equal to 10, 800 seconds. Whenever at least one

instance of the scenario was not solved to optimality within the time limit, we indicate

with the symbol * that the value reported is an upper bound on the optimal solution. We

also refer to the solutions with the symbol * as the best known solutions. Note that in the

objective function, the part that minimizes the number of non-trivial cycles is less then or

equal to c̄ in the worst case. Thanks to this observation a value equal to 2 c̄ is given to the

weight M .

The results show that when the number of vertices increases, instances with a large num-

ber of edges and a small number of colors are the hardest to solve. We also note that the

computation time and the number of nodes in the search tree seem to increase in these

cases. This is due to the symmetry of the problem. Indeed several cycles can have the same

number of colors and several equivalent solutions can be identified. The number of colors

also affects the solution in terms of the presence of trivial cycles, mainly for the instances

with a small number of edges.
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Table 1: Summary of computational results for the RCCP

ID Instance RCCP

n m l #cycles #non-trivial #trivial Obj t(s) #nodes

1 20 39 3 18.00 1.00 17.00 120.00 0.01 0.00

2 20 39 6 13.60 2.00 11.60 83.20 0.14 0.00

3 20 39 11 10.60 2.20 8.40 61.00 0.18 0.00

4 20 58 3 14.80 2.60 12.20 88.00 0.13 0.00

5 20 58 6 9.80 3.40 6.40 48.20 1.76 5.60

6 20 58 12 6.80 2.20 4.60 34.40 1.71 12.00

7 20 77 4 10.00 3.80 6.20 47.20 2.41 21.20

8 20 77 7 6.80 3.60 3.20 26.00 5.86 77.00

9 20 77 13 4.80 2.60 2.20 18.00 5.71 65.60

10 30 74 4 21.80 3.20 18.60 207.80 2.59 4.00

11 30 74 7 19.40 2.80 16.60 185.40 15.16 16.80

12 30 74 13 15.40 2.60 12.80 143.40 9.33 8.60

13 30 117 4 18.20 4.80 13.40 152.20 21.38 38.60

14 30 117 7 13.00 4.40 8.60 99.00 56.52 114.80

15 30 117 14 9.60 3.20 6.40 73.60 54.07 119.20

16 30 161 4 15.20 6.00 9.20 107.20 180.50 541.20

17 30 161 8 8.00 5.20 2.80 36.00 210.39 344.00

18 30 161 15 5.40 3.60 1.80 23.40 55.79 67.80

19 40 118 4 30.60 3.60 27.00 381.60 10.67 22.00

20 40 118 7 24.80 3.80 21.00 297.80 129.83 49.80

21 40 118 14 20.40 3.40 17.00 241.40 34.08 10.40

22 40 196 4 25.00 6.20 18.80 269.40 314.22 191.20

23 40 196 8 15.80 6.00 9.80 143.20 361.94 281.60

24 40 196 16 11.00 4.00 7.00 102.00 480.33 457.60

25 40 274 5 14.60 8.60 6.00 92.60 * 5136.55 2894.00

26 40 274 9 8.80 6.20 2.60 42.60 * 6420.92 2141.20

27 40 274 17 5.20 3.80 1.40 23.40 * 3185.14 1119.20

28 50 173 4 35.80 5.60 30.20 519.00 526.10 42.00

29 50 173 8 30.40 5.40 25.00 430.40 1185.35 368.40

30 50 173 15 23.40 5.20 18.20 314.60 694.63 357.40

31 50 295 5 25.40 8.00 17.40 303.80 * 7354.71 2027.80

32 50 295 9 18.40 7.20 11.20 197.60 * 5558.08 1477.40

33 50 295 17 12.80 5.60 7.20 128.00 2695.05 756.20

34 50 418 5 19.80 10.20 9.60 173.40 * 10800.00 1194.20

35 50 418 9 12.80 8.20 4.60 86.40 * 10214.81 1130.00

36 50 418 18 6.60 4.40 2.20 41.80 * 8954.48 1247.00
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5.1 LP lower bounds and duality gaps

We present the LP lower bounds and the duality gaps for the RCCP obtained by adding

one valid inequality each time, respectively in Table 2 and Table 3. The first two columns

of the Table 2 provide the instance ID and the objective value. Again, the symbol * appears

in the table to indicate that the value reported is an upper bound of the optimal solution

value. The next columns provide lower bounds w(P ), w(P1), w(P2), w(P3), w(P4) and

w(P5), where P denotes the polytope obtained by relaxing the integrality constraints, while

P1, P2, P3, P4 and P5 denote the intersection of P with (27), (26), (24) – (25), (36) and

(32), respectively. Table 3 provide the duality gap obtained on the six polytopes comparing

with the optimal solution. From the tables we can see that the valid inequalities often help

to improve the lower bound w(P ). It is also easy to see that the best lower bounds are

provided by w(P1) and w(P2). However, it is interesting to observe that for the hardest

instances, the values of the gap are significantly high. The presence of the constant M in

the objective function affects the results, but symmetry seems to remain the main problem.

6 Conclusions

We have proposed a mathematical formulation of the Rainbow Cycle Cover Problem, some

properties that a RCC must satisfied and some valid inequalities used to solve the RCCP

within a branch-and-cut algorithm. Computational experiments were conducted on ran-

domly generated instances. Results show that the branch-and-cut algorithm is able to solve

instances having between 20 and 50 vertices, and between 3 and 18 colors. The presence

of a constant M in the objective function and the symmetry of the problem affect the final

results and the effectiveness of the algorithm, mainly on instances with a large number of

edges and a small number of colors when the number of vertices increases.
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Table 2: Linear programming lower bounds for RCCP

ID RCCP

Obj w(P) w(P1) w(P2) w(P3) w(P4) w(P5)

1 120.00 120.00 120.00 120.00 120.00 120.00 120.00

2 83.20 79.62 81.14 79.71 79.70 79.62 79.62

3 61.00 56.33 56.99 56.38 56.45 56.38 56.51

4 88.00 85.38 86.17 85.98 85.38 85.38 85.79

5 48.20 29.76 32.87 30.50 29.82 30.12 30.86

6 34.40 26.05 27.06 26.84 26.36 26.12 26.16

7 47.20 28.86 32.37 30.99 28.88 28.99 29.69

8 26.00 16.92 18.10 17.43 17.06 17.02 16.92

9 18.00 11.63 13.08 12.92 12.04 11.63 11.63

10 207.80 191.20 194.43 193.09 191.20 191.84 192.98

11 185.40 131.39 142.10 134.91 131.43 131.91 132.50

12 143.40 122.14 123.89 122.67 122.31 124.18 122.43

13 152.20 94.83 105.95 105.21 94.83 96.71 97.65

14 99.00 62.67 71.05 67.90 62.73 64.81 65.31

15 73.60 53.60 58.47 54.51 53.93 53.78 54.16

16 107.20 44.66 52.90 52.95 44.66 46.04 50.17

17 36.00 17.58 18.93 22.11 17.71 17.67 17.70

18 23.40 16.01 20.59 18.10 16.50 16.59 16.01

19 381.60 320.46 326.28 326.17 320.46 322.99 324.15

20 297.80 235.51 245.40 244.61 235.59 236.46 240.75

21 241.40 202.22 211.60 207.59 202.57 203.82 206.17

22 269.40 133.77 164.04 155.76 133.77 138.69 144.44

23 143.20 77.03 88.87 91.21 77.06 82.55 78.44

24 102.00 69.79 75.49 74.25 70.00 69.87 69.79

25 92.60 * 31.74 39.58 36.03 31.78 34.37 31.74

26 42.60 * 23.89 26.67 26.67 23.89 26.67 23.89

27 23.40 * 19.08 21.87 19.08 19.08 19.08 19.08

28 519.00 388.47 412.81 410.57 388.47 393.28 407.81

29 430.40 277.13 308.62 296.86 277.33 282.80 288.49

30 314.60 233.08 251.27 243.86 233.56 236.17 233.20

31 303.80 * 148.93 176.66 164.85 148.95 153.38 155.18

32 197.60 * 114.41 132.04 124.42 114.45 116.63 114.41

33 128.00 97.06 108.35 101.71 97.40 97.64 97.91

34 173.40 * 63.98 78.23 79.88 64.02 67.21 67.07

35 86.40 * 51.16 55.10 52.84 51.16 51.16 52.84

36 41.80 * 40.06 40.06 40.06 40.06 40.06 40.06
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Table 3: Linear programming duality gap for RCCP

ID RCCP

gapP(%) gapP1(%) gapP2(%) gapP3(%) gapP4(%) gapP5(%)

1 0.0 0.0 0.0 0.0 0.0 0.0

2 4.3 2.5 4.2 4.2 4.3 4.3

3 7.7 6.6 7.6 7.5 7.6 7.4

4 3.0 2.1 2.3 3.0 3.0 2.5

5 38.3 31.8 36.7 38.1 37.5 36.0

6 24.3 21.3 22.0 23.4 24.1 24.0

7 38.9 31.4 34.3 38.8 38.6 37.1

8 34.9 30.4 32.9 34.4 34.6 34.9

9 35.4 27.4 28.2 33.1 35.4 35.4

10 8.0 6.4 7.1 8.0 7.7 7.1

11 29.1 23.4 27.2 29.1 28.9 28.5

12 14.8 13.6 14.5 14.7 13.4 14.6

13 37.7 30.4 30.9 37.7 36.5 35.8

14 36.7 28.2 31.4 36.6 34.5 34.0

15 27.2 20.6 25.9 26.7 26.9 26.4

16 58.3 50.7 50.6 58.3 57.1 53.2

17 51.2 47.4 38.6 50.8 50.9 50.8

18 31.6 12.0 22.6 29.5 29.1 31.6

19 16.0 14.5 14.5 16.0 15.4 15.1

20 20.9 17.6 17.9 20.9 20.6 19.2

21 16.2 12.3 14.0 16.1 15.6 14.6

22 50.3 39.1 42.2 50.3 48.5 46.4

23 46.2 37.9 36.3 46.2 42.4 45.2

24 31.6 26.0 27.2 31.4 31.5 31.6

25 65.7 57.3 61.1 65.7 62.9 65.7

26 43.9 37.4 37.4 43.9 37.4 43.9

27 18.5 6.5 18.5 18.5 18.5 18.5

28 25.2 20.5 20.9 25.2 24.2 21.4

29 35.6 28.3 31.0 35.6 34.3 33.0

30 25.9 20.1 22.5 25.8 24.9 25.9

31 51.0 41.9 45.7 51.0 49.5 48.9

32 42.1 33.2 37.0 42.1 41.0 42.1

33 24.2 15.3 20.5 23.9 23.7 23.5

34 63.1 54.9 53.9 63.1 61.2 61.3

35 40.8 36.2 38.8 40.8 40.8 38.8

36 4.2 4.2 4.2 4.2 4.2 4.2
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