

On the Computational Efficiency of
Subgradient Methods: A Case Study
in Combinatorial Optimization

Antonio Frangioni
Enrico Gorgone
Bernard Gendron

August 2015

 CIRRELT-2015-41

On the Computational Efficiency of Subgradient Methods: A Case Study
in Combinatorial Optimization

Antonio Frangioni1, Enrico Gorgone2, Bernard Gendron3,*

1 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorve, 3 – 56127 Pisa, Italy
2 Département d’Informatique, Université Libre de Bruxelles, Campus de la Plaine, C.P. 210/01,

Boul. du Triomphe, 1050 Bruxelles
3 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)

and Department of Computer Science and Operations Research, Université de Montréal, P.O.
Box 6128, Station Centre-Ville, Montréal, Canada H3C 3J7

Abstract. Subgradient methods (SM) have long been the preferred way to solve large-
scale Nondifferentiable Optimization problems, such as those arising from the solution of
Lagrangian duals of hard combinatorial optimization problems. Although other methods
exist that show a significantly higher convergence rate in some circumstances, SM have
certain unique advantages that may make them competitive under the right set of
conditions. Besides, SM have significantly progressed in recent years, and new versions
have been proposed with better theoretical and, in some applications, practical
performances. We aim at computationally evaluating a large class of SM for the specific
application of the solution of Lagrangian duals of integer programs, in order to assess if
and how the main improvements suggested along the years have changed the
computational landscape of these approaches. For this we first propose a unified scheme
that covers many of the SM proposed in the literature, comprised some often overlooked,
but computationally important, features like projection and dynamic generation of
variables. This gives us a large class of SM, with several algorithmic parameters. We fine-
tune and test them on two Lagrangian dual problems with significantly different
characteristics, both arising from the same relevant and hard combinatorial optimization
problem the - Fixed-Charge Multicommodity Capacitated Network Design problem - in
order to assess the potential impact of the characteristics of the function to be minimized
on the optimal algorithmic choices. Our results show that SM can be competitive with
more sophisticated approaches when the tolerance required for solution is not particularly
tight, which is what happens when Lagrangian techniques are used within exact or
heuristic approaches for solving the original hard combinatorial optimization problem.
However, for this to happen appropriate and nontrivial tuning has to be performed.
Keywords. Subgradient methods, computational analysis, Lagrangian relaxation,
multicommodity network design.
Acknowledgements. The first author gratefully acknowledges the contribution of the
Italian Ministry for University and Research under the PRIN 2012 Project 2012JXB3YF
“Mixed-Integer Nonlinear Optimization: Approaches and Applications.” The work of the
second author has been supported by the Post-Doctoral Fellowship D.R. No 2718/201
(Regional Operative Program Calabria ESF 2007/2013-IV Axis Human Capital, Operative
Objective M2, Action d.5) and the Interuniversity Attraction Poles Programme P7/36
“COMEX: combinatorial optimization metaheuristics & exact methods" of the Belgian
Science Policy Office. The work of the third author has been supported by Natural
Sciences and Engineering Research Council of Canada (NSERC) (Ca under grant
184122-09.
Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Bernard.Gendron@cirrelt.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec

Bibliothèque et Archives Canada, 2015
© Frangioni, Gorgone, Gendron and CIRRELT, 2015

1. Introduction. The aim of this paper is to computationally evaluate a large
family of Subgradient Methods (SM) for the (constrained) minimization of a convex
nonsmooth function. We are in particular (although not exclusively) interested in
problems of the form

(Π) f∗ = min
{ ∑

k∈K f
k(λ) : λ ∈ Λ

}
(1.1)

where K is a given finite index set, Λ ⊆ Rn is closed, convex and “easy” in the sense
that projection upon Λ is inexpensive, and fk : Rn → R are proper convex functions
that are finite-valued at least in an open neighborhood of Λ (or Λ itself if Λ = Rn). The
generalized gradient descent method, a.k.a. the subgradient method, is a generalization
of the gradient method for smooth optimization introduced in the 60s [67] that solves
(1.1) under very mild conditions. In particular, each of the functions fk need only be
known through a “black box” that, given λ ∈ Λ, computes the function value fk(λ)
and a subgradient gk ∈ ∂fk(λ). Then, after having aggregated all function values
according to (1.1), and similarly for

∑
k∈K g

k = g ∈ ∂f(λ), the algorithm employs
the simple recurrence formula

λ̂i+1 = λi − νigi , λi+1 = PΛ(λ̂i+1) ,

where P denotes the orthogonal projection on Λ. Only very simple rules are required
to the stepsize νi ∈ R+ to ensure that the sequence { fi = f(λi) } asymptotically
solves (1.1), i.e., lim infi→∞ fi = f∞ = f∗. Under mild additional assumptions,
cluster points of {λi } also correspond to optimal solutions to (1.1).

The convergence rate of SM is rather bad: Θ(1/ε2) iterations are required in
general to solve the problem up to absolute error ε, which means that attaining any
more than a modest accuracy with these methods is, at least in theory, hopeless. Yet,
SM has their advantages, and can be put to good use. For its minimalistic simplicity,
which makes implementation not at all an issue, the method actually exhibits the best
possible worst-case complexity for the minimization of a generic nondifferentiable
function only known via a black box: in general, no algorithm can attain any better
result than Θ(1/ε2) [55]. Besides, the complexity is independent of the size n of the
problem; therefore, SM may be promising for very-large-scale problems where a high
accuracy is not necessary, whereas a short running time is a primary concern. This
happens to be often the case when f is the Lagrangian function of a hard optimization
problem, say an Integer Program (IP). Indeed, in the following we will mainly refer
to the block-structured case

sup
{ ∑

k∈K c
kuk :

∑
k∈KA

kuk = b , uk ∈ Uk k ∈ K
}

(1.2)

where one relaxes, in a Lagrangian fashion, the complicating constraints that link
together blocks of variables that would otherwise be independent, i.e.,

f(λ) = λb+
∑
k∈K

(
fk(λ) = sup

{
(ck − λAk)uk : uk ∈ Uk

})
. (1.3)

We are mainly interested in the case that the sets Uk are “hard”, e.g. encompassing
integrality restrictions, so that (1.2) is a “hard” problem. Yet, the computation
of f is obviously less hard than the solution of (1.2) simply because it decomposes
into smaller—albeit possibly still hard—independent subproblems. There are also
cases where f is simpler even if |K| = 1 since U1 has a specific structure that can
be algorithmically exploited; sometimes, as in our applications, both effects actually

1

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

apply. Therefore, while we consider (1.3) as our prototype application, to simplify the
notation we will write cu, Au = b and U respectively for the objective function, linking
constraints and feasible region in (1.2)/(1.3) when the sum-function structure is either
not relevant, or better purposely ignored. We also remark that there is a slight (and
intended) inconsistency between (1.3) and (1.1), in that the former actually is the
sum of |K| + 1 functions, counting the linear one λb; we will ignore this detail (e.g.,
assume b = 0) up until it becomes relevant.

It can be argued that Lagrangian relaxation of hard optimization problems, al-
though clearly not the only application of SM, has been one of the main factors
motivating the interest in this class of algorithms. Starting from the groundbreaking
results of [38, 39] on the Traveling Salesman Problem, the definition of appropri-
ate Lagrangian duals of IPs [34] has been a staple of integer optimization for over
two decades; the latter article has been cited more than 1500 times. For nearly two
decades, within integer programming circles, “Lagrangian relaxation” has invariably
been a synonym of “solving a Lagrangian dual by a subgradient method.” In fact,
some of the developments trying to improve upon the (dreadful) computational issues
in the original SM originates from the IP community. This is, for instance, the case
of the deflection techniques introduced in [14] to “dampen” one of the main draw-
backs of SM (in addition to these of the gradient method), that is, the fact that
non-differentiability of f yields the “zig-zagging” behavior whereby the direction at
one step is almost opposite to that of the previous step, so that two “reasonably long”
steps combined in fact make an “unfeasibly short” one. This can be faced by slightly
modifying the update rule as

λ̂i+1 = λi − νidi (1.4)

where the direction di is obtained by some linear combination of gi and the previous
subgradient gi−1. Actually, since then di−1 6= gi−1, one uses the previous direction
di−1 to deflect the current subgradient. This is compounded in the constrained case
by the fact that the direction (−)gi (or di) is chosen without taking the feasible set
Λ into account, which also independently causes the zig-zagging phenomenon unless
conditional subgradient techniques [48] are employed whereby gi (di) is first projected
on the tangent cone of Λ at λi. Again, IP has been the main motivation for their
development: inequality constraints Au ≤ b in (1.2) give Λ = Rn+, where at least
projection is very easy. It is somewhat surprising that the combination of these two
techniques has not been considered until quite recently [21]. Also, stepsize rules have
been developed specifically with a focus on integer optimization [6, 33].

However, the interest in SM has started to wane during the early 90s, for two dif-
ferent reasons. On the one hand, the success of polyhedral techniques—the seminal
papers [62, 63], perhaps not coincidentally regarding the Traveling Salesman Problem,
have been together cited more than 1200 times—has meant that Branch&Cut (B&C)
approaches, usually based on standard Linear Programming techniques like the sim-
plex method, have rapidly become the method of choice for the solution of IPs. On the
other hand, methods for solving (1.1) with a less minimalistic stance on information
accrual had been known for almost as long as SM [43], and appropriate variants have
been developed over the years that have been gradually proven to be superior to SM
in many circumstances. In particular, both Bundle methods [40, 50, 70] and center-
based methods [22] (the latter often [35], but not always [61], based on interior-point
techniques) stabilize the original cutting-plane method, most of the time resulting in
better performances than both un-stabilized versions and SM [10, 13, 19, 31]. It is

2

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

fair to say, however, that the computational advantage of these methods upon SM is
mostly seen “at the tail” of the convergence process, where SM convergence is rather
slow, whereas Bundle methods can (if properly set) rapidly accrue “the right set of
information to stop” [30, 31]. Conversely, at the beginning the behavior of the two
classes of methods is not that much different, questioning the effectiveness (at least
in that particular stage) of hoarding much more information than SM do [13]. This
is especially so insomuch as retaining more information implies a higher cost per iter-
ation due to the solution of the master problem; it can account for a significant, and
even the largest, part of the total computational time [29, 30]. Although a number
of techniques can be used to lessen the computational burden of the master problem,
from solving it with specialized methods [24] to changing its form so that it can be
more effectively solved by standard ones [8], none of these can make it so inexpensive
as it is in SM. The master problem cost is particularly hurtful if one is interested
in using parallel programming techniques in the block-structured case, for while the
subproblems can naturally be solved in parallel, the master problem represents the
sequential bottleneck that inherently limits the possible parallel scaling [15]. Finally,
SM have been reported to be useful at the very least as “warm-starters” for other
approaches, quickly providing them with reasonably good starting solutions that can
then be efficiently turned into optimal ones [28, 29].

Furthermore, interest in SM picked up independently at least twice in the last 15
years. The first time was at the turn of the millennium [5, 6, 49], with the re-discovery
of what should have been a well-known property [2], i.e., that SM can be endowed
with ways to recover (approximately) feasible solutions to the convexified relaxation
[51], that is, the primal equivalent of the Lagrangian dual. This puts them, at least
in theory, on par with Bundle and center-based methods, that have always been
well-known for being able to produce (good quality) primal solutions [23, 27] as a by-
product of dual optimization. In turn, this puts Lagrangian techniques, irrespective
of the specific algorithm used to solve the dual, on par (at least in theory) with linear
programming based ones to serve as the computational workhorse behind Branch&Cut
approaches [26]. More or less at the same time, incremental SM have been proposed
[45, 54, 60] which for the first time allow to exploit the block-separable structure
of (1.3) to potentially speed-up computations, something that—albeit with a very
different set of trade-offs—Bundle methods were already well-known to be able to do
[4, 10, 22, 30, 42].

A more robust upsurge of interest in SM is more recent, and is due to the de-
velopment of fast SM. These are inspired by fast gradient methods [55], that have
substantially better convergence rates than SM but require differentiability of f to
work. The idea is that if f is nondifferentiable, but has a specific structure, then some
smoothing technique can be used to “lend it just enough differentiability” for fast gra-
dient methods to work. This approach has been pioneered in [57, 58] for functions of
the form

f(λ) = f̂(λ) + max{ 〈λ,Au〉 − φ̂(u) : u ∈ U } (1.5)

where f̂ is convex, differentiable and its gradient is Lipschitz-continuous (f̂ ∈ C1,1), U

is a bounded closed convex set in a finite-dimensional real vector space, φ̂ is continuous
and convex on U and A is a linear operator. So, f is nondifferentiable due to the
second component; the core of the method consists in smoothing it, i.e., modifying
the maximization problem as

f̄µ(λ) = f̂(λ) + max{ 〈λ,Au〉 − φ̂(u)− µd(λ) : u ∈ U }
3

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

where the prox-function d(u) is continuous and strongly convex on U (which recalls
a generalized Moreau-Yosida regularization [25]). Provided that the maximization

problem can still be solved efficiently, i.e., φ̂ and U are “simple”, f̄µ is a smooth
lower approximation of f , and the two minima can be related by a simple function
of µ. Thus, one can apply a fast gradient to f̄µ and, appropriately managing µ,
efficiently obtain an approximate solution to (1.1) by these means. This approach
has been warmly welcomed in several applications that require the solution of large-
scale convex optimization problems [53], mostly from fields like machine learning,
data mining, inverse problems, and imaging (see for instance [1, 17]) that possess
the required structure. In turn, the success in applications has stimulated a vibrant
research stream that is producing new results. For instance, [11] presents a different
smoothing technique so that the smoothed function can still be solved with a fast
gradient method, whereas in [47] a different approach to the same smoothing as in [58]
is proposed that uses the Frank-Wolfe method. The smoothing approach is revisited
in [7], relaxing the assumption on the function and regarding both the Moreau-Yosida
regularization [52] and Nesterov’s smoothing [58] as a particular case.

Unfortunately, none of these methods are directly applicable in our context. We
have written the above formulæ to underline the similarity with our (1.2)/(1.3) setting;

however, we have f̂ ≡ λb, i.e., “all the problem is in the maximization part,” which
is therefore “not easy.” In other words, adding the smoothing term µd(·) is, in our
applications, not really an option.

The nearest algorithm to fast SM that we are aware of and that can be applied
in our setting it are primal-dual SM (PDSM) [56]. Interestingly, the recent univer-
sal fast gradient method [59] does not require any parameter, and it automatically
switches from the fast gradient when f has the required properties to PDSM [56]
when these are missing; for this reason, in this paper we concentrate on PDSM as the
representatives of “modern” SM. Indeed, even the very recent [41], which combines
in a unified framework PDSM with the Mirror-Descent method [55], provides a slight
generalization that does not seem to dramatically enlarge the class of approaches that
can be implemented.

The aim of this paper is to try to assess the possible role of best-of-breed among
the current SM for the (approximate) solution of Lagrangian duals of IPs. In par-
ticular, we are interested in verifying whether the recent applicable developments in
SM have (or not) significantly altered the computational significance of SM in this
specific application. Our interest is motivated by the fact that, when used to provide
lower bounds on (1.2), (1.1) has to be solved with an “intermediate” accuracy. In
particular, the standard relative accuracy required to the solution of an IP is 0.01%
(i.e., 1e-4), and thus it would make no sense to solve (1.1) substantially more accu-
rately than that. This value is, broadly speaking, not so coarse that a SM is clearly
the best choice to attain it (as would, say, be 1e-2), but as well not so fine as to be
basically hopeless to attain with a SM (as would, say, be 1e-6). This middle ground
needs therefore to be explored computationally.

In order to do that, we first try to unify most of the known SM under a general
scheme. We take inspiration from [21], where already a wide class of SM doing
deflection and projection simultaneously is analyzed, and we add a number of other
practically relevant issues such as several different forms of deflection and stepsize
formulæ, and dynamic generation of Lagrangian variables. Thus, this paper should
not be considered as just the computational part of [21], as many more issues are
tackled. Also, we do not aim at providing contributions from a theoretical standpoint:

4

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

some of the variants that we have tested do not even have a rigorous convergence proof.
The viewpoint here is that of the IP practitioner interested in just reliably getting
a good enough bound on its problem quickly. We have instead developed an object-
oriented C++ code, which we plan to openly release in the future, that implements the
proposed general scheme in a flexible way, so as to make it easy not only to obtain
all the variants we describe, but also to add other ones without tampering with the
skeleton of both the algorithm and its implementation.

The code has been tested on the solution of two different forms of Lagrangian
dual of a particularly hard IP, the Fixed-Charge Multicommodity Capacitated Net-
work Design (FC-MCND) problem [18]. The rationale for this choice is that while
both relaxations exhibit the block-separable form (1.3), they differ—for the same FC-
MCND instance—in the number of blocks, the number of Lagrangian multipliers, and
whether or not the multipliers are constrained in sign. As we shall see, these charac-
teristics have a significant impact on the optimal choice of the algorithmic parameters
for SM, helping in better characterizing the strengths and weaknesses for each variant.
However, the two relaxations ultimately compute the same bound, which allows for
an interesting comparison between them as well as with other solution methods that
attain the same bound, such as different algorithms to solve the same Lagrangian
duals and even the use of general-purpose Linear Programming solvers.

The paper is organized as follows. In Section 2, we discuss the main characteristics
of the applicable subgradient approaches presented in the literature, and we propose a
unified algorithmic scheme that encompasses all of them. Section 3 is dedicated to our
extensive numerical experiments: first, we describe the target FC-MCND problem and
its two different Lagrangian relaxations, then we describe the experimental setup and
the tuning phase, and finally, we present the results of the best SM variants, briefly
comparing them with other approaches. These results, and the learned lessons, are
summarized in the final Section 4. The Appendix contains the details of all SM we
have used, as well as a specific recount of their algorithmic parameters and of the
tuning we have performed on them.

2. A general subgradient scheme. In this section we discuss the basic build-
ing blocks of SM, and we describe a general scheme that allows to obtain most of the
variants proposed so far in the literature.

2.1. Building blocks of subgradient methods. In order to construct a SM,
a number of elements have to be chosen. While, in general, each decision interacts
with all the others, most of them can be, at least on the outset, described inde-
pendently. This characteristic is exploited in our C++ implementation, where a base
class Subgradient (in turn deriving from an abstract base class NDOSolver, setting
a generic interface for nonsmooth optimization), other than having a number of al-
gorithmic parameters in itself, uses two external classes, Stepsize and Deflection,
to which some of the main algorithmic decisions are demanded. By implementing
new derived classes from these two one can easily add new algorithmic variants to
the scheme. We now briefly discuss the basic “building blocks” for SM, with the fine
details provided in the Appendix.

2.1.1. Stepsize rules. Clearly, a crucial aspect of any SM is the selection of the
stepsize νi. One of the surprising properties of these algorithms is that the stepsize
can be in fact chosen without any knowledge, either a-priori or a-posteriori, of the
specific function to be minimized; indeed, any choice of the stepsize satisfying the

5

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

so-called diminishing/square summable condition∑∞
i=1 νi =∞ ,

∑∞
i=1 ν

2
i <∞ ,

of which νi = 1/i is the prototypical example, can lead to a convergent algorithm.
While this emphasizes the extreme robustness of this class of approaches, that basi-
cally “converge with the least possible help,” these stepsizes are most often inefficient
in practice. The archetype of efficient Stepsize Rules (SR) is due to Polyak [64], and
simply reads νi = βi(fi − f∗)/‖gi‖2, where βi ∈ (0, 2) is arbitrary. This, however,
needs to be revised, both because the direction di taken by the algorithm is not, in
general, (the one of) gi (see section 2.1.2), and because the optimal value f∗ is not
known in general. Indeed, in our application computing it, or at least a tight upper
bound, is precisely the aim of the exercise. These facts lead to the Polyak-type target
value SR of the form

νi = βi(fi − f levi)/‖di‖2 (2.1)

where f levi is some current approximation of f∗. Over the years, several SR of this
type have been proposed; see, e.g., [5, 6, 12, 20, 44, 66]. Except in specific cases that
will be discussed separately, all of our SR will have this form.

One of the crucial points in (2.1) is, clearly, how f levi is determined. In general,
during the minimization of f one only has the upper bound freci = min{ fl : l =
1, . . . , i } (the record value) on f∗, but no lower bound. Because one wants νi ≥ 0,
f levi needs in general be smaller than fi, and it completely makes sense to choose it
smaller than freci ; this leads to target following approaches where f levi = freci − δi
for some dynamically revised δi > 0. Technically, these approaches are divided into
vanishing and nonvanishing ones according to the fact that δi ↘ 0 as i → ∞ or not
[21, 46, 65]. However, our application has a specific benefit in this respect because
one often has a lower bound on f∗ available: this is provided by the cost cū of some
(the best found so far) feasible solution of (1.2), i.e., such that ū ∈ U and Aū = b, as
weak duality ensures that cū ≤ f∗. In practice, ū may not always be available: either
initially because no feasible solution has been found yet, or because (1.2) is actually
empty. Furthermore, during a B&C approach one may be solving a restriction of the
original (1.2), and therefore cū > f∗ may happen. However, as soon as one obtains
freci ≤ cū(1 + ε), where ε is the required relative accuracy for the solution of (1.2),
then the algorithm can be (and is, in practice) stopped right away. Hence, in our tests
we will assume that a lower bound f ≤ f∗ is available, which provides a workable f levi
without a need for target following techniques to be used. This allowed us to reduce
the set of SR to be tested to only the following three:

1. The Polyak rule [64], whereby βi and f levi are constant (they do not depend
on i).

2. The ColorTV rule as implemented in the original Volume algorithm [5]. This
is based on classifying the iterations based on the obtained improvement
∆fi = fi−1 − fi, where green iterations correspond to a large improvement
and red ones (roughly speaking) to a negative one. Actually, an iteration
is only declared green if also the scalar product 〈gi, di−1〉 indicates that the
previous direction still is of descent at λi, being marked as yellow otherwise.
The stepsize parameter βi is then managed looking at consecutive iterations of
the same color, being significantly increased after a pre-set number of green
ones, slightly increased after a set of yellow ones, and markedly decreased
after a set of red ones. Furthermore, f levi is adjusted whenever fi < f levi ,
unquestionably proving that it is not a valid lower bound.

6

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

3. The FumeroTV rule introduced in [33], which changes both βi and f levi . At the
beginning, f levi is set to the available lower bound f , but it is exponentially
revised towards freci as the algorithm proceeds. The rule actually distin-
guishes two phases. In the first one, f “significantly contributes” to f levi , βi
is decremented after a pre-set number of consecutive not improving iterations
and never incremented. In the second phase, where the contribution of f to

f levi remains unchanged, βi is decremented in the same way but it is also
incremented after a pre-set number of consecutive improving iterations.

The exact details and parameters of these stepsize rules are described in the Appendix.
It would be relatively straightforward to test other approaches, such as the standard
target following ones [21, 46, 65], as our C++ implementation does not postulate any
specific property of the SR. In fact, other than the above three Polyak-type rules, we
have also tested an entirely different RS, closely tied with the deflection rule of the
PDSM, as discussed next.

2.1.2. Deflection. The non-differentiability of f is one of the causes of the zig-
zagging phenomenon, whereby it may occur that gi ≈ −gi−1; thus, two “reasonably
long” steps νi and νi−1 result in an overall “very short” total movement after the
two iterations, slowing down convergence. To overcome this problem, it was proposed
early on [14] to deflect the subgradient gi, using the modified update rule (1.4) to
compute the next iterate. A fairly (although not entirely) general version of the
formula then reads

di = αigi + (1− αi)di−1 (2.2)

for the deflection parameter αi ∈ [0, 1]. The use of a convex combination is crucial
in the analysis, because it ensures that di is always an approximate (conditional, see
section 2.1.3) subgradient of f , as recalled in section 2.2. Furthermore, this allows
to produce (hopefully, asymptotically feasible) primal solutions u ∈ conv(U) that are
useful, e.g., for the active-set strategy, as discussed in section 2.1.5. We have therefore
elected to restrict ourselves to only this class of Deflection Rules (DR). Note that the
obtained direction di is to be scaled by the stepsize νi, so two multipliers not summing
to one can always be scaled (up or down) as to do so, with the scaling factor then
accounted by the stepsize. Still, there are several possible ways to choose the deflection
parameter. In particular, to avoid the zig-zagging phenomenon one may chose it in
such a way that 〈di, di−1〉 ≥ 0. Indeed, the original rule [14] was to compute αi as the
maximum value guaranteeing that property, which means αi = 1, i.e., no deflection
at all, if 〈gi, di−1〉 ≥ 0 already. For our experiments, we have considered the following
three DR:

1. The STSubgrad rule corresponding to the original SM [64], where we do not
have any deflection, i.e., αi = 1.

2. The Volume rule where αi is chosen as the (safeguarded) optimal solution of
the one-dimensional quadratic problem that, roughly speaking, seeks to find
the least-norm convex combination of gi and di−1. This is used in the Volume
algorithm [6], and basically makes it behave mostly like a poorman’s Bundle
method [5], i.e., one where systematically only two subgradients are kept.

3. The Primal-Dual rule proposed in [56] for PDSM. This is a sophisticated vari-
ant in which αi and νi (see section 2.1.1) are chosen simultaneously in order
to obtain optimal worst-case estimates on the SM convergence rate. Follow-
ing [56], we have implemented both the simple averages and the weighted
averages variants.

7

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

Again, full details of the three approaches are given in the Appendix. We remark here
that the fact that PDSM set both the stepsize and the deflection parameter together
is easily accounted for in our C++ code by just having the corresponding Primal-Dual

class to derive from both the abstract classes Stepsize and Deflection. This shows
that while the general scheme depicts the two aspects as independent, there is no
problem when they actually have to be synchronized.

2.1.3. Projection. A second, independent source of zig-zagging is due to the
fact that, in the standard SM, the direction di does not take into account the feasible
set Λ. When λi is on the boundary of Λ and gi is almost orthogonal to its frontier,
λi+1 may remain very near to λi even for a large stepsize νi, which can unduly
slow convergence. To overcome this problem one can project −gi (when there is no
deflection, −di in general) over the tangent cone Ti of Λ at λi. This corresponds to
considering the essential objective fΛ(λ) = f(λ) + ıΛ(λ), where ıΛ is the indicator
function of Λ. It is well-known that the normal cone Ni to Λ at λi, which is the
polar of Ti, is ∂ıΛ(λi). Projecting on Ti is then effectively choosing some wi ∈ ∂ıΛ(λi)
in order to use gi + wi, a subgradient to the essential objective fΛ, instead of just
gi, to define the direction. While there does not seem to be a reason not to do this,
at least if Λ is easy to project upon, things are more complex if deflection also is
performed. In fact, there are then 8 possible deflection schemes, corresponding to
all possible combinations to projecting gi−1, di−1 and di. If one requires a formal
proof of convergence (which we prefer but do not necessarily require), some specific
safeguards are needed depending on the specific stepsize formula employed. According
to [21], there are two different main schemes to attain convergence: the first is the
stepsize-restricted (or deflection-first) one, whereby we condition νi on the basis of αi,
the second is the deflection-restricted (or stepsize-first) one, whereby we, conversely,
condition αi on the basis of νi. The first is limited to stepsize rules of the form (2.1),
and requires the satisfaction of the safe rule

βi ≤ αi , (2.3)

(which implies βi ≤ 1) ensuring that a step over a direction that is very far from
−gi cannot be too large. In deflection-restricted approaches, one can rather choose
νi arbitrarily (e.g. with a diminishing/square summable SR) provided that αi is kept
“large enough” by

(νi‖di−1‖2)(fi − f levi + νi‖di−1‖2) ≤ αi . (2.4)

We also mention that if projection were too expensive, which is not the case in our
applications, one could substitute it with partial projections-like on working onto the
individual constraints sets and not onto the entire feasible region, as advocated in
[16]. The introduction of this approximation would not change much the algorithmic
scheme presented in this paper. Besides, complex dual constraints are comparatively
rare in our preferred application.

2.1.4. Incremental approaches. When f is a sum function and |K| (the num-
ber of components) is very large, the total cost of the oracle for computing f(λi)
may be large even if each of the components is, taken individually, quite inexpensive.
This is, in part, the case in our specific application. Motivated by some developments
in training approaches for machine learning, incremental subgradient variants have
been developed where one operates on a single component fk instead of the entire
function f . This means that while computing the direction, one replaces the “full”

8

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

subgradient gi by that gki of one component k ∈ K. Ideally, a sequence of incremental
(or inner) iterations performed along single-component subgradients could be roughly
as effective for nearing λi to an optimal solution as a sequence of full (or normal, or
outer) iterations, while the function evaluation cost is reduced by a factor of 1/|K|
[9, 60]. However, to guarantee convergence one needs to regularly compute the whole
function f , so not all the iterates can be incremental. Besides, due to the risk that a
step along one “rogue” component may move λi away from the optimum, the stepsize
of incremental iterations need to be reduced with respect to that of full ones. Com-
pounded with the fact that the cost of computing the next iterate, given gki , is not
substantially reduced in an incremental iteration, it is not given that the incremental
approach is competitive in all applications.

2.1.5. Active set. When n—the number of variables in λ, i.e., the number
of complicating constraints in (1.2)—is particularly large, it makes sense to use an
active set strategy whereby only a subset of them is considered (given a nonzero
value) at each iteration. This is particularly true for the case where the complicating
constraints in (1.2) are inequalities, and hence Λ = Rn+, because one can expect that
only a fraction of them will actually be binding at optimality. Indeed, if the set
of complicating constraints is exponentially large (but an efficient separator, be it
exact or heuristic, is available), there is no other chance but to proceed in this way;
this is known as “Relax-and-Cut” in the literature [37]. Even if the constraints are
polynomially many, active-set techniques can still be very useful [27, 30, 31]. The
relevant technical issue is what primal vector ūi is used to perform separation, i.e., to
identify violated constraints to be added to the active set. The obvious choice in the
context of Lagrangian relaxation is the optimal solution ui of the Lagrangian problem
corresponding to the current iterate λi. However, a more sound technical choice is to
use the convexified solution that can be generated at each iteration [2, 5, 6, 36, 49]
and that, under appropriate conditions, converges to the optimal solution of (1.2) (if
it is a convex problem, of its convexified relaxation otherwise). This is computed by
taking convex combinations of the primal solutions generated during the algorithm;
following (2.2), it is simply obtained as ūi = αiui+(1−αi)ūi−1. From the theoretical
viewpoint, the active-set technique poses little convergence issues: if the active set
is monotonically increasing, every convergent algorithm will remain convergent if the
active set strategy is used (eventually, all variables will be in the active set and then
“true convergence” will begin). Careful removal of variables from the active set is also
possible; however, in practice the approach works without much issues.

2.1.6. Summary. All these aspects give rise to a rather large set of possible
combinations, many of which have algorithmic parameters that have to be tuned for
optimal performances. Not all of these combinations have reliable proofs of conver-
gence, although several do. For instance, combining projection and deflection was
studied in [21], but the incremental approach was not addressed there. The combina-
tion of incremental and deflection was studied in [69]. Yet, as already remarked, our
interest was primarily in the computational behavior of the approaches; barring dra-
matic mis-settings of the algorithmic parameters, all the ones we have tested showed
at least some degree of convergence, as our results will show, even in the absence of
a formal convergence theory. This conforms with the well-known fact that SM are
remarkably robust approaches, even if, possibly, at the cost of convergence speed.

We also remark that we have not (and, realistically, could not have) tested all pos-
sible variants of SM. Among the techniques that have been left out of the experiments
are space-dilation methods [45, §7.2], other SR like variants of the Polyak stepsize us-

9

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

ing slightly modified terms at the denominator [45, (7.11)] or Ermoliev-like stepsizes
[45, (7.6)–(7.9)], the heavy ball SM [68] popular within backpropagation approaches
to train neural networks, and others. Yet, the structure of our C++ code would allow
to easily incorporate most of these variants.

2.2. A generic subgradient scheme. We now present a generic scheme of SM,
in order to be able to discuss all its components (and their nontrivial interactions)
individually.

0.Select λ̄0 ∈ Λ; λ1 ← λ̄0, d0 ← 0, i← 0 and go to step 4;

1.Possibly, di−1 ← PTi
(di−1);

if(StepRes) then αi = Deflection(); ComputeD(); νi = Stepsize(αi);

else νi = Stepsize(); αi = Deflection(νi); ComputeD();

2.If some stopping test is satisfied, exit;

3.λi+1 ← PΛ(λ̄i − νidi);

4.if(OutItr) then evaluate fi+1 = f(λi+1) and gi+1 ∈ ∂f(λi+1);

else select k, evaluate fk(λi+1) and gi+1 ∈ ∂fk(λi+1);

5.Possibly, gi+1 ← PTi(gi+1). Select λ̄i+1, set f̄i+1 accordingly;

6 i← i+ 1 and go to step 1.

In the following we discuss the common features of all the variants we have imple-
mented under this scheme and we give some general remarks.

• In the scheme, the new iterate is generated at Step 3 starting from the stability
center λ̄i, which is updated at Step 5. In the classical SM the updating is
automatic: λ̄i+1 = λi+1. In the parlance of Bundle methods, this is called a
Serious Step (SS), as opposed to Null Steps (NS) where instead the stability
center is not moved: λ̄i+1 = λ̄i. Intuitively, λ̄i could be regarded as the best
iterate found so far: moving to a different solution only makes sense insomuch
as this actually leads to an improvement (∆fi > 0, see section 2.1.1), possibly
a significant one, whereas a NS may be preferable if the objective function
value worsens (or grows too little). This is in fact done by some subgradient
schemes, such as the Volume algorithm [6, 66] or its variants [5]. Basically,
this makes SM equivalent to poorman’s Bundle algorithms, where sequences of
NSs aim at making di a better (descent) direction for λ̄i. Interestingly, PDSM
provide an entirely different rationale for using a stability center (without ever
changing it, see the Appendix); our general scheme allows to cover all these
cases. In our software framework, the choice for λ̄i is limited between the
two options provided by SS and NS, as all SM variants we are aware of only
employ these (note that Bundle methods instead exist that can make different
choices [3]). As the selection of the next stability center is mostly tied to the
update of di, we demand this choice to the Deflection() object. All this
requires some quite obvious changes in some of the standard formulæ. In
particular, the function improvement at each iteration (upon which the SS
versus NS decision may be made) has to be defined as ∆fi = f̄i−1 − fi, and
one has to use f̄i instead of fi in (2.1).
• In the scheme, ComputeD() computes the current direction using the extension

of (2.2) reading

di = αiḡi + (1− αi)d̄i−1 ,

where ḡi and d̄i−1 are either gi and di−1 or their projection over the tangent
cone Ti of Λ at λ̄i. Note that, reasonably, the tangent cone at the stability

10

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

center is used, which may be different from the last iterate λi, as discussed
above. Furthermore, possibly di ← PTi

(di), which is also performed within
ComputeD(); hence, all 8 possible deflection schemes allowed by the theory
are permitted. However, projecting all three times is useless, and therefore is
avoided, because Ti is convex and we perform convex combinations, so if both
gi−1 and di−1 are projected, then di ∈ Ti already. Furthermore, not all of
these in principle result in a provably convergent algorithm (see [21, Lemma
2.4]), but this is not an issue in our computational setting: the un-attractive
versions will be weed out by their practical efficiency.
• The behavior of the algorithm is somewhat different if νi is computed after
di (stepsize-restricted) or vice-versa (deflection-restricted), as controlled by
the algorithmic parameter StepRes (which may ideally change throughout the
algorithm, but that we always keep fixed). Because computing di requires the
choice of αi, ComputeD() in the scheme always comes after Deflection().
However, in the deflection-restricted approach, the safe rule (2.3) requires
νi in order to choose αi, and consequently Stepsize() has also to be called
before ComputeD(). Note that, in this case, when using Polyak-type formulæ,
one would require ‖di‖ before having computed di; our choice has been to
replace it by ‖di−1‖. The stepsize-restricted case is more natural for Polyak-
type stepsizes, in that di is fully computed before νi. In PDSM, νi and αi
are chosen simultaneously, and therefore StepRes has no effect.

• Again concerning projection, in order to achieve theoretical convergence, the
safe rules (2.3) and (2.4) should be used in the stepsize-restricted case and
in the deflection-restricted one, respectively. Again, since we are mainly in-
terested in practical performances we allow to switch off the safe rules in our
code, in order to test whether the theoretical convergence guarantee they offer
actually translates in better performances.
• We update the active set (if the approach is used) using the primal solution
ūi (see section 2.1.5), which depends on the choice of αi. Hence, the active
set can only be updated after that Deflection() has been called. However,
if the active set changes, then the vectors di−1 and gi need to be updated to
take into account the new components, which in turn may change αi. Hence,
after an active set update, we compute again the deflection parameter αi, and
in the deflection-restricted scheme also the stepsize; the process is repeated
until the active set remains unchanged.
• Again regarding the active set, if any projection on the tangent cone is per-

formed, then this will have to be done each time new variables are added.
Fortunately, in all of our (constrained) applications Λ = Rn+, so that the
projection can be computed component-wise: only the new components need
be dealt with. In general, however, adding new components may require re-
projecting the entire vector; in turn, this would require keeping unprojected
versions of di−1 and gi, roughly doubling memory requirements of the method
(not that this is usually a bottleneck, at least in our applications). In order
to avoid this, we support the option that only the new parts of these vec-
tors are projected, thus ignoring the problem, even if this does not result
in the direction that the theory would dictate. Of course, in this case, the
final di need to be projected even if both di−1 and gi have, because their
projection might have been inaccurate. However, all this is irrelevant for our
experiments where component-wise projection is exact.

11

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

• The linearization error of gi at λ̄i is the (nonnegative) number

σi = σi(λ̄i) = f̄i− [fi+〈gi, λ̄i−λi〉] = σi(λ̄i−1)−∆f̄i−〈gi, λ̄i− λ̄i−1〉 , (2.5)

where ∆f̄i = f̄i−1 − f̄i. Note that ∆f̄i differs from ∆fi when a NS occurred
at iteration i − 1, i.e., λ̄i = λ̄i−1 =⇒ ∆f̄i = 0. Convexity of f ensures that
σi ≥ 0 and gi ∈ ∂σif(λ̄i). Furthermore, σi can be easily kept updated when λ̄i
changes by the information transport property (2.5). The linearization error
may play a role at different points in the algorithm, such as some of the de-
flection rules (see the Appendix) and the stopping tests (see next paragraph).
However, when projection is used, one rather wants to compute the lineariza-
tion error of the projected ḡi, which is a subgradient of the essential objective
f + ıΛ. This is why the projection of gi is not performed at Step 1, but it
occurs before updating λ̄i at Step 5: so that, in case of a SS, the linearization
error of ḡi is computed (through (2.5) where gi = ḡi because projection has
been performed at the beginning of Step 5). A downside of this choice is that
if the current point λ̄i changes at Step 5 (a SS), then at the beginning of
the next iteration gi may have to be projected again; however, projections (if
at all required) are inexpensive in our applications. Furthermore, if a NS is
performed then this is not needed.
• An advantage of (2.2), which underlines all the analysis in [21], is that we

can similarly compute and keep updated the linearization error of di. That
is, knowing that di−1 ∈ ∂εi−1

(λ̄i), it is immediate to realize that di ∈ ∂εif(λ̄i)
with εi = εi(λ̄i) = αiσi(λ̄i) + (1 − αi)εi−1(λ̄i). Since, as usual, linearization
errors can be cheaply updated after a SS with the information transport
property, which in this case reads

εi(λ̄i+1) = εi(λ̄i)−∆f̄i+1 − 〈di, λ̄i+1 − λ̄i〉 ,

we have that di is a εi(λ̄i+1)-subgradient of f at λ̄i+1. This means, however,
that the same issue about projection arises here also.
• In SM, it is possible to use the inverse of ‖gi‖ in (2.1) because as soon as
‖gi‖ = 0, one has proven the optimality of λi. Since gi ∈ ∂σif(λ̄i), this also
means that λ̄i is σi-optimal. With the provisions above, the same holds for
di (or it projection); that is one can stop when both ‖di‖ and εi are “small”.
Our particular implementation of this is

t∗‖di‖+ εi ≤ ηmax(1, |freci |) (2.6)

where t∗ is an appropriately chosen “large” scaling factor [25] and η is the
required final relative accuracy (typically, η = 1e-4).
• As suggested in [56] (and in [3] in a different context), one could also use the

deflection parameter αi in a different way: not to change the gradient, but
the point where it is evaluated. That is, for the recursive formulæ

λ̂i = αiλi + (1− αi)λ̂i−1 , f̂i = αifi + (1− αi)f̂i−1

with (λ̂0, f̂0) = (0, 0), it is obvious that f̂i ≥ f(λ̂i) for all i. One can then

compute an approximation of the linearization error of di with respect to λ̂i
simply as

ε̂i = ε̂i(λ̂i) = αiσ̂i(λ̂i) + (1− αi)ε̂i−1(λ̂i)

12

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

(with ε̂1(λ̂1) = σ̂1(λ̂1) and σ̂i(λ̂i) = f̂i − [fi + 〈gi, λ̂i − λi〉]), and keep it
updated with the usual information transport property, this time reading

ε̂i(λ̂i+1) = ε̂i(λ̂i)− (f̂i − f̂i+1)− 〈di , λ̂i+1 − λ̂i〉 .

It is then immediate to prove that di ∈ ∂ε̂if(λ̂i) for all i, which allows to also
employ the alternative stopping criterion

t∗‖di‖+ ε̂i ≤ ηmax(1, |freci |) . (2.7)

The stopping conditions (2.6) and (2.7) are hardly if ever satisfied in practice.
In our numerical experiments the algorithm always stops when either fi − f∗
is “small” or (most often) the pre-set iterations limit is reached. However, we
used (2.7) in PDSM, since all the terms involved in the formula have to be
computed anyway (see the Appendix) and, consequently, testing (2.7) comes
for free. For all the other approaches we only used (2.6), for again in most
cases ‖di‖ and εi are required anyway in the SR and/or the DR.

• For the incremental SG, we arrange outer and inner iterations in a simple
pattern: we perform one outer iteration, followed by |K| inner iterations, one
for each of the different components. Note that one of the components is the
linear one corresponding to the RHS, which is treated as all the others. As
suggested in [9, 60], we randomize the order in which the components are
chosen, with the random permutation being changed at every outer iteration.
We experimented with different ratios between inner and outer iterations
but the results were inconclusive, with the simple approach being in general
the best one. Furthermore, this means that a group of |K| + 1 consecutive
iterations (one outer, the other inner) costs, at least as far as the subproblem
solution is concerned, as much as two full iterations. This is useful when
comparing the running time of the approaches, as discussed in section 3.2.
• In the incremental SG, neither the inner steps nor the outer ones are deflected.

Clearly, it makes little sense to combine together subgradients of different
components. In principle, one could deflect the outer steps, but dealing with
the direction of these steps in a different way would require keeping a copy of
the direction of the outer steps and complicating the logic of the approach.
For this reason, we have chosen to entirely avoid deflection in the incremental
variants.
• Again for the incremental SG, (2.1) would require to compute the norm of
gi ∈ ∂f(λi), but only the subgradient of one component is available. To make
up for this, the theory [54] suggests to replace ‖gi‖ by the global Lipschitz
constant L of f , yielding the modified stepsize rule

νi = βi
f̄p(i) − f levi
χ|K|L2

(2.8)

where p(i) the last outer step before i and χ is an arbitrary constant. In other
words, one keeps the main part of the stepsize unchanged during sequences
of inner iterations between two outer ones. In the same vein, in fact, in our
experiments we used βi = βp(i) and f levi = f levp(i).
• A final important observation about the incremental case is that, when the

active-set strategy is used (which, as we shall see, is crucial for performances),
we update the active set only at full iterations. This choice is due to the fact

13

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

that this operation basically costs as much as one full iteration (see again
section 3.2), and doing it, say, at every inner iteration would largely negate
the advantage of having faster iterations. Yet, the fact that we perform one
outer iteration every |K| inner ones means that the active set is updated “rea-
sonably frequently”. Updating the active set less frequently (say, p ≥ 1 outer
iterations) would be possible, but it has not shown to be computationally
convenient in our application.

3. Numerical experiments. Nonsmooth optimization methods are widely used
for bounding purposes within exact and heuristic approaches to large-scale IP, in par-
ticular with decomposable structure. For our tests we have selected as benchmark
one of the most widespread structures in IP: the Fixed-Charge Multicommodity Ca-
pacitated Network Design (FC-MCND) problem [18] rapidly recalled below.

3.1. Lagrangian relaxations for FC-MCND. Given a directed network G =
(N,A), where N is the set of nodes and A is the set of arcs, we must satisfy the
demands of a set of commodities K. Each commodity k ∈ K is characterized by a
deficit vector bk = [bki]i∈N indicating the net amount of flow required by each node:
a negative deficit indicates a source, a positive deficit indicates a sink, and a zero
deficit a transshipment node. Often, each commodity is an origin-destination pair
(sk, tk) with an associated demand dk > 0 that must flow between sk and tk, i.e.,
bki = −dk if i = sk, bki = dk if i = tk, and bki = 0 otherwise. Each arc (i, j) ∈ A
can only be used if the corresponding fixed cost fij > 0 is paid, in which case the
mutual capacity uij > 0 bounds the total amount of flow on (i, j), irrespective of the
commodity. Also, individual capacities ukij may be imposed for the maximum amount
of flow of commodity k on arc (i, j); in the origin-destination case, for instance, one
usually requires ukij ≤ dk. Finally, the routing cost ckij has to be paid for each unit of
commodity k moving through (i, j). The problem consists in minimizing the sum of
all costs while satisfying demand requirements and capacity constraints. The classical
arc-flow formulation of the problem relies on variables xkij for the amount of the flow
of commodity k on arc (i, j) ∈ A plus binary design variables yij for arc construction,
resulting in

min
∑
k∈K

∑
(i,j)∈A c

k
ijx

k
ij +

∑
(i,j)∈A fijyij (3.1)∑

(j,i)∈A x
k
ji −

∑
(i,j)∈A x

k
ij = bki i ∈ N , k ∈ K (3.2)∑

(i,j)∈A x
k
ij ≤ uijyij (i, j) ∈ A (3.3)

xkij ≤ ukijyij (i, j) ∈ A , k ∈ K (3.4)

xkij ≥ 0 (i, j) ∈ A , k ∈ K (3.5)

yij ∈ {0, 1} (i, j) ∈ A (3.6)

For our tests we have employed the two main Lagrangian relaxations of the problem
(3.1)–(3.6): the Flow Relaxation (FR) and the Knapsack Relaxation (KR).

In the former, one relaxes constraints (3.3)–(3.4) with multipliers λ = [α , β] =
[αij , β

k
ij](i,j)∈A , k∈K ≥ 0. This gives the objective function

min
∑

(i,j)∈A
∑
k∈K

(
ckij + αij + βkij

)
xkij +

∑
(i,j)∈A

(
fij − αijuij −

∑
k∈K u

k
ijβ

k
ij

)
yij

whose minimization subject to the remaining (3.2), (3.5) and (3.6) is easy, because of
separability: it reduces to |K| single-commodity Min-Cost Flow (MCF) problems, plus

14

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

|A| trivial single-variable IPs. Thus, extremely efficient algorithms exist for solving the
relaxation [32], especially when commodities are origin-destination pairs since then
the MCFs actually are shortest path problems. Since constraints (3.2) only involve
flow (continuous) variables, the Lagrangian dual provides the same bound as the con-
tinuous relaxation of (3.1)–(3.6). Note that the number of constraints (3.4) is typically
rather large; these constraints being inequalities, this is the setting where active set
techniques can be expected, and have indeed been proven, to be very competitive [30].
Clearly, checking the violation of these constraints, once a primal solution has been de-
termined (see section 2.1.5), is immediate. It is also easy to realize that an estimate of
the Lipschitz constant (useful for the incremental SM variants, see (2.8), as well as for

PDSM, see (A.5)) is simply obtained as L =
√∑

(ij)∈A(uij)2 +
∑
k∈K

∑
(ij)∈A(ukij)

2.

Note, however, that when the active set technique is used, the capacities entering the
above formula are only those of the constraints whose indices are in the active set.
This means that the Lipschitz constant actually changes (typically, increases) as the
algorithm proceeds.

In the KR, one rather dualizes the flow conservation constraints (3.2) with mul-
tipliers λ = [λki]i∈N,k∈K ; this yields the objective function

min
∑

(i,j)∈A
(∑

k∈K(ckij − λki + λkj)xkij + fijyij
)

+
∑
i∈K λ

k
i b
k
i

whose minimization subject to the remaining (3.3)–(3.6) basically decomposes into
|A| very simple continuous knapsack problems, one for each arc, after which one
can determine the optimal value of the unique integer variable yij . It can be shown
that, due to the presence of the strong forcing constraints (3.4), the relaxation has the
integrality property: hence, like in the previous case the Lagrangian dual has the same
optimum value as the continuous relaxation. The number of multipliers, |N | · |K|, is
still rather large; however, these being equalities, it is rather unlikely that some of
them is not going to be active at optimality, and therefore the active set technique is
not likely to be effective. Furthermore, unlike in the FR, there are no (sign) constraints
on the multipliers, and therefore no projection is needed. Finally, similarly to the FR

it is easy to estimate the Lipschitz constant as L =
√∑

k∈K
∑
i∈N (Lki)2, where

Lki = max[| − bki +
∑

(ji)∈A u
k
ji| , | − bki −

∑
(ij)∈A u

k
ij |].

3.2. Experimental setup. We have implemented all the variants of SM within
a general C++ scheme for nonsmooth optimization developed by the authors along the
years. The scheme is based on a pair of abstract (pure virtual) classes, NDOSolver
and FiOracle, which establish the conceptual interface between the optimization algo-
rithm (in our case, SM implemented in the class Subgradient derived by NDOSolver)
and the oracle computing the function (in our case, the classes FlowFiOrcl and
KnapFiOrcl, for FR and KR respectively, derived from FiOracle). Other imple-
mentations of nonsmooth approaches, such as Kelley’s Cutting Plane method and
different forms of (generalized) Bundle methods [3, 25, 30], were already available
within the scheme. As already noted, the Subgradient class implementing the SM in
turn relies on two external classes, Stepsize and Deflection, whereby the different
SR (see section 2.1.1) and DR (see section 2.1.2) are implemented.

All solvers have been compiled with GNU g++ 4.4.5 (with -O3 optimization
option) and ran single-threaded on a server with multiple Opteron 6174 processors (12
cores, 2.2 GHz), each with with 32 GB of RAM, under a i686 GNU/Linux operating
system. To solve the FR, we have used MCF solvers from the MCFClass project,
available at

15

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

http://www.di.unipi.it/optimize/Software/MCF.html ,

while solving the KR basically just required a sort and was coded directly. When
comparing SM with other approaches we used Cplex 12.5.0.1 to solve linear prob-
lems.

The numerical experiments have been performed on 80 randomly generated in-
stances, arranged in 20 groups of 4 instances each. The first 8 groups are of small size.
The remaining 12 groups are as fallows: the number of nodes and arcs are chosen as
(20, 300), (30, 600), or (50, 1200), and for each of these, the number of commodities
is chosen in the set {100, 200, 400, 800} (see Table 3.1). We refer to [30] for more
details; the instances can be downloaded from

http://www.di.unipi.it/optimize/Data/MMCF.html#Canad .

A nontrivial issue about our experiments is how exactly one evaluates the per-
formances of the different SM. Our choice has been to record the running time and
the obtained lower bound of each variant with different iteration count limits. For
all non-incremental SM, we (somewhat arbitrarily) choose that to be 100, 200, 500,
1000, 2000, 5000, and 10000 iterations. Clearly, for incremental SM a different choice
is required because inner iterations are much faster; for these, we then choose iter-
ation counts of 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000 and
1000000. The exact values of the iterations count are not particularly important, as
we use them for charting the convergence speed of the different variants in terms of the
all-important aspect of the time required to reach a certain gap with the (known) op-
timal value, and then report the whole chart. However, this approach has an issue in
that instances of different sizes are naturally to be expected to require longer for each
iteration, making it difficult to compute reasonably aggregated results. Fortunately,
for our instances, this has proven to be particularly simple.

Indeed, we have observed that the charts for different instances (and the same SM
variant, comprised the algorithmic parameters) were remarkably similar; even better,
they became almost identical if the running time was divided by the product |A| · |K|.
Upon reflection, this is not particularly surprising. For the FR, one has to solve
|K| Lagrangian subproblems, each one being a shortest path on a graph with non-
negative arc costs, for which the standard approach has O(|A| log(|N |)) complexity.
For the KR, one rather has to solve |A| continuous knapsack problems, which require
O(|K| log(|K|)). In other words, each full iteration of SM costs O(|A| · |K|) up to
logarithmic factors; given the relatively limited range in which |A| and |K| vary in
our experiments, any logarithmic factor is basically a constant. All the rest of the
algorithm has a linear cost in the number of variables n, which is (|A| + 1) · |K| for
the FR. With the active-set strategy that number is reduced, but again identification
of new violated constraints has O(|A| · |K|) cost, as it requires forming the continuous
solution ūi out of two relaxation solutions (again, an O(|A| · |K|) task) and scanning
the full list of (3.4). Note that for incremental SM, the cost per iteration relative to
the subproblem solution is just O(|A|) (plus logarithmic factors); so, basically, the
cost is dominated by that of forming the subgradient. This is why, as we shall see,
active-set techniques are absolutely crucial in the incremental case. Also, this justifies
the fact that updating the active set should only be done at full iterations. For the
KR, n = |N | · |K|, but |N | is proportional to |A| as the graphs are sparse; so, the
cost per iteration (outside the computation of the Lagrangian relaxation) should be
somewhat smaller than for the FR, but since no active-set technique is used, it is not
surprising that the two tend to be similar. All in all, the iteration cost is dominated
by the relaxation cost (as it usually is), which is roughly O(|A| · |K|); this explains

16

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

while the running time scales pretty much linearly in that quantity.

It is also remarkable that the convergence speed proved to be very similar for
instances of sizes different by orders of magnitude: n varies from 9040 to 960000 for the
FR and from 800 to 40000 for the KR, but for the same SM, the (scaled) convergence
graphs were still pretty similar across the whole spectrum. This, too, is not entirely
surprising. Indeed, the theoretical efficiency estimates of SM are typically independent
on n, although they may depend on other parameters that can be indirectly influenced
by it. Our experiments show that, at least for this application and SM we have tested,
the practical behavior of the algorithms is in fact pretty much invariant with n. This
confirms that SM can be especially promising for very large-scale problems, provided
of course that the convergence speed is not abysmal.

Anyway, all this allowed us to compare the different SM variants, and the different
settings of their (many) algorithmic parameters, by computing a graph showing the
evolution of the (average) gap vs. the (average) normalized time across all the 80
instances of our test set. This has been instrumental in the tuning phase, discussed
below. Also, this gave us a significant practical advantage for testing the incremental
variants, that actually are randomized algorithms due to the selection of the random
reshuffle of the components at each full iteration. Because of this, one should in
principle run each instance several time and report averaged results among each run.
However, because we report in one blow the aggregated results among all of the 8o
instances, this is not necessary because any luck of draw is smoothed out by the large
size of the instance set the results are averaged upon.

A final relevant aspect of our computational tests concerns the fact that the step-
size rules of the form (2.1) are based on the knowledge of some (lower) approximation
f to f∗. In order to avoid target-level approaches (unless when they are inherent in
some specific SR), we have elected to work with a fixed f . However, in order to cater
for the different cases that would occur when using these techniques in IP, we have
used two different configurations: in one we set f = f∗, and in the other one f is 10%
off of f∗, i.e., f = f∗ − 0.1|f∗| (we denote the latter by “10%f∗”). Note that f∗ is
the optimal value of (1.1), which is a minimization problem: however, the Lagrangian
dual (3.1)–(3.6) is rather a maximization problem. Indeed, in the implementation we
have to change the sign of the objective function (and of the subgradients). Thus,
using 10%f∗ corresponds, in primal terms, to the fact that the available primal so-
lution is 10% more costly than the best possible lower bound; in other words, even
if the best possible bound is computed, the corresponding node in the enumeration
tree cannot be fathomed. A gap of 10% between the upper and the lower bound is
on the large side, but (unfortunately) not at all unreasonable in many applications.
Conversely, using f∗ corresponds to the case where a node in the enumeration tree
can be fathomed by the bound (if it is computed accurately enough).

3.3. The tuning phase. We investigated a large number of variants, due to
the almost combinatorial choices of the different main elements (SR, DR, StepRes,
projection, active-set, . . .). Each of them typically has some algorithmic parameters:
consequently, the number of combinations of parameters to be examined has been
very large. A specific recount of all the tested parameters, the ranges of values tested
for each and the best combinations obtained is provided in the Appendix.

As discussed in the previous paragraph, each SM configuration gave rise to an
aggregated convergence graph, as the ones shown in sections 3.4 and 3.5. To select
the best configurations, the graphs were visually inspected. A possible issue here
concerns the choice of the “best” convergence graph, in that conceptually one may

17

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

have configurations that perform significantly better at some stage of the algorithm
(e.g., initial) but are not competitive at some other stage (e.g., final). Fortunately,
this turned out not to be a serious concern. Basically, the chosen configurations were
those that gave the best function value at the end of the algorithm. Occasionally,
other configurations gave better results than the chosen one in the earlier stages of
the algorithm on some subsets of the instances; usually the advantage was marginal
at best, and only on a fraction of the cases, while the disadvantage in terms of final
result was pronounced.

Although the total number of possible combinations was rather large, it turned
out that only a relatively small set of parameters had a significant impact on the
performances. Furthermore, in most of the cases, their effect was almost orthogonal
to each other. This allowed us to effectively single out “robust” configurations for our
test sets; for several of the parameters, the “optimal” choice has been unique across
all instances, which may provide useful indications even for different problems. We
refer to the Appendix for an in-depth discussion of the parameters, the tuning phase
and the obtained results. All in all, our experience has been that, while it is true
that SM requires a substantial amount of tuning, identifying the better performing
settings was less difficult than it might, on the outset, have been.

3.4. Results for the FR. In this section we report the numerical results of SM
relative to FR, using the optimal parameters detailed in the Appendix. Each variant
is represented in Figures 3.1 and 3.2 by means of a graph, where the horizontal axis
represents normalized total time (see section 3.2) and the vertical one the average gap,
both in logarithmic scale. In the figures, we report results for all the three variants
of SR, combined with the two variants of DR (simple subgradient, denoted by “(s)”,
and volume, denoted by “(v)”). We also report the combination of all SR with the
incremental approach, denoted by “(i)” (this has no deflection, as discussed in section
2.2), and separately the two variants of PDSM, respectively with simple and weighted
averages.

For clarity, we divide the graphs in four different quadrants, with the same scale
on the horizontal and vertical axes to allow for comparison. In particular, in both
figures, the upper two graphs (part (a)) depict results when the active-set strategy
is used, and the lower two ones (part (b)) when it is not. Also, the leftmost graphs
depict the approaches when deflection is used (Volume, and Primal-Dual) and the
rightmost ones these where it is not (standard subgradient and incremental). Finally,
Figure 3.1 reports the results when f = f∗, while Figure 3.2 those where f is 10% off
the optimal value (10%f∗). We remark that PDSM do not use any knowledge about
f : this means that the corresponding convergence curves in the leftmost graphs of
Figure 3.1 are exactly the same as these in the leftmost graphs of Figure 3.2. We also
remark that we did not report the performances of incremental approaches without
the active-set strategy (bottom right graphs of Figure 3.1 and Figure 3.2), because
it was exceedingly slow. This is not surprising, because in the FR just scanning the
whole subgradient has a cost comparable to that of solving all the subproblems; hence,
just computing a subgradient is much more costly than solving just one component,
thereby negating any advantage in having incremental iterations.

The following remarks can be made about the results.

• Deflected approaches are much more efficient than non-deflected ones; this
is clearly visible in particular by comparing the same SR (left vs. right
graphs). This requires properly choosing how to deflect, which may be
problem-dependent, and (since the FR is constrained) which vectors among

18

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (v)
ColorTV (v)

FumeroTV (v)

PD - simple
PD - weighted

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (s)
ColorTV (s)

FumeroTV (s)

Polyak (i)
ColorTV (i)

FumeroTV (i)

(a) Results with the active-set strategy

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (v)
ColorTV (v)

FumeroTV (v)

PD - simple
PD - weighted

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (s)
ColorTV (s)

FumeroTV (s)

(b) Results without the active-set strategy

Figure 3.1: Results for the FR with lower bound f∗

di, di−1 and gi is better to project. However, as discussed in the Appendix,
the different forms of projection have a limited impact on the performances,
as long as any projection is performed, so deflection is most definitely the
way to go.
• The incremental approaches are in general not competitive in our application.

This is probably due to the combination of two factors. On the one hand,
they are not deflected, which, as noticed right before, limit their efficiency.
The second is that the number of variables is large, so that just handling one
subgradient (computing or scanning it) requires much more time than solving
one component. Thus, each iteration has a comparatively large “fixed cost”
other than that of computing the function, which is independent on how many
components are actually computed. While the active-set strategy manages to
keep this cost somewhat lower, this is still not enough to make the incremental

19

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (v)
ColorTV (v)

FumeroTV (v)

PD - simple
PD - weighted

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (s)
ColorTV (s)

FumeroTV (s)

Polyak (i)
ColorTV (i)

FumeroTV (i)

(a) Results with the active-set strategy

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (v)
ColorTV (v)

FumeroTV (v)

PD - simple
PD - weighted

1e-03

1e-02

1e-01

5e-01

1e-06 1e-05 1e-04 1e-03

Polyak (s)
ColorTV (s)

FumeroTV (s)

(b) Results without the active-set strategy

Figure 3.2: Results for the FR with lower bound 10%f∗

approach convenient. This suggests that for the incremental approach to be
interesting, the number of variables (relaxed constraints) should be “small”,
and/or the cost of solving each component should be comparatively “large”
(although if the latter is very large then one may rather want to use algorithms
with a much faster convergence rate, see section 3.6).
• PDSM are most often not competitive with the best “heuristic” ones. Their

convergence behavior is very stable: on our bi-logarithmic graphs, the conver-
gence curve of the simple average variant is remarkably linear, whereas that
of the weighted average variant shows a clear (although not very pronounced)
concave behavior indicating that convergence speed actually increases along
the iterations. This is in line with the theoretical convergence estimates, and
it can be considered a good result especially in view of the very limited effort
required to tune these SM. Yet, finely tuned SM with other “heuristic” DR

20

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

and SR can be significantly more effective. This may be due to the fact that
PDSM do not make any use of available information, even if estimated, about
the optimal value; this information is, instead, crucial for SR of the kind (2.1)
that all other approaches use. It is therefore possible that it is exploiting this
information that allows other SM to be more efficient in our application.
• Dynamic generation of the variables (active-set technique) is in general ben-

eficial: SM are somewhat faster in performing the same number of iterations
(the graphs Figure 3.1(a) and Figure 3.2(a) terminate somewhat more on the
left than the corresponding ones in parts (b)), while the convergence rate is
usually similar. There are exceptions, though, in both directions. For in-
stance, Figure 3.2 shows that for ordinary SM (that is, except PDSM) the
active-set approach can actually improve the convergence profile. The con-
verse actually happens for PDSM, in both Figure 3.1 and Figure 3.2: the
version without active-set converges faster than that using it. This is also
somewhat unsurprising, for use of active-set techniques in the PSDM has
never, to the best of our knowledge, been analyzed. It is therefore possible
that a specific development would suggest changes in PDSM that could make
it more efficient when the active-set technique is used.

3.5. Results for the KR. We now report the results about the KR. These
are summarized in Figure 3.3, with largely the same notation as for the FR case.
However, in this case the active-set technique is not used, so we report just one figure:
Figure 3.3(a) depicts the case with f = f∗, like Figure 3.1, while Figure 3.3(b) that
with f = 10%f∗, like Figure 3.2. Again, since PDSM do not use any bound to work,
the corresponding curves in Figure 3.3(a) and Figure 3.3(b) are identical.

The following remarks can be made about the results:

• By and large, the same trends seen in the FR case show up here in terms
of strong benefits of doing deflection and no benefits in doing incremental
approaches.
• In this case, PDSM are even (much) less competitive. This may be due to

the fact that PDSM have been developed under some sort of compactness
assumption on the feasible set (see (A.1)), and actually use the (estimated)
diameter of the set for optimally setting its algorithmic parameter. In the KR,
the feasible set is in principle unbounded; in fact, the parameter corresponding
to the diameter of the feasible set has to be experimentally tuned (see the
Appendix). While this was true for the FR as well, in this case the set of
optimal solutions is also unbounded, due to the fact that flow conservation
constraints (3.2) are typically rank-deficient. This seems to significantly affect
the practical behavior of PDSM.
• The left chart of Figure 3.3(a) shows a peculiar behavior of the FumeroTV

rule: while it is the most efficient as it runs, it stops far before the maximal
iteration limit because the steps become too small. As a consequence, it gets
a far worse final gap than the other approaches (although it gets it quicker).
This seems to be an issue with the rule, and no choice of the parameters we
tested was able to avoid it. Interestingly, this only happens with deflection
and f = f∗; it does not with the standard subgradient method, nor with
f = 10f∗, nor in any FR. It may be possible that some settings that we have
not tested may avoid this behavior, but we elected not to do that; rather, this
serves as a cautionary tale about the fact that heuristic rules, while possibly
working well in many cases, may fail sometimes.

21

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

1e-04

1e-03

1e-02

1e-01

9e-01

1e-06 1e-05 1e-04

Polyak (v)
ColorTV (v)

FumeroTV (v)

PD - simple
PD - weighted

1e-04

1e-03

1e-02

1e-01

9e-01

1e-06 1e-05 1e-04

Polyak (s)
ColorTV (s)

FumeroTV (s)

Polyak (i)
ColorV (i)

FumeroTV (i)

(a) Using lower bound f∗

1e-04

1e-03

1e-02

1e-01

9e-01

1e-06 1e-05 1e-04

Polyak (v)
ColorTV (v)

FumeroTV (v)

PD - simple
PD - weighted

1e-04

1e-03

1e-02

1e-01

9e-01

1e-06 1e-05 1e-04

Polyak (s)
ColorTV (s)

FumeroTV (s)

Polyak (i)
FumeroTV (i)
FumeroTV (i)

(b) Using lower bound 10%f∗

Figure 3.3: Results for the KR

• Again in the same chart, the convergence graph of ColorTV is noticeably
shorter than the others (save for FumeroTV). This is not a glitch: SM often
attain the required gap of 1e-4 against the known lower bound f∗, at which
point it is stopped. This might be considered “cheating”: the algorithm
does not stop with its means, but it is stopped due to externally provided
information. However, this information is actually there in our application.
Indeed, in several nodes of the enumeration tree, the value one wants to reach
is higher than the minimum value of f (these are the nodes fathomed by the
bound), which means that the SM (or any other approach, see section 3.6) is
able to stop even sooner. This is particularly relevant for SM, whose standard
stopping rules (see (2.6)) are scarcely effective; in all our tests, the algorithm
very rarely stopped because of them. In fact, all other graphs (but for this)
have roughly the same length: the algorithm almost always stops for having

22

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

exhausted the allotted maximum iterations.
• In general, approaching the KR provides better results than approaching

the FR: better bounds are achieved more quickly. This confirms previous
experiences [19].

3.6. Comparison with Cplex and Bundle methods. In order to properly
position the obtained results in the wider contexts of computational methods for large-
scale programs, in this section, we compare the best SM with two other approaches
which provide the very same bound: solving the node-arc formulation (3.1)–(3.6) with
a general-purpose LP solver (in particular, Cplex), and solving the Lagrangian duals
of the FR and the KS using a Bundle method. The results are reported in Table 3.1.
The following remarks are in order:

• For Cplex, an optimality gap of 1e-6 has been set, and this is considered
“exact” as far as our application goes; thus, in the table no gap is reported.
Tuning also has been performed, in that we have tested all of the (several)
available methods, and ultimately we have selected the dual simplex algorithm
as the one offering better performances; this was, however, almost always
the algorithm chosen by the “automatic” setting. Also, the strong linking
constraints (3.4) have been introduced in the formulation as lazy constraints—
the equivalent of using the active set strategy in SM—which was absolutely
crucial for performances (cf. [30, Table 4]). It is interesting to remark that, for
the sake of fairness with the other methods, we experimented with passing to
Cplex the optimal value of the problem in order to allow it to stop sooner. In
order to do that we set an upper limit on the value of the objective function
(using the parameter CPX PARAM OBJULIM) to f∗(1 − 1e− 4); since a dual
simplex method is used, this should in principle allow Cplex to stop as soon
as a dual solution with that accuracy is achieved. However, this turned
out to be of no use. The reason is precisely the use of lazy constraints:
Cplex separates them only when a feasible primal solution is attained, which
is only at the end of the dual simplex. So, Cplex finds an accurate primal
solution anyway, and cannot make use of the externally provided information.
Not using the lazy constraints actually allowed Cplex to stop sooner when
the information was provided, but it resulted in a hugely increased running
time. By contrast, the other algorithms use infeasible primal solutions to do
separation, and therefore do not suffer from this issue.
• The (generalized [25]) Bundle method that we used is implemented in the

same C++ framework as SM. A gap of 1e-4 was required, although (see, e.g.,
[30, Table 3 and Table 6]), unlike with SM, requiring substantially higher
accuracy may only come at the cost of a comparatively minor increase in
running times. Note that, for consistency, we passed the optimal value f∗ to
the Bundle algorithm, so that it could stop as soon as a solution with accuracy
1e-4 is attained; this always happened, so there is no need to report gaps in
this case, either. We report results for two different variants of the Bundle
method. For the FR, we used the fully disaggregated version with “easy
component” and linear stabilization, denoted by DE-L in the table, that has
been proven in [30]—after extensive tuning—to be the best option. It requires
a large and complex master problem to be solved (with Cplex), which takes
by far the largest fraction of running time; however, the number of iterations
required to get convergence is highly reduced. For the KR, we performed
extensive tuning, not discussed in details because it lies largely outside of the

23

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

scope of the paper, and we instead found the best Bundle variant to be the
one that uses a fully aggregated master problem with quadratic stabilization
(denoted by AK-Q in the table), where the master problem is solved with the
specialized QP solver of [24].
• For SM, we report results corresponding to the best options identified in the

previous phase. In particular, for the FR we have used Volume as DR and
Polyak as SR (denoted by FVP in the table), with the active set strategy
enabled, while for the KR we have still used Volume as DR, but ColorTV

as the SR (denoted by KVC in the table). For both algorithms, we have
set f = f∗, and required a gap of 1e-4. We also set an iteration limit of
5000, as it seemed to represent the best compromise between accuracy of
the achieved solution and running time. For FVP, the algorithm invariably
stopped because of the iteration limit, so we only report the final gap. KVC,
instead, reasonably often—but not always—terminated before the iteration
limit due to reaching the required accuracy. Thus, for this variant we report
both the number of iterations and the final gap.

dimension Cplex FVP KVC DE-L AK-Q
|N | |A| |K| time time gap time iter gap time iter time iter
1 20 226 40 0.05 1.76 1e-3 0.12 881 9e-5 0.09 12 0.25 1233
2 20 230 200 17.71 11.07 2e-3 5.39 4738 1e-4 16.34 30 10.44 8084
3 20 292 40 0.05 2.17 1e-3 0.10 602 1e-4 0.09 10 0.12 480
4 20 292 200 16.42 14.12 1e-3 6.08 4604 1e-4 12.54 28 8.50 5225
5 30 519 100 9.48 16.53 2e-3 3.15 3709 2e-4 10.05 34 8.05 7073
6 30 519 400 191.30 87.07 1e-3 20.62 4631 1e-4 80.28 25 57.42 6713
7 30 684 100 7.04 24.85 2e-3 3.27 3141 1e-4 10.90 53 5.03 3499
8 30 692 400 450.36 125.89 1e-3 26.16 4903 2e-4 188.33 32 82.67 9830
9 20 300 100 5.73 10.21 3e-3 2.52 5000 2e-4 7.36 35 3.62 5181

10 20 300 200 26.62 24.29 1e-3 6.65 5000 2e-4 19.96 30 10.10 6083
11 20 300 400 42.95 46.54 1e-3 17.45 4051 1e-4 16.77 26 38.18 5920
12 20 300 800 148.35 107.66 1e-3 25.42 3538 1e-4 38.32 23 33.76 3232
13 30 600 100 18.68 23.78 1e-3 6.13 4708 2e-4 7.93 42 11.16 6496
14 30 600 200 50.89 44.94 9e-4 14.09 3368 1e-4 8.93 34 25.59 3896
15 30 600 400 104.10 101.11 8e-4 20.98 3208 1e-4 11.51 22 30.55 3345
16 30 600 800 732.87 199.27 9e-4 52.98 3093 1e-4 61.28 25 84.30 3761
17 50 1200 100 51.91 56.21 1e-3 10.74 3580 1e-4 3.69 48 33.20 8985
18 50 1200 200 224.47 101.93 1e-3 30.42 4666 1e-4 34.27 43 59.89 7536
19 50 1200 400 833.57 227.48 9e-4 79.22 4499 1e-4 52.60 34 154.41 7630
20 50 1200 800 3749.56 468.26 8e-4 180.41 4900 1e-4 76.22 25 168.72 4174

Table 3.1: Comparison of the best SM with Cplex and Bundle methods

The table shows some interesting trends. While for small-scale instances, direct
use of an LP solver is the best option, decomposition approaches become more and
more competitive as the size grows. Often the Bundle method using “complex” master
problems (DE-L) is the best option, as the trade-off between the size of the master
problem and the number of iterations works in its favor. A further advantage of this
approach is that, as shown in [30], with a comparatively minor increase in effort,
one can get very high-quality dual solutions (with gaps of 1e-6, and even 1e-12),
and the corresponding accurate optimal primal solutions. However, as the size of the

24

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

instances increase, the cost of the master problem becomes very high; thus, methods
that use much cheaper master problems, even if they require many more iterations,
can become competitive if a very low gap is not required. This is true sometimes for
the aggregated Bundle method, but it is even more true for SM, in particular using
the KR. Indeed, with only one exception (group 20), KVC is faster than AK-Q, while
obtaining a roughly comparable gap. It is fair to remark, however, that KVC did not
always attain the required 1e-4 accuracy, although it was always pretty close, whereas
AK-Q always did. Yet, this confirms previous experience [13] that aggregated Bundle
methods do not always attain significantly higher convergence rates than well-tuned
SM, despite them collecting far more information and paying the corresponding price
in terms of master problem time. Interestingly, in several cases (groups 2, 4–8, 10
and 12), SM obtain comparable gaps than DE-L in less time, often significantly so.
However, this hinges on accurate selection of the many parameters of the SM; for
instance, none of the FR-based SM approaches are competitive in this application.
Yet, this confirms that appropriately designed and tuned SM could in principle be
competitive with the state-of-the-art for efficiently computing (not too tight) bounds
for hard, large-scale combinatorial problems.

4. Conclusion. We have computationally analyzed a large class of Subgradient
Methods, covering many of the ones proposed in the literature so far, for the solution
of large-scale Lagrangian Duals of hard combinatorial programs. The specific features
of this application is that the number of variables is large, the computation of the
function decomposes into many independent problems, and that only a relatively poor
accuracy—typically of the order of 1e-4—is required for the bound computation.

Our results show that, although the total number of variants (comprised the
possible settings for the numerical algorithmic parameters) is rather large, it is not
exceedingly difficult to find settings that work reasonably well across a large family of
instances for any given application. Provided that the appropriate tuning is made, SM
perform roughly as expected: while their global rate of convergence is far from being
appealing, their very low cost per iteration—in particular, outside of the function
computation—can make up for it as long as a relatively coarse bound is required.

Our interest in performing these experiments was partly about understanding
the computational significance of the theory developed in [21]. In this sense, we can
report that the ideas developed therein actually seem to have a significant compu-
tational impact. Deflecting is indeed crucial for good performances of a SM, and
in the constrained case deflection and projection together do work better (see Table
A.1). Interestingly, deflection-restricted approaches, developed for proving theoretical
convergence of SM, actually seem to work well in practice in some cases (see Table
A.2).

However, what mostly motivated our interest was the hope that two relatively re-
cent additions to the arsenal of SM, namely incremental and primal-dual approaches,
could significantly improve the performances with respect to more “traditional” ones.
In this respect, and limited to the very specific instances and problems we have tested,
against our expectations, we have to report that so far this has not happened. In hind-
sight, this might have been expected for incremental methods: the size of the variables
space is large, while the subproblems are of very low complexity, which means that
the “fixed cost” for each iteration (even if active-set techniques are applied where ap-
plicable) largely makes partial computation of the objective function not convenient.
It is very likely that, within our target application, other instances exist where these
trade-offs are significantly different, and therefore incremental methods are competi-

25

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

tive. Also, our results seem to suggest that incremental methods could significantly
benefit from incorporating deflection techniques. This may require specific theoretical
developments, e.g., along the lines of [69], but we have not further pursued this line
because the incremental approach is anyway unlikely to be competitive for our specific
instances.

As far as PDSM are concerned, our results show a very consistent behavior despite
them having basically only one tunable parameter; hence, the approach appears to
be very promising. Still, carefully tuned version of traditional SM can significantly
outperform them in most scenarios. Our results seem to suggest that, therefore, there
might be ways to improve PDSM, in practice and in theory, by taking into account
the following aspects:

• exploiting information about the optimal value of the problem, if available;
• adapting the approach to cope with an active-set strategy;
• adapting the approach to cope with cases where the feasible set, and even

worse the optimal set, is unbounded.
Advances in either of these aspects may make PDSM significantly more efficient in
practice in our application, allowing practitioners to finally rely on a single robust,
yet efficient, SM that only requires tuning of very few parameters. Unfortunately,
it does not seem that this is already the case, at least for the instances at hand.
However, our analysis will hopefully stimulate further research, that may ultimately
bring about the necessary improvements.

A different line of research concerns the actual use of SM within enumerative ap-
proaches for the original large-scale, hard combinatorial programs. In such a frame-
work, trading faster bound computation for lower bound quality can indeed improve
the overall efficiency of the approach, but only if the right choices are made, which
is far from being trivial. Furthermore, optimization of the Lagrangian function is
required not just once, but as many times as there are nodes in the enumeration tree
(or more). Hence, reoptimization techniques become crucial, whereby the information
generated at the parent node is exploited to improve the solution time at its descen-
dants. Which SM are more efficient in this context, in terms of the global running
time of the enumerative algorithm rather than of any single bound computation, is a
question that to the best of our knowledge has been scarcely (if ever) researched so
far, and we intend to pursue it in the future.

Acknowledgements. The first author gratefully acknowledges the contribution
of the Italian Ministry for University and Research under the PRIN 2012 Project
2012JXB3YF “Mixed-Integer Nonlinear Optimization: Approaches and Applications.”
The work of the second author has been supported by the Post-Doctoral Fellowship
D.R. No 2718/201 (Regional Operative Program Calabria ESF 2007/2013–IV Axis
Human Capital, Operative Objective M2, Action d.5) and the Interuniversity Attrac-
tion Poles Programme P7/36 “COMEX: combinatorial optimization metaheuristics
& exact methods” of the Belgian Science Policy Office. The work of the third author
has been supported by NSERC (Canada) under grant 184122-09.

Appendix A.
We now describe in details all the parameters of the SM that we have tested in

our numerical results, comprised the different rules (SR, DF, . . .), together with the
results of the tuning phase. We immediately remark that for some parameters it is
quite hard even to set reasonable ranges of values, i.e., to determine what is in general
a “too large” or “too small” value. Our approach in this case has been to select the
initial range heuristically, and then test it. If the best value consistently ended up

26

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

being at one extreme of the interval, this was taken as a suggestion that the best
value might actually be larger/smaller than the heuristically chosen relevant extreme,
and the interval enlarged accordingly. This of course hinges on the assumption that
the behavior of the algorithm is somewhat “convex” in these parameters; while this
is not necessarily true, it seems to be a reasonable assumption at least for most of
them. Furthermore, for the vast majority of parameters a “convex” behavior has
been verified experimentally, in that we almost never found the case where different
settings “far apart” provided better performances than these “in the middle.”

A.1. General parameters of SM. The following parameters are common to
all variants of SM we tested, basically irrespective of the specific rules for choosing
the stepsize, the deflection, and so on (although some specific combinations do not
make sense).

• As discussed in section 2.1, it is possible to project one or more among the
vectors gi, di−1 and di on tangent cone Ti of Λ at λ̄i. We denote by pr

⊆ { gi , di−1 , di } the subset of vectors on which projection is done; in all
our tests, pr is constant and does not depend on the iteration. As already
remarked, pr = { gi , di−1 , di } makes no sense as Ti is convex. Furthermore,
when no deflection is done di = gi and therefore only pr = { gi } and pr = ∅
make sense.
• Regarding the order in which the stepsize and the deflection are chosen, we

denote by sg ∈ {drs , dr0 , srs , sr0 } the four possible schemes:
– drs: deflection-restricted scheme with the safe rule (2.4);
– dr0: deflection-restricted scheme with no safe rule;
– srs: stepsize-restricted scheme with the safe rule (2.3);
– sr0: stepsize-restricted scheme with no safe rule.

Of course, drs and dr0 make no sense when no deflection is performed.
• We denote by χ the parameter used to adjust the Lipschitz constant L in the

incremental case (see (2.8)). We tested the nine different values χ ∈ { 1e-8,
1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1 }.

• For constrained problems (in our case, the FR), it is possible to resort to the
active-set strategy where the constraints are separated incrementally, thus
keeping the size of the vectors smaller. One crucial decision in this case is
how often separation is performed: doing it less often avoids some computa-
tions, but at the risk of ignoring possibly relevant information for some time.
The simplest approach is to perform separation after a fixed number of itera-
tions; we denote by s1 the parameter dictating this value. We have restricted
ourselves to only s1 ∈ {0, 1}, i.e., either not using the active-set strategy at all
or performing separation at every iteration. Note that separation is only per-
formed (if ever) for the strong forcing constraints (3.4) (the many Lagrangian
multipliers β), whereas the mutual capacity constraints (3.3) (the much less
Lagrangian multipliers α) are all kept in the active set at all iterations.

A.2. Parameters of the SR. We now examine in details the parameters of
the three stepsize rules Polyak [64], ColorTV [5, 6] and FumeroTV [33]. Since all of
them correspond to the basic form (2.1), basically we are looking at different ways for
determining βi and f levi .

Polyak SR. This is the simple case where βi and f levi are kept fixed at all iterations
(i.e., they do not depend on i). Here, we exploit the fact that in our application we
have a dependable lower bound f ≤ f∗ (or, anyway, to the value we want to reach)

27

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

and simply test the two cases f lev ∈ {f∗, 10%f∗}. As for the othe parameter, we
tested β ∈ { 0.01 , 0.1 , 1 , 1.5 , 1.99 }.

ColorTV SR. This rule is based on the improvement ∆f = f̄i−1−fi of f and the
scalar product 〈gi, di〉 to estimate “how successful is a step has been.” Note, however,
that in deflection-restricted schemes (i.e., drs and dr0) the latter is not available, and
we resort to using 〈gi, di−1〉. Each iteration is marked with “color” as follows:

1. green, if 〈gi, di〉 > ρ and ∆f ≥ ρ max{|f rec
i |, 1};

2. yellow, if 〈gi, di〉 < ρ and ∆f ≥ 0;
3. red, otherwise,

where ρ > 0 is a tolerance. Intuitively, green is a “good” step possibly indicating
that a larger νi may have been preferable, whereas red is a “bad” one suggesting that
νi is too large. Given three parameters cg, cy and cr, and denoting by ng, ny and nr
the number of consecutive iterations with color green, yellow and red, respectively,
βi is updated as follows:

1. If ng ≥ cg then set βi = min{ 2 , 2βi−1 };
2. If ny ≥ cy then set βi = min{ 2 , 1.1βi−1 };
3. If nr ≥ cr then then set βi = max{ 5e-4 , 0.67βi−1 };
4. if none of the above cases occur, then set βi = βi−1.

Note that, therefore, a potentially important parameter is the arbitrarily fixed value
β0. Also, the method includes a simple target-following scheme whereby if fi ≤
1.05f levi then f levi = fi − 0.05f levi . Note that this never happens for f lev = 10%f∗.
The method therefore has several parameters; we kept ρ = 1e-6 fixed, and we
tested all combinations of β0 ∈ { 0.01 , 0.1 , 1 , 1.5 , 1.99 }, cg ∈ { 1 , 10 , 50 }, cy ∈
{ 50 , 100 , 400 }, and cr ∈ { 10 , 20 , 50 }.

FumeroTV SR. This SR has a complex management of f levi and βi, motivated
by experimental considerations [33], that is subdivided into two distinct phases. The
switch between the two is an iteration counter r, that is increased each time there is
no improvement in the function value. This counter is used to define the exponential
function σ(r) = e−0.6933(r/r1)3.26 , where r1 is a parameter; note that σ(r1) ≈ 1/2,
which is how the two apparently weird numerical parameters have been selected.
The function σ, which is clearly decreasing in r, is used in two ways. The first is to
determine the maximum number of non-improving steps, which is the smallest integer
r2 such that σ∞ ≥ σ(r2), where the threshold σ∞ > 0 is another parameter: given r1

and σ∞, r2 can be obtained with a simple closed formula. The second is to construct
at each iteration the value of f levi as a convex combination of the known global lower
bound (which, not incidentally, this algorithm specifically tailored for IP is the only
one to explicitly use) and the current record value, i.e.,

f levi = σ(r)f + (1− σ(r))freci .

In the first phase, when r varies, the threshold varies as well: as σ(r) decreases when
r grows, f levi is kept closer and closer to freci as the algorithm proceeds. In the second
phase (r ≥ r2), where r is no longer updated, σ(r) = σ∞.

The procedure for updating r (hence σ(r), hence f levi) and βi proposed in [33]
uses four further algorithmic parameters: a tolerance δ > 0, two integer numbers
η1 and η2 ≥ 1, and the initial value β0 ∈ (0, 2). The procedure is divided in two
phases, according to the fact that the iteration counter r (initialized to 0) is smaller
or larger than the threshold r2. Similarly to ColorTV, the rule keeps a record value f̄i
(similar, but not necessarily identical, to freci) and declares a “good” step whenever
fi ≤ f̄i− δmax{|f̄i|, 1}, in which case f̄ is updated to fi. In either phase, the number

28

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

of consecutive “non-good” steps is counted. In the first phase, after η̄2 such steps r
is increased by one, and βi is updated as βi = βi−1/(2βi−1 + 1). In the second phase
r is no longer updated: after every “good” step βi is doubled, whereas after η̄1 “non
good” steps βi is halved.

In the tuning phase we tested the following values for the parameters:
• σ∞ ∈ { 1e-4, 1e-3, 1e-2 };
• δ = 1e-6;
• r1 ∈ { 10 , 50 , 100 , 150 , 200 , 250 , 300 , 350 };
• β0 ∈ { 0.01 , 0.1 , 1 , 1.5 , 1.99 };
• η1 ∈ { 10 , 50 , 100 , 150 , 200 , 250 , 300 , 350 };
• η2 ∈ { 10 , 50 , 100 , 150 , 200 }.

A.3. Parameters of the DR. We now describe in details the three deflection
rules that we have tested, i.e., STSubgrad [64], Primal-Dual [56] and Volume [5, 6].
Actually, not much is required to describe the first one: simply, αi = 1 for all i, and
hence di = gi, and the stability center λ̄i is always updated to λi+1. This simplifies
a number of issues: the deflection-restricted schemes do not apply, and only two
possible projection schemes do. However, as we shall see, deflection substantially
improves convergence in practice.

Primal-Dual. The PDSM is based on a sophisticated convergence analysis aimed
at obtaining optimal a-priori complexity estimates; details of the theory are outside
the scope of this paper, the interested reader being referred to [56]. One basic as-
sumption of the approach is that the feasible set Λ is endowed with a prox-function
d(λ), and that one solves the modified form of (1.1)

min{ f(λ) : d(λ) ≤ D , λ ∈ Λ } (A.1)

restricted upon a compact subset of the feasible region, where D ≥ 0 is a parameter.
As D is never directly used in the algorithm, but only need to be estimated to tune
its parameters, this can always be assumed to be true if f has a minimum λ∗: in
particular, we take as prox-function the standard Euclidian distance from the initial
iterate, i.e., d(λ) = ‖λ−λ0‖2/2, in which case D has to be an estimate of ‖λ∗−λ0‖2/2.
While obtaining it is not straightforward, this at worst introduces one algorithmic
parameter that has to be tuned; this is, in fact, how we dealt with the issue, as
detailed below.

However, it has to be remarked that PDSM are not, on the outset, based on a
simple recurrence of the form (1.4); rather, given two sequences of weights {υi} and
{ωi}, the next iterate is obtained as

λi+1 = argmin
{
〈
∑i
k=1 υkgk , λ〉+ ωid(λ) : λ ∈ Λ

}
. (A.2)

Yet, in the unconstrained case Λ = Rn problem (A.2) readily reduces to the simple
form (1.4), as the following Lemma shows.

Lemma A.1. Assume Λ = Rn, select d(λ) = ‖λ − λ0‖2/2, fix λi = λ0 for all

i ≥ 0 in (1.4). By defining ∆i =
∑i
k=1 υk, the following DR and SR

αi = υi/∆i (∈ [0, 1]) and νi = ∆i/ωi (A.3)

are such that λi+1 produced by (A.2) is the same produced by (1.4) and (2.2).
Proof. Under the assumptions, (A.2) is a strictly convex unconstrained quadratic

problem, whose optimal solution is immediately available by the closed formula

λi+1 = λ0 − (1/ωi)
∑i
k=1 υkgk . (A.4)

29

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

This clearly is (1.4) under the SR in (A.3) provided that one shows that the DR in
(A.3) produces

di = (
∑i
k=1 υkgk)/∆i .

This is indeed easy to show by induction. For i = 1 one immediately obtains d1 = g1.
For the inductive case, one just has to note that

1− υi+1

∆i+1
=

∆i+1 − υi+1

∆i+1
=

∆i

∆i+1

to obtain

di+1 = αi+1gi+1 + (1− αi+1)di =
υi+1

∆i+1
gi+1 +

∆i

∆i+1

∑i
k=1 υkgk

∆i
=

1

∆i+1

i+1∑
k=1

υkgk

as desired.
Interestingly, the same happens if simple sign constraints λ ≥ 0 are present, which

is what we actually have whenever Λ 6= Rn.
Lemma A.2. If Λ = Rn+, the same conclusion as in Lemma A.1 hold after λi+1

has been projected.
Proof. It is easy to see that the optimal solution of (A.2) with Λ = Rn+ is equal

to that with Λ = Rn, i.e. (A.4), projected over Rn+.
Therefore, the appropriate choices allow us to fit PDSM in our general scheme

by just having both the DR and the SR implemented as in (A.3); in particular, the
stability center λ̄i is never updated, so that it always remains the initial λ0. As far as
the choices of υi and ωi are concerned, we closely follow the suggestions in [56]. For
the former, we tested both the Simple averages approach, corresponding to υi = 1,
and the Weighted averages approach where instead υi = 1/‖gi‖. For the latter, we
set ωi = γω̂i, where γ > 0 is a constant and

ω̂0 = ω̂1 = 1 , ω̂i = ω̂i−1 + 1/ω̂i−1 for i ≥ 2 ,

which implies ω̂i+1 =
∑i
k=0 1/ω̂k. The analysis in [56] suggests settings for γ that

provide the best possible theoretical convergence, i.e.,

γ = L/
√

2D and γ = 1/
√

2D , (A.5)

for the Simple averages and Weighted averages scheme, respectively (being L is
the Lipschitz constant of f). As already remarked we do not know the constant
D, which is related to the distance between λ0 and any optimal solution. There is,
however, a parameter in SM that is somehow related to a similar concept: it is “t∗” in
the stopping formulæ (2.6)–(2.7). Roughly speaking, that parameter estimates how
far at most one can move along a subgradient gi ∈ ∂f(λi) when λi is an approximately
optimal solution. The parameter (although it scarcely impacts the actual behavior of
SM, see section 3.5) has been tuned, in particular because it is also used in the same
way by Bundle methods, which do have an effective stopping criterion (see section
3.6); hence, one might take D = (t∗)2L as an estimate. Yet, t∗ is supposed to measure
distance of λ∗ from a “good” λi, whereas D has to measure it from the initial λ0,
which typically is not at all “good”: hence, we introduce a further scaling factor
F > 0. This finally leads to taking γ = (F

√
L)/(t∗

√
2) for Simple averages, and

γ = F/(t∗
√

2L) for Weighted averagesl F is then experimentally tuned. In general
one would expect F > 1, and the results confirm this; however, to be on the safe side
we tested all the values F ∈ { 1e-4, 1e-3, 1e-2,1e-1, 1, 1e1, 1e2, 1e3, 1e4 }.

30

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

Volume. In this DR, αi is obtained as the optimal solution of a univariate quadratic
problem. As suggested in [5], and somewhat differently from the original [6], we use
exactly the “poorman’s form” of the master problem of the proximal Bundle method

min
{
νi−1 ‖αgi + (1− α)di−1‖2 /2 + ασi(λ̄i) + (1− α)εi−1(λ̄i) : α ∈ [0, 1]

}
(A.6)

where the linearization errors σi(λ̄i) and εi−1(λ̄i) have been discussed in details in
section 2.2. Note that we use as stability weight the stepsize νi−1 of the previous
iteration: this is justified by the fact that that term corresponds to the stepsize that
one would do along the dual optimal solution in a Bundle method (e.g. [3, 5, 25]). It
may be worth remarking that the dual of (A.6)

min
{

max{ gid− σi(λ̄i) , di−1d− εi−1(λ̄i) }+ ‖d‖2/(2νi−1)
}
, (A.7)

where d has to be interpreted as the displacement from the current point, i.e., d =
λ− λ̄i, is closely tied to (A.2) in PDSM. The difference is that in (A.7) one uses two
(approximate) subgradients, the current one and that corresponding to the direction
(hence taking into account all the history of computation), whereas in (A.2) one
uses only one (approximate) subgradient obtained as weighted average of the ones
generated at previous iterations. Problem (A.6) is inexpensive, because without the
constraint α ∈ [0, 1] it has the closed-form solution

α∗i =
εi−1(λ̄i)− σi(λ̄i)− νi−1di−1(gi − di−1)

νi−1‖gi − di−1‖2
,

and thus one can obtain its optimal solution by simply projecting α∗i over [0, 1].
However, as suggested in [5, 6] we rather chose αi in the more safeguarded way

αi =

∣∣∣∣∣∣
αi−1/10 if α∗i ≤ 1e− 8

min{τi , 1.0} if α∗i ≥ 1
α∗i otherwise

where τi is initialized to τ0, and each τp iterations is decreased multiplying it by
τf < 1, while ensuring that it remains larger than τmin.

In our scheme, the DR also controls how the stability center is updated. For
ColorTV, the choice is dictated by a parameter m > 0, akin that used in Bundle
methods (but also in the SR FumeroTV and ColorTV) to estimate “sufficient decrease.”

In particular, if f̄i − fi+1 ≥ mmax{1, |frefi |} a Serious Step occurs and λ̄i+1 = λi+1,
otherwise a Null Step takes place and λ̄i+1 = λ̄i.

For the tuning phase we have selected the following values for the above param-
eters:

• τ0 ∈ { 0.01 , 0.1 , 1 , 10 };
• τp ∈ { 10 , 50 , 100 , 200 , 500 };
• τf ∈ { 0.1 , 0.4 , 0.8 , 0.9 , 0.99 };
• τmin ∈ { 1e-4, 1e-5 };
• m ∈ { 0.01 , 0.1 }.

A.4. Detailed results of the tuning phase. The tuning phase required a
substantial computational work, and a nontrivial analysis of the results. In the end,
however, we were able to identify, for each of the combinations between SR and DR,
the values of the algorithmic parameters that performed reliably better (among these

31

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

we tested). As already remarked section §3.3, one issue was that, with some param-
eter settings, SM start with a slow convergence rate but the behavior significantly
improves along the iterations, or, conversely, start with a good convergence rate but
the behavior deteriorates later on. In general, however, it has always been possible
to find “robust” settings that provided the best (or close so) gap at termination, but
were not too far from the best gaps even in all the other stages. These were the ones
that we selected.

For the sake of clarity and conciseness, in Tables A.1 and A.2, we directly report
the chosen values of the parameters for FR and KR, respectively, briefly remarking
about the effect of each parameter and their relationships. The behavior of SM has
shown to be pretty similar in the two cases f = f∗ and f = 10%f∗ (see section
3.3); hence, the tables report the values for f = f∗, indicating within square brackets
these for the case 10%f∗ if they happen to be different. The tables focus on the
combinations between the three SR and the two DR, plus the incremental case; the
parameters of Primal-Dual variant are presented separately since the SR is combined
with the DR.

Results for the FR. We start describing the results for FR; these are summarized
in Table A.1, except for those settings that are constantly optimal. In particular,
STSubgrad and Incremental have better performances with pr = {gi}, irrespective of
the SR. This is not surprising as, since they do not use deflection, this simply says that
projecting (in the only possible way) is better than not doing it, a hardly unexpected
outcome. On the other hand, for Volume the optimal setting of the projection does
depend on the SR, although it has to be noted that pr = {di} and pr = {di−1}
are most often very close to each other. All the other parameters of Volume depend
on the SR (although the stepsize-restricted scheme with no safe rule is often good),
except τmin and m that are always best set to 1e-4 and 0.1, respectively. Another
interesting observation is that, while Volume does have several parameters, it does
seem that they operate quite independently of each other, as changing one of them
always has a similar effect irrespective of the others. We also mention that for ColorTV
the parameters cy and cr have little impact on the performance, whereas cg plays
an important role and it significantly influences the quality of the results. As for
FumeroTV, σ∞ and η2 have hardly any impact, and we arbitrarily set them to 1e-4

and 50, respectively.

In PDSM, the only crucial value is F , used to compute the optimal value of
γ in (A.5). We found its best value to be 1e2 and 1e3 for Simple averages and
Weighted averages, respectively. The choice has a large impact on performances,
which significantly worsen for values far from these.

Results for the KR. The best parameters for the KR are reported in Table A.2.
Clearly, projection does not apply here, since the problem is unconstrained. Although
the best values are in general different from the FR, confirming the (unfortunate)
need for problem-specific parameter tuning, similar observations as in that case can
be made. For instance, for Volume, the parameters were still more or less independent
from each other, and τmin and m were still hardly impacting, with the values 1e-4

and 0.1 still very adequate. For ColorTV, results are again quite stable varying cy.
Yet, differences can be noted: for instance, for FR cg is clearly the most significant
parameter and dictates most of the performance variations, while for the KR the rela-
tionship between the two parameters cr and cg and the results is less clear. Similarly,
for FumeroTV some settings are conserved: σ∞ and η2 have very little effect and can
be set to 1e-4 and 50, respectively. In other cases, though, differences show off: for

32

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

Polyak ColorTV FumeroTV
βi β0 cg cy cr β0 r1 η1

0.01 0.1 50 400 50 0.1 150 50

Volume [10] [100]

τ0 10 1 1

τf .8 .8 .8 [.9]

τi 200 [100] 100 100 [200]

pr {di, di−1} [di−1] gi gi [di−1]

sg sr0 [srs] sr0 sr0 [drs]

1.5 1.5 1 50 50 1.99 200 250

STSubgrad [0.01] [1.5] [50] [150]

sg sr0 sr0 [srs] sr0

1.5 1.99 50 100 50 1.99 300 300

Incremental [0.1] [1.5] [10] [400] [1.5] [50] [100]

χ 1e-3 [1e-2] 1e-3 1e-3

sg sr0 [srs] sr0 [srs] sr0

Table A.1: Optimal parameters for the Flow Relaxation

instance the parameters η1, r1 and β0 were more independent on each other than in
the FR.

The parameters of Primal-Dual showed to be quite independent from the under-
lying Lagrangian approach, with the best value of F still being 1e2 for the simple
averages case and 1e3 for the weighted average one. This confirms the higher overall
robustness of the approach.

REFERENCES

[1] M. Ahookhosh. Optimal subgradient algorithms with application to large-scale linear inverse
problems. Technical report, Optimization Online, 2014.

[2] K.M. Anstreicher and L.A. Wolsey. Two “well-known” properties of subgradient optimization.
Mathematical Programming, 120(1):213–220, 2009.

[3] A. Astorino, A. Frangioni, A. Fuduli, and E. Gorgone. A nonmonotone proximal bundle method
with (potentially) continuous step decisions. SIAM Journal on Optimization, 23(3):1784–
1809, 2013.

[4] L. Bacaud, C. Lemaréchal, A. Renaud, and C. Sagastizábal. Bundle methods in stochastic opti-
mal power management: A disaggregated approach using preconditioners. Computational
Optimization and Applications, 20:227–244, 2001.

[5] L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited: relation with
bundle methods. Mathematical Programming, 94(1):41–70, 2002.

[6] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a subgra-
dient method. Mathematical Programming, 87(3):385–399, 2000.

[7] A. Beck and M. Teboulle. Smoothing and first order methods: a unified framework. SIAM
Journal on Optimization, 22(2):557–580, 2012.

[8] H. Ben Amor, J. Desrosiers, and A. Frangioni. On the choice of explicit stabilizing terms in
column generation. Discrete Applied Mathematics, 157(6):1167–1184, 2009.

[9] D.P. Bertsekas and A. Nedić. Incremental subgradient methods for nondifferentiable optimiza-
tion. SIAM J. on Optimization, 12(1):109–138, 2001.

33

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

Polyak ColorTV FumeroTV
βi β0 cg cy cr β0 r1 η1

Volume

0.1 0.1 50 50 50 0.1 10 10

[10] [50] [50]

τ0 1 1 1[10]

τf .9 [.8] .8 [.9] .99 [.8]

τi 50 100 [50] 50 [200]

sg dr0 [srs] dr0 [srs] dr0 [drs]

STSubgrad
1.5 .01 50 50 50 1.99 50 250

[.1] [10] [200]

sg sr0 sr0 sr0

Incremental

1.5 1 50 100 50 1.5 100 100

[.1] [.01] [10] [1] [10]

χ 1e-5 [1e-6] 1e-5 1e-5

sg sr0 srs sr0

Table A.2: Optimal parameters for the Knapsack Relaxation

[10] A. Borghetti, A. Frangioni, F. Lacalandra, and C.A. Nucci. Lagrangian heuristics based on
disaggregated bundle methods for hydrothermal unit commitment. IEEE Transactions on
Power Systems, 18(1):313–323, February 2003.

[11] R.I. Bot and C. Hendrich. A variable smoothing algorithm for solving convex optimization
problems. TOP, 2014.

[12] U. Brännlund. A genralized subgradient method with relaxation step. Mathematical Program-
ming, 71:207–219, 1995.

[13] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck. Comparison
of bundle and classical column generation. Mathematical Programming, 113(2):299–344,
2008.

[14] P. Camerini, L. Fratta, and F. Maffioli. On improving relaxation methods by modified gradient
techniques. Mathematical Programming Study, 3:26–34, 1975.

[15] P. Cappanera and A. Frangioni. Symmetric and asymmetric parallelization of a cost-
decomposition algorithm for multi-commodity flow problems. INFORMS Journal on Com-
puting, 15(4):369–384, 2003.

[16] Y. Censor, R. Davidi, G.T. Herman, R.W. Schulte, and L. Tetruashvili. Projected subgradient
minimization versus superiorization. Journal on Optimization Theory and Applications,
160(3):730–747, 2014.

[17] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145,
2011.

[18] T.G. Crainic, A. Frangioni, and B. Gendron. Multicommodity capacitated network design.
Telecommunications Network Planning, pages 1–19, 1999.

[19] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based relaxation methods for multicom-
modity capacitated fixed charge network design problems. Discrete Applied Mathematics,
112:73–99, 2001.

[20] A. Crema, M. Loreto, and M. Raydan. Spectral projected subgradient with a momentum term
for the lagrangean dual approach. Computers & Operations Research, 34:31743186, 2007.

[21] G. d’Antonio and A. Frangioni. Convergence analysis of deflected conditional approximate
subgradient methods. SIAM Journal on Optimization, 20(1):357–386, 2009.

[22] O. du Merle, J.-L. Goffin, and J.-P. Vial. On improvements to the analytic center cutting plane
method. Computational Optimization and Applications, 11:37–52, 1998.

[23] S. Feltenmark and K. Kiwiel. Dual applications of proximal bundle methods, including la-
grangian relaxation of nonconvex problems. SIAM Journal on Optimization, 10(3):697–

34

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

721, 2000.
[24] A. Frangioni. Solving semidefinite quadratic problems within nonsmooth optimization algo-

rithms. Computers & Operations Research, 21:1099–1118, 1996.
[25] A. Frangioni. Generalized bundle methods. SIAM Journal on Optimization, 13(1):117–156,

2002.
[26] A. Frangioni. About lagrangian methods in integer optimization. Annals of Operations Re-

search, 139:163–193, 2005.
[27] A. Frangioni and G. Gallo. A bundle type dual-ascent approach to linear multicommodity min

cost flow problems. INFORMS Journal on Computing, 11(4):370–393, 1999.
[28] A. Frangioni and B. Gendron. 0-1 reformulations of the multicommodity capacitated network

design problem. Discrete Applied Mathematics, 157(6):1229–1241, 2009.
[29] A. Frangioni and B. Gendron. A stabilized structured dantzig-wolfe decomposition method.

Mathematical Programming, 140:45–76, 2013.
[30] A. Frangioni and E. Gorgone. Generalized bundle methods for sum-functions with “easy” com-

ponents: Applications to multicommodity network design. Mathematical Programming,
145(1):133–161, 2014.

[31] A. Frangioni, A. Lodi, and G. Rinaldi. New approaches for optimizing over the semimetric
polytope. Mathematical Programming, 104(2-3):375–388, 2005.

[32] A. Frangioni and A. Manca. A computational study of cost reoptimization for min cost flow
problems. INFORMS Journal on Computing, 18(1):61–70, 2006.

[33] F. Fumero. A modified subgradient algorithm for lagrangean relaxation. Computers and Op-
erations Research, 28(1):33–52, 2001.

[34] A.M. Geoffrion. Lagrangian relaxation and its uses in iteger programming. Mathematical
Programming Study, 2:82–114, 1974.

[35] J. Gondzio, P. González-Brevis, and P. Munari. New developments in the primaldual column
generation technique. European Journal of Operational Research, 224(1):41–51, 2013.

[36] S. Görtz and A. Klose. A simple but usually fast branch-and-bound algorithm for the capaci-
tated facility location problem. INFORMS Journal on Computing, 24(4):597610, 2012.

[37] M. Guignard. Efficient cuts in lagrangean ’relax-and-cut’ schemes. European Journal of Oper-
ational Research, 105:216–223, 1998.

[38] M. Held and R.M. Karp. The traveling salesman problem and minimum spanning trees. Op-
erations Research, 18:1138–1162, 1970.

[39] M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning trees: Part
ii,. Mathematical Programming, 1:6–25, 1971.

[40] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II—
Advanced Theory and Bundle Methods, volume 306 of Grundlehren Math. Wiss. Springer-
Verlag, New York, 1993.

[41] M. Ito and M. Fukuda. A family of subgradient-based methods for convex optimization prob-
lems in a unifying framework. Technical report, Optimization Online, 2014.

[42] K.L. Jones, I.J. Lustig, J.M. Farwolden, and W.B. Powell. Multicommodity network flows: The
impact of formulation on decomposition. Mathematical Programming, 62:95–117, 1993.

[43] J.E. Kelley. The cutting-plane method for solving convex programs. Journal of the SIAM,
8:703–712, 1960.

[44] K. Kiwiel, T. Larsson, and P.O. Lindberg. The efficiency of ballstep subgradient level methods
for convex optimization. Mathematics of Operation Research, 23:237–254, 1999.

[45] K.C. Kiwiel. Convergence of approximate and incremental subgradient methods for convex
optimization. SIAM Journal on Optimization, 14(3):807–840, 2003.

[46] K.C. Kiwiel and J.L. Goffin. Convergence of a simple subgradient level method. Mathematical
Programming, 85(4):207–211, 1999.

[47] G. Lan and Y. Zhou. Approximation accuracy, gradient methods, and error bound for struc-
tured convex optimization. Technical report, University of Florida, 2014.

[48] T. Larsson, M. Patriksson, and A.-B. Strömberg. Conditional subgradient optimization – theory
and applications. European Journal of Operational Research, 88(2):382–403, 1996.

[49] T. Larsson, M. Patriksson, and A.-B. Strömberg. Ergodic, primal convergence in dual subgra-
dient schemes for convex programming. Mathematical Programming, 86:283–312, 1999.

[50] C. Lemaréchal. An extension of Davidon methods to nondifferentiable problems. In M.L.
Balinski and P. Wolfe, editors, Nondifferentiable optimization, volume 3 of Mathematical
Programming Study, pages 95–109. North-Holland, Amsterdam, 1975.

[51] C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applications. Mathe-
matical Programming, 90:399–427, 2001.

[52] J.J. Moreau. Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. Fr., 93:273299,
1965.

35

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

[53] I. Necoara and J.A.K. Suykens. Application of a smoothing technique to decomposition in
convex optimization. IEEE Transactions on Automatic Control, 53(11):2674–2679, 2008.

[54] A. Nedic and D. Bertsekas. Incremental subgradient methods for nondifferentiable optimization.
Mathematical Programming, 120:221–259, 2009.

[55] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley, 1983.

[56] Y. Nesterov. Primal-dual subgradient methods for convex optimization. Siam J. Optim.,
12:109–138, 2001.

[57] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on
Optimization, 16:235–249, 2005.

[58] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103:127–152, 2005.

[59] Y. Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 2014.

[60] E.S.H. Neto and A.R. De Pierro. Incremental subgradients for constrained convex optimization:
A unified framework and new methods. SIAM Journal on Optimization, 20(3):1547–1572,
2009.

[61] A. Ouorou. A proximal cutting plane method using chebychev center for nonsmooth convex
optimization. Mathematical Programming, 119(2):239–271, 2009.

[62] M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling salesman problem
by branch and cut. Operations Research Letters, 6(1):1–7, 1987.

[63] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. Siam Review, 33(1):60–100, 1991.

[64] B.T. Polyak. Minimization of unsmooth functionals. Zh.Vychisl.Mat.Fiz., 9(3):509–521, 1969.
[65] B.T. Sherali, B.T. Choi, and C.H. Tuncbilek. A variable target value method for nondifferen-

tiable optimization. Operations Research Letters, 26:1–8, 2000.
[66] B.T. Sherali and C. Lim. On embedding the volume algorithm in a variable target value method.

Operations Research Letters, 32:455462, 2004.
[67] N.Z. Shor. Minimization methods for nondifferentiable functions. Springer-Verlag, Berlin,

1985.
[68] M.V. Solodov and S.K. Zavriev. Error stability properties of generalized gradient-type algo-

rithms. Journal of Optimization Theory and Applications, 98(3):663–680, 1998.
[69] P. Tseng. Conditional gradient sliding for convex optimization. Mathematical Programming,

125:263–295, 2010.
[70] P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable functions. In

M.L. Balinski and P. Wolfe, editors, Nondifferentiable optimization, volume 3 of Mathe-
matical Programming Study, pages 145–173. North-Holland, Amsterdam, 1975.

36

On the Computational Efficiency of Subgradient Methods: A Case Study in Combinatorial Optimization

CIRRELT-2015-41

