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Parallel Meta-Heuristic Search

1 Introduction

Meta-heuristics often offer the only practical approach to addressing complex problems
of realistic dimensions, and are thus widely acknowledged as essential tools in numerous
and diverse fields. Yet, even meta-heuristics may reach quite rapidly the limits of what
may be addressed in acceptable computing times for many problem settings for research
and practice alike. Moreover, heuristics do not generally guaranty optimality, perfor-
mance often depending on the particular problem setting and instance characteristics.
Robustness is therefore a major objective in meta-heuristic design, in the sense of offer-
ing a consistently high level of performance over a wide variety of problem settings and
instance characteristics.

Parallel meta-heuristics aim to address both issues. Their first goal is to solve larger
problem instances than what is achievable by sequential methods, and to do it in reason-
able computing times. In appropriate settings, such as cooperative multi-search strate-
gies, parallel meta-heuristics also prove to be much more robust than sequential versions
in dealing with differences in problem types and characteristics. They also require less
extensive, and expensive, parameter-calibration efforts.

The objective of this chapter is to paint a general picture of the parallel optimization
meta-heuristic field. Following Crainic and Toulouse (2010), we recall the main concepts
and strategies in designing parallel meta-heuristics, pointing to a number of contribu-
tions that instantiated them for neighborhood- and population-based meta-heuristics,
and identify a number of trends and promising research directions. We focus in partic-
ular on cooperation-based strategies, which display remarkable performances, reviewing
the recently-introduced Integrative Cooperative Search (Lahrichi et al., 2015). Notice
that we examine and discuss the strategies from the conceptual, algorithmic-design point
of view, independent of implementation on particular computer architectures.

The parallel meta-heuristic field is very broad, while the space available for this chap-
ter is limited. In addition to the references provided in the following sections, the reader
may consult a number of surveys, taxonomies, and syntheses of parallel meta-heuristics,
some addressing methods based on particular methodologies, while others address the
field in more comprehensive terms. Methodology-dedicated syntheses may be found in
Azencott (1992); Greening (1989, 1990b,a); Ram et al. (1996) for parallel simulated an-
nealing, Canti-Paz (1998, 2005); Lin et al. (1994); Miihlenbein (1992); Shonkwiler (1993)
for genetic-based evolutionary methods, Crainic (2005); Crainic et al. (2005, 1997); Glover
and Laguna (1997); Vo8 (1993) for tabu search; Garcia-Lépez et al. (2005) for scatter
search, Bullnheimer et al. (1999); Dorigo and Stuetzle (2003); Janson et al. (2005) for
ant-colony methods, and Moreno-Pérez et al. (2005) for Variable Neighborhood Search
(VNS). Surveys and syntheses that address more than one methodology may be found
in Alba (2005); Alba et al. (2013); Crainic (2008); Crainic and Hail (2005); Crainic and
Toulouse (1998, 2003, 2010); Crainic et al. (2014); Cung et al. (2002); Holmqvist et al.
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(1997); Laursen (1996); Pardalos et al. (1995a); Verhoeven and Aarts (1995).

The chapter is organized as follows. Section 2 Meta-heuristics and Parallelism is ded-
icated to a general discussion of the potential for parallel computing in meta-heuristics, a
brief description of performance indicators for parallel meta-heuristics, and the taxonomy
we use to structure the presentation. Section 3 Low-Level Parallelization Strategies ad-
dresses strategies focusing on accelerating computing-intensive tasks without modifying
the basic algorithmic design. Methods based on the decomposition of the search space
are treated in Section 4 Data Decomposition, while strategies based on the simultaneous
exploration of the search space by several independent meta-heuristics constitutes the
topic of Section 5 Independent Multi-search. Cooperation principles are discussed in Sec-
tion 6 Cooperative Search and are detailed in Sections 6.1 Synchronous Cooperation, 6.2
Asynchronous Cooperation, and 7 Advanced Cooperation Strategies - Creating Knowledge.
We conclude in Section 8 Perspectives .

2 Meta-heuristics and Parallelism

We start with a brief overview of the potential for parallel computing in meta-heuristics
and of performance indicators for parallel meta-heuristics. We conclude with the criteria
used to describe and characterize the parallelization strategies for meta-heuristics.

2.1 Sources of Parallelism

Addressing a given problem instance with a parallel solution method means that several
processes work simultaneously on several processors with the goal of identifying the best
solution for the instance. Parallelism thus follows from a decomposition of the total work
load and the distribution of the resulting tasks to available processors. According to
how “ small” or “large” are the tasks in terms of algorithm work or search space, the
parallelization is denoted fine- or coarse-grained, respectively.

The decomposition may concern the algorithm, the problem-instance data, or the
problem structure. Functional parallelism identifies the first case, where some computing-
intensive components of the algorithm are separated into several tasks (processes), pos-
sibly working on the “same” data, which are allocated to different processors and run in
parallel. The main source of functional parallelism for meta-heuristics is the concurrent
execution of their innermost loop iterations, e.g., evaluating neighbors, computing the fit-
ness of individuals, or having ants forage concurrently (Section Low-Level Parallelization
Strategies). This is often also the only source of readily available parallelism in meta-
heuristics, most other steps being time dependent and requiring either the computation
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of the previous steps to be completed, or the synchronization of computations to enforce
this time-dependency. Consequently, functional parallelism is mainly interesting as a
low-level component of hierarchical parallelization strategies or when addressing problem
settings requiring a significant part of the computing effort be spent in the inner-loop
algorithmic component.

Parallelism for meta-heuristics may further be found in the domain of the problem
addressed or the corresponding search space (for brevity reasons, the term “search space”
is used in the rest of the chapter). There are indeed no data dependencies between the
evaluation functions of different solutions and, thus, these may be computed in parallel.
Moreover, theoretically, the parallelism in the search space is as large as the space itself.
Parallelism is then obtained by separating the search space into components allocated to
the available processors. In most cases, these components are still too large for explicit
enumeration, and an exact or heuristic search method has to be associated to each to
implicitly explore it. Space separation is exploited in most of the strategies described in
this chapter.

Space separation raises a number of issues with respect to defining an overall meta-
heuristic search strategy, in particular, 1) whether to define the separation by partitioning
the space, allowing components to partially overlap, or not; 2) how to control an overall
search conducted separately on several components of the original space; 3) how to build
a complete solution out of those obtained while exploring the components; 4) how to
allocate computing resources for an efficient exploration avoiding, for example, searching
regions with poor-quality solutions.

Two main approaches are used to perform the search-space separation: domain de-
composition (also called data parallelism) and multi search (the name multiple walks is
also found in the literature). The former explicitly separates the search space (Section
4) Data Decomposition , and then addresses the initial problem instantiated on each of
the resulting restricted regions, before combining the corresponding partial solutions into
complete ones.

Multi-search strategies implicitly divide the search space through concurrent explo-
rations by several methods, named solvers in the following. These meta-heuristic or
exact solvers may address either the complete problem at hand, or explore partial prob-
lems defined by decomposing the initial problem through mathematical programming
or attribute-based heuristic approaches. In the former case, the decomposition method
implicitly defines how a complete solution is built out of partial ones. In the latter
case, some processors work on the partial problems corresponding to the particular sets
of attributes defined in the decomposition, while others combine the resulting partial
solutions into complete solutions to the original problem. Multi-search strategies, par-
ticularly those based on cooperation principles, make up the bulk of the successful par-
allel meta-heuristics developments, and are the object of most recent publications in the
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field. We discuss them in Sections 5 Independent Multi-search, 6 Cooperative Search, 6.1
Synchronous Cooperation, 6.2 Asynchronous Cooperation, and 7 Advanced Cooperation
Strategies - Creating Knowledge.

We complete this subsection with a few notes on the performance evaluation of parallel
meta-heuristics strategies and resulting algorithms.

The traditional goal when designing parallel solution methods is to reduce the time
required to “solve”, exactly or heuristically, given problem instances or to address larger
instances without increasing the computational effort. For solution methods that run
until the provable optimal solution is obtained, this translates into the well-known speedup
performance measure, computed as the ratio between the wall-clock time required to solve
the problem instance in parallel with p processors and the corresponding solution time of
the best-known sequential algorithm; A somewhat less restrictive measure replaces the
latter with the time of the parallel algorithm run on a single processor. See Barr and
Hickman (1993) for a detailed discussion of this issue, including additional performance
measures.

Speedup measures are more difficult to interpret when the optimal solution is not
guaranteed or the exact method is stopped before optimality is reached. Moreover, most
parallelization strategies design parallel meta-heuristics that yield solutions that are dif-
ferent in value, composition, or both, from those obtained by the sequential counterpart.
Thus, equally important measures for parallel heuristics are by how much they outper-
form their sequential counterparts in (relative) terms of solution quality and, ideally,
computational efficiency. Simply put, the parallel method should not require a higher
overall computation effort than the sequential method or should justify the extra effort
by higher quality solutions.

Search robustness is another characteristic expected of parallel heuristics. Robustness
with respect to a problem setting is meant here in the sense of providing “equally” good
solutions to a large and varied set of problem instances, without excessive calibration,
neither during the initial development, nor when addressing new problem instances.

Multi-search methods, particularly those based on cooperation, generally offer en-
hanced performances compared to sequential methods and other parallelization strate-
gies. They display behaviors different from those of the sequential methods involved
and can be seen as proper meta-heuristics (Alba, 2005), usually finding better-quality
solutions and enhancing the robustness of the meta-heuristic search. See Crainic and
Toulouse (1998, 2003) for a discussion of these issues.
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2.2 Characterizing Parallel Meta-heuristic Strategies

Several strategies may be defined based on each one of the sources of parallelism discussed
above. We adopt the classification of Crainic and Hail (2005), generalizing that of Crainic
et al. (1997) (Verhoeven and Aarts (1995) and Cung et al. (2002) present classifications
that proceed of the same spirit), to characterize these strategies.

The three dimensions of the classification focus on the control of the global problem-
solving process, the information exchanged among processes, and the diversity of the
search, respectively. The first dimension, Search Control Cardinality, thus specifies
whether the global search is controlled by a single process or by several processes that may
collaborate or not. The two alternatives are identified as 1-control (1C') and p-control
(pC), respectively.

The second dimension addresses the issue of information exchanges and the utiliza-
tion of the exchanged information to control or guide the search; hence the Search Con-
trol and Communications name. Communications may proceed either synchronously or
asynchronously. In the former case, processes stop and engage in some form of com-
munication and information exchange at moments (number of iterations, time intervals,
specified algorithmic stages, etc.) exogenously planned, either hard-coded or determined
by a control (master) process. In the asynchronous communication case, each process
is in charge of its own search, as well as of establishing communications with other pro-
cesses, and the global search terminates once all individual searches stop. To reflect the
quantity and quality of the information exchanged and shared, as well as the additional
knowledge derived from these exchanges (if any), these notions conveyed through four
strategy classes: Rigid (RS) and Knowledge Synchronization (KS) and, symmetrically,
Collegial (C) and Knowledge Collegial (KC).

More than one solution method or variant (e.g., with different parameter settings) may
be involved in a parallel meta-heuristic. The third dimension thus indicates the Search
Differentiation or diversity: do solvers start from the same or different solutions and do
they make use of the same or different search strategies? The four classes are: SPSS, Same
initial Point/Population, Same search Strategy; SPDS, Same initial Point/Population,
Different search Strategies; MPSS, Multiple initial Points/Populations, Same search
Strategies; MPDS, Multiple initial Points/Populations, Different search Strategies. Ob-
viously, one uses “point” for neighborhood-based methods, while “population” is used
for genetic-based evolutionary methods, scatter search, and swarm methods.
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3 Low-Level Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decomposition
within the inner-loop computations of meta-heuristics, are often labeled “low level” be-
cause they modify neither the algorithmic logic, nor the search space. They aim solely to
accelerate the search and generally do not modify the search behavior of the sequential
meta-heuristic. Typically, the exploration is initialized from a single initial solution or
population, and proceeds according to the sequential meta-heuristic logic, while a number
of intensive-computation steps are decomposed and simultaneously performed by several
Processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually
implemented according to the classical master-slave parallel programming model. A
“master” program executes the 1-control sequential meta-heuristic, separating and dis-
patching computation-intensive tasks to be executed in parallel by “slave” programs.
Slaves perform evaluations and return the results to the master which, once all the re-
sults are in, resumes the normal logic of the sequential meta-heuristic. The complete
control on the algorithm execution thus rests with the master, which decides the work al-
location for all other processors and initiates most communications. No communications
take place among slave programs.

The neighborhood-evaluation procedure of the Local Search component of neighborhood-
based meta-heuristics (as well as of population-based ones implementing advanced “school-
ing” for offspring) is generally targeted in 1C/RS/SPSS designs. The master groups the
neighbors into tasks and sends them to slaves. Each slave then executes the explo-
ration/evaluation procedure on its respective part of the neighborhood and sends back
the best, or first improving, neighbor found. The master waits for all slaves to terminate
their computations, selects the best move and proceeds with the search. See, e.g., Garcia
et al. (1994) and Porto and Ribeiro (1996) for applications of this strategy to tabu search
meta-heuristics for the vehicle routing problem with time-window constraints (VRPTW)
and the scheduling dependent tasks on heterogeneous processors, respectively.

The appropriate granularity of the decomposition, that is the size of the tasks, de-
pends upon the particular problem and computer architecture, but may generally be
computationally sensitive to inter-processor communication times and work-load balanc-
ing. Thus, for example, Davidovi¢ and Crainic (2015) discusses several decomposition
policies for the permutation-based Local Search neighborhood applied to scheduling de-
pendent tasks on homogeneous processors and show that the uniform partition usually
called upon in the literature is not appropriate in this context characterized by neigh-
borhoods of different sizes. They also show that a fixed coarse-grained non-uniform
decomposition, while offering superior results, requires calibration each time the problem
size or the number of processors varies.

6 CIRRELT-2015-42



Parallel Meta-Heuristic Search

The best performing strategy was called by the authors dynamic fine-grained. 1t
defines each neighbor evaluation as a single task, the master dynamically dispatching
these on a first-available, first-served basis to slave processors as they complete their
tasks. The strategy partitions the neighborhood into a number of components equal
to the number of available processors, but of unequal size with a content dynamically
determined at each iteration.

The dynamic fine-grained strategy provides maximum flexibility and good load bal-
ancing, particularly when the evaluation of neighbors is of uneven length. The uniform
distribution appears more appropriate when the neighbor evaluations are sensibly the
same, or when the overhead cost of the dynamic strategy for creating and exchanging
tasks appears too high.

Similar observations may be made regarding population-based meta-heuristics. In
theory, all genetic-algorithm operators may be addressed through a 1C/RS/SPSS de-
sign, and the degree on possible parallelism is equal to the population size. In practice,
the computations associated to most operators are not sufficiently heavy to warrant par-
allelization, while overhead costs may significantly reduce the degree of parallelism and
increase the granularity of the tasks. Consequently, the fitness evaluation is often the only
target of 1C/RS/SPSS parallelism for genetic-evolutionary methods, the resulting par-
allel GA being implemented using the master-slave model. Similarly to other 1-control
low-level parallelizations, a 1C/RS/SPSS evolutionary-genetic algorithm performs the
same search as the sequential program, only faster.

The 1C/RS/SPSS parallelism for ant-colony and, more generally, swarm-based meth-
ods lies at the level of the individual ants. Ants share information indirectly through the
pheromone matrix, which is updated once all solutions have been constructed. There are
no modifications of the pheromone matrix during a construction cycle and, thus, each
individual ant performs its solution-construction procedure without data dependencies
on the progress of the other ants.

Most parallel ant-colony methods implement some form of 1C/RS/SPSS strategy ac-
cording to the master-slave model, including Bullnheimer et al. (1999); Doerner et al.
(2004); Rahoual et al. (2002); Randall and Lewis (2002); Talbi et al. (1999). The master
builds tasks consisting of one or several ants (each can be assimilated to a “small” colony)
and distributes them to the available processors. Slaves perform their construction heuris-
tic and return their solution(s) to the master, which updates the pheromone matrix,
returns it to the slaves, and so on. To further speed up computation, the pheromone
update can be partially computed at the level of each slave, each computing the update
associated to its solutions. The fine-grained version with central matrix update has been
the topic of most contributions so far and, in general, it outperformed the sequential ver-
sion of the algorithm. It is acknowledged, however, that it does not scale and, similarly
to other meta-heuristics, this strategy is outperformed by more advanced multi-search
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methods.

Scatter search and path relinking implement different evolution strategies, where a
restricted number of elite solutions are combined, the result being enhanced through a
local search or a full-fledged meta-heuristic, usually neighborhood-based. Consequently,
the 1C/RS/SPSS strategies discussed previously regarding the parallelization of local-
search exploration apply straightforwardly to the present context, as in Garcia-Lopez
et al. (2005, 2006, 2003) for the p-median and the feature-selection problems.

A different 1C/RS/SPSS strategy for scatter search may be obtained by running con-
currently the combination and improvement operators on several subsets of the reference
set. Here, the master generates tasks by extracting a number of solution subsets, which
are sent to slaves. Each slave then combines and improves its solutions, returning its
results to the master for the global update of the reference set. Each subset sent to
a slave may contain exactly the number of solutions required by the combination op-
erator or a higher number. In the former case Garcia-Lopez et al. (2005, 2006, 2003),
the slave performs an “iteration” of the scatter search algorithm. In the latter, several
combination-improvement sequences could be executed and solutions could be returned
to the master as they are found or all together at the end of all sequences. This heavy
load for slaves may conduct to very different computation times and, thus, load-balancing
capabilities should be added to the master.

To conclude, low level, 1-control parallel strategies are particularly attractive when
neighborhoods (populations) are large or neighbor (individual) evaluation procedures
are costly and a significant gain in computing time may be obtained (e.g., the parallel
tabu searches of Chakrapani and Skorin-Kapov (1992, 1993a); Taillard (1991) for the
Quadratic Assignment Problem (QAP), Chakrapani and Skorin-Kapov (1993b) for the
Traveling Salesman Problem (TSP), Porto and Ribeiro (1995, 1996); Porto et al. (2000)
and Davidovi¢ and Crainic (2015) for the task-scheduling problem). More advanced
multi-search strategies generally outperform low-level strategies in most cases. Yet, when
a sufficiently large number of processors is available, it might prove worthy to combine
a 1C/RS/SPSS approach and more sophisticated strategies into hierarchical solution
schemes (e.g., Rego and Roucairol (1996) were low-level parallelism accelerated the move
evaluations of the individual searches engaged into an independent multi-search procedure
for the VRP).

4 Data Decomposition

Domain or search-space decomposition constitutes an intuitively simple and appealing
parallelization strategy, dividing the search space into smaller partial sets, solving the
resulting subproblems by applying the sequential meta-heuristic on each set, collecting
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the respective partial solutions, and reconstructing an entire solution out of the partial
ones. This apparently simple idea may take several forms, however, according to the type
of division performed and the permitted links among the resulting set/subproblems.

The space may be partitioned, yielding disjoint partial sets, or a cover may be defined
allowing a certain amount of overlap among partial sets. Thus, for example, the arc-
design variables of a VRP may be partitioned into customer subsets (including the depot
in each subset), while a cover would allow “close by” customers to belong to two subsets.
The goal generally is to generate independent subproblems, which allows to discard from
each subproblem the variables and constraints not directly involved in its definition.
When this is not possible, e.g., the separated activities share some resources, one may
fix the variables not in the subproblem definition (and thus project the corresponding
constraints). One then still works on a smaller subproblem, but considering the complete
vector of decision variables.

The second element one must consider is the degree of exploration overlap permitted
among subproblems. One must thus decide whether the solution transformations (e.g.,
neighborhood moves or individual crossover) performed within the partial set of a given
subproblem are restricted to that partial set, or may involve variables in neighboring sub-
spaces creating an indirect overlapping of subsets. Strict partitioning strategies restrict
the solvers to their subsets, which results in part of the search space being unreachable and
the parallel meta-heuristic being non-optimal. Explicit or implicit overlapping partially
addresses this issue. Only partially because, to fully ensure that all potential solutions
are reachable, one needs to make overlapping cover the entire search space, which would
negate the benefits of decomposition.

Consequently, strict partitioning or very limited overlapping are the preferred ap-
proaches found in the literature. A re-decomposition feature is generally included to
increase the thoroughness of the search and allow all potential solutions to be exam-
ined. The decomposition is thus modified at regular intervals and the search is restarted
using the new decomposition. This feature provides also the opportunity to define a
non-exhaustive decomposition, i.e., where the union of the subsets is smaller than the
complete search space. A complete-solution reconstruction feature is almost always part
of the procedure.

This strategy is naturally implemented using master-slave 1C/RS schemes, with
MPSS or MPDS search-differentiation. The master process determines the decompo-
sition and sends partial sets to slaves, synchronizes them and collects their solutions,
reconstructs solutions, modifies the decomposition, and determines stopping conditions.
Slaves concurrently and independently perform the search on their assigned partial sets.
Design issues one must address in this context are the length of the exploration available
to slaves, and the reconstruction of global context information (e.g., global tabu list)
out of the partial ones. The extreme case of executing a full meta-heuristic on each
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partial set of the search space (this avoids the context issue), periodically modifying the
partition and re-starting the search, was actually generally used, particularly for prob-
lems for which a large number of iterations can be performed in a relatively short time
and restarting the method with a new decomposition does not require an unreasonable
computational effort (e.g., Fiechter (1994) for the TSP, Laganiere and Mitiche (1995) for
image filtering, and Gendreau et al. (2001) for real-time ambulance fleet management).

In a pC/KS strategy, with MPSS or MPDS search-differentiation, the decomposition is
collegially decided and modified through information exchange phases (e.g., round-robin
or many-to-many exchanges) activated at given synchronization points. Such an approach
was proposed in Taillard (1993) for the VRP, where the customer set was partitioned,
vehicles were allocated to the resulting regions, and each subproblem was solved by an
independent tabu search. All processors stopped after a number of iterations that varied
according to the total number of iterations already performed, and the partition was
modified by exchanging tours, undelivered cities, and empty vehicles between adjacent
processors (corresponding to neighboring regions). At the time, this approach did allow
to address successfully a number of problem instances, but the synchronization inherent
in the design of the strategy hindered its performance. A parallel ant-colony approach
combining this decomposition idea to a master-slave implementation was presented in
Doerner et al. (2005) (parallelizing the algorithm presented in Reimann et al. (2004)),
where the master generates an initial solution, defines the partition, and updates the
global pheromone matrix, while slaves execute a savings-based ant colony algorithm
Reimann et al. (2002) for the resulting restricted VRP.

Data decomposition methods induce different search behavior and solution quality
compared to those of the sequential meta-heuristic. Such methods appear increasingly
needed as the dimensions of contemplated problem instances continue to grow. Given
the increased complexity of the problem settings, work is also required on how to best
combine search-space decomposition and the other parallelization strategies, cooperation
in particular. The Integrative Cooperative Search of Lahrichi et al. (2015) is a step in
this directions (see Section 7 Advanced Cooperation Strategies - Creating Knowledge).

5 Independent Multi-search

Independent multi-search was among the first parallelization strategies proposed in the
literature. It is also the most simple and straightforward p-control parallelization strategy
and generally offers very interesting performances.

Independent multi-search seeks to accelerate the exploration of the search space to-

ward a better solution (compared to sequential search) by initiating simultaneous solvers
from different initial points (with or without different search strategies). It thus par-
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allelizes the multi-start strategy by performing several searches simultaneously on the
entire search space, starting from the same or from different initial solutions, and select-
ing at the end the best among the best solutions obtained by all searches. Independent
multi-search methods thus belong to the pC/RS class of the taxonomy. No attempt is
made to take advantage of the multiple solvers running in parallel other than to identify
the best overall solution at the synchronization moment when all searches stop.

Independent multi-search turns out to be effective, simply because of the sheer quan-
tity of computing power they allow one to apply to a given problem. Formal insights into
the behavior of these strategies may be found in Battiti and Tecchiolli (1992), Taillard
(1994), Stutzle (1998) and ten Eikelder et al. (1999). Empirical efficiency was shown
by many contributions that took advantage of its simplicity of implementation and rel-
atively good performance expectation. pC/RS/MPSS parallelizations of neighborhood-
based meta-heuristics were thus proposed for, e.g., tabu search for the QAP (Battiti and
Tecchiolli, 1992), VRP (Taillard, 1994; Rego and Roucairol, 1996; Talbi et al., 1998) and
production planning (Bock and O., 2000); GRASP for the QAP (Li et al., 1994; Pardalos
et al., 1992, 1995b), the Steiner problem (Martins et al., 2000, 1998), and the 2-path
telecommunication network design (Ribeiro and Rosseti, 2002a,b,c); simulated annealing
for graph partitioning (Banos et al., 2004b,a; Lee and Lee, 1996) and the TSP (Miki
et al., 2003); and variable neighborhood search for the p-median problem Garcia-Lépez
et al. (2002). Independent multi-search pC/RS/MPSS applications to non-genetic evolu-
tionary methods have been proposed for scatter search (Garcia-Lépez et al., 2006, 2003),
as well as for ant-colony optimization for set covering (Rahoual et al., 2002), the TSP
(Stutzle, 1998) and the VRP (Doerner et al., 2006). Similar performance was observed
for genetic methods with full-sized populations (Cohoon et al., 1991a,b), which avoided
the premature convergence observed for pC/RS independent multi-search GA with small-
sized populations obtained by separating the initial population among the independent
GA searches (e.g., Herdy (1992); Schlierkamp-Voosen and Miihlenbein (1994)).

Independent multi-search offers an easy access to parallel meta-heuristic computation,
offering a tool when looking for a “good” solution without investment in methodological
development or actual coding. Independent multi-search methods are generally outper-
formed by cooperative strategies, however, the latter integrating mechanisms enabling
the independent solvers to share, during their search, the information their exploration
generates. As explained in the following sections, this sharing and the eventual creation
of new information out of the shared one, yields in most cases a collective output of
superior solutions compared to independent and sequential search.
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6 Cooperative Search

Cooperative multi-search has emerged as one of the most successful meta-heuristic method-
ologies to address hard optimization problems (see, e.g., Talukdar et al. (2003); Alba
(2005); Crainic (2005); Crainic and Hail (2005); Crainic (2008); Crainic and Toulouse
(2008); Talbi (2006); Crainic and Toulouse (2010)). Cooperative search is based on
harnessing the capabilities of several solution methods through cooperation mechanisms
providing the means to share information while addressing the same problem instance
(and create new information out of the exchanged data in advanced settings; see Section
7 Advanced Cooperation Strategies - Creating Knowledge).

Cooperative-search strategies are thus defined by the solver components engaged in
cooperation, the nature of the information shared, and their interaction mechanism. The
solvers define trajectories in the search space from possibly different initial points or
populations, by using possibly different search strategies (including the same method
with different parameter settings or populations). The information-sharing cooperation
mechanism specifies how these independent solvers interact, how the exchanged infor-
mation is used globally (if at all), and how each process acts on the received informa-
tion, using it within its own search and, thus, transforming it before passing it to other
solvers. As further detailed in the following sections, various cooperation mechanisms
have been proposed: diffusion among “neighboring” solution methods arrayed in partic-
ular communication architectures, e.g., fine-grained, cellular GA (e.g., Canti-Paz, 2005;
Luque et al., 2005) and multi-level cooperative search (Toulouse et al., 1999b); direct
exchanges among processes as in coarse-grain, island GA (Cantu-Paz, 2005; Luque et al.,
2005), A-teams (Talukdar et al., 1998, 2003), and Collegial Asynchronous strategies
(Crainic et al., 1997, 1996); indirect exchanges through a common data repository and
management structure such as the adaptive (Rochat and Taillard, 1995; Badeau et al.,
1997; Berger and Barkaoui, 2004) and central memory (Crainic et al., 1996, 1997, 2006a;
Le Bouthillier et al., 2005; Jin et al., 2012, 2014) strategies. The global search behavior
of the cooperative parallel meta-heuristic then emerges from the local interactions among
the independent solvers, yielding a “new” meta-heuristic in its own right (Crainic and
Toulouse, 2008). The similarity between this behavior and that of systems where deci-
sions emerge from interactions among autonomous and equal “colleagues” has inspired
the name collegial associated to cooperative-search strategies in the taxonomy used in
this chapter.

The exchanged information has to be meaningful and timely. The goals are twofold.
First, to enhance the performance of the receiving solvers. Second, to create a global
image of the status of the cooperative search as “complete” as possible, which would
provide the means to guide the global search toward better performance in terms of
computing time and solution quality than the simple concatenation of the results of
the individual solvers. Of course, one desires to achieve these goals without excessive
overhead. Toulouse et al. (1996) proposed a list of fundamental issues to be addressed
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when designing cooperative parallel strategies for meta-heuristics: What information is
exchanged? Between what processes is it exchanged? When is information exchanged?
How is it exchanged? How is the imported data used? Implicit in their taxonomy and
explicitly stated in later papers, the issue of whether the information is modified during
exchanges or whether new information is created completes this list.

“Good” solutions make up the most often exchanged type of information. This usually
takes the form of the local current-best solution of a given solver or the overall best.
The question of when to send such solutions has to be carefully addressed, however,
particularly when the receiving process is supposed to act momentarily on the incoming
information. One should thus avoid sending all local current-best solutions, particularly
when the solver is performing a series of improving moves or generations, as solutions are
generally “similar” and the receiving solvers have no chance to actually act on the in-
coming information. Sending the overall current-best solution to all cooperating solvers
should also be avoided, as it rapidly decreases the diversity of the exploration and, thus,
increases the amount of worthless computational work (many solvers will search within
the same region) and brings an early “convergence” to a not-so-good solution. Sending
out local optima only, exchanging groups of solutions, implementing randomized selection
procedures (generally biased toward good or good-and-diverse solutions) of the solutions
to share, and having the cooperating solvers treat differently the received information
are among the strategies aimed at addressing these issues.

Context information may also profitably be shared, and integrated into the mech-
anisms used to guide the overall search. Context information is routinely collected by
meta-heuristics during their search. It may consist in statistical information relative to
the presence of particular solution elements in improving solutions (e.g., the medium
and long-term memories of tabu search), the impact of particular moves on the search
trajectory (e.g., the scores of the moves of large adaptive neighborhood search), popula-
tion diversity measures, individual resilience across generations, etc. A limited number
of studies indicate the interest of context-information exchanges (see Section 7 Advanced
Cooperation Strategies - Creating Knowledge), but more research is needed on this topic.

Cooperating solvers may communicate and exchange information directly or indi-
rectly. Direct exchanges of information occur either when the concerned solvers agree
on a meeting point in time to share information, or when a solver broadcasts its infor-
mation to one or several other solvers without prior mutual agreement. The latter case
is generally not performing well, except when solvers include costly mechanisms to store
such information without disturbing their own execution until ready to consider it.

Indirect exchanges of information are performed through independent data structures
that become shared sources of information solvers may access according to their own
internal logic to post and retrieve information. Such data structures are known under
various names, e.g., blackboard in computer-science and artificial-intelligence vocabulary;

CIRRELT-2015-42 13



Parallel Meta-Heuristic Search

memory, pool, and data warehouse (the terms reference and elite set are also sometime
used) in the parallel meta-heuristic literature . We use memory in the following.

Centralized memory is the implementation of choice reported in the literature. Dis-
tributed memory mechanisms may be contemplated, where a number of memories are
inter-connected, each servicing a number of solvers. Such hierarchical structures, involv-
ing several layers of solvers and memories, appear interesting when a large number of
processors is to be involved, for integrative cooperation strategies, or when computa-
tions are to take place on grids or loosely coupled distributed systems. Issues related to
data availability, redundancy, and integrity must be then addressed, as well as questions
relative to the balancing of workloads and the volume of information exchanged. More
research in needed on this topic.

The logical intercommunication network corresponding to the selected cooperation
strategy takes the form of a communication graph. A node of the graph represents a
solver or a memory. Edges define the pairs of solvers or of a solver and a memory
that may communicate directly. The projection of the communication graph on the
physical interconnection topology of the parallel computer executing the parallel program
- complete graph, ring, grid, torus, and star are most often encountered in the literature
- is normally part of the implementation process.

When and how information is exchanged specifies how frequently cooperation ac-
tivities are initiated, by whom, and whether all concerned solvers must simultaneously
engage in communications or not. Synchronous and asynchronous communications are
the two classes of communication exchanged, and are discussed in the following sec-
tions. The accumulated knowledge of the field indicates for both classes that exchanges
should not be too frequent to avoid excessive communication overheads and premature
“convergence” to local optima (Toulouse et al., 1996; Crainic et al., 1996, 1997).

We complete this section with three remarks. First, “simple” cooperation designs,
based on synchronization or only exchanging current best solutions, for example, often
appear biased toward intensifying the search in already-explored regions where interesting
solutions have been identified. Diversification capabilities, e.g., probabilistic or diversity-
driven selection of exchanged solutions, are thus an important component of cooperative
p-control strategies.

One also observes that the main principles of cooperative parallel strategies are the
same for neighborhood- and population-based meta-heuristics, even though denomina-
tions and implementation approaches may differ. One thus finds, for example, The terms
coarse and fine-grained island are thus used to identify the amplitude of the population
(large or small, down to single individual eventually, respectively) of participating solvers
in genetic-based cooperation. Similarly, multi colony is the term generally used for co-
operation in the ant-colony community. The next sections are thus structured around
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classes of strategies rather than by meta-heuristic type.

Finally, one should notice that cooperation takes place at two different levels. The
first is the explicit information sharing specified by the design of cooperation mecha-
nism. Implicit cooperation makes up the second level, where information spreads across
the cooperating solvers through a diffusion process and correlated interactions (Toulouse
et al., 1999a, 2004, 1998, 2000). Implicit cooperation is not specified explicitly in the
design of the algorithm. It is thus a bottom up, global emergent phenomenon produced
by the correlated interactions among searches. Important research issues and challenges
are related to how to harness indirect cooperation to enhance the optimization capa-
bilities of cooperative search. For example, how should one select solvers and direct
cooperation mechanisms to yield a system-wide emergent behavior providing an effi-
cient exploration of the solution space from an optimization point of view? We believe
learning and dynamic self-adaptation, at the level of both individual solvers and the
cooperating meta-heuristic, to be part of the answer. Several other areas of research
study systems displaying emergent behaviors, e.g., decentralized autonomic computing,
social robotics, swarm intelligence, clustering logistics activities in supply chains, etc.,
and cross-fertilization appears promising. Empirical and theoretical research in this area
should yield design principles and tools for more powerful (parallel) meta-heuristics.

6.1 Synchronous Cooperation

Synchronous cooperation follows a pC/KS scheme, with any of the SPDS, MPSS or MPDS
search differentiation approaches, where the independent cooperating meta-heuristics
synchronize at particular moments to initiate an information exchange phase. Synchro-
nize here means that every solver but the last stops its activities and waits for all others
to be ready. The synchronization moments may be generated based on conditions exter-
nal to all solvers (e.g., number of iterations since the last synchronization) or detected by
a specially-designated solver. The information exchange phase must be completed before
any solver can restart its exploration from the respective synchronization point.

Synchronization may use a complete communication graph or a more restricted, less
densely connected communication topology, e.g., a ring, torus, or grid graph. Global
exchanges of information among all solvers take place in the former case, while infor-
mation follows a diffusion process through direct local exchanges of information among
neighboring processes. In all cases, the objective is to re-create a state of complete
knowledge at particular moments in the global search and, thus, to hopefully guide it
toward a coordinated evolution toward the desired solution to the problem. This goal is
rarely attained, however, and the price in computing time efficiency may be significant,
as communications cannot be initiated before the slowest solver is ready to start.
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6.1.1 Global information exchanges

Many pC/KS cooperative search meta-heuristics in the literature implement the strategy
according to the master-slave model. The master process, which may or may not include
one of the participating solvers, initiates the other processes, stops them at synchroniza-
tion points, gathers the information to be shared, updates the global data, decides on the
termination of the search and, either effectively terminates it or distributes the shared
information (a good solution, generally, the overall best solution in many cases) to the
solvers for the continuation of the search.

The VNS pC/KS method for the p-median problem proposed in Garcia-Lépez et al.
(2002) followed this idea, as well as the tabu search-based algorithms proposed for the
TSP (Malek et al., 1989), the VRP (using ejection chains, Rego, 2001; Rego and Rou-
cairol, 1996), the QAP (De Falco et al., 1994) and the task mapping problem (De Falco
et al., 1995), the last two contributions attempting to overcome the limitations of the
master-slave implementation by allowing processes, on terminating their local search
phases, to synchronize and exchange best solutions with processes running on neighbor-
ing processors (this idea represents a step toward a “true” pC/KS design using a partial
solution-diffusion process). This idea was also used to implement coarse-grained island-
based cooperating genetic methods (Czech, 2000; Solar et al., 2002), where the mas-
ter stopped the cooperating meta-heuristics to initiate a migration operator exchanging
among the independent populations the best or a small subset of the best individuals
in each. Applied to ant-colony systems (Drias and Ibri, 2003), this strategy divided the
colony into several sub-colonies, each assigned to a different processor. Each indepen-
dent ant-colony meta-heuristic sent to the master its best solution once its ants finished
searching. The master updated the pheromone matrix and started a new search phase.
A more sophisticated pC/KS approach was proposed in Niar and Fréville (1997) for the
0-1 Multi-dimensional Knapsack Problem, where the master dynamically adjusted the
parameters of the cooperating tabu searches according to the results each had obtained
so far. Computational results showed that this dynamic adjustment to be beneficial.

Alternatively, pC/KS schemes can be implemented in “true” collegial fashion by
empowering each cooperating solver to initiate synchronization once it reaches a pre-
determined status. It then broadcasts its data, followed by similar broadcasts performed
by the other solvers. Once all broadcasts are completed and information is shared, each
solver performs its own import procedures on the received data and proceeds with its
exploration of the search space until the next synchronization event.

Such an approach, exchanging the current best solution or group of solutions, was
proposed for simulated annealing Diekmann et al. (1996), where the solvers transmitted
their best solutions every n steps, and re-started the search after updating their respective
best solutions (see also Lee and Lee (1992a,b, 1995, 1996) for the graph partitioning prob-
lem). For tabu search applied to location problems with balancing requirements (Crainic
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et al., 1995, 1996), solvers synchronized after a number of iterations either pre-defined or
dynamically determined. Most synchronous coarse-grained island genetic parallel meth-
ods applied this strategy, migration operators being applied at regular intervals, e.g.,
Wilkerson and Nemer-Preece (1998) for satisfiability problems (the best individual of
each population migrated to replace the worst of the receiving population), Flores et al.
(2003) for multi-objective telecommunication network design with migration following
each generation, and Cohoon et al. (1987, 1991a,b); Lin et al. (1994); Hidalgo et al.
(2003) for graph-partitioning, the later implementing a hierarchical method, where the
fitness computation was performed at the second level (through a master-slave imple-
mentation; the overhead due to the parallelization of the fitness became significant for
larger numbers of processors). A similar strategy was proposed for the multi ant-colony
algorithms (Michels and Middendorf, 1999; Middendorf et al., 2002). Each colony has
its own pheromone matrix and may (homogeneous) or may not (heterogeneous) use the
same update rule. Colonies synchronize after a fixed number of iterations to exchange
elite solutions that are used to update the pheromone matrix of the receiving colony.

Synchronization involved the exchange of not only good solutions but also of impor-
tant search parameters in the pC/RS/MPDS parallel iterated tabu search proposed for
the vehicle routing problem (VRP) (Cordeau and Maischberger, 2012). The iterated
tabu solvers started from a different initial solution and used different search parame-
ters, but synchronized the number of consecutive iterations without improvement used
to determine the stopping moment of the individual improvement phases. This provided
the means to more equally distribute the work among cooperating processes. The solvers
exchanged their best solutions, each solver probabilistically selecting the working solu-
tion for the next improvement phase among the received ones and its own. This methods
proved to be both flexible and efficient for several classes of routing problem settings with
several depots, periodicity of demands, and time windows.

Most studies cite above compared several parallel strategy for the meta-heuristic and
problem setting at hand (Cohoon et al., 1987, 1991a,b; Crainic et al., 1995, 1996; Lee
and Lee, 1992a,b, 1995, 1996; Lin et al., 1994). They contributed to show that syn-
chronous pC/KS strategies with global information exchanges outperform independent
search approaches, as well as the sequential version, particularly with respect to solution
quality. These studies also pointed out, however, the benefit of dynamically-determined
synchronization points, as well as the superiority of asynchronous communications.

6.1.2 Diffusion

The previous strategies are based on global exchanges of information, gathered at syn-
chronization points during the computation and distributed to all search threads. The
interest of global information-sharing strategies resides in the best information available
at the synchronization moment being available to all the solvers involved in cooperation.
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The main drawback results from this same characteristic, however, as solvers relying
heavily on the same information, set of best solutions in most cases, tend to focus on the
same regions of the search space. This generally results in a search lacking in diversity
that, more often than not, proves inefficient.

Synchronized cooperation strategies based on diffusion of information through local
exchanges among “neighboring” solvers have therefore been proposed. Such approaches
are defined on sparse communication graphs displaying a particular topology, e.g. such as
ring, torus, or grid graphs, where each node is directly linked to only a few other nodes.
A solver is then a neighbor of another one in this context if there is a direct link between
the two nodes on which they run, that is, if they run are adjacent in the communication
graph.

Synchronization still means that all solvers stop and exchange information, but here
they perform it with their neighbors exclusively. Consequently, the quantity of informa-
tion each solver processes and relies upon is significantly reduces, while the exchanges
between non-adjacent solvers are performed at the speed of diffusion through possibly
several chains of local exchanges and data modifications.

This idea has been much less explored as the global-exchange strategy, even though
synchronous cooperative mechanisms based on local exchanges and diffusion have a less
negative impact on the diversity of the search-space exploration. A number of applica-
tions were proposed with good results for coarse-grained (Calégari et al., 1997; Tongcheng
and Chundi, 2002) and fine-grained (Alba and Dorronsoro, 2004; Dorronsoro et al., 2007;
Folino et al., 1998b,a; Miihlenbein, 1989, 1991) genetic-based evolutionary methods, as
well as for ant-colony optimization (Middendorf et al., 2002).

Cooperation based on asynchronous information sharing generally outperform syn-
chronous methods, however, and are the topic of the next subsection.

6.2 Asynchronous Cooperation

Asynchronous strategies largely define the “state-of-the-art” in parallel multi-search meta-
heuristics. Solvers initiate asynchronous cooperation activities according to their own
design logic and current internal state only, without coordination with other solvers or
memories. Information sharing then proceeds either by direct inter-solver exchanges or
through a data repository structure. These strategies belong to either the pC/C, this
section, or the pC/KC, next section, collegial classes of the taxonomy, the latter using
the shared information to generate new knowledge and global search guidance.

Two main benefits are obtained when relying on asynchronous communications. First,
this provides the means to build cooperation and information sharing among solvers

18 CIRRELT-2015-42



Parallel Meta-Heuristic Search

without incurring the overheads associated to synchronization. Second, it increases the
adaptability of cooperative meta-heuristics, as their capability to react and dynamically
adapt to the exploration of the search space by the cooperating solvers is significantly
increased compared to the other parallelization strategies. Of course, these benefits come
with potential issues one must care for. For example, the information gathered during
the search will seldom, if ever, be completely available when a process must decide.
Also, too frequent data exchanges, combined to simple acceptance rules for incoming
information, may induce an erratic solver behavior, the corresponding search trajectories
becoming similar to random walks. Hence the interest for applying information-sharing
quality, meaningfulness and parsimony principles (Crainic et al., 1996, 1997; Toulouse
et al., 1996) .

In the basic asynchronous strategies discussed in this section, the shared information
generally corresponds to a locally improving solution or individual(s). Most successful
implementations have their cooperating solvers send out new local optima only. This
limits the quantity of information sent and received, as well as the amount of work
required to process it. Moreover, it avoids the case where a solver reorients it search
from one of a series of improving solutions and ends up developing a trajectory similar
to the one of the solver that originated the data.

The above-mentioned principles also explain the interest in diversifying the shared
information (Crainic et al., 1996). Thus, always selecting the best available solution out
of an elite set of good solutions, sent by potentially different solvers, proved less efficient
in terms of quality of the final solution than a strategy that randomly, biased by quality,
selected among the same elite set.

Finally, when to initiate cooperation activities and how to use incoming information
is particular to each type of meta-heuristic involved in the cooperation. Yet, common
to most strategies proposed in the literature is to perform jointly the sending and re-
questing of information. There is no absolute need to do this, however, even though
it might decrease the amount of communication work. It might thus be interesting for
neighborhood-based methods to make available right away their newly found local op-
tima or improved overall solution, and not wait for the algorithmic step where examining
external information is appropriate. Similarly, population-based methods could migrate
a number of individuals when a significant improvement is observed in the quality and
diversity of their elite group of individuals.

With respect to when to request external information, the parsimony principle im-
plies limiting them to moments when the status of the search changes significantly, such
as, when the best solution or the elite subpopulation did not improve for a number of
iterations. The solver then engages into a so-called search-diversification phase, e.g.,
diversification in tabu search, change of neighborhood in variable neighborhood search,
and complete or partial re-generation of population in population-based meta-heuristics,
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involving the choice or modification of the solution to initiate the new phase. Examining
the contribution of external information is appropriate in this context. Notice that it is al-
ways possible to use simply a pre-fixed number of iterations to initiating communications,
but this approach should be restricted to meta-heuristics without search-diversification
steps, e.g., tabu search based on continuous diversification.

Direct-exchange strategies are generally implemented over a complete communication
graph, each solver sending out information to all other solvers or to a subset of them;
this subset may be pre-defined or selected dynamically during the search. Particular
communication graphs and information-diffusion processes could also be used but, despite
encouraging results, too few experiments have been reported yet. We mention the work of
Sevkli and Aydin (2007) proposing VNS pC/C strategies over uni and bidirectional ring
topologies. Each solver was executing the basic VNS steps and on competing them, was
passing its solution to its next neighbor (uni) or its two neighbors (bi), while receiving
a solution fro its predecessor neighbor (uni) or its two neighbors (bi). The received
solution was kept as initial solution of the next VNS run in the unidirectional case, while
the best of the two received ones and the local one was kept in the bidirectional ring
implementation. The latter strategy proved the most successful.

Information exchanges within pC/C strategies based on indirect communications are
generally performed through a data repository structure, often called central memory
(Crainic, 2005; Crainic et al., 1996, 1997). A solver involved in such a cooperation
deposits (sends) good solutions, local optima generally, into the central memory, from
where, when needed, it also retrieves information sent by the other cooperating solvers.
The central memory accepts incoming solutions for as long as it is not full, acceptance
becoming conditional to the relative interest of the incoming solution compared to the
“worst” solution in the memory, otherwise. Evaluation is performed using the evaluation
function for the global search space (or the objective function of the original problem).
Diversity criteria are increasingly considered is this evaluation, a slightly worst solution
being preferred if it increases the diversity of solutions in the central memory. Population
culling may also be performed (deleting, e.g., the worst half the solutions in memory).

Both approaches may be applied to any meta-heuristic but, historically, most pC/C
genetic-based evolutionary asynchronous cooperative meta-heuristics implemented a coarse-
grained island model with with direct inter-solver exchanges. An early comparative study
of coarse-grained parallel genetic methods for the graph-partitioning problem numerically
showed the superiority of the pC/C strategy (with migration toward a subset of popula-
tions) over synchronous approaches (Lin et al., 1994).

The indirect-exchange communication model is found at the core of most asyn-
chronous cooperative search strategies outside the genetic-evolutionary community, in-
cluding simulated-annealing for graph partitioning (Lee and Lee, 1992a, 1995, 1992b,
1996) and the TSP (Sanvicente-Sanchez and Frausto-Solis, 2002), and VNS applied to
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the VRPTW (Polacek et al., 2008) and the p-median problem (Crainic et al., 2004). A
master process was associated to the central memory in the latter method, which kept,
updated, and communicated the current overall best solution (it also initiated and ter-
minated the algorithm). Individual solvers proceeded with the VNS exploration for as
long as the solution was improved. When this was no longer the case, the current best
was communicated to the master (if better than the one at the last communication)
and the overall best solution was requested from it. The best solution between the lo-
cal and imported ones was selected and the search was then continued in the current
(local) neighborhood. Computational results on TSPLIB problem instances with up to
11849 customers showed that the cooperative strategy yielded significant gains in terms
of computation time without loosing on solution quality.

Apparently, Crainic et al. (1996) proposed the first central-memory asynchronous
tabu search. The tabu search solvers addressed a multi-commodity location problem
with balancing requirements. Each sent to the memory its local-best solution when im-
proved and imported a probabilistically-selected (rank-biased) solution from the memory
before engaging in a diversification phase, This method outperformed in terms of solu-
tion quality the sequential version, several synchronous variants, and a broadcast-based
asynchronous pC/C cooperative strategy. The same approach was applied to the fixed
cost, capacitated, multicommodity network design problem with similar results (Crainic
and Gendreau, 2002). Similar approaches were proposed for a broad range of problem
settings, including the partitioning of integrated circuits for logical testing (Aiex et al.,
1998), two-dimensional cutting (Blazewicz et al., 2004), the loading of containers (Bort-
feldt et al., 2003), labor-constrained scheduling (Cavalcante et al., 2002), the VRPTW
(Le Bouthillier and Crainic, 2005) and the capacitated VRP (Jin et al., 2012).

Solvers involved in pC/C strategies may not be restricted to a single meta-heuristic.
Thus, the solvers in the two-phase approach of Gehring and Homberger (1997, 2001,
2002); Homberger and Gehring (1999) for the VRPTW first applies an evolution strategy
to reduce the number of vehicles, followed by a tabu search to minimize the total distance
traveled. A different version of the same idea may be found in Bastos and Ribeiro
(1999) for the Steiner problem, where each phase of the two phase is designed as a pC/C
asynchronous central memory strategy, only the change from one phase to the next being
synchronized. Solvers run reactive tabu search and path relinking meta-heuristics in the
first and second phases respectively.

The multi-level cooperative search proposes a different pC/C asynchronous coopera-
tive strategy based on controlled diffusion of information Toulouse et al. (1999b). Solvers
are arrayed in a linear, conceptually vertical, communication graph and a local memory
is associated to each. Each solver works on the original problem but at a different level
of aggregation (the solver on the conceptually first level works on the complete origi-
nal problem) and communicates exclusively with the solvers directly above and bellow
that is, at higher and lower aggregation levels respectively. The local memories are used
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to make send information to the immediate neighbors and to access the incoming data
from the same, at moments dynamically determined according to the internal logic of
the respective solver. In the original implementation, solvers were exchanging improved
solutions, incoming solutions not being transmitted further until modified locally for a
number of iterations to enforce the controlled diffusion of information. Excellent results
have been obtained for various problem settings including graph and hypergraph par-
titioning problems Ouyang et al. (2000, 2002), network design Crainic et al. (2006b),
feature selection in biomedical data Oduntan et al. (2008), and covering design Dai et al.
(2009). It is noteworthy that one can implement multi-level cooperative search using a
central memory by adequately defining the communication protocols. Also not yet fully
defined and tested, this idea is interesting as it opens the possibility of richer exchanges
mechanisms combining controlled diffusion and general availability of global information.

The central-memory pC/C asynchronous cooperation strategy has proved worthy by
several criteria. It yields high-quality solutions and is computationally efficient as no
overhead is incurred for synchronization. It also helps to address the issue of “premature
convergence” in cooperative search, by diversifying the information received by the par-
ticipating solvers through probabilistic selection from the memory and by a somewhat
large and diverse population of solutions in that central memory (solvers may thus im-
port different solutions even when their cooperation activities are taking place within a
short time span).

The performance of the central-memory cooperation and the availability of exchanged
information (kept in the memory) has brought the question of whether one could design
more advanced cooperation mechanisms taking advantage of the information exchanged
among cooperating solvers. The pC/KC described in the next section are the result of
this area of research.

7 Advanced Cooperation Strategies - Creating New
Knowledge

Cooperation and, in particular, the memory-based asynchronous strategy was offering a
rich framework to combine solvers of different meta-heuristic and exact types, together
with a population of elite solutions of continuously increased quality. But, was it worth-
while the development effort?

An interesting proof-of-concept come from the study of Crainic and Gendreau (1999)
combining a genetic-method solver and an asynchronous pC/C tabu search for multicom-
modity location-allocation with balancing requirements (Crainic et al., 1996). The tabu
search solvers were aggressively exploring the search space, building the elite solution
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population in the central memory. The genetic method initialized its population with
the one in the central memory once it contained a certain number of solutions. Its aim
was to create new solutions to hopefully enrich the quality and diversity of the solutions
exchanged among the cooperating solvers. Asynchronous migration transferred the best
solution of the genetic population to the central memory, as well as solutions from the
central memory toward the genetic population. This strategy did perform well, especially
on larger instances. Most importantly, it showed that, while the overall best solution was
never found by the genetic solver, the GA-enhanced cooperation yielded higher-quality
solutions compared to the initial cooperation. It appeared that the newly created solu-
tions offered a more diverse set of diversification opportunities to the tabu search solvers,
translating into a more diverse global search yielding better solutions.

The conclusion was not only that it is worthwhile to involve solvers of different types
in the cooperation, but also that it is beneficial to create new solutions out of the set of
elite solutions in the central memory. The new solutions are different from their parent
solutions and are added to the central memory if they improve compared to them. The
process is thus doubly beneficial as better solutions in the memory directly enhance the
quality of the global search, while increasing the diversity of solutions in memory provides
the opportunity for cooperating solvers to explore new regions of the search space.

A second idea on developing advanced cooperation mechanisms concerned the infor-
mation that may be extracted from the exchanged solutions, and the context information,
eventually. It has thus been observed that optimal or near-optimal solutions are often
similar in the values taken by a large number of variables. Moreover, it is well-known in
the meta-heuristic field that one can learn from the characteristics of the solutions gener-
ated during the search, out of the best ones in particular, and use this learning to guide
the search (see, for example, the studies on memory and learning performed for tabu
search (Glover and Laguna, 1997)). Applied to cooperative search, it appeared promis-
ing to apply these learning techniques to the elite solutions in the population gradually
built in the central memory, and to use the resulting information to guide the search
performed by the cooperating solvers.

Asynchronous cooperative strategies that include mechanisms to create new solutions
and to extract information out of the exchanged solutions make up the p-control knowl-
edge collegial (pC/KC) class. In most developments in this field, cooperating solvers work
on the complete problem formulation and data. A recent research trend addresses rich
multi-attribute problem settings and propose pC/KC strategies where different solvers
work on particular parts of the initial problem or on integrating the resulting partial
solutions into complete ones. The next subsections describe these two cases.

CIRRELT-2015-42 23



Parallel Meta-Heuristic Search

7.1 pC/KC with solvers working on the complete problem

Two main classes of pC/KC cooperative mechanisms are found in the literature differing
in the information that is kept in memory. Adaptive-memory methods store partial
elements of good solutions (Rochat and Taillard, 1995), while complete ones are kept
in central-memory methods (Crainic, 2005; Crainic and Toulouse, 2003; Crainic et al.,
1996). The latter method generalizes the former and, the vocabulary used in the various
papers not withstanding, the two approaches are becoming increasingly unified.

The adaptive-memory terminology was coined by Rochat and Taillard (1995) (see
also (Glover, 1996; Taillard et al., 1997, 1998)). The method was targeting the VRP
and the VRPTW and it marked a changing point in the state-of-the-art at the time.
The main idea is to keep in the memory the individual components (vehicle routes in
the initial application) of the solutions produced by the cooperating solvers (tabu search
methods in Rochat and Taillard (1995)). Two types of information were recorded for
each solution element kept in memory, a frequency counter of its appearance in the best
solutions encountered so far, and its rank within the elite population in memory based
on the characteristics (mainly the objective function value) of the solution from which it
as extracted. Solvers constructed new complete solutions out of randomly (rank biased)
selected partial elements, improved these new solutions, and returned the best ones to the
memory. The rank-biased random selection of elements assured that the new solution is
composed in most cases of routes from different elite solutions, thus inducing a powerful
diversification effect.

Several interesting developments were proposed and conclusions were drawn within
the context of successful adaptive-memory pC/KC algorithms. A set-covering heuristic
was thus proposed as selection mechanism for the elements (VRPTW routes) used by
solvers to generate new initial solutions (Schulze and Fahle, 1999). This mechanism
proved very successful and has been used several times since (e.g., Groér and Golden
(2011)). A two-level parallel scheme was proposed for the real-time vehicle routing and
dispatching (Gendreau et al., 1999). A pC/KC/MPSS cooperating adaptive-memory
method made up the first level, while the slave processors attached to each solver, a tabu
search method based on route decomposition (Taillard, 1993), made up the second level.
The performance of this method is noteworthy also because while many papers mention
the possibility of hierarchical parallel schemes, very few actually implementations are
found in the literature. Also for the VRPTW, the adaptive-memory approach of Badeau
et al. (1997) yielded a number of interesting findings relative to the implementation of
cooperative methods. Thus, when individual solvers are fast, as is generally the case for
routing problems, it is beneficial to run several solvers on the same processor and group
the exchanges with the central-adaptive memory (avoiding or reducing access bottlenecks
to the latter). On the other hand, running the memory and solvers on the same processor
is to be avoided (the solver execution reduces the response efficiency of the memory).
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Solvers in central-memory methods indirectly exchange complete elite solutions and
context information through the central-memory data repository device. Solvers may in-
clude constructive, improving and post-optimization heuristics (e.g., Le Bouthillier and
Crainic (2005); Le Bouthillier et al. (2005)), neighborhood (e.g., tabu search (Di Chiara,
2006; Jin et al., 2012, 2014)) and population-based methods (e.g., genetic algorithms
(Le Bouthillier and Crainic, 2005; Le Bouthillier et al., 2005; Di Chiara, 2006) and path
relinking (Crainic et al., 2006a)), as well as exact solution methods, on restricted versions
of the problem, eventually. The particular solvers to include depend on the particular
application. They should be efficient for the problem at hand. They should also con-
tribute to built and enhance solutions that may contribute to enhance both the quality
and the diversity of the elite population being built in the central memory.

The central memory keeps full solutions, solution attributes and context information,
both received from the solvers and newly created out of the exchanged information.
To more clearly distinguish between the data warehousing and the information creating
functions of central-memory mechanisms, we define the Search Coordinator (SC) as the
process in charge of the latter function. The simplest version of the SC was used in
the pC/C strategies of the previous section, where solutions in memory were ordered
(generally according to the value of the objective function) and rank-biased randomly
extracted to answer solver requests. The functions of the SC in pC/KC methods include
creating new solutions, extracting appropriate solution elements, building statistics on
the presence and performance of solutions, solutions elements, and solvers (these belong
to the family of memories well-known in the meta-heuristic community), creating the
information to return when answering solver requests (the latter are the so-called guidance
mechanisms).

The cooperative meta-heuristic proposed by Le Bouthillier and Crainic (2005) for
the VRPTW used a simple pC/KC mechanisms. Four solvers, two simple genetic algo-
rithms with order and edge recombination crossovers, respectively, and two tabu search
methods that perform well sequentially, the Unified Tabu (Cordeau et al., 2001) and
TABUROUTE (Gendreau et al., 1994). The solvers sent their improved best solutions
to the central memory and requested solutions from the same when needed (the genetic
algorithms for crossover operations, at regular intervals for the Unified Tabu and at diver-
sification time for TABUROUTE). Besides ordering and selecting the solutions to return,
the SC was only performing post-optimization (2-opt, 3-opt, or-opt, and ejection-chain
procedures used to reduce the number of vehicles and the total traveled distance) on
the received solutions. Without any calibration or tailoring, this algorithm proved to be
competitive with the best meta-heuristics of its day in linear speedups.

A more complete SC was proposed in Le Bouthillier et al. (2005) also for the VRPTW.
The goal was for a guidance mechanism that, first, extracted and returned to solvers
meaningful information in terms of individual guidance and global search performance
an, second, was independent of problem characteristics, routes in particular, and could
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be broadly applied to network-based problem settings. To work toward the second goal,
the SC mechanism targeted an atomic element on network optimization, the arc. The
basic idea of the SC mechanism was that an arc that appears often in good solutions
and less frequently in bad solutions may be worthy of consideration for inclusion in
a tentative solution, and vice versa. To implement this idea, the authors considered
“Appearance” was measured by means of frequencies of inclusion of arcs in the elite
(e.g., the 10% best), average (between the 10% and 90% best), and worst (the last 10%)
groups of solutions in the central memory. Patterns of arcs were then defined representing
subsets of arcs (not necessarily adjacent) with similar frequencies of inclusion in particular
population groups. Guidance was obtained by transmitting arc patterns to the individual
solvers indicating whether the arcs in the pattern should be “fixed” or “prohibited” to
intensify or diversify the search, respectively. The solvers accounted for the “fix” and
“prohibit” instructions by using the patterns to bias the selection of arcs for move or
reproduction operations A four-phase fixed schedule (two phases of diversification at the
beginning to broaden the search, followed by two intensification phases to focus the search
around promising regions) was used (see Le Bouthillier (2007) for a dynamic version of
this mechanism). Excellent performances in terms of solution quality and computing
efficiency were observed compared to the best-performing methods of the day.

A different SC was proposed in Jin et al. (2014) for the capacitated VRP with tabu
search solvers. Solvers periodically (after a number of iterations or when the solution
has not been improved for a number of iterations) sent best solutions and received a
solution back from the central memory from which the search was resumed. The SC
mechanism aimed to identify and extract information from the solutions in memory to
guide solvers toward intensification and diversification phases. This was obtained by
clustering solutions, dynamically when solutions were received, according to the number
of edges in common. Thus solutions in a given cluster have a given number of edges
in common and it is assumed to represent a region of the search space. Search history
indicators were also associated to clusters giving the number of solutions in the cluster
and the quality of the solutions. This information was used to infer how thoroughly the
corresponding region had been explored and how promising it appeared. Clusters were
actually sorted according to the average solution value of their feasible solutions. The
cluster with the lowest average value, that is, with a large number of very good solutions,
was selected for intensification, while the on with the lowest number of solutions was
selected for diversification. A solution is selected in the corresponding cluster and it is
sent to the requesting solver. Excellent results were obtained in terms of solution quality
and computation effort (an almost linear speedup wa observed up to 240 processors)
compared to the stat-o-the-art methods of the day (including the parallel method of
Groér and Golden (2011)).

A pC/KC/MPDS method proposed in Groér and Golden (2011) for the VRP demon-

strates how specialized solvers may address different issues in a cooperative meta-heuristic,
including the generation of new knowledge. Two types of solvers were defined in this
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scheme. The so-called heuristic solvers improved solutions received from the SC asso-
ciated to the central memory (called master in Groér and Golden (2011)), through a
record-to-record meta-heuristic (Chao et al., 1995; Golden et al., 1998; Li et al., 2005).
On completing the task, solvers return both a number (50) of the best solutions found
and the corresponding routes (a post-optimization procedure is run first o each route).
Simultaneously, set-covering solvers aim to identify new solutions by solving series of set
covering problems starting from a limited set of routes. Each time a set covering problem
is solved, the solution is returned to the central memory and the set of the current 10 best
solutions is retrieved and for the next run. Set-covering solvers have also access to the
ordered list of best routes in memory and they select within to complete their problems.
The number of routes admitted to set up a set covering problem is dynamically modified
during the search to control the corresponding computational effort. The SC keeps and
orders the received solutions and routes, and selects the solutions to make available to
solvers (routes are always available; an efficient file system is used to facilitate access
to this data). The method performed very well, both in terms of solution quality and
computational effort (an almost-linear speedup was observed).

The contributions described in this section emphasize the interest of asynchronous
knowledge-generating cooperative meta-heuristics. The cooperation and guidance mech-
anisms, as well as the role of learning an statistical performance data, require additional
and systematic studies, preferably on a broader range of problem settings. The contri-
butions aimed at addressing multi-attribute problem settings are described in the next
subsection.

7.2 pC/KC with partial solvers - The Integrative Cooperative
Search

The versatility and flexibility of the central-memory concept has raised the interest in
generalizing it to address so-called rich combinatorial optimization problems display-
ing a large number of attributes characterizing their feasibility and optimality struc-
tures. The general idea is to decompose the initial problem formulation along sets of
decision variables, called decision-set attribute decomposition in Lahrichi et al. (2015),
yielding simpler but meaningful problem settings, in the sense that efficient solvers, can
be “easily” obtained for these partial problems either by opportunistically using exist-
ing high-performing methods or by developing new ones. The central-memory coop-
erative search framework then brings together these partial problems and their associ-
ated solvers, together with integration mechanisms reconstructing complete solutions and
search-guidance mechanisms.

The first effort in this direction is probably the work of Crainic et al. (2006a) (see
also Di Chiara (2006)) for the design of wireless networks, where seven attributes were
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considered simultaneously. The proposed pC/KC/MPDS cooperative meta-heuristic had
tabu search solvers work on limited subsets of attributes only, while a genetic method
amalgamated the partial solutions sent by the tabu search solvers to the central memory,
into complete solutions to the initial problem.

The general method, called Integrative Cooperative Search ICS) by its authors has
been fully defined in Lahrichi et al. (2015) (see also Crainic et al. (2009a,b)). We follow
Lahrichi et al. (2015) in presenting an overview of ICS through an application to the
multi-depot periodic vehicle routing problem (MDPVRP), which simultaneously decides
on 1) selecting a visit pattern for each customer, specifying the particular periods the
customer is to be visited over the multi-period planning horizon, and 2) assigning each
customer to a depot for each visit (Mingozzi, 2005; Vidal et al., 2012).

The main components of ICS, which must be instantiated for each application, are the
1) decomposition rule; 2) Partial Solver Groups (PSGs) addressing the partial problems
resulting from the decomposition; 3) integrators, which select partial solutions from PSGs,
combine them to create complete ones, and sent them to the Complete Solver Group
(CSG); and 4) the CSG, which corresponds to the central memory of ICS and has as
prime function to manage the pool of complete solutions and the context information
received from the PSGs and integrators, and to extract out of these the information
required to guide the partial and global searches. Guidance is performed by the Global
Search Coordinator (GSC') associated to the CSG. Notice that, in order to facilitate the
cooperation, a unique solution representation is used throughout ICS. This representation
is obtained by fixing rather than eliminating variables when defining partial problems.

The selection of the decision-sets is specific to each application case, decision vari-
ables being clustered to yield known or identifiable optimization problem settings. An
opportunistic selection decomposes the MDPVRP along the depot and period decision
sets to create two partial problems. Thus, ixing the customer-to-depot assignments yields
a periodic VRP (PVRP), while fixing the patterns for all customers yields a multi-depot
VRP (MDVRP). High-quality solvers exist in the literature for both problems.

Two PSGs are defined for the partial problems, one for the PVRP and the other
for the MDVRP. Each PSG is organized according to the pC/KC paradigm and is thus
composed of a set of Partial Solvers, a central memory where elite solutions are kept, and
a Local Search Coordinator (LSC) managing the central memory and interfacing with
the Global Search Coordinator.

Two algorithms were used in the implementation described in Lahrichi et al. (2015) for
both complete or partial solvers, the HGSADC of Vidal et al. (2012) and GUTS, a gener-
alized version of the Unified Tabu Search (Cordeau et al., 2001). Briefly, HGSADC com-
bines the exploration capability of population-based evolutionary search, the aggressive-
improvement strength of neighborhood-based local search to enhance solutions newly
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created by genetic operators, and a solution evaluation function driven by both solution
quality and contribution to the population diversity, which contributes to progress toward
diverse and good solutions. GUTS is a tabu search-based meta-heuristic implementing
advanced insertion neighborhoods and allowing the exploration of unfeasible solutions
by dynamically adjusting penalties on violations of vehicle capacity and route duration
constraints. Both methods use relaxation of vehicle-capacity and route-duration con-
straints combined to penalization of infeasibilities in the evaluation function. They also
use well-known VRP local neighborhoods based on pattern-change, depot-change, inter
and intra-route movements.

Integrators build complete solutions by mixing partial solutions with promising fea-
tures obtained within the PSGs. Integrators aim for solution quality, the transmission of
critical features extracted from the partial solutions, and computational efficiency. Sev-
eral Integrators can be involved in an ICS implementation, contributing to these goals
and increasing the diversity of the population of complete solutions.

The simplest Integrator consists in selecting high-quality partial solutions (with re-
spect to solution value or the inclusion of particular decision combinations) and passing
them directly to the Complete Solver Group. Meta-heuristics, population-based methods
in particular, e.g., genetic algorithms (Vidal et al., 2012) and path relinking (Rahimi Va-
hed et al., 2013), my also be used, having proved their flexibility and stability in combin-
ing solution characteristics to yield high-quality solutions. Finally, a new methodology
was proposed recently (El Hachemi et al., 2014). It proceeds through particular optimiza-
tion models that preserve desired critical variables, defined as the variables whose values
in the respective solution represent desired attributes, present in the partial solutions.

Four Integrators were included in the MDPVRP application, the simple one passing
good solutions to the CSG, and three others starting from pairs of partial solutions
randomly selected among the best 25% of the solutions in the central memories of the two
PSGs. The second Integrator applied the crossover operator of HGSADC and enhanced
the new solution through the local search education operator of the same method. The
third and fourth Integrators applied the methodology of El Hachemi et al. (2014), the
former aiming to transmit the attributes for which there is “consensus” in the input
solutions, while the latter “promotes” them only through penalties added to the objective
function.

The Complete Solver Group (CSG) includes a central memory, which includes the
complete-solution set, as well as the context information and the guiding solutions built
by the Global Search Coordinator (GSC). The CSG receives complete solutions from
Integrators and, when solvers are included (e.g., GUTS and HGSADC in the present
case), enhances them thus creating new ones. It is the Global Search Coordinator which
builds the search contextual information (e.g., the frequency of appearance of each (cus-
tomer, depot, pattern) triplet in the complete solution set, together with the cost of the
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best solution containing it), 2) builds new guiding solutions to orient the search towards
promising features, and 3) monitors the status of the solver groups, sending guiding
instructions (solutions) when necessary.

Monitoring is performed by following the evolution of the PSGs by, e.g., interrogating
the central memories of the PSGs for the number of improving solutions generated dur-
ing a certain time period. Monitoring provides the means to detect undesired situations,
e.g., loss of diversity in the partial or complete populations, stagnation in improving the
quality of the current best solution, awareness that some zones of the solution space -
defined by particular values for particular decision sets - have been scarcely explored, if at
all, and that the search should be diversified in that direction, and so on. Whenever one
of these criteria is not fulfilled, the GSC sends guidance “instructions” to the particular
PSG. The particular type of guidance is application specific, but one may modify the
values of the fixed attributes for the PSG to orient its search toward a different area or,
more rarely, change the attribute subset under investigation (i.e., change the decompo-
sition of the decision-set attributes), or modify/replace the solution method in a Partial
Solver or Integrator.

In the present case, the GSC guided the search trajectory of a particular PSG by send-
ing three solutions, which are either randomly selected (equiprobably) from the complete
solution set, or are three guiding solutions built by the GSC. The receiving PSG adds
directly these solutions to its own central memory, after resetting its population, all
solutions being replaced by new randomly-generated ones. Guiding solutions were con-
tinuously generated, and stored in a particular pool, to reflect the current status and
the history of the search represented by the context information. The process proceeded
by selecting promising triplets with respect to the search history, that is, triplets that
appear in at least one complete solution with a cost close (less than 3% distant) to the
current best solution. The promising triplets are used to create feasible pattern and de-
pot customer assignments, routes being then generated by the local search of HGSADC
to complete the solutions. These solutions are then individually enhanced by a short

execution of GUTS or HGSADC.

Extensive experimental analyses were conducted to 1) assess the performance of ICS
when compared to state-of-the-art sequential methods and, 2) investigate a number of
implementation alternatives.

The general conclusions were that ICS performed extremely well. It obtained very
good results even when compared to the state-of-the-art HGSADC meta-heuristic, ob-
taining several new best-known solutions in shorter computing times. The experiments
also indicated that 1) one should use solvers displaying similar time performances in or-
der to have all solvers contributing reasonably equally to the cooperation; 2) when using
genetic solvers in a PSG it is preferable for long runs to define a local population for
each such solver and reserve the central memory of the PSG for communications and
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guidance only, while using the central memory as population for all cooperating genetic
solvers is better for short runs; and 3) embedding good solvers (HGSADC in the present
case) in the CSG enhances slightly the already excellent performance of the ICS parallel
meta-heuristic.

8 Perspectives

We presented a overview and state-of-the-art survey of the main parallel meta-heuristic
ideas, discussing general concepts and algorithm design principle and strategies. The
presentation was structured along the lines of a taxonomy of parallel meta-heuristics,
which provides a rich framework for analyzing these design principles and strategies,
reviewing the literature, and identifying trends and promising research directions.

Four main classes of parallel meta-heuristics strategies may be identified: low-level
decomposition of computing-intensive tasks with no modification to the original al-
gorithm, decomposition of the search space, independent multi-search, and coopera-
tive (multi) search, the later encompassing synchronous, asynchronous collegial and
knowledge-creating asynchronous collegial., It is noteworthy that this series also reflects
the historical sequence of the development of parallel meta-heuristics. One should also
note that, while the initial developments targeted genetic methods, simulated annealing,
and tabu search, research is not addressing the full range of meta-heuristics. Further-
more, parallel meta-heuristics, cooperative search in particular, are know acknowledged
as making up thir own class of meta-heuristics.

Many important research questions and challenges exist for parallel meta-heuristics,
in terms of general design methodology, instantiation to particular meta-heuristic frame-
works and problem settings, and implementation on various computing architectures.

It is indeed noteworthy that despite the many years of research on these issues, there
are still many gaps in knowledge, as well as in the studied meta-heuristic frameworks and
problem classes. One may single out the many variants of swarm-based optimization and
non-genetic population based methods, scatter search and path relinking in particular.
But one should not overlook the more classic meta-heuristic classes, as one still misses
systematic and comprehensive / comparative studies of these issues. A large part of
the studies present in the literature, targeted combinatorial optimization problems with
relatively few attributes and a single level of decision variables, e.g., vehicle routing
problems. This is to be understood, these problems being important for science and
practice and displaying large search spaces. Significant less research has been dedicated
to multi-attribute problem settings, like the rich VRP one increasingly has to tackle,
and formulations with several levels of decisions like the single and multi-level network
design.
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We miss not only studies targeting particular meta-heuristic frameworks and problem
classes, but also transversal studies comparing the behavior and performance of particular
parallel meta-heuristic strategies over different problem classes, and of different parallel
strategies and implementations for the same problem class. One increasingly finds such
studies for sequential solution methods, we need them for parallel methods.

With respect to the four strategy classes, one should not forget that each fulfills a
particular type of task and all are needed at some time. Thus, the idea that everything
seems to be known regarding low-level parallelization strategies is no true. First, most
studies on accelerating computing-intensive tasks targeted the evaluation of a population
or neighborhood is classic meta-heuristic frameworks. These techniques should prove very
valuable for swarm-based optimization and more research is required in this field. Second,
as shown in recent studies, the best strategy to accelerate a local-search procedure may
prove less effective when the local search is embedded into a full meta-heuristics or
hierarchical solution methods. Third, the evolution of computing infrastructures opens
up interesting but challenging perspectives. Let’s emphasize the possibilities offered in
particular by the Graphic Processing Units, which increase continuously in power and
are present everywhere, as surveyed in Brodtkorb et al. (2013a,b).

Search-space decomposition also seems to have been thoroughly studied, and has been
overlooked in the last years. Maybe due to the rapid and phenomenal increase in the
memory available and the speed of access. Let’s not forget, however, that most opti-
mization problems of interest are complex and that the dimensions of the instances one
faces in practice keep increasing. Research challenges exist in dynamic search-space de-
composition and the combination of cooperative search and search-space decomposition.
The Integrative Cooperative Search is a first answer in this direction, but more research
is needed.

Asynchronous cooperation, particularly when relaying on memories as inter-solver
communication mechanisms, provides a powerful, flexible and adaptable framework for
parallel meta-heuristics that consistently achieved good results in terms of computing
efficiency and solution quality for many meta-heuristic and problem classes. Other than
the general research issues discussed above that are of particular interest in this context,
a number of additional research issues and challenges are worth investigating.

A first issue concerns the exchange and utilization of context data locally generated
by the cooperating solvers, to infer an image of the status of the global search and
generate appropriate guiding instructions. Thus, contrasting the various local context
data may be used to identify regions of the search space that were neglected or over
explored. The information could also be used to evaluate the relative performance of the
solvers conducting, eventually, to adjust the search parameters of particular solvers or
even change the search strategy. So-called “strategic” decision variables or parameters
could thus be more easily identified, which could prove very profitable in terms of search
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guidance.

A related issue concerns the learning processes and the creation of new information
out of the shared data. Important questions concern the identification of information
that may be derived from the exchanged solutions and context information, and which
is meaningful for, on the one hand, evaluating the status of the global search and, on the
other hand, send to solvers to guide their own search as part of the global optimization
effort. Research is this direction is still at the very beginning but has already proved its
worth, in particular in the context of the integrative cooperative methods.

A third broad issue concerns the cooperation of different types of meta-heuristics and
of these and exact solution methods. The so-called hybrid and matheuristic methods,
representing the former and latter types of method combinations, respectively, are trendy
in the sequential optimization field. Very few studies explicitly target parallel methods.
How different methods behave when involved in cooperative search and how the latter
behaves given various combinations of methods is an important issue that should yield
valuable insights into the design of parallel meta-heuristic algorithms, Integrative Coop-
erative Search in particular. Actually, more research is required into ICS, both regarding
its structure and components, and its application to various problem settings. A partic-
ularly challenging but fascinating direction for cooperative search and ICS is represented
by the multi-scenario representation of stochastic optimization formulations, for which
almost nothing beyond low-level scenario-decomposition has been proposed.

Finally, the issue of understanding cooperation on some fundamental level, giving
the means to formally define and analyze itm in order to design better, more efficient
algorithms. As mentioned earlier, this work parallels efforts in many other scientific
domains addressing issues related to emerging decision and behavior out of the decisions
and behaviors or several independent entities. Theoretical and empirical work is needed
in order to address this fascinating and difficult question.
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