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Abstract. Due to exorbitant product variety, very limited space, and other factors, 

organizing efficient and timely deliveries of parts and subassemblies to final assembly 

within the factory is one of the most pressing problems of modern mixed-model assembly 

production. Many automobile producers have implemented the so-called “supermarket” 

concept to transfer material to the assembly line frequently and in small lots. 

Supermarkets are decentralized logistics areas on the shop floor where parts are 

intermediately stored for nearby assembly cells, to be ferried there by small transport 

vehicles (called tow trains or tuggers). This paper tackles the operational problem of 

drawing up schedules for these tow trains, such that the assembly line never starves for 

parts while also minimizing in-process inventory, thus satisfying just-in-time goals. We 

present complexity results as well as exact and heuristic solution methods. In a 

computational study, the procedures are shown to perform very well, solving realistic 

instances to (near-) optimality in a matter of minutes. We also provide some managerial 

insight into the right degree of automation for such a part feeding system. 
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1 Introduction

In recent decades, logistics problems have increasingly become the center of attention for
many companies in the automotive sector. This is mostly due to the exorbitant product
variety most automobile producers today o�er, aiming to ful�ll even niche customer
demands. Owing to individually (de-)selectable options (e.g., leather trim or car radio),
the number of theoretically available model variants is in the trillions (Boysen et al.,
2009). Seeing that the production rate of a typical automotive assembly line can easily
approach 1 car per minute, the enormous amount and diversity of parts required in �nal
assembly becomes obvious. It is practically impossible to keep all those parts in stock
at the factory, let alone at the assembly workstations themselves, for any prolonged
amount of time. Consequently, almost all automobile manufacturers implement (or aim
to implement) just-in-time logistics at least for a portion of their supplies, such that parts
are only brought from one production stage to next when and if required.
This puts a heavy strain on the logistics systems as it necessitates a large number

of small-lot deliveries. For example, at the Volkswagen plant in Wolfsburg, up to 750
trucks per day need to be processed (autogramm, 2007); similarly, at the BMW plant in
Dingol�ng 400 trucks, carrying around 13,000 individual shipments, need to be handled
each day (Battini et al., 2013). Just-in-time concerns are especially pressing in �nal
assembly itself, where, on the one hand, space is extremely scarce, prohibiting large
safety stocks, and, on the other hand, even slight delays can have very dire consequences.
In the worst case, if an important part is missing from the workstation that needs it, the
whole assembly line has to be halted, leading to hundreds of workers being idle and lost
sales of one car per minute.
In order to keep modern mixed-model assembly systems well supplied, many auto-

mobile producers use so-called just-in-time supermarkets, that is, decentralized logistics
areas on the shop �oor, where parts are intermediately stored to then be brought to the
assembly line in small lots. Supermarkets mainly consist of a couple of shelves, set up
for ease of access, not necessarily space-e�cient storage. Parts are brought there in fairly
large lots (e.g., pallets) by industrial trucks, which are then unpacked and presorted.
When demand at the workstations within the supermarket's area of responsibility oc-
curs, a bin for that station is prepared. These bins often contain complete kits of parts,
prepared for speci�c models in the exact same order in which the workpieces to be assem-
bled move down the line to reduce the searching e�ort and unproductive walking times
of the assembly worker (Bozer and McGinnis, 1992, Limère et al., 2012). Moreover, these
comparatively small, standard-size bins can be stored in easily accessible racks, improving
ergonomics (Finnsgård et al., 2011), which is becoming increasingly important for many
manufacturing companies due to an ageing workforce in the industrialized countries.
While industrial trucks are used to take parts in large quantities to the supermarket,

these vehicles are poorly suited to distributing small bins to individual stations. This
work is usually performed by so-called tow trains (or tuggers), made up of an electrically
powered towing vehicle connected to a small number of wagons. The tow train is loaded in
the supermarket with the bins of parts destined for the stations that lie on its prede�ned
route. It then sets o� to visit these stations one after another to deliver the respective
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bins. Once it has completed its tour, it will return to the supermarket to be re�lled for
its next tour. Figure 1 shows the concept of such an in-house logistics system.

Figure 1: An assembly line fed parts by two tow trains.

Tow trains usually operate on a strict schedule. Due to the given �xed cycle times
in the automotive industry and the predetermined production sequences, communicated
to suppliers 3 to 4 days in advance before production starts, the exact moment in time
(i.e., work cycle) when demand for a speci�c part at a speci�c station occurs can be
determined well in advance (Emde et al., 2012). Some automobile producers are even
experimenting with fully automated delivery systems, where tow trains are operated as
driverless AGVs (automated guided vehicles), which can dock at specially designed racks
at the stations and unload their cargo in a matter of seconds without the need for any
human intervention. In these scenarios, the tow train might as well stop at every station
on every tour, because the stopover times may be negligible compared to the driving
times. Most systems in use today, however, still have human operators. In some assembly
plants, at least the bin exchange at the stations is automated (through the use of so-
called shooter racks, Emde et al., 2012), although in other plants, empty and full bins
still have to be manually swapped. This may require a more substantial amount of time,
making the decision which stations to stop at and which stations to skip on a given tour
an integral part of the planning problem.
This paper tackles the optimization problem, occurring on a daily basis in mixed-model

assembly plants, of determining the schedule (i.e., how often and when does the tow train
leave the supermarket to tour the stations on its given route) and the load (i.e., at which
stations does the tow train stop on each tour and how many bins should it unload there)
of a tow train responsible for one predetermined route.
The remainder of this paper is structured as follows. In Section 2 we will give an

overview over prior work relevant to our problem, Section 3 de�nes the problem and
Section 4 investigates the computational complexity of the main problem as well as
of an important special case. In Section 5, we present a MIP model and a heuristic
decomposition procedure, which are tested in a comprehensive computational study in
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Section 6, where we also o�er some decision support on the right degree of automation
for a supermarket-based part feeding system. Finally, Section 7 concludes the paper.

2 Literature review

Despite their widespread application in the automotive and similar industries, the schedul-
ing of tow trains has not received very expansive attention in the scienti�c literature so
far. A recent brief survey on supermarket-based part feeding systems is provided by
Battini et al. (2013).
Emde et al. (2012) distinguish between four decision problems related to organizing the

part feeding process with tow trains: First, location planning for the supermarkets on the
shop �oor; second, routing of the tow trains; third, setting a timetable for each tow train;
fourth, determining the load for each tour. Battini et al. (2010) tackle the most long-term
�rst problem of siting the decentralized logistics areas within the factory by considering
part commonality, demand rates, inventory cost, and other factors. Similarly, Emde
and Boysen (2012b) propose a continuous location model and, on the basis of aggregate
demand data, they determine the optimal number of supermarkets, their location as
well as the assignment of stations to supermarket via an exact polynomial-time dynamic
programming scheme. The second problem (routing) is analyzed by Vaidyanathan et al.
(1999), who, assuming constant demand rates and cyclic schedules, formulate a modi�ed
vehicle routing problem, which they call the Just-in-Time Capacitated Vehicle Routing
Problem (JITCVRP). They present two heuristics to solve it. On the other end of
the spectrum, (Emde et al., 2012) investigated the most short-term fourth problem by
developing an exact polynomial-time algorithm to determine which bins to load for which
station on each tour for a given schedule on a given route, minimizing both the total sum
of the inventory as well as the maximum inventory at any one station.
Regarding the third planning step, the scheduling of the tow train, which is the central

focus of this paper, it has so far mostly been tackled only as a simpli�ed subproblem
of other problems. Choi and Lee (2002) look at a comprehensive planning process that
entails the routing, scheduling as well as loading problems. Their goal is to minimize
the total deviation of actual from planned delivery times, where both earliness as well
as lateness are undesirable, thus allowing for just-in-time concerns. They use mainly
modi�ed classic vehicle routing methods, speci�cally the insertion heuristic, to solve
the problem, which are tested in a simulation experiment on real-world data from a
South Korean assembly plant. Golz et al. (2012) similarly present a case study from a
German automobile producer, solving the routing, scheduling and loading problems via
an adapted version of the classic savings heuristic. Their aim is the minimization of the
number of tow train operators to feasibly supply the stations. An exact polynomial-time
approach combining both routing as well as scheduling is developed by Emde and Boysen
(2012a), albeit under rather restrictive assumptions, such as that the tow train always
stops at all stations on each tour and that parts are only re�lled once all previously
delivered ones are exhausted (zero inventory property). In a similar vein, Kilic and
Durmusoglu (2013) seek to heuristically route and schedule tow trains, assuming cyclic
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deliveries and constant demand rates. Fathi et al. (2014) tackle the scheduling problem
more directly, allowing to delete tours from an otherwise already �xed timetable. Their
goal is to minimize both the number of tours as well as the inventory at the line, using
a procedure based on simulated annealing.
In many assembly plants, routing the tow train is not necessarily a very immediate

concern because due to the very con�ned space and limited number of driving lanes on
the shop �oor, few possible routes are available anyways. Often a tow train is simply
assigned to one of the available routes and the problem to be solved on a regular (e.g.,
once per shift or day) basis is the timetabling, i.e., when should the tugger leave the
supermarket with what load, stopping at which stations? This speci�c problem has,
to the very best of the authors' knowledge, never been addressed before. However, the
problem bears a certain resemblance to single-machine scheduling, where the tow train
can be seen as a machine and the tours it executes as jobs. Unlike typical machine
scheduling formulations, jobs do not have �xed release and due dates, however, but
rather depend on the demand at the stations which varies over time. Moreover, the
processing times of the jobs (tours) are not �xed but depend on the number of stops.
While machine scheduling problems with variable processing times have been studied in
the literature in the form of so-called malleable tasks (e.g., Blazewicz et al., 2004), they
assume that the processing time varies with the number of processors that handle them,
which does not re�ect the nature of our scheduling problem.

3 Problem description

The tow train scheduling and loading problem (TTSL) is concerned with determining
the schedule as well as the load of a transport vehicle (tow train) carrying kits of parts,
packaged in uniform standard-size bins, to a set S of workstations along a mixed-model
assembly line. The tow train sets o� from a central supermarket to visit these stations
in a �xed order. Note that a given tow train route usually does not cover all stations
of the entire assembly line but only a segment of the line, which has been determined
in a previous planning step or is necessitated by the shop �oor layout. Depending on
the production sequence, detailing exactly which model is assembled at which station in
which work cycle, in each cycle t in the planning horizon of length T either a new kit of
parts is required at station s (dst = 1) or not (dst = 0). The sequence is usually �xed
a few days before production starts, therefore the demands dst can be assumed to be
given and known with certainty (Emde and Boysen, 2012a). Note that since all bins are
of homogeneous, standardized size (e.g., Golz et al., 2012, Emde et al., 2012), the exact
contents of the bins is immaterial for the purposes of the TTSL; only the correct number
of bins must always be delivered to the right stations. Putting the right parts into these
containers is the concern of the pickers at the supermarket.
Travelling from the supermarket to station s takes a certain amount of time rs, while

rSM stands for the driving time for a complete round trip, i.e., starting from the su-
permarket, driving by all stations on the route, and returning. Further, it takes some
time P for the tow train to be replenished at the supermarket, and if the tugger makes
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a stop at a station, a stopover time of p passes, during which the bins loaded on the
vehicle are unloaded and empty bins are collected. Note that we assume here that the
stopover time p is independent of the number of bins to be (un)loaded. This is certainly
justi�ed in (partially) automated delivery systems using shooter racks (e.g., Emde and
Boysen, 2012a), where all bins are swapped in one go once the tow train has docked.
Even in purely manual systems, however, using average stopover times is often a valid
simpli�cation, as the time to stop the vehicle, get o�, start exchanging bins, and then
get on again often dominates the relatively short time it takes to actually put a few more
or less containers onto the rack, especially since deviations from the average are rarely
more than a small handful of bins.
If the tugger does not stop at some station s on a given tour, then no stopover time at

that station elapses; the vehicle still has to pass the station, however, incurring the travel
time encoded in parameter r. All times are normalized to the cycle time, meaning, e.g.,
that a stopover time of p = 0.5 would correspond to half a minute if the cycle time is 60
seconds. All time related parameters can be fractional; however, for convenience's sake,
we assume that the tow train only sets o� at, and unloaded bins only become available
at, integral points in time (i.e., full work cycles). Due to the rather short cycle times of
about 60 to 90 seconds in the automotive industry (Emde et al., 2012), this seems like a
tolerable simpli�cation. Moreover, from a practical perspective, it would be very di�cult
to determine the exact point in time when demand occurs with any greater precision
than this, or to communicate continuous timetables to the operators.
Due to the narrow driving lanes and sharp turns on typical shop �oors, tow trains are

usually restricted to just a handful of wagons and are thus limited to carrying a maxi-
mum number of C bins per tour. Space at the stations is also notoriously scarce (Bozer
and McGinnis, 1992), therefore no more than cs bins can be stored at any single time at
station s.

We can now de�ne a schedule Ω as follows. Each tour k = 1, . . . , n on the given route
can be expressed as a (|S| + 1)-tuple (τk; z

k
1 , z

k
2 , . . . , z

k
|S|) ∈ Ω, where τk ∈ N 6=0 denotes

the work cycle when the tugger sets o� from the supermarket and zks ∈ N0 is the load
(i.e., the number of bins) that the tow train carries to station s on tour k. Note that
zks > 0 implies that the tow train makes a stop at station s on tour k, while zks = 0
means that it will pass the station by. Moreover, note that the number of tours n is also
variable. We say a schedule Ω is feasible if it ful�lls the following conditions.

• For each tour k = 2, . . . , n it must hold that

τk ≥

τk−1 + rSM + P +
∑
s∈S:

zk−1
s >0

p

 ,
i.e., tour k can only start after the preceding tour k − 1 has �nished.
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• The last tour n must end within the planning horizon:

τn + rSM +
∑
s∈S:
zns>0

p ≤ T.

• For each tour k = 1, . . . , n, it must hold that
∑

s∈S z
k
s ≤ C, i.e., the total load in

tour k cannot be greater than the vehicle capacity C.

• Let

δsk =

τk + rs +
∑
s′∈S:

s′≤s∧zk
s′>0

p


be the work cycle when the bins (if any) unloaded at station s on tour k become
available. Furthermore, let

lst =

n∑
k=1:
δsk≤t

zks −
t∑

t′=1

dst′ + l 0
s

be the number of bins in stock at station s in cycle t, where l 0
s is the initial inventory

at station s. Then
0 ≤ lst ≤ cs

must hold, ∀s ∈ S, t = 1, . . . , T , i.e., no stock-outs must occur and no station must
be overstocked.

t 1 2 3 4 5

d1t 0 0 0 1 1
d2t 0 0 1 0 1
d3t 0 0 1 1 0

l1t 0 1 1 0 0
l2t 0 2 1 1 0
l3t 0 0 1 0 0

Table 1: Example demands and inventory.

Apart from �nding a schedule that feasibly feeds parts to the workstations without any
station ever starving for parts, one of the most pressing concerns of plant managers is
typically in-process inventory. Practically all automobile producers aim at an inventory
strategy in line with the famous just-in-time principle, trying to reduce, if not wholly
eliminate, line-side stock. Accordingly, in the TTSL we seek among all feasible schedules
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the one where the total amount of bins lying in stock f(Ω) =
∑

s∈S
∑T

t=1 lst is minimal.

Example: Consider the example demands from Table 1 for |S| = 3 stations and T = 5
work cycles. Let the replenishment time in the supermarket be P = 1, the stopover time
per station p = 0.3, and the driving times from the supermarket to the stations r1 = 0.1,
r2 = 0.2, r3 = 0.4, and �nally rSM = 0.5 for a complete round trip. Let the maximum
capacity of the tow train be C = 5 and that of the stations c1 = 3, c2 = 3, and c3 = 2,
respectively, and the initial inventory l 0

s = 0, ∀s ∈ {1, 2, 3}. Then the optimal schedule
Ω is {(1; 1, 2, 2), (4; 1, 0, 0)}, leading to δ1,1 = 2, δ2,1 = 2, δ3,1 = 3, δ1,2 = 5, and an
objective value of f(Ω) = 7. Detailed information about the bins in stock lst at each
station in each work cycle can be found at the bottom of Table 1.

4 Time complexity

In this section we will investigate the computational complexity of TTSL, as well as of a
few special cases. First, we will analyze the general problem, as described in the previous
section.

Proposition 4.1. Finding a feasible solution to TTSL is strongly NP-complete.

Proof. Membership in NP is easy to see: Tour start times τk and loads per tour per
station zks constitute a certi�cate, which can clearly be veri�ed in polynomial time if we
restrict ourselves to the case where n ≤ T . Note that more than one tour per cycle is
impossible if any of the time-related parameters, i.e., driving time, stopover time, and/or
replenishment time, is > 0.

We will show that the problem is NP-hard by pseudo-polynomial transformation from
3-PARTITION, which is well known to be NP-hard in the strong sense (Garey and John-
son, 1979).

An instance of 3-PARTITION is de�ned as follows. Given 3q positive integers aj
(j = 1, . . . , 3q) and a positive integer B with B/4 < aj < B/2 and

∑3q
j=1 aj = qB, does

there exist a partition of the set {1, 2, . . . , 3q} into q sets {A1, A2, . . . , Aq}, each having
exactly three elements, such that

∑
j∈Ai

aj = B, ∀i = 1, . . . , q?

We consider a special case of 3-PARTITION where B is divisible by 3. This problem
variant is obviously also NP-hard since any 3-PARTITION instance can be transformed
by simply multiplying by 3 B and each aj . Such an instance can be transformed to an
instance of TTSL in pseudo-polynomial time in the following way. The number of work
cycles in the planning horizon is T = B+2q+3, the stopover time is p = 1/3 work cycles,
the replenishment time is P = 1, and the driving times and initial inventories are all 0.
For each of the 3q integers in the original problem introduce one station sj of type 1.
The demand for bins at these stations is dsj ,t = 1, ∀t = 2q, . . . , 2q+aj − 1, j = 1, . . . , 3q,
and otherwise 0, such that the total cumulated demand at each station of type 1 sums
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up to exactly the corresponding integer from 3-PARTITION, aj . Furthermore, 3B sta-
tions of type 2 are introduced, which only demand one single bin at time B + 2q + 3:
dsj ,B+2q+3 = 1, ∀j = 3q + 1, . . . , 3q + 3B. All stations of type 1 and 2 combined form
the set of stations S of the transformed TTSL instance. Finally, the tow train capacity
is C = B, and the station capacities can assume any value cs ≥ B/2.

A feasible solution to such a TTSL instance can be transformed in pseudo-polynomial
time to a solution to the corresponding 3-PARTITION instance and vice versa. The
total number of stations to be visited equals |S| = 3q + 3B. There is no driving time to
consider, but since the stopover time at each station is p = 1/3, it will take the tow train
at least q + B time units to stop at all stations. Furthermore, even if the tow train is
always loaded to the brim, it will still have to make at least (qB + 3B)/C = q + 3 stops
at the supermarket to replenish, taking P = 1 time unit each time. Seeing that the last
tour must �nish within the planing horizon of T = B+2q+3, the tugger must obviously
be constantly busy without any idle time whatsoever and must visit every station exactly
once.
Given this, visiting all the stations of type 1 takes exactly 2q work cycles (q cycles for

stopovers plus q cycles for replenishment), and visiting all stations of type 2 takes exactly
B+ 3 cycles (B cycles for stopovers plus 3 cycles for replenishment). Now, the tow train
must �rst �nish all deliveries to the stations of type 1 before it can start making deliveries
to the other stations because the �rst demand at the type 1 stations occurs at time 2q
and supplying these stations takes 2q time units. Seeing that the tow train can only make
one stop per station and it cannot load more than C = B bins per tour, it must obviously
visit the stations of type 1 in groups of three, supplying all their demand at once, which
is only possible if the train is always fully loaded with B bins. The correspondence to
the 3-PARTITION solution is thus easy to see.

The above proof also allows making the following observation.

Corollary 4.1. Finding a feasible solution to TTSL is NP-complete in the strong sense
even if the driving times are 0, the station capacities are in�nite, and the departure times
are �xed.

Proof. That the driving times and capacity restrictions at the stations are immaterial for
the logic of the preceding proof is obvious. The schedule, i.e., the departure times of the
tow train τk, can also be �xed like imposed by the logic of the proof (one departure every
2 time units up until time 2q−1, and then three departures at time 2q+1, 2q+2+1/3·B,
and 2q + 3 + 2/3 ·B) without making the problem any easier.

Now, we will take a closer look at one important special case that does indeed make
the problem more tractable, namely if there are no station capacities and stopover
times to consider. While the stopover time will obviously never be zero in reality, this
may nonetheless be a reasonable simpli�cation for fully automated systems, where the
stopover time may be negligible compared to the driving time (Emde et al., 2012). As to
the station capacities, seeing that the objective function minimizes the total inventory at
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the line, it stands to reason that the maximum inventory at any one station will probably
not grow excessively large, either. If shelf space is not too big an issue, assuming in�nite
station capacities may be a valid relaxation. Finally, even if these conditions are not
satis�ed for a given production setting, a solution of the relaxed problem should at least
provide a fairly good initial solution for further optimization.

Proposition 4.2. TTSL can be solved to optimality in polynomial time if the stopover
time is zero, i.e., p = 0, and the station capacities cs are in�nite.

Proof. In order to prove the proposition, we will construct a polynomial-time exact al-
gorithm based on dynamic programming (DP). First of all, note that, due to the in�nite
capacity at the stations, the initial inventory l 0

s plays no role for this special case, because
it can simply be subtracted from the demand dst. The consequent unavoidable inventory
can then simply be added to the optimal objective value once the DP has run its course
because it is constant and does not depend on the tow train schedule at all.
The DP is subdivided into n + 2 stages, each stage representing one tour, where n =
bT/dP +rSMec is the theoretical maximum number of tours. The stages are successively
constructed starting from a (virtual) start stage 0. Each stage consists of states (τ, w),
where τ ∈ {0, . . . , T + 1} is the departure time of the tow train from the supermarket
and w ∈ {0, 1, . . . ,

∑
s∈S

∑T
t=1 dst} is the �surplus� of bins the tow train has transported

to the stations that have not yet been consumed. In other words, w denotes the number
of bins that are �carried over� (by being stocked at the stations) from previous tours into
the current tour. Note that states (0, 0) and (T + 1, 0) are the (virtual) �rst and last
states in the DP graph, respectively.
These pieces of information are enough to fully describe a schedule if p = 0. Vehicle

capacity permitting, in tour k the tow train will bring exactly the number of bins required
up until its next arrival in tour k + 1 (or the end of the planning horizon if k is the last
tour). This is obviously optimal for a given schedule since deliveries cannot possibly be
any more just-in-time than this. There is no need to keep track of the individual stations
at which the demand occurs; given that the stopover time is 0, the tugger can stop at
any station as necessary without upsetting the schedule in any way. However, there is, of
course, no guarantee that the vehicle capacity is not a bottleneck. In this case, the bins
that exceed the capacity and cannot be brought just-in-time must have been stocked in
a previous tour, hence the need to keep track of the �surplus� bins w. However, again,
it is pointless to speci�cally allocate these bins to individual stations, it is su�cient to
know that the total number of bins delivered up to a point in time is enough to cover the
total demand up to that point, since the tow train can distribute the bins as required
because it can visit any station in any tour without further consequences.
From dummy start state (0, 0) of stage 0 successor states (τ, 0) of stage 1 are reached for

all τ ∈
{
t |
∑

s∈S
∑t

t′=0 ds,t+drse = 0; t = 1, . . . , T
}
. Since the start state only represents

a �dummy tour� with the sole purpose of determining the start time of the real �rst tour,
it cannot supply any demand and hence no demand must occur before the start time of
the actual �rst tour represented by the states of stage 1. Then, the following transitions
lead from a state (τ, w) of stage k to another state (τ ′, w′) of stage k+1, for all 1 ≤ k ≤ n.
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• Add another tour to the schedule: (τ, w) → (τ ′, w′), where τ ′ ∈ {dτ + rSM +

P e, . . . , bT − rSMc} and w′ ∈
{

max
{

0, w −
∑

s∈S
∑τ ′+drse−1

t=τ+drse dst

}
, . . . ,

w + C −
∑

s∈S
∑τ ′+drse−1

t=τ+drse dst

}
.

• Make the current tour the last one: (τ, w) → (T + 1, 0), which is only possible if
C + w ≥

∑
s∈S

∑T
t=τ+drse dst ≥ w, i.e., the vehicle capacity plus �surplus bins� are

su�cient to meet all the remaining demand, and all surplus bins are used up.

Let Γ(τ ′, w′) be the set of states from which a transition to state (τ ′, w′) exists. Then
the (partial) objective value G(τ ′, w′) can be calculated as follows.

G(τ ′, w′) = min
(τ,w)∈Γ(τ ′,w′)

G(τ, w) + (τ ′ − τ) · w +
∑
s∈S

τ ′+drse−1∑
t=τ+drse

τ ′+drse−1∑
t′=τ+drse

dst′ −
t∑

t′=τ+drse

dst′

 ,

where G(0, 0) := 0. The �rst term represents the partial objective value up to predecessor
state (τ, w), the second term is the contribution of the �surplus� bins w that are carried
over into the current tour, and the third term is the contribution of the bins that are
consumed �just-in-time,� before the next arrival of the tow train, and are hence not
carried over.

Input: List of states 〈(τ0, w0), . . . , (τn+1, wn+1)] constituting the optimal path in the DP

graph

1 us := 0, ∀s ∈ S;
2 for k = n+ 1 down to 2 do

3 c := C;

4 foreach s ∈ S do

5 D :=
∑τk+drse−1
t=τk−1+drse dst;

6 zk−1s := min{D, c};
7 c := c− zk−1s ;

8 D := D − zk−1s ;

9 us := us +D;

10 end

11 foreach s ∈ S do

12 zks := zk−1s + min{us, c};
13 c := c− zk−1s ;

14 D := D − zk−1s ;

15 end

16 end

Output: optimal tow train loads zks
Algorithm 1: Backward recovery of the optimal solution.

The optimal solution is represented by end state (T, 0) with optimal objective value
G(T, 0). The optimal loads of the tow train can be obtained via backward recovery along
the optimal path (Algorithm 1), the basic idea being that in a tour k, the tow train will
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�rst try to service all demand until the next tour just-in-time (the �rst for-loop). If that
fails due to insu�cient capacity, the bins exceeding the capacity have to be delivered by
an earlier tour (stored in variables us). Conversely, if the tow train still has capacity
left after satisfying all just-in-time demand, the surplus capacity is used to service the
leftover demand from later tours (second for-loop).
Concerning the asymptotic runtime, the DP consists of n + 2 stages, where we can

safely assume that the maximum number of tours n is bounded by the number of work
cycles T . In each stage there are at the very most T ·

∑
s∈S

∑T
t=1 dst states. Since no

more than one bin can be in demand per station per cycle, the total number of states is
thus bounded by T 3 · |S|. Even if every state were connected to every other state, the
total number of transitions would still be in O(T 6 · |S|2), while the objective value per
transition can be computed in quadratic time. Therefore, the proposition holds.

Example (cont.): Consider the example from Section 3, except with p = 0. Figure 2
shows the corresponding DP graph, leading to the optimal solution (bold in the �gure)
with objective value 2, where the tow train starts a tour at time 2 and again at time 4,
carrying 1 bin each to stations 1 and 2 and 2 bins to station 3 in the �rst tour, and then
one bin each to stations 1 and 2 in the second tour.

Figure 2: DP graph for the example.

5 Algorithms

In this section, we will investigate how to e�ciently solve TTSL. Since even the feasibil-
ity version of this problem is NP-hard in the strong sense (Proposition 4.1), heuristics
will most probably be necessary to solve instances of realistic size in acceptable time.
Nonetheless, in order to have a benchmark, we also propose a mixed-integer program-
ming formulation that can be used by a default solver to obtain guaranteed optimal
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results. Then, we will present decomposition scheme that we will use as part of a tabu
search heuristic.

5.1 MIP model

Using the additional notation from Table 2, the TTSL can be formulated as a MIP model
as follows.

Minimize F =

T∑
t=1

∑
s∈S

lst (1)

subject to

T∑
t=1

∑
s∈S

zkst ≤ C ∀k = 1, . . . , n (2)

0 ≤ lst ≤ cs ∀t = 1, . . . , T, s ∈ S (3)

lst + dst −
n∑
k=1

zkst = ls,t−1 ∀t = 1, . . . , T, s ∈ S (4)

ls0 = l 0
s ∀s ∈ S (5)

ykst ≤ zkst ≤ ykst · C ∀k = 1, . . . , n, s ∈ S, t = 1, . . . , T
(6)

ykst ≤ fk ∀k = 1, . . . , n, s ∈ S, t = 1, . . . , T
(7)

τk − τk−1 −
∑
s∈S

T∑
t=1

yk−1,s,t · p− (rSM + P ) · fk ≥ 0 ∀k = 2, . . . , n (8)

τk +
∑
s∈S

T∑
t=1

ykst · p+ rSM · fk ≤ T ∀k = 1, . . . , n (9)

t · ykst − τk − rs − 1 + ε−
∑
s′∈S:
s′≤s

T∑
t′=1

yks′t′ · p ≤ 0 ∀k = 1, . . . , n; s ∈ S; t = 1, . . . , T

(10)

t+ (1− ykst) ·M − τk − rs −
∑
s′∈S:
s′≤s

T∑
t′=1

yks′t′ · p ≥ 0 ∀k = 1, . . . , n; s ∈ S; t = 1, . . . , T

(11)

ykst ∈ {0; 1} ∀k = 1, . . . , n, s ∈ S, t = 1, . . . , T
(12)

fk ∈ {0; 1}, τk ∈ N 6=0 ∀k = 1, . . . , n (13)
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Objective function (1) seeks to minimize the total inventory. Constraints (2) make sure
that the tow train is not overloaded and (3) make it impossible that a station starves
for parts or exceeds its maximum shelf space. Inventory that is not consumed �ows to
the next period (4), and the initial inventory equals l 0

s (5). Constraints (6) enforce that
inventory can only be replenished at station s at time t if the tow train actually stops at
the station at that time, while also prohibiting �empty� stops, when no bins are delivered.
The tow train can only make stops on a given tour if the tour actually takes place, which
is ensured by (7). (8) render overlapping tours impossible and (9) ensure that the last
tour ends within the planning horizon of T work cycles. Note that (8) and (9) are only
meaningful for tours that actually take place (fk = 1). Inequalities (10) and (11) set the
work cycle when the bins delivered on tour k to station s become available (encoded in
variables ykst) no sooner and no later than the time when the tow train actually reaches
them, rounded up to the next full work cycle. Finally, (12) and (13) de�ne the domain
of the variables.

M big integer
ε very small real number
lst continuous variable: amount of unconsumed bins in stock at station

s at time t
zkst continuous variable: number of bins the tow train takes to station s

at time t on tour k
ykst binary variable: 1, if the bins delivered to station s on tour k become

available at time t; 0, otherwise
τk integer variable: work cycle when the tow train sets o� from the

supermarket on tour k
fk binary variable: 1, if tour k takes place; 0, otherwise

Table 2: Notation

5.2 Heuristic decomposition of TTSL

Due to the NP-hard nature of the problem, default solvers and other exact solution tools
will most likely be too slow to be useful for solving instances of real-world size. We
will therefore propose a heuristic decomposition scheme that will serve as the basis of a
neighborhood search method.
The MIP-model proposed in the previous subsection is di�cult to solve mainly because

of the large number of binary variables ykst, indicating whether or not bins become avail-
able at station s in work cycle t delivered on tour k. This essential piece of information
can be broken down into two basic components: First, when does the tow train leave the
supermarket, and second, at which stations does it make a stop on each tour? Once these
two questions are answered, the detailed delivery schedule ykst can easily be computed,
and so can the exact optimal load of the tow train, as we will show in a moment.
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Note that the two questions cannot be answered completely independently of each
other because the number of stopovers per tour in�uences the total trip time of the
vehicle and consequently the feasible departure times. Instead of using the departure
time τk as a decision variable, it seems therefore more meaningful to encode the time-
related aspect as an o�set bk ∈ N0, indicating how many work cycles pass in-between
the end of tour k − 1 and tour k (or in-between time 1 and the very �rst departure of
the tugger in case of k = 1). Further, an array of binary variables osk encoding whether
or not the tow train stops at station s on tour k is required. Consequently, a solution Σ
for our neighborhood search is encoded as an array of length n+ n · |S|, containing both
the bu�ers in-between tours bk as well as the binary stopover variables osk. The original
variables ykst can then easily be reconstructed: Let

δsk =

k−1∑
k′=1

⌈
P + rSM +

∑
s′∈S

os′k′ · p+ bk′

⌉
+

bk + rs +
∑
s′∈S:
s′≤s

os′k · p


be the work cycle when the bins delivered to station s on tour k become available. Then

ykst =

{
1 if osk = 1 ∧ t = δsk

0 else.

Once the binary variables are �xed, the loading problem can be formulated as a normal
linear programming model (LP), with objective function (1), subject to (2) - (6), where
variables ykst are replaced with �xed values ykst. All remaining variables zkst and lst are
continuous; they will always assume integral values in the optimal solution. The loading
subproblem can thus be solved in polynomial time.
In fact, this subproblem can even be solved in strongly polynomial time using the

network simplex algorithm (Orlin, 1997) if it is formulated as a minimum cost network
�ow problem. Consider a digraph G(s ∪ V t ∪ V S , Et ∪ES), where s is the source, while
node set V t = {v1, . . . , vn} stands for the tours by the vehicle, and V S = {σsk | s ∈
S ∧ k = 1, . . . , n ∧ osk = 1} for the stations during each tour. Source s has a supply

equalling the total demand, i.e., D(s) =
∑

s∈S

(∑T
t=1 dst − l 0

s

)
. Each sink node σsk ∈

V S is associated with a demand equal to the bin demand between tours, i.e., D(σsk) =

min
{

0;−
∑δsk′−1

t=δsk
dst + max

{
0; l 0

s −
∑δsk−1

t=1 dst

}}
, where k and k′ are consecutive tours

that stop at station s (if k is the last tour to stop at station s, then δsk′ := T + 1).
Each tour node vk ∈ V t is connected to source s via an arc (s , vk) ∈ Et, with maximum

capacity c(s , vk) = C, thus ensuring that the vehicle is never overloaded. Furthermore,
there is an arc (vk, σsk) ∈ Et for each σsk ∈ V S , signifying the bins transferred on tour k
to station s. Note that, due to the de�nition of V S , a given node σsk only exists if station
s actually lies on tour k. In that case, the minimum �ow on this arc is c(vk, σsk) = 1,
enforcing the impossibility of �empty� stops. An upper bound on the �ow is not really
necessary for these arcs but can be set to c(vk, σsk) = C. Moreover, there is an arc
(σsk, σsk′) ∈ ES i� k′ > k and osk = 1 and osk′ = 1 and ∀k′′ = k+1, . . . , k′−1 : osk′′ = 0,
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(a) Concept of the �ow network. (b) Speci�c �ow network from the example;
edges with non-zero �ow in the optimal so-
lution are bold.

Figure 3: Flow networks.

meaning that the tugger makes two consecutive stops at station s on tour k and k′ (but
not in the meantime), denoting the inventory that stays at the station until the next
arrival of the tow train. Each arc (σsk, σsk′) ∈ ES has a maximum capacity restricted by
the station capacity, namely c(σsk, σsk′) = cs.
Each arc (σsk, σsk′) ∈ ES is associated with a cost ω(σsk, σsk′) = δsk′ − δsk per unit

of �ow. This means that each unit of �ow sent over arc (σsk, σsk′) will increase the cost
proportionally to the number of cycles that each additional bin will have to be stored at
the station. Note that if there is no �ow over some arc e ∈ ES , then this signi�es that
all bins in demand between tour k and k′ are supplied �just-in-time�, with no additional
bins stored at the station. A positive �ow F , on the other hand, implies that F (e) bins
are stocked at station s for consumption later than the tow trains subsequent arrival δsk′ .
The total cost to be minimized is then

fnet =
∑
e∈ES

ω(e) · F (e) +
∑
s∈S

n∑
k=1:
osk=1

δsk′−1∑
t=δsk

δsk′−1∑
t′=δsk

dst′ −
t∑

t′=δsk

dst′

 , (14)

where the �rst term denotes the storage cost as explained above, whereas the second
term is the unavoidable inventory determined by the given schedule, where δsk′ denotes
either the time of the earliest stop at station s later than δsk, or T + 1 if the last
stop occurred during tour k. Note that the �ow (and thus the solution to the network
�ow problem) has no bearing on this second term. Therefore, solving the minimum-cost
network �ow problem essentially only determines the amount of inventory over and above
the unavoidable �just-in-time� inventory, that is, the inventory that is carried over from
one tour to the next. The whole network is schematically depicted in Fig. 3a.
Example (cont.): Assume that for our example problem from Section 3 n = 2 tours

have been �xed, with time bu�ers b1 = b2 = 0 (meaning both tours start as early as
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possible) and stopovers o1,1 = o2,1 = o3,1 = o1,2 = 1 (meaning that the tow train is
to stop at all stations on its �rst tour and only at station 1 on its second tour). The
ensuing �ow network � with optimal �ows boldfaced � is in Figure 3b. This optimal
network �ow solution corresponds to the original solution from Table 1 with objective
value fnet = f(Ω) = 7.

The optimization can hence be split into two parts: One, �nding a good (or even
optimal) solution vector of o�sets bk and stopovers osk (the master problem), and, two,
determining the optimal loads for the given schedule (the slave problem). There is, how-
ever, one potential issue with solving the problem in this manner: There is no guarantee
that a feasible load even exists for a given schedule. In order to get some feedback from
the subproblem about not just whether or not a schedule is infeasible but also about how
infeasible it is, some information on the feasibility of the schedule is obtained prior to
solving the network �ow problem, in hopes that the overarching optimization process can
then use this information to steer the search towards the feasible regions of the solution
space.

• The minimum amount of bins that must be stored at station s for a given schedule is

ds = maxk=1,...,n

{∑δsk′−1
t=δsk

dst −max
{

0; l 0
s −

∑δsk−1
t=1 dst

}}
, where δsk′ is the time

of the next stop at station s after tour k or T + 1 if there are no more stops. If
ds > cs, the schedule is infeasible due to overloaded racks, and the �degree� of
infeasibility is gcs = max{0, ds − cs}, ∀s ∈ S.

• For each tour k = 1, . . . , n, the cumulated number of bins that must have been

delivered up to and including that tour is Ck =
∑

s∈S

(∑δsk′−1
t=1 dst − l 0

s

)
. If ∃k =

1, . . . , n : Ck > C · k then the schedule is infeasible due to insu�cient vehicle
capacity, incurring gCk = max{0, Ck − C · k}, ∀k = 1, . . . , n.

• If en =
∑n

k=1

⌈
P + rSM +

∑
s∈S osk · p+ bk

⌉
+ dbn + rSM +

∑
s∈S osn · pe > T , the

schedule is infeasible because it does not end within the planning horizon, hence
gn = max{0, en − T}.

• For each station s ∈ S, let δs = mink=1,...,n{δsk|osk = 1} be the point in time when
the tow train makes its �rst delivery to station s if it makes any stop at all, i.e., if∑n

k=1 osk > 0; otherwise let δs = T+1. If ts = mint=1,...,T {t|
∑t

t′=1 dst′ > l 0
s } < δs,

then the schedule is infeasible because the �rst demand that is not covered by the
initial inventory occurs before the �rst delivery; gds = max{0, ts − δs}, ∀s ∈ S.

Note that even if no violations g have been detected, there is still no guarantee that a
feasible load for the schedule can be found. Namely, either the vehicle or station capacity
constraints could still be violated. We therefore add to our network G a �dummy� tour
node vd to node set V t as well as an arc (s , vd) with associated cost per unit of �ow
ω(s , vd) = D(s) · T , that is, prohibitively high. Finally, vd is connected to each node in
σsk ∈ V S via arc (vd, σsk). This way, if stock and regular deliveries are insu�cient to
meet demand, �dummy� bins are routed through node vd, which is, however, prohibitively
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expensive and will therefore only be done if there is no regular (i.e., feasible) way to supply
the stations otherwise. Let gpsk be the total �ow on arc (vd, σsk). Then the total penalized
objective value for a given schedule Σ is

fpen = fnet +
∑
s∈S

(
K∑
k=1

ηpsk · g
p
sk + ηcs · gcs + ηds · gds

)
+

K∑
k=1

ηCk · gCk + ηn · gn, (15)

where η∗ is the penalty factor associated with violation g∗.
To speed up the search process, we only solve the network �ow problem for those

schedules Σ where gCk = gn = gds = gcs = 0, ∀s ∈ S; k = 1, . . . , n. Otherwise, the network
�ow term

∑
e∈ES ω(e) · F (e) in Eq. (14) as well as gpsk is set to 0, ∀s ∈ S; k = 1, . . . , n.

5.3 Neighborhood search

The components from the previous subsection can be used to design a metaheuristic
neighborhood search scheme. The metaheuristic controls the overarching optimization
by varying the schedule Σ, while the penalized objective value for each proposed schedule
can be calculated as per Equation (15). An initial solution is obtained by solving the
relaxed problem via the DP from Proposition 4.2.
Given an incumbent solution Σ, a neighbor Σ′ is reached by way of one of the following

moves.

stop move An additional stop is added to or a heretofore existing stop is removed from
a tour, i.e., for some k ∈ {1, . . . , n} and s ∈ S, o′sk := 1 − osk. A stop may also
be inserted in a new tour, provided that the total number of tours does not exceed
the theoretical maximum n = bT/dP + rSM + pec. Similarly, if the last stop is
removed from a tour, the whole tour is removed from the schedule, so long as the

total number of tours is never below n =
⌈∑T

t=1

∑
s∈S dst/C

⌉
.

time move The time bu�er between two tours is increased or decreased by one work
cycle, i.e., for some tour k ∈ {1, . . . , n}, either b′k := bk + 1 or b′k := bk − 1, where
a decrease is only possible if bk > 0.

Finally, in order to evaluate objective function (15), the penalty factors η have to
be set, which is done in a self-adjusting way (Hertz, 1992, Gendreau et al., 1994): If
the last 5 accepted neighbors all were infeasible with regard to some constraint(s), i.e.,
g∗ > 0 (∗ ∈ {p, c, C, n, d}), then the corresponding penalty factor(s) are changed to
η∗ := 2 · η∗. If the last 5 accepted neighbors were all feasible with regard to constraint *,
then η∗ := η∗/2. Initially, η∗ := T · |S|, ∀∗ ∈ {p, c, C, n, d}. Note that accepting infeasible
solutions is indispensable for solving TTSL, since even �nding a feasible solution is a
strongly NP-hard problem; disallowing infeasible solutions would make breaking out of
local optima (or even �nding any optima at all) nearly impossible.
As a neighborhood search-based metaheuristic approach we propose tabu search (TS)

(Glover and Laguna, 1997), which has often been applied to complex scheduling problems
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with di�cult feasibility constraints to great success (e.g., Gendreau et al., 1994, Gendreau
and Potvin, 2010). TS typically investigates the entire neighborhood of the incumbent
solution in each iteration. For many problems, this leads to good solutions being found
(e.g., Arostegui Jr et al., 2006, Gendreau et al., 1994).
For the TTSL, TS proceeds as follows. Starting from an initial solution Σ, all neigh-

borhood solutions are generated, and the one with the lowest penalized objective value
fpen that is not tabu becomes the new incumbent solution to replace Σ. A solution, once
visited, is made tabu for 500 iterations by adding its hash code

h(Σ) =
n∑
k=1

(
bk · 2(|S|+B)·(k−1) +

∑
s∈S

osk · 2s−1+B+(|S|+B)·(k−1)

)

to a �rst-in-�rst-out queue of maximum length 500. Note that hash function hmakes sure
that each solution Σ gets a unique hash code, provided B, the number of bits reserved
for each bk, is great enough, e.g., B := dlog2(T )e.
For the purpose of diversi�cation, if no new globally best solution could be found

for more than 100 iterations, Σ is replaced by a new (random) initial solution, gen-
erated as follows: First, an arbitrary number of tours n from the interval {n, . . . , n}
(discrete uniform distribution) is selected. Then, osk is set to 1 with a likelihood of 20%
if
∑k−1

k′=1 osk′ = 0, i.e., if no earlier stop has been �xed yet; if an earlier stop already exists,
the likelihood is 10%. The bu�er between tours is bk := 0, ∀k = 1, . . . , n. Finally, the
optimization ends after Θ seconds have elapsed, at which point the best found solution
is returned.
To make better use of multi-core / multi-CPU workstations, we parallelized this al-

gorithm: All neighbors are evaluated concurrently during each iteration, i.e., multiple
network �ow problems are solved in parallel.

6 Computational study

In this section, we present a numerical study in order to evaluate the computational
performance of our proposed solution methods. To this end, we implemented our algo-
rithms in C# 5.0 and ran them on an x64 PC equipped with an Intel Core i7-5500U 2.4
GHz CPU and 8,192 MB of RAM. Apart from performance metrics, we also compare
our optimized schedules with simple cyclic schedules such as they are mostly used in
current industrial practice, and investigate the bene�t of employing automated guided
vehicles. Because there are no established test data for TTSL, we will �rst elaborate how
we generated our instances.

6.1 Instance generation

In accordance with our observations in practice, we generate the instance parameters
the following way. First, we distinguish between small instances, where the number of
stations served by the tow train is |S| = 10 and the planning horizon consists of T = 24
cycles, and large instances, where |S| = 20 and T = 144. Regardless of instance size, the
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driving time from the depot to the �rst station is set to r1 = rnd(0.05, 0.2), where rnd
is a uniformly distributed random number from the interval in the argument, rounded
to the �rst fractional digit. E�ectively, this means that r1 is between 5 and 20 percent
of one work cycle. The vehicle travels along straight lines which allow no shortcuts,
thus we can assume that the triangle inequality holds, and rs = rs−1 + rnd(0.05, 0.2),
∀s = 2, . . . , |S|. Finally, rSM = r|S| + rnd(0.05, 0.2). Moreover, for each station s ∈ S
and each cycle t = 1, . . . , T , we set dst = 1 with a likelihood of 40%. Furthermore, the
replenishment time at the supermarket is set to either P = 3 cycles (small instances) or
P = 12 cycles (large instances).
In current industrial practice, that is, at the major German automotive plants that

we visited, tow train schedules are almost invariably cyclic, meaning that each station is
visited in �xed, unchanging intervals, e.g., every 48 or 96 cycles. However, the tow train
may in fact set o� from the supermarket more frequently than that; it may simply skip
certain stations on certain tours. Therefore, while the route is �xed, the stops along the
route may change (albeit also in a set pattern), some stations only being visited on odd
tours, some on even tours and others on every tour.
Consequently, we consider a cyclic �default schedule� where the tugger sets o� each 12

(small instances) or 48 cycles (large instances). All stations in subset So ⊂ S are visited
on odd tours, where So is a random subset of S containing 70% of the stations in S. Set
Se denotes the stations visited on even tours. It contains all stations not part of So, i.e.,
S \ So, and a random subset of So such that |Se| = |So| = b0.7 · |S|c. E�ectively, this
means that all stations lie on at least one tour, while about 40% lie on both odd and
even tours.
Given this �default schedule� and assuming a stopover time of p = 0.9, we can exactly

calculate at which cycle δsk the tow train will stop at station s on tour k (if it stops
there at all may depend on whether k is even or odd). This allows calculating the exact
amount of bins in demand between two consecutive stops at a station. Let ιsk be the
number of bins in demand between cycle δsk and either the cycle when the tugger next
stops at the station (which may be either δs,k+1 or δs,k+2) or the end of the planning
horizon T if δsk denotes the last stop. If the tugger does not actually stop at station s
on tour k, let ιsk = 0. Then the station capacity is set to cs = maxk=1,...,n{ιsk}, and the
vehicle capacity is C = maxk=1,...,n{

∑
s∈S ιsk}. This e�ectively means that the station

and vehicle capacities are such that, using the �default schedule�, all deliveries can be
made without inter-tour inventory. Further, we assume that the initial inventory at each
station is exactly su�cient to cover all demand up until the �rst arrival of the tow train
in the �default schedule�.
In this way, we generated 10 small instances and 10 large ones, which are available

from the authors upon request.

6.2 Computational results

In order to assess the computational performance of our proposed tabu search (TS)
scheme, we pitted it against a default solver, namely CPLEX 12.6.1, tackling the MIP
model from Section 5.1. Moreover, we tested several di�erent values for the time limit,
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θ ∈ {10, 60, 300} seconds, and modi�ed the stopover time for each instance, namely
p ∈ {0, 0.3, 0.5, 0.7, 0.9}.

p f∗ CPU s. (CPLEX) θ gap (TS rnd) gap (TS) # opt. (TS rnd) # opt. (TS)

0 336.4 14.4
10 0.4% 0.0% 8 10
60 0.0% 0.0% 10 10
300 0.0% 0.0% 10 10

0.3 399.2 530.4
10 0.0% 0.5% 9 6
60 0.1% 0.1% 8 8
300 0.0% 0.0% 9 9

0.5 445.8 429.7
10 0.0% 0.1% 10 8
60 0.0% 0.0% 10 10
300 0.0% 0.0% 10 10

0.7 499.6 211.8
10 0.0% 0.0% 10 10
60 0.0% 0.0% 10 10
300 0.0% 0.0% 10 10

0.9 516.1 55.0
10 0.0% 0.0% 10 10
60 0.0% 0.0% 10 10
300 0.0% 0.0% 10 10

Table 3: Average optimality gaps for the small instances (|S| = 10, T = 24).

Table 3 shows the optimality gaps for the small instances. Note that CPLEX failed
to solve one instance (with p = 0.3) to optimality within the time limit of 30 minutes;
we excluded this instance from the table. The average solution time (in seconds) is
labeled CPU s. (CPLEX), and the average optimal objective value is f∗. θ denotes the
time limit for TS in seconds, gap is the average relative optimality gap, calculated as
(fTS(rnd)− f∗)/f∗, and # opt. is the number of instances that were solved to optimality
by TS. Note that we tested two variants of TS: One, labeled TS, is the tabu search
exactly as described in Section 5.3, whereas the other, labeled TS rnd, is for the most
part identical except that it uses only random initial solutions, unlike TS, which also
uses the lower bound solution.
The test results clearly indicate that TS is very capable of solving TTSL to (near-

)optimality. Even with a time limit of only θ = 10 seconds, the average optimality gap
is without exception well below 1% in all cases. The very worst maximum gap measured
in one instance is 3.3%. Increasing the time limit smooths away even these few outliers,
lowering the optimality gap to 0% across the board for θ = 300 seconds.
As for the large instances, no optimal solutions are available, seeing that in most

cases CPLEX cannot solve these problems even to feasibility, even after two hours of
computations. The DP procedure from Proposition 4.2, however, can serve as a lower
bound for those instances where p = 0, relaxing the station capacity constraints. Note
that these solutions are not necessarily valid lower bounds for other instances where p > 0
because, thanks to the di�erent timing of the stops, solutions with non-zero stopover
times may in fact sometimes (though rarely) be better than those with negligible stopover
times. For these test problems where p = 0, the average gap to the lower bound after
θ = 300 seconds is 10.8% for TS rnd and for TS, it is 0%.
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To get a meaningful benchmark for all large test problems, we compare the TS results to
the cyclic default schedule, where the tow train periodically sets o� from the supermarket
each 48 cycles, as described in Section 6.1. Note that this type of cyclic schedule is quite
common in practice in our experience and can thus be seen as a status-quo reference
solution.
Table 4 lists the average default objective value fdef as well as the average relative

deviation from that value, calculated as (fdef−fTS(rnd))/fdef . Columns # feas. contain
the number of instances (out of 10) that were solved to feasibility by the heuristics.
The �rst striking observation here is the remarkable reduction in line-side inventory

that can be achieved through optimization as opposed to using simple cyclic schedules:
the average decrease over all instances is about 50%. We can expect this value to vary
somewhat depending on the exact length of the cycle chosen and other factors, but the
trend is clear: cyclic timetables are clearly substantially suboptimal.
It is also remarkable that both TS variants were almost always able to �nd at the

very least a feasible solution, except in a few cases where p = 0.9 and the allotted
CPU time is short (θ = 10). In all other cases, even with a time limit of only 10
seconds and starting from a completely random initial solution (TS rnd), feasibility
could always be established. Keeping in mind that �nding a feasible solution is already
an NP-complete problem (Proposition 4.1) and that CPLEX failed to do so even after
hours of computations, this is anything but self-evident.

p fdef θ dev. (TS rnd) dev. (TS) # feas. (TS rnd) # feas. (TS)

0.0 38833.5
10 65.7% 72.4% 10 10
60 67.2% 72.4% 10 10
300 69.4% 72.4% 10 10

0.3 37985.8
10 48.6% 48.9% 10 10
60 56.2% 57.1% 10 10
300 60.1% 59.6% 10 10

0.5 37375.8
10 45.2% 42.5% 10 10
60 56.4% 54.1% 10 10
300 56.9% 57.1% 10 10

0.7 36761.0
10 40.4% 37.8% 10 10
60 45.9% 44.7% 10 10
300 48.4% 49.1% 10 10

0.9 36123.2
10 19.0% 19.2% 9 6
60 32.4% 33.4% 10 10
300 36.9% 38.9% 10 10

Table 4: Average performance for the large instances (|S| = 20, T = 144).

To investigate if the initial solution in�uences the e�cacy of the neighborhood search,
we tested for di�erence of means of the results of TS and TS rnd using a paired two-
sample t-test. However, only in the case of p = 0 was there a statistically signi�cant
di�erence at the 0.05 level. This may not be surprising since the DP solution used to
initialize TS (but not TS rnd) is most probably already very close to optimal for p = 0;
the only thing left to do for TS is repairing any infeasibilities that are due to violated
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station capacities. For p > 0, on the other hand, the structure of the optimal timetables
is apparently often very di�erent from that of the relaxed timetables, yielding little im-
provement over random start solutions.

In the �nal part of our computational study, we will discuss the e�ect of the stopover
time p on work-in-process. Today, many tow train systems in use are still manually
handled by a human operator driving the tugger and (un-)loading bins by hand. However,
this process is already partially automated to a greater or lesser extent in many assembly
plants. For instance, some companies use display panels at each station, indicating
with great precision when the tow train is due to arrive next; stopovers can also be
partially automated if special gravity �ow racks that allow docking are employed. In
the most extreme case, the whole process can be fully automated, foregoing human
intervention altogether (except in the supermarket), if automated guided vehicles are
used. As of today, however, these are rare in existing assembly plants, because they
require substantial modi�cations to racks, driving lanes, and vehicle �eet. This begs the
question exactly which level of automation is right. Obviously, a lot of factors in�uence
this decision; in this study, we aim to give some decision support as to the e�ect of
(partially) automated stopovers on in-process inventory.

(a) |S| = 10, T = 24. (b) |S| = 20, T = 144.

Figure 4: E�ect of stopover time on line-side inventory.

Figure 4 plots the stopover time p against line-side inventory f (averaged over the
10 instances per parameter setting), using the optimal objective values for the small
instances and the best heuristic objective values for the large ones. Keeping in mind that
the only thing that is varied for each graph is the stopover time (and not the instances
as a whole), the impact of even a small increase in stopover time is quite remarkable:
going from p = 0, i.e., negligible downtimes at the stations as might (approximately) be
the case in a fully automated system, to p = 0.9, i.e., almost one full work cycle of idle
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time per stop as may be appropriate in a completely manual system, about doubles total
line-side stock. All things considered, p and f seem to be about linearly related, with
the other f -values for 0 < p < 0.9 falling somewhere in between.
Obviously, whether or not investing in new equipment and processes to lower the

stopover time is worth the e�ort (and cost) depends on many other considerations, too.
For example, shorter stopovers might also have other bene�ts, like less congestion owing
to the shorter trip time per tour, or savings in personnel cost for fully automated systems.
On the other hand, certain types of automation may be hard or even impossible to retro�t
on existing shop �oors. Either way, our study clearly shows that quite substantial savings
with regard to in-process inventory may be achievable, which should certainly be taken
into consideration when deciding on the right degree of automation.

7 Conclusion

This paper investigated the problem of scheduling in-plant transport vehicles, commonly
tow trains, to feed parts to mixed-model assembly lines, while observing just-in-time
objectives. We showed that the problem is NP-complete in the strong sense, although
the special case without stopover times and station capacities can be solved in polynomial
time. For the general case, we developed a decomposition heuristic, which is shown to
produce solutions very close to the optimum.
As for practical advice, we derived the following key points.

• Simple cyclic schedules as they are commonly used in current industrial practice
are severely suboptimal, often more than doubling the line-side stock as compared
to optimal schedules. Considering that space at the assembly line is very scarce,
and avoiding expensive surplus work-in-process is one of the main goals of the
just-in-time philosophy, this should be a strong motivation for plant managers to
consider using more sophisticated scheduling procedures.

• Decreasing the stopover time, e.g., through automation, can signi�cantly reduce in-
process inventory. In fact, inventory and stopover time are about linearly related.
Depending on how involved and expensive individual automation measures are, the
reduction in line-side stock may well be worth the e�ort.

Future research should focus on developing specialized exact methods for solving the
TTSL. In particular, the decomposition approach proposed in this paper may also form
the basis of such an exact procedure. Moreover, our scheduling approach may also be
integrated into the problem of determining routes for the tow trains.
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