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Abstract. Data from smart card fare collection systems has proven to be very useful to 

public transport planners.  These systems provide a continuous flow of data on 

transactions made on networks; hence it helps to better understand customer (card) travel 

behavior, and the data can also be used to characterize and model general ridership, 

customer loyalty, and network performance indicators.  But many systems only record the 

entrance (“tap-in”) transaction in the system.  There is a need to estimate the exit (“tap-

out”) location to have origin-destination trip information.  In this paper, we use tap-in/tap-

out smart card data from Brisbane, Australia, to calibrate and validate a trip destination 

estimation algorithm developed for Canadian data.  Results show that the algorithm has 

an accuracy of 79% within an acceptable distance of 400 m.  The proposed calibration 

method helped to solve 1.4% more destinations. 
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1 Introduction 
 

Nowadays, smart card data are very useful for public transport planning.  Smart card automated fare 
collection systems provide a continuous flow of data on transactions made on networks; hence it helps to 
better understand customer (card) travel behavior, and the data can also be used to characterize and model 
general ridership, customer loyalty, and network performance indicators. 

However, many smart card systems only record the boarding transactions ("tap-in") and not the alighting 
transactions ("tap-out"). Origins and destinations are essential to public transport planners because most of 
their models work with origin-destination matrices that describe the movements of demand. In "tap-in" only 
systems, algorithms are needed to estimate the destination location. However, at this time, there have been 
no studies that provide direct validation of the results of these estimates: the resulting inferred destinations 
often cannot be independently confirmed. 

In this paper, we propose to calibrate and validate a destination estimation algorithm that was developed 
for Gatineau, Canada with the help of "tap-in/tap-out" data from the region of Brisbane, Australia. This 
exercise helps to validate the simplest assumptions of the algorithm (based on the sequence of stops) and 
calibrates its parameters.  It also helps to improve the development of the algorithms that are related to 
unlinked trips that are processed using historical data. 

The paper first presents some background on the usage of smart card data in public transport planning 
and also presents works related to origin-destination estimation from smart card data.  Then, the 
“methodology” section details the case study and the algorithm that was used, plus the parameters to be 

calibrated.  The "experiments" section reports on the main results of the validation.  It first emphasizes on 
the validation of the threshold distance, i.e. the distance for which we "accept" the destination.  Then, it 
presents the results according to the algorithm and the temporal attributes of the trips. 
 
 
2 Background 
 
2.1 Smart card data in public transit 
 
In public transport, smart card automated fare collection systems (SCAFCS) are mainly used for revenue 
collection.  The main workflow of these systems is simple: 

1) a public transport user acquires a smart card and buys a fare or puts money on the card; 
2) when the user enters a vehicle, he taps his card on a reader that validates the fare, and the 

time of this "tap-in" transaction is recorded (date, time, location, bus number, router number, 
direction, etc.); 

3) in some systems, the user must validate when he exits the vehicle, where this "tap-out" 
transaction is recorded; and, 

4) the vehicle or station data (for rail service) is downloaded regularly to a central server for 
revenue processing. 

In addition to revenue management, there are many works that have proven that more can be done with 
smart card data in public transit planning at strategic, tactical and operational levels (Pelletier et al. 2011).   
Due to the huge quantity of data, earlier works have tried to classify passengers using data mining 
techniques (Morency et al. 2007).  Devillaine et al. (2012) have shown a method to identify daily activities 
from smart card data, comparing networks from Santiago, Chile and Gatineau, Canada. Spurr et al. (2014) 
have proposed a method to correct household surveys using smart card data in the Montreal region.  
Because they represent a high density of transactions made in buses, smart card data can also be used to 
calculate public transport network (supply-side) performance indicators, as demonstrated by Trepanier et al. 
(2009). 
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Data from SCAFCS are also very useful for modeling. Shimamoto (2014) has used such data to calibrate a 
hyperpath choice model for public transport users. Smart card data are also used to model the influence of 
weather on demand (Trépanier et al. 2012) and to estimate the retention rate as a proxy to measure the 
loyalty of public transport users with respect to the service (Trépanier and Morency 2010).  Data can be 
used to model very precise elements, like the waiting and walking times of individuals in a subway system 
(Lee and Ali 2014). 
 

2.2 Destination estimation and OD matrices 
 
As a matter of fact, many of the studies need OD matrices derived from smart card data, or at least part of 
these data. That is, methods are needed and have been developed to estimate the alighting transaction 
locations in the case of "tap-in" only networks. 
A method based on the sequence of boarding stops has been proposed by Trépanier et al. (2007) for the 
smart card data of the Société de Transport de l'Outaouais (STO, Gatineau, Canada). This method 
assumes that users will alight at the stop which is the nearest to his subsequent boarding stop on the same 
day. For the last trip of the day, the boarding location of the trip of the next day is used to find the alighting 
point. Munizaga and Palma (2012) have proposed an improvement to the method to distinguish "real" 
transfers from hidden activities; this helps to better identify trips during a journey.  Gordon et al. (2012)  
have proposed spatio-temporal criteria to differentiate transfers from activities between transactions. Nassir 
et al. (2015) also proposed an algorithm for distinguishing the transfers from short activities by comparing 
the recorded travel time between the origin-destination pairs with the fastest transit options. He and 
Trepanier (2015) improved the estimation of alighting stops of unlinked trips using a kernel density 
estimation of probabilities of alighting. This method is presented hereafter in the "Methodology" section. 
Smart card data can also be completed by fusing with other sources of data.  Nassir et al. (2011) have 
produced origin-destination matrices on public transport network using General Transit Feed Specification 
(GTFS) schedule data, automated passenger counting (APC) data, and automated vehicle location (AVL) 
data. 
 
 
3 Methodology 
 

3.1 Data source 
 
The calibration and validation data for this study are taken from a smart card data set from Brisbane, 
Australia. These data represent both tap-on and tap-off data from the Go Card, a smart card which is used 
for approximately 85% of the public transport journeys made in Brisbane on any given day. The dataset 
used in this study is a subset of 40,431 trips made during the month of March 2013 (further detail about the 
dataset is masked to ensure privacy). These trips were made by a random set of card users. 
 
3.2 Destination estimation algorithm 
 
The destination estimation algorithm that was used in this study has a mathematical formulation that can be 
found in He and Trépanier (2015). The algorithm is divided in two parts: 1) estimation of alighting stops 
based on stop sequences (i.e. trip chaining assumptions), and 2) alighting stop estimation for unlinked trips 
based on longitudinal analysis of the smart card data. 
For the first part, the sequence of boarding stops during a journey is used to find the most probable 
alighting stop. In Figure 1, the estimated alighting stop of the first route is located at the stop which is the 
nearest to the next boarding stop (on route 2). It is the same case for alighting stop 3, which is the nearest 
to the first boarding of the day. However, we cannot determine the second alighting stop because the 
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distance d between all stops of route 2 and the boarding of route 3 is over 2000 meters, which is the default 
"tolerance distance" of the algorithm.  This distance will be calibrated in our case study. 
 

 

Figure 1.  Part 1 of the destination estimation algorithm 

3.3 Destination estimation algorithm 
 
The second trip of the example journey in Figure 1 is said to be "unlinked", because we cannot find the 
alighting based on the sequence of transactions.  The same applies to journeys with only one trip.  The 
estimation of the alighting stops of these unlinked trips is done in the second part of the algorithm, which 
uses the historical records of transactions of the individual card. For example, for a given unlinked trip, we 
investigate the set of all other transactions made by the same card, at the same boarding stop, and in the 
same route direction.  We utilize the already estimated alighting stops for this set of transactions in order to 
infer the most probable alighting stop for an unlinked trip. The logic behind this method is that passengers 
are assumed to have repetitive patterns of travel and activity locations at regular times, and this pattern can 
be identified and exploited for estimating the destination stops of the unlinked trips. In this algorithm, for 
each stop in this historical set, we use a kernel density estimator to estimate the probability of the expected 
arrival time and distance between the boarding stop and possible alighting stop. Then, we multiply the time 
and distance probabilities for each possible alighting location. The location with the highest probability is 
inferred as the alighting stop. 
This algorithm uses basic parameters that have been fixed by He and Trépanier (2015) because no "tap-
in/tap-out" data was available for validation. These parameters include: the maximum distance d for the first 
part of the algorithm, the threshold distance and time for the second part, and the hypothesis that time and 
space are put on the same level of importance (probabilities are multiplied). The availability of "tap-in/tap-
out" data makes it possible to test different combinations of parameters, thus helping to calibrate the 
algorithm and validate its results. 
The algorithm has been implemented in Python, thus ensuring calculation automatically among a large 
amount of data. In this case, our input files are transaction data (including trip ID, card ID, date, time, bus 
line, direction, boarding stop), “ssli” data (including bus line, direction, stop, distance from first stop to given 
stop), and “stop data” (including stop, coordinates). With these input files and the python program, we 

obtain an output file that contains estimated destinations. 
At the end, we use the following codes to analyze the results of the algorithm: 
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 Code 11: Destination is found in the trip sequence phase. 
 Code 12: Destination is found in the last trip of day phase (also called return home). 
 Code 13: Destination is found in the first trip of next day phase. 
 Code 21: Destination is found with the kernel density method, where the unlinked trip has several 

potential destinations. 
 Code 22: Destination is found with the kernel density method, but the unlinked trip has only one 

potential destination. 
 

 

Figure 2.  An illustration of the method to determine the most probable destination base on history of the 

card (from He and Trépanier 2015) 

 
3.4 Distance threshold for accuracy 
 
Not all the estimated destinations may match exactly the observed alighting stops. In a given bus route, 
stops may be relatively close to each other. For example, the estimated destination stop may be 200 meters 
from the observed destination stop.  In many planning tools, such a threshold is rather acceptable, 
especially if OD matrices are based on zones that can be much larger in size.  The idea here is to measure 
the accuracy of the algorithm within an acceptable distance.  Our hypothesis is that the accuracy will 
increase rapidly with the increase of the acceptable distance, and then it may stabilize. Our objective is to 
find a suitable threshold for this parameter. 
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4 Experiments 
 
One may first look at the overall accuracy of the destination estimation algorithm as it was developed by Li 
and Trépanier (2015), using tolerance distances of 2000 m for phases 11, 12 and 13, and 1000 m for 
phases 21 and 22. This is done to apply the base case from Gatineau to the Brisbane data. These results 
are analyzed accordingly to the phase of the algorithm that was used to find the destination. Results are 
also examined by day of the week and hour of the day. 
 
4.1 Accuracy 
 
We define the accuracy as the ability of the algorithm to find the destination within an acceptable distance 
from the true destination. The accuracy is 65.8% when the acceptable distance is 0 m. Logically, as we 
increase the acceptable distance, the accuracy will also increase. Figure 3 presents the relation between 
the acceptable distance and the accuracy of the proposed algorithm when applied to the Brisbane data set. 
 

 

Figure 3 Calibration for acceptable distance 

The curve shows that the accuracy increases almost linearly for a distance between 0 to 400 meters, and 
then begins to have more marginal improvement. There seems to be stability near 85% accuracy over 1000 
meters, but theoretically 100% accuracy will be attained at a very large distance, because the set of 
destination is always chosen within a finite set of stops that stem from the boarding stop on a given route. 
In the following result presentation, we use the acceptable distances of 0 m (perfect match) and 400 m 
(threshold distance) for the analyses. 
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4.2 Estimation phases 
 
Figure 4 shows the estimation accuracy of different phases of the algorithm for the acceptable distances of 
0 m and 400 m. The list of codes is presented in the methodology section. 
 

 

Figure 4 Estimation accuracy of each code for different acceptable distances 

As expected, code 11 has the highest accuracy because the estimation is based on the trip sequence within 
a day. The method to estimate unlinked trips has a lower accuracy when there are several potential 
alighting stops (code 21): the accuracy is just above 40%. However, for the case where there is only one 
potential alighting stop in the historical transactions (code 22), the accuracy is similar to the first three 
phases. 
With an acceptable distance of 400 m, the accuracy of each phase is above 60%, especially for code 11, 
where the accuracy is over 90%. It is noteworthy that for code 21, the accuracy increase is substantial for 
400 meters distance. This means there are many observed destinations that are not so far away from the 
estimated destinations.  It is interesting then to find a way to improve the method for code 21 to improve the 
estimation method. It is possible to improve the phase 21 because estimated destinations are already not 
far from the real destinations. 
 
4.3 Temporal analysis 
 
In this section, the accuracy is investigated by time of day and day of week, because the algorithm is based 
on the trip sequences (or temporal kernel estimates) which may vary by time and day of travel. Therefore, 
we propose two temporal analyses: (1) by time of day, and (2) by day of week. 
In figure 5, apart from the 5:00 am peak that may not be significant, the highest accuracy of the perfect 
match (acceptable distance = 0 m) occurs in the evening peak (around 16:00). This would possibly mean 
that the behavior of returning home is more regular (the final stop would not vary). For the morning peak, 
the difference between the results of the two acceptable distances is high; this could be because 
passengers have a tendency to choose different stops to get off when they go to work or school. Since 
smart card data does not include any socio-demographic attributes attached to each transaction, we cannot 
further analyze the trip data by trip purpose or by population segment. 
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Figure 5 Estimation accuracy by time of day for different acceptable distances 

Figure 6 shows the variation of the accuracy according to the day of the week. The accuracy in the 
weekdays is relatively higher than in the weekend. In the weekdays, the trips are more regular, as they 
follow the pattern of going to work and returning home. Hence, the estimation of the destination in the 
weekday is more accurate than in the weekend. However, it is interesting to note that the accuracy of 
estimation for Sunday transactions is higher than Saturday, maybe because people are more likely to return 
home on Sundays to prepare for their first trip on Mondays. Therefore, phase 13, which is based on trip 
chaining with the next day’s information, can be more efficient for the transactions made on Sundays as 

compared to Saturdays. 
 

 

Figure 6 Estimation accuracy by day of week for different acceptable distances 

 
5 Tolerance distance calibration 
 
In the classical model, the tolerance distance defines the area in which the stops will be accepted to link to 
the next route. However, there was no method to calibrate this parameter. In this paper, we use Brisbane 
smart card data to try different distance values, aiming to find the best tolerance distance. We use two 
values of tolerance distance: a 2000 m threshold for phases 11, 12 and 13, and a 1000 m threshold for 
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phases 21 and 22. Because the estimation algorithm runs step by step, we first try different tolerance 
distances for phases 11, 12 and 13 and keep the distance values for phases 21 and 22 unchanged. After 
finding the best parameter value for phases 11, 12 and 13, we then try to calibrate for phases 21 and 22 by 
using the same method. 

5.1 Tolerance distance for phases 11, 12 and 13 

Figure 7 shows the accuracy of estimation when the tolerance distance ranges from 500 m to 2500 m. We 
can find that for all 3 phases, the accuracy decreases with the increase of tolerance distance. It seems that 
500 m is the best choice. However, as shown in Figure 8, the quantity of trips estimated will be significantly 
decreased at 500 m. There is obviously a trade-off between the quality of estimation and the quantity of 
output.  As a result, the optimal distance threshold that could increase the accuracy of estimation and would 
not significantly compromise the number of estimated stops could be1000 m, because the number of trips 
estimated at this distance is almost similar to the baseline case (2000 m).  At this distance, the accuracy 
remains acceptable. 

 

Figure 7 Calibration for tolerance distance of phases 11,12 and 13 (1) – estimated accuracy 

 

Figure 8 Calibration for tolerance distance of phases 11, 12 and 13 (2) – total trips estimated 
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5.2 Tolerance distance for phases 21, 22 

For calibrating the threshold distance for phases 21 and 22, we keep constant the parameter value (1000m) 
that was found for the trip chaining phases 11, 12 and 13. We try four values for threshold distance of 
phases 21 and 22: 250 m, 500 m, 1000 m (baseline value) and 1500 m. Figure 9 shows the accuracy of 
estimation using these values. Obviously, the accuracy increases with the decrease of the tolerance 
distance. But is the number of estimated trips decreasing with the decrease of tolerance distance? We can 
find in Figure 10 that the number of trips estimated is not significantly decreased when the tolerance 
distance is 250 m. Therefore, because of its high accuracy and number of destinations estimated, we 
choose 250 m as the tolerance distance for phases 21 and 22. 

 

Figure 9 Calibration for tolerance distance of phases 21 and 22 (1) – estimated accuracy  

 

 

Figure 10 Calibration for tolerance distance of phases 21 and 22 (2) – total number of trips estimated 
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5.3 Results improvement 
 
Figure 11 compares the accuracy before and after the calibration. For each phase, the accuracy increases, 
especially for phases 12 and 21. This could indicate that passengers get off at a stop near to their home, 
but the stop choice is looser for activity locations. Overall, the calibration helps to increase the accuracy by 
around 1.4 percentage points. 
It is worth mentioning that the number of trips estimated is also slightly increased after calibration (+0.4%). 
This result is a combination of the decrease of the number of trips estimated by phases 11, 12 and 13, and 
the increase of the number of trips estimated by phases 21 and 22. 

 

Figure 11 Comparison of accuracy before and after calibration 

 
6 Conclusion 
 
In this paper, we propose a method to calibrate a destination estimation algorithm, and we use a database 
taken from a smart card data set from Brisbane, Australia to validate this algorithm.  The result shows that 
the accuracy is 65.76% and 79.17% for acceptable distances 0 and 400 m, respectively. We also proposed 
a method to calibrate the tolerance distance used in the algorithm. We chose the best tolerance distance as 
1000 m for phases 11, 12 and 13 (the trip sequence part of the algorithm) and 250 m for phases 21 and 22 
(unlinked trip part of the algorithm). After the calibration, the accuracy of estimation increased by 1.38% and 
the number of trips estimated increased by 0.4%. 
However, for phase 21 (destination found with the improved method, where the unlinked trip has several 
potential destinations), the accuracy has been much improved with an acceptable distance increased to 400 
m. This may lead to a conclusion that in further works, the algorithm should be calibrated at different 
tolerance distances for each of its phases, and additional data should be tested. It is also likely that 
calibration depends on the smart system site, because it may rely on the travel behaviour that is different 
from one city to another. At this time, there is no way to be assured that the calibrated parameters found for 
Brisbane would be the best for the case of Gatineau, where the algorithm was first developed. 
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