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1. Introduction

In response to sustainability of supply chains, design and management of

closed-loop supply chains (CLSC) have attracted a growing interest over the

recent decade. It has been recognized that CLSCs comprise forward channel

along with the so-called “reverse supply chain (RSC)”. The focus of RSC is

on taking back of end-of-life and end-of-use products (cores) from consumers,

and recovering added value by reusing the entire product, and/or some of

its components, such as modules and parts [1]. The prime importance of

CLSCs is attributed to the environmental footprint of cores as well as the

profitability of recovery practices. Needless to say, the prosperity of such

business practices requires placing appropriate reverse logistics infrastruc-

tures and managing arising return flows efficiently. Therefore, the design of

the CLSC is becoming increasingly important.

CLSC network design refers to decisions for locating several types of fa-

cilities in both forward and reverse chains in addition to efficiently routing

and coordinating physical forward and reverse flows. Designing a CLSC net-

work for durable products, that are characterized by their modular structured

design and their long life cycle (e.g., computers and large household appli-

ances), is a complex problem. Such category of products can be disassembled

into several components (i.e., modules and parts) as well as raw materials

concerning the reverse bill of materials (BOM). Consequently, the reverse

supply chain of such products involves various types of recovery facilities as-

sociated with different components in the reverse BOM of durable products.

We note that in the context of CLSC/RSC network design, most studies

are limited to involving a few recovery activities, e.g., remanufacturing and
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material recycling, in designing their networks. To fill the void in such a

line of research, we, however, incorporate various recovery options, which an

OEM can adopt in tackling the return stream. These recovery processes are

plausible in taking different sub-assemblies of a typical durable product.

It is a well-known fact that a high level of uncertainty is a characteristic

for various product recovery systems [2]. A clear distinction that is made

between CLSCs and the traditional forward supply chains lies in uncertain

condition (quality) of cores. This issue also add to the complexity of CLSC

design for case of used durable products. In contrast, the existing stream of

literature explicitly lacks accounting such unavoidable aspect in CLSC/RSC

network design. That is, in the modeling framework, some simplifying as-

sumptions have been made with respect to the quality variation of the return

flows, thereby alleviating the complexity of the proposed model. More pre-

cisely, the concerned literature has focused on classifying cores with respect

to deterministic disjoint quality levels [3–5], which ignores the uncertainty.

Another attempt to model uncertain quality has been considering the rate of

recovery as a random variable [6]. Nonetheless, both of the above-mentioned

approaches are rough approximations of the uncertain quality status of cores.

Observing this major drawback, in this study, as our prime contribution,

we propose a more precise approach to model the uncertain quality status,

where the availability of each component in the reverse BOM is modeled as

a discrete scenario following a Bernoulli distribution. This novel approach

leads to an explicit incorporation of the uncertain quality status of returns. In

this regard, we formulate this large-scale optimization problem as a two-stage

stochastic mixed-integer program with recourse [7]. As far as the authors are
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aware, design of a CLSC concerning the explicit modeling of the uncertain

quality of each component in the reverse BOM has never been investigated

in the context of durable products.

On account of the fact that proposing the aforementioned approach for

modeling the uncertain quality exponentially increases the number of sce-

narios, as the second contribution, we implement fast forward selection algo-

rithm [8, 9] adapted to our problem setting as a scenario reduction technique

to keep the most pertinent scenarios. Further, on the methodological side,

our third contribution is to develop an enhanced solution approach based

on L-shaped method [10], which shows a consistent performance efficiency

in our experimentations. The classical L-shaped scheme results from apply-

ing Benders decomposition [11] to two-stage stochastic programming models

with continuous variables. This decomposition approach typically requires

algorithmic refinements to accelerate its convergence. We, therefore, provide

enhancement strategies that include adding induced constraints to the mas-

ter problem to restrict its feasible region and also generating Pareto-optimal

cuts to strengthen the deepness of optimality cuts throughout the execution

of the solution algorithm. Even though it is beyond the scope of this paper,

it should be stated that the uncertain demand of brand-new products as well

as quantity of returns can also be taken into account as other sources of

uncertainty in designing the CLSC network.

The remainder of this paper is organized as follows. In the next section,

we provide the review of the relevant literature. In Section 3, we introduce

the problem setting and its two-stage stochastic programming formulation.

Section 4 elaborates on the scenario reduction algorithm. In Section 5, a
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detailed description of the enhanced L-shaped method is given. Section 6

presents computational experiments on the performance of the proposed so-

lution method for a large household appliance example. In the last Section,

we provide concluding remarks and future research directions.

2. Literature review

Many efforts have been made to model and optimize deterministic CLSC/

RSC network design problems. The current literature in the context of prod-

uct recovery offers a variety of problems spanning from recycling of simple

waste, such as carpet and sand to different recovery options of more complex

products [3–5, 12–17]. For an extensive review of proposed models and cases,

the reader is referred to [18, 19].

The overview of the existing literature implies that in most of prevailing

studies uncertainty consideration is limited to demand and quantity of re-

turns. On the other hand, the impact of uncertain quality state of returns on

CLSC design, regardless of its substantial impact, has not been adequately

investigated in the literature. The most common approach that makes an

explicit attempt to incorporate uncertainty in design parameters is stochastic

optimization methods. Since the seminal work of Salema et al. [20], in which

the authors addressed a CLSC network design problem under uncertain de-

mand and quantity of returns, some researchers have developed two-stage

stochastic programming formulations to model such stochastic parameters.

Details of these studies can be found in [21–25]. The analysis of the cur-

rent literature suggests the following observations: 1) most of them are case

oriented logistical networks; 2) the number of scenarios is quite small (e.g.,
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twelve scenarios in [21]); and, 3) concerning the size of test problems, the

optimal solution is found by virtue of commercial softwares. It should be

stated that [21] is an exception to the last observation such that an integer

L-shaped algorithm was devised as the solution approach. Nonetheless, its

algorithmic framework is only suited for addressing situations with a very

small number of scenarios.

To the best of our knowledge the only work that captures uncertainty in

the quality status of returns has been recently presented by Chen et al. [6],

in which the rate of recovery is considered as a measure to reflect the quality

status of cores. Accordingly, the authors modeled the random recovery rate

as a set of scenarios for a CLSC network design, including collection and

remanufacturing facilities in the reverse channel. The resulting two-stage

stochastic quadratic formulation was solved via the integer L-shaped method

integrated with the sample average approximation scheme. As highlighted in

the preceding section, we, however, capture the uncertain quality status of

the return stream in a more precise setting with regard to the reverse BOM

in the context of modular structured products. Our approach differs in the

scope from [6] in the sense that: 1) it discriminates the quality state of cores

in terms of the availability of components in the reverse BOM of a durable

product; 2) it involves various types of recovery options plausible for the

sub-assemblies of a durable product; 3) the choice of the recovery process for

each component depends on its quality status; and 4) the enhanced L-shaped

method together with the proposed scenario reduction strategy is capable of

serving as a viable tool for designing a realistic-scale CLSC network with

quite crude information of quality status.
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3. Problem description and formulation

In what follows, first, the description of the CLSC network applicable for

durable products is presented. Then, we articulate how to model the ran-

dom quality status of cores. Finally, we formulate the CLSC network design

problem as a two-stage stochastic mixed-integer program with recourse.

3.1. CLSC network design for durable products

In the CLSC network design problem of interest, an organization operates

a well-established forward channel in which the forward network comprises

components and raw materials suppliers, manufacturing facilities, distribu-

tion centers, and end-user locations. The organization tends to adopt some

suitable recovery practices to satisfy the directive recycling target stipulated

by the legislator as well as to reclaim the economic value from used compo-

nents. Hence, the aim is to extend the existing forward network to accom-

modate the recovery facilities and consequently to coordinate the physical

forward and reverse flows in the extended supply chain network. The reverse

network includes collection, disassembly, remanufacturing, bulk recycling,

material recycling, and disposal centers, referred to as the recovery facilities.

The returned durable products received at end-user sites are shipped to disas-

sembly centers through collection centers. In our problem setting, the quality

status of a returned durable product is defined as the availability of modules

and parts for remanufacturing and part harvesting/reusing practices along

with the mass of residues for bulk recycling processes. In disassembly cen-

ters, the inspected return stream is disassembled into different components

based on the reverse BOM. The recoverable modules and recyclable materials
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are then sent to remanufacturing and recycling centers for further processes.

Besides, the bulk of mixed residues would typically be processed in bulk re-

cycling centers and/or outsourced to a third-party provider to separate the

precious raw materials from mixed scrap, e.g., electronic scrap. The bulk

recycling step is followed by material recycling and landfilling/incineration

at disposal points. The material recycling step is designed to recover the raw

materials after the execution of unit operations in bulk recycling sites. The

non-valuable remaining, i.e., process waste, should be safely disposed of at

disposal centers. The remanufactured modules, spare parts, and recycled raw

materials are used for the following purposes: 1) shipping to manufacturing

facilities to deploy in manufacturing of brand-new products; and, 2) selling

on potential secondary markets. Given the above description, the concep-

tual structure of the CLSC under consideration is schematically illustrated

in Figure 1. The solid arcs indicate the forward flows while the dashed ones

denote the reverse flows in the CLSC.

3.2. Modeling random quality states of the return stream

The quality status of returns is indeed affected by the changes having

been made during the lifetime of durable products. More specifically, in

many cases, due to the usage and the deterioration rates during the long

life cycle of such products, it is quite impossible to foresee the exact num-

ber of recoverable components in a returned durable product. Moreover, the

quality status can only be revealed after grading the returned items in disas-

sembly centers. In this study, the random quality state is considered as the

availability of each component in the reverse BOM and modeled as discrete

scenarios with Bernoulli probability distribution. Let P and L denote, re-
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Figure 1: General structure of the CLSC network

spectively, the set of parts and modules in the brand-new durable product.

Further, let γp, δl, and β denote, respectively, the number of reusable part

p, the number of remanufacturable module l, and the mass of residues in the

returned durable product. Now that we represent the random quality vector

by ξ where ξ = {γp|∀ p ∈ P ; δl|∀ l ∈ L; β}. We also represent each particu-

lar realization (scenario) of the random quality status by γp(ξs), δl(ξs), and

β(ξs). Each particular scenario s is associated with a non-negative proba-

bility πs such that
∑

s∈S πs = 1. Once the grading process is executed in

disassembly centers, it is realized whether or not a particular part/module is

suitable for the effective recovery process. We assume that the grading pro-

cess yields a good condition component with success probability p̂ otherwise
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a poor state one with a failure probability q̂ = 1− p̂. It should be emphasized

that the success probability of each component (module/part) is the same

in all returned items. Moreover, we assume that the probability distribution

corresponding to the condition of different returned items are independent

and identical.

For instance, we point out to a used twin tub of a washing machine such

that each washing tube unit weighs 3.5 kg. Every unit can independently be

either functional with probability p̂ or defective with probability q̂. Hence,

the outcome of the grading process for the washing tube follows a Bernoulli

distribution. Likewise, the quality status of other components in the reverse

BOM is an independent random variable following a Bernoulli distribution.

For every realization of the random quality vector, i.e., ξs, we define an

indicator function for each unit j of part p and another indicator function

for each unit k of module l as follows.

I(pj) =

 1 if unit j is in a functional state; j = 1, ..., np

0 otherwise

I(lk) =

 1 if unit k is in a functional state; k = 1, ..., nl

0 otherwise

It allows us to consider, respectively, the number of reusable part p as γps =∑np

j=1 I(pj) and the number of remanufacturable module l as δls =
∑nl

k=1 I(lk).

For example, in the aforementioned washing machine case, a possible outcome

of the grading process might be one fully functional and one defective washing

tube. Thus, for this specific part, γ is equal to 1. On the other hand,

the indicator function of the defective unit takes 0 with probability q̂. The

defective unit will considered as residues and the viable recovery option for
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this unit will be bulk recycling process. In this regard, β will be increased

with the corresponding weight of the unit, i.e., 3.5 kg and thus β is equal

to 3.5 kg. In other words, all defective units observed after the grading

operation are considered as residues and β is equal to the total summation

of their corresponding weights.

The scenario generation approach described above results in 2n scenarios

for a typical durable product that consists of n different types of components.

The probability of each scenario can be calculated as follows.

πs = p̂γps+δls .q̂n
p+nl−γps−δls

For example, suppose another washing machine that comprises ten dif-

ferent types of parts, namely P1, P2, ...., P10 and two different types of

modules, namely L1 and L2 such that it involves only one unit per each

type of parts and modules. Further, each component can be functional with

probability 0.3, i.e., p̂ = 0.3. Consequently, the grading process results in 212

scenarios. Table 1 presents five scenarios and their corresponding probability

of occurrence among all possible realization of quality state scenarios for the

grading process of this washing machine.

As shown in Table 1, in the first scenario (the first row of the table),

there are six parts in functional condition and the others are considered as

residues and should be treated in bulk recycling to recover their precious

materials. Therefore, the value of the parameter γ is equal to 6. Likewise,

only one module, i.e., L1, is remanufacturable and thus δ is equal to 1. The

parameter β is then equal to the total weights of the components taking value

of 0 in the first scenario, i.e., P2, P3, P7, P9, and L2. The probability of the

first scenario is calculated as 0.3× 0.7× 0.3× ...× 0.3 = 0.000037.
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Table 1: Example of quality state scenarios

Scenario Component type Probability

L1 L2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1 1 0 1 0 0 1 1 1 0 1 0 1 0.000037

2 1 1 1 0 1 0 0 0 1 1 0 1 0.000037

3 0 1 1 1 1 1 1 0 1 1 0 0 0.000016

4 0 1 1 0 1 0 0 0 0 0 1 0 0.000467

5 1 1 1 0 1 1 1 0 1 1 1 1 0.000002

3.3. Two-stage stochastic programming formulation

Given the described scenario generation approach for random quality sta-

tus, we can formulate our problem setting as a two-stage stochastic program

with recourse. In a general two-stage stochastic programming model, the

first stage decisions are taken when the decision maker does not have enough

information about the outcome of uncertain parameters, while, the second

stage decisions are implemented after the uncertainty is realized. In other

words, the “second stage” decision is made when the complete information

with respect to uncertain parameter(s) is available.

Referring to Figure 1, in our problem setting, in the first stage, the lo-

cation of collection, disassembly, remanufacturing, bulk recycling, material

recycling, and disposal facilities in the reverse network should be determined

before the complete information on the quality status of returns is avail-

able. Thus, the binary location decisions are first stage decisions. Moreover,

since the demand is deterministic, the uncertainty in quality status of re-

turns does not affect the decisions on the quantity of brand-new durable

products shipped form manufacturing facilities to end-users via distribution
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centers. Therefore, such forward flow decisions are also among the first stage

decisions. Likewise, as the quantity of returns is deterministic, the reverse

flow from end-users to collection sites and the flow from collection centers to

disassembly facilities are also first stage decisions. Lastly, regardless of the

quality state of returns, they contain precious raw materials that can also

be recycled in material recycling centers. Accordingly, the flow of recyclable

materials from disassembly centers to material recycling sites is considered

as a first stage decision variable. Once the returns are graded in disassembly

centers, a complete information on the number of recoverable modules and

parts in addition to the mass of residues are available to decision maker.

Consequently, the remaining flows in the reverse channel are referred to as

the second stage decisions (recourse actions). The physical flows from var-

ious suppliers to manufacturing centers are also considered as second stage

decisions due to the impact of uncertain quality states on them. The nota-

tions used in the mathematical model is listed in Appendix A. The two-stage

stochastic programming formulation with fixed recourse can be stated as

follows.
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Maximize
∑
j∈J

∑
k∈K

PkkX
2
jk −

∑
i∈I

∑
j∈J
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1
ij −

∑
i∈I

∑
j∈J

tjijX
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ij −

∑
j∈J

∑
k∈K
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2
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−
∑
j∈J

∑
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tkjkX
2
jk −

∑
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∑
c∈C
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3
kc −

∑
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∑
c∈C
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3
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−
∑
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∑
a∈A

caaX
4
ca −

∑
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∑
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tacaX
4
ca −

∑
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∑
a∈A

PrX4
ca

−
∑
a∈A

∑
g∈G

∑
r∈R
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5
agr −

∑
a∈A

∑
g∈G

∑
r∈R

tgagrX
5
agr −

∑
c∈C

fccY
1
c

−
∑
a∈A

faaY
2
a −

∑
m∈M

fmmY
3
m −

∑
b∈B

fbbY
4
b −

∑
g∈G

fggY
5
g −

∑
d∈D

fddY
6
d

+
∑
s∈S

πsQ(Y 1
c , Y

2
a , Y

3
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4
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5
g , Y

6
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1
ij, X

2
jk, X

3
kc, X

4
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5
agr, ξs)

(1)

subject to
∑
i∈I

X1
ij =

∑
k∈K

X2
jk ∀ j ∈ J (2)

∑
j∈J

X2
jk = dkk ∀ k ∈ K (3)

∑
c∈C

X3
kc = ψdkk ∀ k ∈ K (4)

∑
k∈K

X3
kc ≥

∑
a∈A

X4
ca ∀ c ∈ C (5)

∑
c∈C

∑
a∈A

X4
ca ≥ λ

∑
k∈K

∑
c∈C

X3
kc (6)

∑
c∈C

αrX
4
ca =

∑
g∈G

X5
agr ∀ a ∈ A, ∀ r ∈ R (7)

∑
j∈J

X1
ij ≤ caii ∀ i ∈ I (8)

∑
i∈I

X1
ij ≤ cajj ∀ j ∈ J (9)
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∑
k∈K

X3
kc ≤ caccY Cc ∀ c ∈ C (10)

∑
c∈C

X4
ca ≤ caaaY Aa ∀ a ∈ A (11)
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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tizipQIzips −
∑
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∑
i∈I

∑
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−
∑
h∈H

∑
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∑
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∑
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∑
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QSaops ∀ a ∈ A, ∀ p ∈ P (16)

∑
a∈A

QSaops ≤ dsop ∀ o ∈ O, ∀ p ∈ P (17)

∑
c∈C

βsX
4
ca =

∑
b∈B

QBabs ∀ a ∈ A (18)

∑
c∈C

δlsX
4
ca =

∑
m∈M

QMamls ∀ a ∈ A, ∀ l ∈ L (19)

∑
a∈A

QMamls =
∑
w∈W

QWmwls

+
∑
i∈I

QXmils ∀ m ∈M,∀ l ∈ L (20)

∑
m∈M

QWmwls ≤ dwwl ∀ w ∈ W,∀ l ∈ L (21)

∑
a∈A

ηrQBabs =
∑
g∈G

NGbgrs ∀ b ∈ B, ∀ r ∈ R (22)

∑
a∈A

QBabs =
∑
g∈G

∑
r∈R

NGbgrs +
∑
d∈D

NDbds

+BRbs ∀ b ∈ B (23)∑
a∈A

τrX
5
agr +

∑
b∈B

τrNGbgrs =
∑
d∈D

XDgdrs ∀ g ∈ G,∀ r ∈ R

(24)∑
g∈G

QEgers ≤ deer ∀ e ∈ E,∀ r ∈ R (25)
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∑
a∈A

X5
agr +

∑
b∈B

NGbgrs =
∑
i∈I

QUgirs +
∑
e∈E

QEgers

+
∑
d∈D

XDgdrs ∀ g ∈ G,∀ r ∈ R (26)

∑
i∈I

QIzips ≤ cazzp ∀ z ∈ Z, ∀ p ∈ P (27)

∑
i∈I

NIuirs ≤ cauur ∀ u ∈ U,∀ r ∈ R (28)

∑
i∈I

XIhils ≤ caxhl ∀ h ∈ H,∀ l ∈ L (29)

∑
a∈A

QMamls ≤ cammlY
3
m ∀ m ∈M, ∀ l ∈ L (30)

∑
a∈A

QBabs ≤ cabbY
4
b ∀ b ∈ B (31)

∑
a∈A

X5
agr +

∑
b∈B

NGbgrs ≤ caggrY
5
g ∀ g ∈ G,∀ r ∈ R (32)

∑
b∈B

NDbds +
∑
g∈G

∑
r∈R

XDgdrs ≤ caddY
6
d ∀ d ∈ D (33)

In the two-stage stochastic programming model (1)-(33), the objective

function is to maximize the expected profit for all realized quality state sce-

narios. The objective function is composed of the revenue from selling brand-

new products and recovered components and recycled materials in addition

to the fixed costs of opening facilities as well as processing, procurement, and

shipping costs in the CLSC network. Constraint (2)-(3) ensure flow balance

at each distribution center and demand satisfaction at each end-user zone.

Constraint (4) ensures that all the returned products are collected at the

collection centers. Constraint (5) ensures that the total flow to the disas-

sembly facilities, i.e., acquired returns, cannot exceed the total amount of

returned products available in collection centers. Constraint (6) ensures that
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the OEM acquires a substantial portion of the return stream for recovery

purposes. This constraint reflects the environmental concerns regarding the

harmful effects of leaving used durable products in the environment. Con-

straint (7) ensures that the total flow outgoing from disassembly centers

to all recycling centers is equal to the incoming flow to each disassembly

center from all collection centers, multiplied by recyclable mass coefficient

αr. Constraints (8)-(11) are capacity restrictions. Constraints (13)-(15) en-

sure that the total outgoing flow from each manufacturing center is equal to

the total incoming flow into this facility from suppliers and reverse channel.

Constraints (16)-(19) ensure flow conservation at each disassembly center.

Constraints (20)-(21) ensure the flow conservation at each remanufacturing

facility. Constraints (22)-(23) ensure flow conservation at each bulk recy-

cling center. Constraints (24)-(26) are flow conservation restrictions at each

material recycling center. Constraints (27)-(33) impose capacity restrictions

on supply chain facilities. Constraints (17), (21), and (25) represent partial

demand satisfaction of recovered components and recycled raw materials at

secondary markets.

The two-stage stochastic programming model (1)-(33) involves an ex-

tremely large number of recourse problemsQ(Y 1
c , Y

2
a , Y

3
m, Y

4
b , Y

5
g , Y

6
d , X

1
ij, X

2
jk,

X3
kc, X

4
ca, X

5
agr, ξs). This leads to a computationally intractable model. There-

fore, a scenario-based reduction approach would be required to alleviate the

computational complexity of the proposed model.
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4. Scenario reduction algorithm

In this section , we articulate a scenario reduction framework based on

fast forward selection algorithm adapted to the particular structure of the

uncertainty set for quality status of returns. The main idea behind the

scenario reduction scheme is to preserve the most pertinent scenarios through

eliminating the doubtful scenarios to occur. Consequently, it determines

the best approximation of the current set of scenarios with respect to a

probability distance measure, i.e., most often Monge-Kantorovich distance.

We let Ω be the probability distribution carried by n-dimensional scenar-

ios si = (ξl1si , ξ
l2
si
, ..., ξlLsi , ξ

p1
si
, ξp2si , ..., ξ

pP
si

) in which l and p indicate, respectively,

index of modules and parts. For instance, l1 denotes the first type of modules

while p3 represents the third type of parts in the reverse BOM. Each scenario

si is associated with probability πi for i = {1, ..., |S|} such that
∑|S|

i=1 πi = 1.

Further, we let Ω be the set of reduced probability distribution, compared

to Ω, carried by finitely scenarios sj = (ξl1sj , ξ
l2
sj
, ..., ξlLsj , ξ

p1
sj
, ξp2sj , ..., ξ

pP
sj

) with

probability πj for j ∈ {1, ..., |S|} \ J , where J denotes the index set of elim-

inated scenarios. The minimal Monge-Kantorovich distance between Ω and

Ω is then attained as follows (Theorem 2.1. in [8]).

D(Ω,Ω) =
∑
i∈J

πi.min
j /∈J

c(si, sj) (34)

and the probability of the preserved scenario sj of Ω, j /∈ J , is given by the

so-called redistribution rule:

πj = πj +
∑
i∈Jj

πi (35)
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where c(si, sj) is a distance metric between scenarios si and sj and Jj =

{i ∈ J : j = j(i)} and j(i) ∈ arg minj /∈J c(si, sj); ∀i ∈ J . The interpretation

of the redistribution rule, equation (35), is that the modified value of the

probability of a preserved scenario is equal to sum of its initial probability

and all probabilities of eliminated scenarios that are closest to it concerning

the distance metric c.

The reduction problem (34) states that the initial scenario set involving 2n

number of scenarios is covered by two sets J ⊂ {1, ..., |S|} and {1, ..., |S|}\J

such that the cover has the minimum value, i.e., D(Ω,Ω). This problem

is therefore a set covering problem, which is NP-hard. In [8], an efficient

heuristic algorithm based on Monge-Kantorovich distance has been devel-

oped to determine the optimal scenario set reduction. The concept of fast

forward selection algorithm is the recursive selection of scenarios that will

not be eliminated. The first scenario to be preserved is the one that has the

minimum sum of the distances to the unselected scenarios. In the subsequent

steps, the distance of the unselected scenarios is updated by comparing these

scenarios to the selected set. Thus, the sum of the distances of the unselected

scenarios is calculated and the next scenario to be preserved is selected akin

to the first scenario in the selected set. This process terminates once a spec-

ified number (m) of scenarios has been selected to be preserved. In the end,

the probabilities of each non-selected scenario is added to its closest selected

scenario concerning the redistribution rule (35).

The first step of forward selection algorithm involves constructing the dis-

tance matrix. Euclidean distance has been a common metric used in stochas-

tic optimization literature. In this study, the distance norm is adapted to
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the particular structure of the uncertainty set. More specifically, we differen-

tiate between modules and parts in the reverse BOM of a durable product.

The rationale behind that is the different characteristics and economic val-

ues residing in these components. Hence, from the practical standpoint, the

modified distance matrix better reflects the heterogeneity residing in each

quality state scenario compared to a classical distance matrix. To this end,

the following modified Euclidean norm is considered as a distance measure

between every pair of scenarios si and sj.

c(si, sj) = ||ξlsi − ξ
l
sj
||2 + ||ξpsi − ξ

p
sj
||2

=

√
(ξl1si − ξl1sj)2 + ...+ (ξlLsi − ξlLsj )2 +

√
(ξp1si − ξp1sj )2 + ...+ (ξpPsi − ξpPsj )2

The fast forward selection algorithm is outlined in Algorithm 1. This algo-

rithm starts with an empty selected set of scenarios and iteratively updates

it by adding the scenario minimizing Monge-Kantorovich distance between

original and selected sets. In the first step, the distance matrix corresponding

to the original set of scenarios is constructed using the modified Euclidean

distance metric described above. Then, the minimum distance is computed

(line 2 in the algorithm description) and immediately the first scenario to be

preserved is identified. Consequently, the set of selected scenarios is updated.

In the following steps, the distance matrix is updated concerning the fourth

line and distances between scenarios in the original and selected sets is cal-

culated (line 5). The scenario with the minimum distance value is selected

as the next scenario not to be eliminated and the selected set is updated.

The probability of the scenarios in the selected set is computed through the

redistribution rule (35).

22

Closed-Loop Supply Chain Network Design under Uncertain Quality Status: Case of Durable Products

CIRRELT-2015-56



Algorithm 1 - Fast forward selection

1: Step 1: c
[1]
ij := c(si, sj) ∀i, j ∈ {1, ..., |S|}; i 6= j

2: z
[1]
j :=

|S|∑
i=1
i6=j

πic
[1]
ij ∀j ∈ {1, ..., |S|}

3: j1 ∈ arg min
j∈{1,...,|S|}

z
[1]
j , J

[1] := {1, ..., |S|}\{j1}

4: Step k: c
[k]
ij := min{c[k−1]ij , c

[k−1]
ijk−1
} ∀i, j ∈ J [k−1]; i 6= j

5: z
[k]
j :=

∑
i∈J [k−1]\{j}

πic
[k]
ij ∀j ∈ J [k−1]

6: jk ∈ arg min
j∈J [k−1]

z
[k]
j , J [k] := J [k−1]\{jk}

7: Step m + 1: Applying the redistribution rule (35)

5. Solution methodology

The mixed-integer programming model (1)-(33) is a large-scale optimiza-

tion problem. It is due to several types of binary decision variables corre-

sponding to location of facilities in the reverse network, the generic reverse

BOM of the returned durable product, and the large yet tractable number

of reduced recourse problems. This model can be tackled by an efficient so-

lution approach which we devise based on L-shaped algorithm. In classical

L-shaped method, the deterministic equivalent (original) problem is decom-

posed into a master problem (MP) and a set of recourse subproblems (RSP)

associated with each random scenario defined in the original model. The MP

comprises the first stage variables, an artificial variable, and a set of first

stage constraints. This problem is the reformulation of the original model

which is solved by a cutting plane algorithm such that, at each iteration,

whenever a feasible solution to the original problem is found, an optimality

cut associated with the set of scenarios are added to the MP. Otherwise, a
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number of feasibility cuts corresponding to infeasible scenarios are added.

The solution to the MP and the expected value of the solutions to the re-

course problems gives, respectively, upper and lower bounds to the original

problem. The solution process terminates once an optimal solution is found

or a prescribed optimality gap is satisfied.

In what follows, we first provide the classical L-shaped reformulation, then

we propose algorithmic enhancements in order to speed-up its convergence

rate.

5.1. L-shaped reformulation

In L-shaped scheme, all the second stage flow variables are projected

out and the master problem includes the first stage facility locations and

flow variables along with a surrogate variable. We let X and Y denote a

tentative first stage solution. The corresponding RSP for each scenario s can

be stated as follows.

Maximize Q(X,Y , ξs) (36)

subject to (17), (20)− (23), (25), (27)− (29)∑
z∈Z

QIzips +
∑
a∈A

QZaips = φp
∑
j∈J

X1
ij ∀ i ∈ I,∀ p ∈ P (37)

∑
u∈U

NIuirs +
∑
g∈G

QUgirs = µr
∑
j∈J

X1
ij ∀ i ∈ I,∀ r ∈ R (38)

∑
h∈H

XIhils +
∑
m∈M

QXmils = ωl
∑
j∈J

X1
ij ∀ i ∈ I,∀ l ∈ L (39)

∑
c∈C

γpsX4
ca =

∑
i∈I

QZaips +
∑
o∈O

QSaops ∀ a ∈ A, ∀ p ∈ P (40)

∑
c∈C

βsX4
ca =

∑
b∈B

QBabs ∀ a ∈ A (41)
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∑
c∈C

δlsX4
ca =

∑
m∈M

QMamls ∀ a ∈ A, ∀ l ∈ L (42)

∑
b∈B

τrNGbgrs −
∑
d∈D

XDgdrs = −
∑
a∈A

τrX5
agr ∀ g ∈ G,∀ r ∈ R (43)

∑
a∈A

X5
agr =

∑
i∈I

QUgirs +
∑
e∈E

QEgers +
∑
d∈D

XDgdrs

−
∑
b∈B

NGbgrs ∀ g ∈ G,∀ r ∈ R (44)

∑
a∈A

QMamls ≤ cammlY 3
m ∀ m ∈M,∀ l ∈ L (45)

∑
a∈A

QBabs ≤ cabbY 4
b ∀ b ∈ B (46)

∑
b∈B

NGbgrs ≤ caggrY 5
g −

∑
a∈A

X5
agr ∀ g ∈ G,∀ r ∈ R (47)

∑
b∈B

NDbds +
∑
g∈G

∑
r∈R

XDgdrs ≤ caddY 6
d ∀ d ∈ D (48)

To formulate the dual of the recourse subproblem, we define υ1,..., υ21, in

which υ5ops, υ
9
wls, υ

13
ers, υ

15
zps, υ

16
urs, υ

17
hls, υ

18
mls, υ

19
bs , υ

20
grs, υ

21
ds ∈ R+, as the set of dual

variable vectors corresponding to the constraints of RSP. The dual problem

for each scenario s, namely DRSP, can then be formulated as follows.

Minimize Zυ(X,Y , ξs) =
∑
i∈I

∑
j∈J

X1
ij

(∑
p∈P

φpυ
1
ips +

∑
r∈R

µrυ
2
irs +

∑
l∈L

ωlυ
3
ils

)
+
∑
a∈A

∑
c∈C

X4
ca

(∑
p∈P

γpsυ
4
aps + βsυ

6
as +

∑
l∈L

δlυ
7
als

)
+
∑
o∈O

∑
p∈P

dsopυ
5
ops

+
∑
w∈W

∑
l∈L

dwwlυ
9
wls +

∑
g∈G

∑
a∈A

X5
agr

(∑
r∈R

υ12grs +
∑
r∈R

υ14grs

)
+
∑
e∈E

∑
r∈R

deerυ
13
ers +

∑
z∈Z

∑
p∈P

cazzpυ
15
zps +

∑
u∈U

∑
r∈R

cauurυ
16
urs
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+
∑
h∈H

∑
l∈L

caxhlυ
17
hls +

∑
m∈M

∑
l∈L

cammlY 3
mυ

18
mls +

∑
b∈B

cabbY 4
b υ

19
bs

+
∑
g∈G

∑
r∈R

(
caggrY 5

g −
∑
a∈A

X5
agr

)
υ20grs +

∑
d∈D

caddY 6
d υ

21
ds (49)

subject to (υ1,υ2, ....,υ21) ∈ ∆s (50)

where ∆s is the polyhedron defined by the constraints of the DRSP. We let

ρs(.) denote the first stage variables free terms in the objective function of the

DRSP and we introduce a surrogate variable θ representing an upper bound

on the expected recourse function Eξ[Q(X,Y , ξ)]. Thus, we can reformulate

the master problem of the two-stage stochastic programming model (1)-(33)

as follows.

Maximize θ +
∑
j∈J

∑
k∈K

PkkX
2
jk −

∑
i∈I

∑
j∈J

ciiX
1
ij −

∑
i∈I

∑
j∈J

tjijX
1
ij

−
∑
j∈J

∑
k∈K

cjjX
2
jk −

∑
j∈J

∑
k∈K

tkjkX
2
jk −

∑
k∈K

∑
c∈C

cccX
3
kc

−
∑
k∈K

∑
c∈C

tckcX
3
kc −

∑
c∈C

∑
a∈A

caaX
4
ca −

∑
c∈C

∑
a∈A

tacaX
4
ca

−
∑
c∈C

∑
a∈A

PrX4
ca −

∑
a∈A

∑
g∈G

∑
r∈R

cggrX
5
agr −

∑
a∈A

∑
g∈G

∑
r∈R

tgagrX
5
agr

−
∑
c∈C

fccY
1
c −

∑
a∈A

faaY
2
a −

∑
m∈M

fmmY
3
m −

∑
b∈B

fbbY
4
b

−
∑
g∈G

fggY
5
g −

∑
d∈D

fddY
6
d (51)

subject to (2)− (11)

θ ≤
∑
s∈S

πs

(
ρs(υ̂

nT

) +
∑
i∈I

∑
j∈J

X1
ij

(∑
p∈P

φpυ̂
1
ips +

∑
r∈R

µrυ̂
2
irs +

∑
l∈L

ωlυ̂
3
ils

)
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+
∑
a∈A

∑
c∈C

X4
ca

(∑
p∈P

γpsυ̂
4
aps + βsυ̂

6
as +

∑
l∈L

δlυ̂
7
als

)
+
∑
g∈G

∑
a∈A

X5
agr

(∑
r∈R

υ̂12grs +
∑
r∈R

υ̂14grs

)
+
∑
m∈M

∑
l∈L

cammlY
3
mυ̂

18
mls

+
∑
b∈B

cabbY
4
b υ̂

19
bs +

∑
g∈G

∑
r∈R

(
caggrY

5
g −

∑
a∈A

X5
agr

)
υ̂20grs +

∑
d∈D

caddY
6
d υ̂

21
ds

)
(52)

0 ≤ ρs′(κ̂
nT

) +
∑
i∈I

∑
j∈J

X1
ij

(∑
p∈P

φpκ̂
1
ips′ +

∑
r∈R

µrκ̂
2
irs′ +

∑
l∈L

ωlκ̂
3
ils′

)
+
∑
a∈A

∑
c∈C

X4
ca

(∑
p∈P

γpsκ̂
4
aps′ + βsκ̂

6
as′ +

∑
l∈L

δlκ̂
7
als′

)
+
∑
g∈G

∑
a∈A

X5
agr

(∑
r∈R

κ̂12grs′ +
∑
r∈R

κ̂14grs′

)
+
∑
m∈M

∑
l∈L

cammlY
3
mκ̂

18
mls′

+
∑
b∈B

cabbY
4
b κ̂

19
bs′ +

∑
g∈G

∑
r∈R

(
caggrY

5
g −

∑
a∈A

X5
agr

)
κ̂20grs′

+
∑
d∈D

caddY
6
d κ̂

21
ds′ ∀s′ ∈ S (53)

X ∈ R+,Y ∈ {0, 1} (54)

where κ indicates extreme rays of ∆ whenever the DRSP is unbounded for a

given first stage solution in scenario s′. As shown above, the set of optimality

cuts for each scenario s has been aggregated to produce the single optimality

cut (52), while (53) represents the feasibility cut for each infeasible scenario

s′.

We also let F and C be the cost vectors in the objective function of

the first stage problem. The classical L-shaped method is outlined in Algo-

rithm 2. Pilot computational tests have shown a poor convergence rate of

the classical L-shaped method. To circumvent this issue, we proceed with
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proposing two different enhancement strategies in the next section.

Algorithm 2 - Classical L-shaped method

UB←∞, LB← −∞

2: while (UB − LB)/UB ≤ ε do

Solve the MP

4: UB← θ̄ + F TY + CTX

Solve the DRSP for each scenario s

6: if the DRSP is unbounded then

Add the corresponding feasibility cut (53) to the MP

8: else

Generate the corresponding optimality cut

10: end if

if The DRSP was optimal for all realiztion of scenarios then

12: Add the aggregated optimality cut (52) to the MP

LB← max (LB,
∑

s πsZυ(X,Y , ξs) + F TY + CTX)

14: end if

end while

5.2. Algorithmic refinements

5.2.1. Induced constraints

We note that various types of valid inequalities (induced constraints) can

be added to the MP. In the early iterations of L-shaped algorithm, because

the iterative algorithm is initialized from empty subsets of extreme rays and

extreme points, the solution to the MP might be infeasible for the original

model, which leads to the generation of the feasibility cuts. Induced con-

straints restrict the feasible region of the MP and transfer more information
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on RSPs to the MP. Hence, they dramatically diminish the number of feasi-

bility cuts throughout the solution process and enhance the convergence of

L-shaped method by helping the MP to identify close to optimal solutions.

Given the structure of model (1)-(33), the following constraints can be added

to the MP as induced constraints.∑
c∈C

caccY
1
c ≥

∑
k∈K

ψdkk (55)

∑
a∈A

caaaY
2
a ≥ λψ

∑
k∈K

dkk (56)

∑
m∈M

cammlY
3
m ≥ δlsλψ

∑
k∈K

dkk ∀ l ∈ L, ∀ s ∈ S (57)

∑
b∈B

cabbY
4
b ≥ βsλψ

∑
k∈K

dkk ∀ s ∈ S (58)

∑
g∈G

caggrY
5
g ≥ αrλψ

∑
k∈K

dkk ∀ r ∈ R (59)

∑
d∈D

Y 6
d ≥ 1 (60)

The set of inequalities (55)-(59) ensures installing enough capacity in the

reverse channel. Constraint (60) ensures that at least one disposal center is

installed in the reverse network.

5.2.2. Pareto-optimal cuts

A smart idea to enhance the convergence of the L-shaped algorithm is

to strengthen the deepness of the optimality cuts. In some applications,

multiple optimal solutions might exist to the DRSP, each providing a po-

tentially different cut. To choose the deepest cut among various optimality

cuts corresponding to the multiple optimal solutions, Magnanti and Wong

[26] proposed a cut selection scheme, which improves the convergence of the
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Benders decomposition algorithm. In the context of our problem of inter-

est, the definition of a stronger cut can be expressed as follows according to

Magnanti and Wong.

Definition 1. Given thatX and Y represent, respectively, the set of first

stage continuous and binary decision variables in model (1)-(33), the optimal-

ity cut generated from the dual solution vectors (υ1
1, ...,υ

7
1,υ

9
1,υ

12
1 , ...,υ21

1 ) ∈
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2, ...,υ

7
2,υ

9
2,υ

12
2 , ...,υ21

2 ) ∈ ∆s if and

only if∑
s∈S

πs

(
ρs(υ̂

nT

1 ) +
∑
i∈I

∑
j∈J

X1
ij

(∑
p∈P

φpυ̂
1
1ips +

∑
r∈R

µrυ̂
2
1irs +

∑
l∈L

ωlυ̂
3
1ils

)
+
∑
a∈A

∑
c∈C

X4
ca

(∑
p∈P

γpsυ̂
4
1aps + βsυ̂

6
1as +

∑
l∈L

δlυ̂
7
1als

)
+
∑
g∈G

∑
a∈A

X5
1agr

(∑
r∈R

υ̂121grs +
∑
r∈R

υ̂141grs

)
+
∑
m∈M

∑
l∈L

cammlY
3
mυ̂

18
1mls

+
∑
b∈B

cabbY
4
b υ̂

19
1bs +

∑
g∈G

∑
r∈R

(
caggrY

5
g −

∑
a∈A

X5
agr

)
υ̂201grs +

∑
d∈D

caddY
6
d υ̂

21
1ds

)

≤
∑
s∈S

πs

(
ρs(υ̂

nT

2 ) +
∑
i∈I

∑
j∈J

X1
ij

(∑
p∈P

φpυ̂
1
2ips +

∑
r∈R

µrυ̂
2
2irs +

∑
l∈L

ωlυ̂
3
2ils

)
+
∑
a∈A

∑
c∈C

X4
ca

(∑
p∈P

γpsυ̂
4
2aps + βsυ̂

6
2as +

∑
l∈L

δlυ̂
7
2als

)
+
∑
g∈G

∑
a∈A

X5
agr

(∑
r∈R

υ̂122grs +
∑
r∈R

υ̂142grs

)
+
∑
m∈M

∑
l∈L

cammlY
3
mυ̂

18
2mls

+
∑
b∈B

cabbY
4
b υ̂

19
2bs +

∑
g∈G

∑
r∈R

(
caggrY

5
g −

∑
a∈A

X5
agr

)
υ̂202grs +

∑
d∈D

caddY
6
d υ̂

21
2ds

)
for all X and Y with strict inequality for at least one extreme point. A

Pareto-optimal cut is not dominated by any other cut. Now, let Λ be a

polyhedron stated as Λ = {(X,Y ) : (2)− (11)are satisifed}.
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Definition 2. Core point: any point (X0,Y 0) contained in the relative

interior of the convex hull of Λ is said to be a core point, i.e, (X0,Y 0) ∈

ri(Λc), in which ri(.) and Λc, respectively, denote the relative interior and

the convex hull of Λ.

Given the above definitions, the Pareto-cut selection scheme based on

[26] for the CLSC network design problem under investigation is presented

in Appendix B. In this study, we adapt the Pareto-optimal cut generation

approach presented in Papadakos [27], an enhancement to Magnanti and

Wong’s method. In [27], it has been shown that the normalization constraint

(see constraint B.2 in Appendix B) can be disregarded through varying the

value of the core point at each iteration of the solution process. In this

approach, once the solution to the MP yields feasible RSPs, the value of

the core point can be updated through the convex combination of the MP

solution and the previous value of the core point. In this regard the auxiliary

dual recourse subproblem (auxiliary-DRSP) can be stated as follows.

Minimize Zυ(X0,Y 0, ξs) =
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subject to (υ1,υ2, ....,υ21) ∈ ∆s (61)

The optimal solution to auxiliary-DRSP (61) is used to generate the Pareto-

optimal cut. We note that finding a core point in Λc is a difficult act since

the description of the convex hull is unknown a priori. Therefore, rather

than using a core point in Λc, we choose the core point in the linear pro-

gramming relaxation of Λ to generate the Pareto-optimal cut. This cut is

a non-dominated cut on ΛLP though it might be dominated in Λc. We let

non-negative parameter λc indicate the weight of the core point (X0, Y 0) in

the convex combination that updates the value of the core point throughout

the solution process. Empirically, it has been shown that 0.5 most often

yields the best results ([27]). An outline of the proposed enhanced L-shaped

method is presented in Algorithm 3.

6. Numerical results

In this section, we illustrate some numerical experiments to provide an

analysis of the CLSC network design problem under investigation. To this

end, first, we present a typical large household appliance example, i.e., wash-

ing machine [28], as a suitable case of durable products and provide a descrip-

tion of randomly generated data sets based on the CLSC/RSC design litera-

ture ([21], [29]), which ensures varying values of input parameters. Then, we

proceed with a detailed representation of the performance of the proposed

solution method on two reduced sets of scenarios with different sizes, i.e., 500

and 1000. Finally, using the enhanced L-shaped method for each scenario

set, we evaluate the performance of the scenario reduction algorithm.
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Algorithm 3 - Enhanced L-shaped method

UB←∞, LB← −∞, λc ← 0.5

Add induced constraints (55)-(60) to the MP

3: Start with an initial core point (X0,Y 0)

while (UB − LB)/UB ≤ ε do

Solve auxiliary-DRSP (61) for each scenario s

6: Add the aggregated Pareto-optimal cut (52) to the MP

Solve the MP

UB← θ̄ + F TY + CTX

9: Solve the DRSP for each scenario s

if the DRSP is unbounded then

Add the corresponding feasibility cut (53) to the MP

12: Update core point only one time (X0,Y 0)← λc(X0, Y 0) + ζ

else

Generate the corresponding optimality cut

15: end if

if The DRSP was optimal for all realiztion of scenarios then

Add the aggregated optimality cut (52) to the MP

18: LB← max (LB,
∑

s πsZυ(X,Y , ξs) + F TY + CTX)

(X0,Y 0)← λc(X0, Y 0) + (1− λc)(X,Y )

end if

21: end while

The fast forward selection algorithm and the accelerated L-shaped method

are implemented in C++ programming language. More particularly, the pro-

posed decomposition algorithm is implemented in C++ using Concert Tech-

nology with IBM-ILOG CPLEX 12.60. We also employ the default settings
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of CPLEX and conduct all the experiments on an Intel Quad Core 3.40 GHz

with 8 GB RAM.

6.1. Computational experiments

We consider the recovery network of a used washing machine which con-

sists of various components as given in Table 2. Recalling the scenario gen-

eration approach introduced in Section 3.2 and the number of components of

the washing machine in our experiments, i.e., twelve components, the grading

process yields 212 or 4096 quality state scenarios which is relatively large. The

parameter settings of the proposed mathematical formulation is presented in

Appendix C. Further, capacities of facilities are randomly generated follow-

ing a reasonable relationship with the reverse BOM, demands parameters,

and return ratio. Demands of recycled raw materials at the corresponding

secondary marketplaces are also randomly generated considering the reverse

BOM and the return ratio. Shipping costs are selected from Uniform(4, 7)

for the washing machine, Uniform(1, 4) for each type of components, and

Uniform(0.1, 0.5) for raw materials, bulk of residues, and wastes.

We also apply fast forward selection algorithm described in earlier section

where two reduced scenario sets of sizes 500 and 1000 are selected out of the

set of 4096 scenarios. Then, we employ five classes of problems, each with

Table 2: The washing machine parts and modules

Description Value

φp
washing tube:1, cover:1, balance:1, frame:1, hose:1, condenser:1,

small electric parts:1, electric wire:1, transformer:1, PCB board:1

ωl motor:1, clutch:1
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5 randomly generated test instances, for both sets of scenarios as shown in

Table 3. We also show detailed information on the size of problem classes in

Table 4.

6.2. Computational results

To assess the computational efficiency of the proposed enhanced L-shaped

method, we define an optimality gap ε% in addition to a time limit as the

stopping criteria for this algorithm. More precisely, the solution process ter-

minates once either the optimality gap falls below 0.5% or the solution time

exceeds 3600 seconds. As for the core point (X0,Y 0), point Y 0 is fixed to

0.5 for all the first stage binary variables at the beginning of the solution ap-

proach. Moreover, to pick a suitable value for pointX0, after fixing the value

of Y 0 to 0.5, the resulting subproblem (1)-(11) is solved considering a small

Table 3: Problem classes

Class |Z| |U | |H| |I| |J | |K| |C| |A| |M | |B| |G| |D| |O| |W | |E| |S|

C1 10 3 2 5 10 60 10 10 10 10 10 5 30 30 30 500

1000

C2 10 3 2 5 10 80 10 10 10 10 10 5 40 40 40 500

1000

C3 10 3 2 5 15 100 15 15 15 15 15 7 50 50 50 500

1000

C4 10 3 2 5 15 120 15 15 15 15 15 7 60 60 60 500

1000

C5 10 3 2 5 20 140 20 20 20 20 20 10 70 70 70 500

1000
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Table 4: Size of the deterministic equivalent problems

Class |S| Constraints Continuous Vars. Binary Vars.

C1 500 476706 3261650 55

1000 953206 6521650 55

C2 500 551746 4012050 55

1000 1103246 8022050 55

C3 500 705326 7276475 82

1000 1410326 14548975 55

C4 500 780366 8402075 82

1000 1560366 16799575 82

C5 500 934446 13022300 110

1000 1868446 26037300 110

positive value as the lower bound for X0 to ensure generating an interior

point. We also solve all 50 test instances with CPLEX in a maximum time

limit of 7200 seconds and within the stopping gap tolerance of 0.5% to avoid

tail-off effect. It should be noted that the numerical results of the classical L-

shaped method are not reported in this section due to the poor convergence

rate of this algorithm on pilot tests. Tables 5 and 6 present, respectively,

computational results for the reduced sets of 500 and 1000 scenarios. These

tables also show computational statistics of CPLEX including CPU time in

seconds followed by the value of the objective function reported by CPLEX

within the dedicated time limit. The last column entitled by “Gap” repre-

sents an average on the relative difference between the profit values reported

by the enhanced L-shaped method and CPLEX for each class of problems

within their corresponding time limits.
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Table 5: Computational results on problem classes for |S| = 500

Class Enhanced L-shaped CPLEX

Runtime (sec) Iterations Profit Runtime (sec) Profit Gap

C1

320 22 23,583,400 ≥ 7200 23,523,900

3.33%

170 12 26,655,700 ≥ 7200 22,921,100

280 19 25,156,500 ≥ 7200 24,860,600

269 19 24,681,000 ≥ 7200 24,383,200

244 17 26,100,800 ≥ 7200 26,093,900

C2

443 27 35,837,400 ≥ 7200 35,211,400

17.07%

527 32 34,890,800 ≥ 7200 34,688,000

224 14 36,404,200 ≥ 7200 35,984,800

278 17 34,448,900 ≥ 7200 31,359,400

523 31 37,958,400 ≥ 7200 10,287,600

C3

969 32 44,375,400 ≥ 7200 4,181,020

88.29%

521 17 40,886,900 ≥ 7200 6,483,960

1119 36 45,205,700 ≥ 7200 6,253,750

704 24 42,834,000 ≥ 7200 3,127,920

531 18 43,602,900 ≥ 7200 5,294,590

C4

1382 36 51,663,200 ≥ 7200 10,866,000

73.02%

1154 31 56,215,500 ≥ 7200 15,416,000

763 21 58,737,500 ≥ 7200 19,074,500

764 21 54,991,600 ≥ 7200 No solution

823 23 55,213,400 ≥ 7200 No solution

C5

2835 38 65,911,400 ≥ 7200 12,020,400

86.90%

2900 41 60,880,800 ≥ 7200 No solution

2348 31 63,561,500 ≥ 7200 No solution

2680 33 58,883,900 ≥ 7200 4,692,950

2530 36 62,967,200 ≥ 7200 No solution
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Table 6: Computational results on problem classes for |S| = 1000

Class Enhanced L-shaped CPLEX

Runtime (sec) Iterations Profit Runtime (sec) Profit Gap

C1

598 21 23,722,300 ≥ 7200 1,615,900

39.10%

331 12 26,802,200 ≥ 7200 24,555,100

580 19 25,299,200 ≥ 7200 24,626,900

556 18 24,823,600 ≥ 7200 24,342,000

455 16 26,242,400 ≥ 7200 2,792,950

C2

857 26 36,006,600 ≥ 7200 31,597,900

49.43%

900 27 35,106,500 ≥ 7200 17,316,500

460 14 36,585,700 ≥ 7200 14,543,600

580 17 34,634,300 ≥ 7200 12,017,300

1324 39 38,117,700 ≥ 7200 15,757,200

C3

1848 30 44,619,300 ≥ 7200 No solution

-

1154 19 41,121,600 ≥ 7200 No solution

1720 28 45,440,300 ≥ 7200 No solution

1438 24 43,077,100 ≥ 7200 No solution

970 16 43,835,900 ≥ 7200 No solution

C4

1944 26 51,663,200 ≥ 7200 No solution

-

2472 33 56,215,500 ≥ 7200 No solution

1663 22 58,737,500 ≥ 7200 No solution

1768 23 54,991,600 ≥ 7200 No solution

1588 22 55,213,400 ≥ 7200 No solution

C5

≥ 3600 26 66,258,600 ≥ 7200 M

-

≥ 3600 27 65,256,200 ≥ 7200 M

≥ 3600 25 63,761,100 ≥ 7200 M

≥ 3600 25 59,212,300 ≥ 7200 M

≥ 3600 27 63,307,000 ≥ 7200 M

M: out-of-memory
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As far as the results reported in Table 5 concerned, the proposed L-shaped

method solves all 25 test instances of different sizes to optimality in a rea-

sonable amount of time while CPLEX is only able to find a feasible solution

for most of test problems. In particular, the feasible solutions identified by

CPLEX for C3 to C5 are considerably far from the optimal solutions given

by the L-shaped method observing the huge average gap between the val-

ues of the objective function reported by two approaches as indicated in the

last column. Note that, in the last two classes of problems, CPLEX cannot

find any feasible solution to five test instances within two hours, denoted by

“No solution”. Accordingly, the gap values presented in the last column are

associated with solvable test instances by both approaches. This can be ex-

plained by the fact that the deterministic equivalent problem which CPLEX

attempts to solve involves a large number of recourse problems associated

with the representative quality state scenarios. Hence, model (1)-(33), even

with reduced number of scenarios, is itself a very difficult to solve problem

for the commercial software. This observation supports the call for an ef-

ficient solution approach. As opposed to CPLEX, the proposed enhanced

L-shaped algorithm can easily handle realistic size problems such that the

average runtime in classes one to four is 600 seconds, which verifies the ad-

vantage of the refinement strategies. Note that, in the case of the largest

test problems (class C5), we observe, on average, a 77.42% solution time

increase compared to the other four classes. Nonetheless, all test instances

are solvable in the alloted time by the proposed decomposition scheme.

Likewise, Table 6 reports the same statistics in the case of 1000 scenarios.

Analysis of this table leads to similar implications as in the case of 500
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scenarios. However, concerning the size of the set of scenarios, i.e., 1000,

there exist a few exceptions that need to be clarified. Firstly, the runtime for

the accelerated L-shaped method increases 12.77% on average over all test

instances excluding the fifth class. Secondly, the test instances of the last

class cannot be solved within one hour until the dedicated optimality gap,

i.e., ε = 0.5%, is reached by the solution algorithm. However, for this class

of problems, the relative difference between the lower and upper bounds of

the solution process after an hour is quite tight (0.54% on average over test

instances of C5), which is not far from the stopping optimality gap of 0.5%.

Finally, when the computational results of CPLEX are considered, we observe

an out-of-memory state in the last class along with its failure to generate a

feasible solution within two hours of runtime in test instances of the third

and fourth classes. The above discussion demonstrates the effectiveness of the

proposed accelerated L-shaped algorithm for solving our problem of interest.

6.3. Analysis of fast forward selection algorithm

Herein, we evaluate the performance of fast forward selection algorithm

through comparing the numerical results of the reduced scenario sets pre-

sented in the previous section. To this end, we compare the values of the

expected profit obtained by considering reduced sets of scenarios with the

one that we estimate through considering all possible scenarios for the ran-

dom quality status of the return stream. Let us indicate the optimal solution

of model (1)-(33) by V2SP , which is obtained by considering a reduced set of

scenarios. Now, the first stage variables in (1)-(33) are substituted with the

corresponding optimal values obtained by applying the proposed L-shaped

algorithm for the reduced two-stage stochastic program. Then, the resulting
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recourse subproblems are solved for all 4096 quality state scenarios. The

expected value of the profit function is therefore calculated over all scenarios

and denoted by EV2SP . The relative difference (RD) measure, representing

the gap between EV2SP and V2SP , can be stated as follows.

RD = 100× |(V2SP − EV2SP )|/V2SP

It should be noted that the RD measure indicates how good the reduced

scenario set, obtained by the proposed fast forward selection algorithm, rep-

resents the whole set of scenarios. The steps described above are repeated

for each test instance of our experiments. Table 7 summarizes the average

value of RD over all five test instances for each class of problems, in cases of

500 and 1000 scenarios.

Table 7: The average value of RD for |S| = 500

# Scenarios C1 C2 C3 C4 C5

500 1.25% 1.17% 1.21% 1.14% 1.19%

1000 0.69% 0.65% 0.67% 0.71% 0.70%

As can be seen Table 7, the RD values are quite insignificant, i.e., less

than 2%. It means that both reduced sets of 500 and 1000 scenarios provide

good quality solutions to our stochastic problem. This observation verifies

the capability of fast forward selection algorithm in finding reduced sets of

scenarios, that are reliable representations of 4096 quality state scenarios.

Moreover, analyzing these results, it can be inferred that the larger re-

duced scenario set, i.e., 1000 scenarios, provides a better approximation to

the true stochastic CLSC network design problem involving a large number
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of scenarios. However, it should be remembered that, in the case of 1000 sce-

narios, the average CPU time increases by 12.77% over solvable test instances

against that of 500 scenarios. From the above discussion, it can be under-

stood that if the decision maker prefers to obtain more accurate solutions to

model (1)-(33), he/she should pay the cost of computational time. The pro-

posed solution framework along with the scenario reduction method allows

the decision maker to have a perfect insight on possible trade-offs between

computational time and the accuracy of solutions, and therefore to select a

solution that is consistent with his/her willingness to invest computational

efforts to design the CLSC network.

7. Conclusion

In this paper, we introduced a CLSC network design problem under un-

certain quality status of the return stream, which is applicable to the case of

durable products. The underlying uncertainty is considered as the availabil-

ity of each component in the reverse BOM and modeled as discrete scenarios

with Bernoulli probability distribution. Accordingly, we proposed a two-

stage mixed-integer stochastic program to explicitly address uncertainty in

this problem. In order to tackle the intractable number of scenarios resulting

from several components that exist in the reverse BOM of a typical durable

product, we adapted fast forward selection algorithm to our problem of in-

terest to preserve the most pertinent binary scenarios in the deterministic

equivalent problem. Moreover, we developed a solution method based on L-

shaped algorithm, further enhanced with additional acceleration strategies,

including several valid inequalities and non-dominated optimality cuts. Our
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computational experiments demonstrated an outstanding capability of the

proposed algorithm for the CLSC network design problem.

We believe that our numerical results are general in nature and remain

valid in the context of any durable product. The proposed solution framework

together with the employed scenario reduction technique can be used to solve

realistic-sized problems. More specifically, the computational experiments

performed show that the average solution time are 1012 and 1962 seconds,

receptively, for cases of 500 and 1000 scenarios. Furthermore, our findings

indicate that the adapted fast forward selection algorithm is potent enough

to construct a subset of the complete scenario set that leads to good quality

solutions.

This research can be extended in several directions. Given a planning

horizon discretized by a set of finite time periods, the proposed model can

be extended to a dynamic CLSC network design problem in which the un-

certainty in quantity of returns and demands can be addressed along with

uncertain quality status of cores. Another avenue of research is to deal with

the uncertain quality state through the robust optimization approach. This

might alleviate the computational complexity of the stochastic programming

method.
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Appendix A.

Nomenclature

Sets

A Set of disassembly centers

B Set of bulk recycling centers

C Set of collection centers

D Set of disposal centers

E Set of secondary markets for recycled materials

G Set of material recycling centers

H Set of module suppliers

I Set of manufacturing centers

J Set of distribution centers

K Set of end-user zones

L Set of modules

M Set of remanufacturing centers

O Set of secondary markets for spare parts

P Set of parts

R Set of raw materials

S Set of quality state scenarios

U Set of raw material suppliers

W Set of secondary markets for modules
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Z Set of part suppliers

Parameters

αr The mass of recyclable material r in the returned product shipped to ma-

terial recycling centers from disassembly centers

βs The mass of residues in the returned product in scenario s shipped to bulk

recycling centers from disassembly centers

δls The number of remanufacturable module l in the returned product in sce-

nario s shipped to remanufacturing centers from disassembly centers

ηr The ratio of recyclable material r shipped to material recycling centers from

bulk recycling centers

γps The number of reusable part p in the returned product in scenario s shipped

to secondary markets and manufacturing centers from disassembly centers

λ The legislative target for recovery of the return stream

µr The volume of material r in each unit of product

ωl The number of module l in each unit of product

φp The number of part p in each unit of product

ψ The rate of return

τr The ratio of non-recyclable material r shipped to disposal centers from bulk

and material recycling centers

caa Processing cost per unit of the returned product at disassembly center a

caaa Capacity of disassembly center a

cabb Capacity of bulk recycling center b

cacc Capacity of collection center c
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cadd Capacity of disposal center d

caggr Capacity of material recycling center g for raw material r

caii Capacity of manufacturing center i

cajj Capacity of distribution center j

camml Capacity of remanufacturing center m for module l

cauur Capacity of raw material supplier u for raw material r

caxhl Capacity of module supplier h for module l

cazzp Capacity of part supplier z for part p

cbb Processing cost per kg of residues at recycling center b

ccc Processing cost per unit of the returned product at collection center c

cdd Disposal cost at disposal center d

cggr Recycling cost per kg of material r at material recycling center g

cii Production cost per unit of product at manufacturing center i

cjj Distribution cost per unit of product at distribution center j

cmml Remanufacturing cost per unit of module l at remanufacturing center m

cr Outsourcing cost to third-party provider

cuur Procurement cost per kg of material r supplied by raw material supplier u

cxhl Procurement cost per unit of module l supplied by module supplier h

czzp Procurement cost per unit of part p supplied by part supplier z

deer Demand for material r at recycled material market e

dkk Demand for the new product at end-user zone k

dsop Demand for part p at spare market o
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dwwl Demand for module l at secondary market w

faa Fixed cost of opening disassembly center a

fbb Fixed cost of opening bulk recycling center b

fcc Fixed cost of opening collection center c

fdd Fixed cost of opening disposal center d

fgg Fixed cost of opening material recycling center g

fmm Fixed cost of opening remanufacturing center m

Per Unit price of material r at recycled material markets

Pkk Unit price of the new product at end-user zone k

Pr Unit acquisition price of the returned product

Psp Unit price of part p at spare parts markets

Pwl Unit price of module l at secondary markets

rdbd Shipping cost per kg of wastes from bulk recycling center b to disposal

center d

rgbgr Shipping cost per kg of recyclable material r from bulk recycling center b

to material recycling center g

riuir Shipping cost per kg of material r from material supplier u to manufactur-

ing center i

sdgd Shipping cost per kg of wastes from material recycling center g to disposal

center d

sihil Shipping cost per unit of module l from module supplier h to manufacturing

center i

taca Shipping cost per unit of the returned product from collection center c to

disassembly center a
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tbab Shipping cost per kg of residues from disassembly center a to bulk recycling

center b

tckc Shipping cost per unit of the returned product from end-user k to collection

center c

teger Shipping cost per kg of recycled material r from recycling center g to recy-

cled material market e

tgagr Shipping cost per kg of recyclable material r from disassembly center a to

material recycling center g

tizip Shipping cost per unit of part p from part supplier z to manufacturing

center i

tjij Shipping cost per unit of the new product from manufacturing center i to

distribution center j

tkjk Shipping cost per unit of the new product from distribution center j to

end-user k

tmaml Shipping cost per unit of module l from disassembly center a to remanu-

facturing center m

tsaop Shipping cost per unit of part p from disassembly center a to spare market

o

tugir Shipping cost per kg of recycled material r from material recycling center

g to manufacturing centers i

twmwl Shipping cost per unit of module l from remanufacturing center m to sec-

ondary market w

txmil Shipping cost per unit of module l from remanufacturing center m to man-

ufacturing center i
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tzaip Shipping cost per unit of part p from disassembly center a to manufacturing

center i

The first stage decision variables

X1
ij The quantity of products shipped from manufacturing center i to distribu-

tion center j

X2
jk The quantity of products shipped from distribution center j to end-user

zone k

X3
kc The quantity of returns shipped from end-user zone k to collection center

c

X4
ca The quantity of returns shipped from collection center c to disassembly

center a

X5
agr The quantity of recyclable material r shipped from disassembly center a to

material recycling center g

Y 1
c A binary variable which is equal to one if collection center c is opened and

zero otherwise

Y 2
a A binary variable which is equal to one if disassembly center a is opened

and zero otherwise

Y 3
m A binary variable which is equal to one if remanufacturing center m is

opened and zero otherwise

Y 4
b A binary variable which is equal to one if bulk recycling center b is opened

and zero otherwise

Y 5
g A binary variable which is equal to one if material recycling center g is

opened and zero otherwise

52

Closed-Loop Supply Chain Network Design under Uncertain Quality Status: Case of Durable Products

CIRRELT-2015-56



Y 6
d A binary variable which is equal to one if disposal center d is opened and

zero otherwise

The second stage decision variables

BRbs The volume of residues outsourced from bulk recycling center b to a third-

party provider in scenario s

NDbds The quantity of residues shipped from bulk recycling center b to disposal

center d in scenario s

NGbgrs The quantity of recyclable material r shipped from bulk recycling center

b to material recycling center g in scenario s

NIuirs The quantity of raw material r shipped from raw material supplier u to

manufacturing center i in scenario s

QBabs The quantity of residues shipped from disassembly center a to bulk recy-

cling center b in scenario s

QEgers The quantity of recycled material r shipped from material recycling center

g to recycled material market e in scenario s

QIzips The number of part p shipped from part supplier z to manufacturing center

i in scenario s

QMamls The number of module l shipped from disassembly center a to remanu-

facturing center m in scenario s

QSaops The number of part p shipped from disassembly center a to spare parts

market o in scenario s

QUgirs The quantity of recycled material r shipped from material recycling center

g to manufacturing center i in scenario s
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QWmwls The number of module l shipped from remanufacturing center m to sec-

ondary market w in scenario s

QXmils The number of module l shipped from remanufacturing center m to man-

ufacturing center i in scenario s

QZaips The number of part p shipped from disassembly center a to manufacturing

center i in scenario s

XDgdsr The quantity of raw material r shipped from material recycling center g

to disposal center d in scenario s

XIhils The number of module l shipped from module supplier h to manufacturing

center i in scenario s

Appendix B.

Considering Magnanti and Wong’s approach, throughout the L-shaped algo-

rithm, when the solution to the MP yields feasible RSPs for all scenarios, the

following auxiliary dual subproblem has to be solved for each representative sce-

nario.

Minimize Zυ(X0,Y 0, ξs) =
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(B.2)

(υ1,υ2, ....,υ21) ∈ ∆s (B.3)

where Z∗υ(X,Y , ξs) denotes the optimal value of the DRSP for the concerned

scenario. The numerically unstable normalization constraint (B.2) ensures that

the optimal solution of (B.1)-(B.3) is selected from the set of alternative optimal

solutions to the DRSP. The aggregated optimality cut (52) generated using the

solution of (B.1)-(B.3) is a Pareto-optimal cut.

Appendix C.

Tables C.8 to C.11 summarize parameter settings of model (1)-(33).
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Table C.8: Parameter settings for modules

Description Value

Motor Clutch

cxhl 75 35

Pwl 150 75

Table C.9: Parameter settings for raw materials

Description Value

Plastic Steel Copper

µr 3 kg 2 kg 1 kg

αr 1.5 kg 1 kg 0.5 kg

cuur 0.75 0.5 3

per 1.5 1 6
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Table C.10: Parameter settings for parts

Type of part Value

czzp Psp

Washing tube 20 40

Cover 5 10

Balance 25 50

Frame 5 10

Condenser 15 30

Transformer 15 30

Small electric 5 10

Hose 20 40

Electric wire 20 40

PCB board 35 70
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Table C.11: The value of the parameters

Description Value Description Value

cii 4 cjj 1

ccc 1 caa 2

cmm 3 cbb 2

cggr 2 cdd 2

cr 2 Pr 200

ηr 0.3 τr 0.2

ψ 0.6 λ 0.7

dkk {600, 601, ..., 1200} dsop {30, 31, ..., 100}

dwwl {30, 31, ..., 100} Pkk Uniform(700, 1300)

fcc Uniform(400000, 600000) faa Uniform(400000, 600000)

fmm Uniform(700000, 900000) fbb Uniform(400000, 600000)

fgg Uniform(400000, 600000) fdd Uniform(200000, 400000)
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