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1 Introduction

In this paper, we consider the multi-activity tour scheduling problem (MATSP), when employ-
ees have the same skills and shifts do not span over several days (the anonymous discontinuous
version of the problem). In the MATSP, tours (or working schedules) are defined over a plan-
ning horizon of at least one week, where each day is divided into time intervals of equal
length. For each time interval, it must be specified if a work activity, a break or a rest period
is performed. Multi-activity daily shifts are characterized by their start time, working length,
break allocation and activity placement at any time interval, while tours are defined by their
working length, number of working days and consecutiveness in the days-off. The composition
of daily shifts and tours is usually constrained by work rules and employee agreements. The
objective of the MATSP is to determine a minimum cost set of tours and to assign them to
each employee, so that staff requirements are guaranteed for each work activity at each time
interval in the planning horizon.

Tour scheduling problems (including shift scheduling problems, their special cases defined
on a single day) have been typically modeled using two different approaches: explicit and
implicit models. In explicit models, each feasible working schedule is represented by an integer
variable. These models allow to consider a high degree of flexibility with the drawback that
the resulting problem is difficult to solve, due to the large number of variables involved in
the formulation. On the contrary, implicit models compromise model flexibility seeking to
reduce the size of the problem by defining variables that implicitly represent feasible working
schedules. In shift scheduling problems, implicit variables represent shift and break types.
In tour scheduling problems, implicit variables represent work and non-work days across the
planning horizon, daily start times, daily end times and breaks.

Both explicit and implicit models for tour scheduling problems become computationally
elusive as the problem size increases. Decomposition methods, in particular column generation
(CG) and Benders decomposition (BD), arise as interesting approaches to efficiently solve
tour scheduling problems. As we will see in Section 2, the literature shows examples of
such decomposition methods, but only for simplified versions of scheduling problems with
multiple activities, where flexibility regarding shift and tour composition is usually limited.
Such simplifications might lead to unrealistic versions of the problem. For instance, when
days-off are fixed, the problem simplifies to a multi-day problem, which is easier to solve,
since the constraints characterizing the feasibility of schedules over multiple days do not have
to be guaranteed. By considering flexibility regarding shift and tour composition, realistic,
but complex, problems arise. In particular, when there is a large number of employees or
activities, these problems do not scale well.

In this paper, we propose a BD method for the anonymous discontinuous MATSP, which
is particularly well-suited for solving large-scale instances arising from practical problems.
We take advantage of the block-angular structure of the problem, decomposable by days.
The variables corresponding to tour patterns are represented in the Benders master problem
and linked with variables related to daily shifts. Due to its structure that involves a large
number of tour-based variables, the Benders master problem is solved by a CG method,
where flexibility regarding shift start time, shift length, tour length and days-off is included.
Regarding the Benders subproblems, we exploit the expressiveness of context-free grammars
and use an implicit mixed-integer programming (MIP) model that captures all the rules for
the composition of shifts in a compact way. The allocation of work activities and breaks to
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daily shifts is handled at the subproblem level.
Our contributions are threefold:

• We propose a new model for the anonymous discontinuous MATSP that combines an ex-
plicit tour scheduling modeling approach with an implicit grammar-based shift schedul-
ing formulation.

• We develop an innovative decomposition method that combines BD and CG. In par-
ticular, the Benders subproblems are MIP models that do not possess the integrality
property. Thus, in addition to classical Benders cuts [5], the method generates integer
Benders cuts to guarantee the convergence to an optimal solution under mild conditions.

• By performing computational experiments on a large set of weekly instances with up
to ten work activities, we show that our method is able to find high-quality solutions
and outperforms a recently proposed branch-and-price (B&P) algorithm for the per-
sonalized (i.e., employees have different skills) discontinuous MATSP [32]. In addition,
the adaptation of the method to the multi-activity shift scheduling problem is shown to
outperform the solution of a grammar-based model [11] by a state-of-the-art MIP solver
on instances with up to 30 work activities.

The paper is organized as follows. In Section 2, we review the relevant literature on
shift and tour scheduling problems, and we give a short introduction on the use of grammars
for multi-activity shift scheduling problems. In Section 3, we present our model for the
anonymous discontinuous MATSP, which is derived from a grammar-based model for multi-
activity multi-day shift scheduling problems. In Section 4, we describe the decomposition
method that combines BD and CG. Computational experiments are presented and discussed
in Section 5. Concluding remarks follow in Section 6.

2 Background Material

We first review the literature on shift and tour scheduling problems (Section 2.1), focusing
in particular on multi-activity versions of these problems (Section 2.2). Then, Section 2.3
presents some background material related with the use of context-free grammars for shift
scheduling.

2.1 Shift and Tour Scheduling

Shift and tour scheduling problems have been extensively studied during the last few decades.
Several modeling techniques and solution methods have been proposed to tackle the different
characteristics of the problems. Ernst et al. [17, 18], Alfares [1] and Van den Bergh et al. [35]
present comprehensive surveys in which more than a thousand papers are classified according
to the type of problem, the application area and the solution method.

The first author to introduce an explicit model for shift scheduling problems is Dantzig
[14]. The model is based on a set covering formulation in which the objective is to minimize
the total labor cost, ensuring that staff requirements at every time interval are met. Later, in
one of the first attempts to solve shift scheduling problems with an implicit model, Moondra
[26] proposes a method for banking operations that includes shift flexibility regarding multiple
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shift lengths and start times. Meal-break placement flexibility is considered in Bechtold and
Jacobs [4], with an implicit formulation where shifts are grouped into shift types according
to their start time, length and break window. Thompson [34] combines the work of Moondra
[26] and Bechtold and Jacobs [4] to implicitly model meal breaks, but also to schedule rest
breaks and to allow the use of overtime. Aykin [2] presents an extension of Bechtold and
Jacobs’ formulation that considers multiple rest breaks, meal breaks and break windows by
introducing integer variables for the number of employees assigned to a shift and starting
their breaks at different time intervals.

Jarrah et al. [21] propose an implicit model to solve a discontinuous weekly tour scheduling
problem, which is decomposed into seven daily shift scheduling subproblems. A transporta-
tion component and a post-processor are used to assign breaks to shifts and shifts to tours,
respectively. Jacobs and Brusco [20] present an implicit model that allows start time flexi-
bility within continuous (i.e., shifts can span over multiple days) and discontinuous employee
tours, but that does not consider meal breaks. Brusco and Jacobs [8] integrate the work of
Bechtold and Jacobs [4] and Jacobs and Brusco [20] in an implicit integer programming model
that considers both start time and meal break flexibility to solve continuous tour scheduling
problems. More recently, Brunner and Bard [6] take advantage of implicit and explicit shift
definitions to solve, with a B&P algorithm, a discontinuous tour scheduling problem over
one-week planning horizons.

CG is presented as an interesting method when the introduction of flexibility in the com-
position of shifts and tours is handled by explicit models that cause a considerable increase
in the number of variables (see, e.g., Mehrotra et al. [25], Ni and Abeledo [27], Brunner and
Stolletz [7]). Although BD appears to be an appropriate method to solve large problems that
feature a special block structure, few papers addressing shift and tour scheduling problems
with this technique have appeared. Rekik et al. [31] use BD in a continuous tour scheduling
problem to prove that the forward and backward constraints introduced by Bechtold and
Jacobs [4] are valid, but do not suffice to model break-window or start time extraordinary
overlap. After conducting an extensive analysis, the authors conclude that the model derived
from BD considerably decreases the number of variables, at the cost of a small increase in the
number of constraints.

2.2 Multi-Activity Shift and Tour Scheduling

Implicit modeling has also been used in the context of multi-activity shift scheduling. In
particular, for the anonymous version of the problem, Côté et al. [11] propose to solve the
scalability issues identified in Côté et al. [10] by taking advantage of context-free grammars
to model the rules for the composition of daily shifts and to derive an implicit model that
addresses symmetry by using general integer variables. Computational results show that, in
the monoactivity case, solving the model with a state-of-the-art MIP solver is comparable and
sometimes superior to the results presented in the literature and that, in the multi-activity
case, this approach is able to solve to optimality instances with up to ten work activities.

Methods involving CG, BD, constraint programming (CP), formal languages, branch-and-
bound (B&B), and heuristics have also been proposed in order to solve both the multi-activity
shift scheduling problem (MASSP) and the MATSP. Demassey et al. [15] present a CP-based
column generation algorithm as a way to model complex regulation constraints to solve large
MASSP instances. Quimper and Rousseau [29] introduce a model that uses formal languages
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to derive specialized graph structures that are handled via large neighborhood search for
solving the MASSP. Côté et al. [12] attempt to solve the personalized version of the MASSP
with a B&P method that uses grammars to formulate the pricing subproblems. Although
the expressiveness of grammars enables to encode a large set of work rules over shifts, some
limitations are present regarding shift total length over long planning horizons (i.e., one week).
Restrepo et al. [32] attempt to overcome these limitations by proposing two B&P approaches
that address the personalized MATSP. In the first approach, columns correspond to daily
shifts, while in the second approach, columns correspond to tours. Although the authors show
that the second formulation is stronger in terms of its LP relaxation bound, both formulations
suffer from scalability issues when the number of employees, the number of work activities
and the flexibility increase. Dahmen and Rekik [13] propose a heuristic based on tabu search
and B&B to solve the personalized MASSP over multiple days. In this method, days-off
are previously assigned to the employees and some constraints related with the composition
of feasible tours are not considered (i.e., minimum and maximum number of working hours
per week). Detienne et al. [16] solve an employee timetabling problem, where besides using
Lagrangian relaxation and a heuristic based on a cut generation process, a BD method is
also proposed. In their work, the multi-activity case is considered, but tour patterns over
the time horizon are previously defined. Computational results suggest that the BD method
is computationally more expensive when compared with the cut generation based heuristic,
because of the large amount of time invested in solving the master problem.

The following section presents some basic concepts on the use of context-free grammars
for shift scheduling. For a more extensive review on the subject, the reader is referred to Côté
et al. [11].

2.3 Grammars

In a multi-day planning horizon, where D represents the set of days and d the subscript for
a given day, a context-free grammar is a tuple Gd = 〈Σd, Nd, Sd, Pd〉 where Σd is an alphabet
of characters called the terminal symbols, Nd is a set of non-terminal symbols, Sd ∈ Nd is
the starting symbol, and Pd is a set of productions represented as A → α, where A ∈ Nd

is a non-terminal symbol and α is a sequence of terminal and non-terminal symbols. The
productions of a grammar can be used to generate new symbol sequences until only terminal
symbols are part of the sequence. A context-free language is the set of sequences accepted by
a context-free grammar.

A parse tree is a tree where each inner-node is labeled with a non-terminal symbol and
each leaf is labeled with a terminal symbol. A grammar recognizes a sequence if and only
if there exists a parse tree where the leaves, when listed from left to right, reproduce the
sequence. An and/or graph is a graph where each leaf corresponds to an assignment that can
either be true or false. An and-node is true if all of its children are true. An or-node is true if
one of its children is true. The root node is true if the grammar accepts the sequence encoded
by the leaves. The and/or graph embeds every possible parse tree of a grammar.

A DAG Γd is a directed acyclic graph that embeds all parse trees associated with words of
a given length n recognized by a grammar. The DAG Γd has an and/or structure where the
and-nodes represent productions from Pd and or-nodes represent non-terminals from Nd and
letters from Σd. The DAG Γd is built by a procedure proposed in Quimper and Walsh [30].

In the MASSP, the use of grammars allows to include work rules regarding the definition
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of shifts and to handle the allocation of multiple work activities to the shifts in an easy way.
Thus, feasible shifts can be represented as words in a context-free language. For example,
words rw1w1bw2 and w1bw2w1r are recognized as valid shifts in a two-activity shift scheduling
problem where letters w1, w2, b and r represent working on activity 1, working on activity 2,
break and rest periods, respectively. The time horizon consists of five time intervals, shifts
have a length of four periods and must contain exactly one break of one period that can
be placed anywhere during the shift except at the first or the last period. We remove the
subscript d, since there is only one day in the planning horizon. The grammar that defines
the multi-activity shifts on this example follows:
G = (Σ = (w1, w2, b, r), N = (S, F,X,W,B,R), P, S),
where productions P are: S → RF |FR, F → XW , X → WB, W → WW |w1|w2, B → b,
R→ r and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2, B → b and R→ r generate the
terminal symbols associated with working on activity 1, working on activity 2, having a break
or having a rest period inside of the shift, respectively. Production W → WW generates
two non-terminal symbols, W , meaning that the shift will include a working subsequence.
Production X → WB means that the shift will include working time followed by a break.
Production F → XW generates a subsequence of length four (the daily shift), which includes
working time followed by a break to finish with more working time. Finally, the last two
productions are S → RF and S → FR. The former generates a sequence starting with a
period of rest followed by the daily shift. The latter generates a sequence starting with the
daily shift followed by a period of rest.

Let Oπdil be the or-nodes associated with π ∈ Nd ∪ Σd, i.e., with non-terminals from Nd

or letters from Σd, that generate a subsequence at day d, from position i of length l. Note
that if π ∈ Σd, the node is a leaf and l is equal to one. On the contrary, if π ∈ Nd, the node
represents a non-terminal symbol and l > 1. AΠ,k

dil is the kth and-node representing production
Π ∈ Pd generating a subsequence at day d, from position i of length l. There are as many
AΠ,k
dil nodes as there are ways of using Pd to generate a sequence of length l from position i

during day d. The sets of or-nodes, and-nodes and leaves of day d are denoted by Od, Ad and
Ld, respectively. The root node is described by OSd1n and its children by AΠ,k

d1n. The children of
or-node Oπdil are represented by ch(Oπdil) and its parents by par(Oπdil). Similarly, the children

of and-node AΠ,k
dil are represented by ch(AΠ,k

dil ) and its parents by par(AΠ,k
dil ).

Figure 1 represents the DAG Γ associated with the grammar of the example (we do not
include the subscript of the day in the notation of the nodes). Dashed-line or-nodes are part
of the parse trees associated with and-node AS→RF,115 . Continuous-line or-nodes are part of

the parse trees associated with and-node AS→FR,115 .

Note that the children of the root node ch(OS15) = {AS→RF,115 , AS→FR,115 } can be seen
as shift “shells” because they do not consider the allocation of specific work activities and
breaks to the shifts, only the shift starting time and its length. Hence, and-nodes AΠ,k

d1n are

characterized by their starting time tΠ,kd1n, working length wΠ,k
d1n, length including breaks lΠ,kd1n

and finish time fΠ,k
d1n = tΠ,kd1n + lΠ,kd1n − 1. In DAG Γ, and-node AS→RF,115 generates shifts rwbww

and rwwbw, while and-node AS→FR,115 generates shifts wbwwr and wwbwr.
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Figure 1 – DAG Γ on words of length five and two work activities

3 Grammar-Based Model

The work of Côté et al. [11] on the anonymous MASSP is one example of the use of context-
free grammars to represent the work rules involved in the composition of shifts. The authors
present an implicit grammar-based integer programming model where the word length n
corresponds to the number of periods in the planning horizon, the set of work activities
corresponds to letters in the alphabet Σd and each employee e ∈ E is allowed to work at
any activity. In the model, the logical clauses associated with Γd are translated into linear
constraints on integer variables. Each and-node Ad and each leaf Ld in Γd are represented by
an integer variable denoting the number of employees assigned to a specific subsequence of
work.

In this section, we first present a straightforward extension of this grammar-based integer
programming model that addresses a discontinuous multi-day MASSP. This formulation is
then used as a basis for a new grammar-based model for the anonymous discontinuous MATSP.
The set of activities is denoted by J . The planning horizon is at least one week, where each day
d ∈ D is divided into Id time intervals of equal length. The notation used for the formulation
of the discontinuous multi-day MASSP is as follows:
Parameters:

bdij : staff requirements for day d, time interval i and activity j;

cdij : non-negative cost associated to one employee working on activity j, at time interval
i, at day d;

c+
dij , c

−
dij : non-negative overcovering and undercovering costs of staff requirements for day

d, time interval i and activity j, respectively.

Decision variables:
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vΠ,k
dil : variable that denotes the number of employees assigned to the kth and-node, repre-

senting production Π from Γd producing a sequence from i of length l at day d;

ydij : variable that denotes the number of employees assigned to leaf Ojdi1, that represents
working on activity j, at time interval i, at day d;

s+
dij and s−dij : slack variables that denote overcovering and undercovering of staff require-

ments of activity j, at time interval i, for day d, respectively.

The grammar-based formulation of the discontinuous multi-day MASSP, denoted as GS ,
is as follows:

Z(GS) = min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

cdijydij +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dijs

+
dij + c−dijs

−
dij) (1)

ydij − s+
dij + s−dij = bdij , ∀ d ∈ D, i ∈ Id, j ∈ J, (2)∑

AΠ,k
dil ∈ ch(Oπdil)

vΠ,k
dil =

∑
AΠ,k
dil ∈ par(O

π
dil)

vΠ,k
dil , ∀ d ∈ D, Oπdil ∈ Od \ {OSd1n ∪ Ld},

(3)

ydij =
∑

AΠ,1
di1 ∈ par(O

j
di1)

vΠ,1
di1 , ∀ d ∈ D, i ∈ Id, j ∈ J, (4)

∑
AΠ,k
d1n ∈ ch(OSd1n)

vΠ,k
d1n ≤ |E|, ∀ d ∈ D, (5)

vΠ,k
dil ≥ 0, ∀ d ∈ D, AΠ,k

dil ∈ Ad, (6)

s+
dij , s

−
dij ≥ 0, ∀ d ∈ D, i ∈ Id, j ∈ J, (7)

ydij ≥ 0 and integer, ∀ d ∈ D, i ∈ Id, j ∈ J. (8)

The objective of GS , (1), is to minimize the total staffing cost plus the penalization
for overcovering and undercovering of staff requirements. Constraints (2) ensure that staff
requirements per day d, time interval i and work activity j are met. Constraints (3) guarantee,
for every or-node in Γd, d ∈ D, excluding the root node OSd1n and the leaves Ld, that the
summation of the value of its children is the same as the summation of the value of its parents.
Constraints (4) set the value of variables ydij as the summation of the value of the parents

of leaf nodes Ojdi1. Constraints (5) guarantee that at most |E| employees are assigned to
the daily shift shells (children of the root node) at each day d. Constraints (6)-(8) set the

non-negativity of variables vΠ,k
dil , s+

dij , s
−
dij and the non-negativity and integrality of variables

ydij .
The solution obtained from model (1)-(8) is implicit. As a result, a post-processing algo-

rithm should be used to build the individual schedules. This algorithm traverses Γd, d ∈ D,
from the root node to the leaves, visiting the nodes with value greater than zero. Once a node
is visited, its value is decreased by one, and, when a leaf is reached, its value is inserted to
the current schedule at the right position (for instance, if leaf O2

151 is reached, it means that
activity 2 should be inserted at position 5 in the schedule of day 1).
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Days
1 2 3 4 5 6 7

T
o
u
rs

1

2

3

Do Do S1 S1 S2 S1 S2

S2 S2 S2 S2 S2 Do S1

Do S1 S2 S2 Do S2 S1

Figure 2 – Weekly tours composed of and-nodes (shift shells) from Γ

Observe that model (1)-(8) does not account for the constraints characterizing the feasibil-
ity of tour patterns, namely: minimum and maximum tour length, minimum and maximum
working days, minimum rest time between consecutive shifts and consecutiveness in the days-
off. To circumvent this issue, we define a set T containing all the feasible tour patterns that
can be built given the work rules for tour composition. In this context, we define a tour as a
combination of days-off and daily shift shells (children of root nodes OSd1n) over the set of days
in the planning horizon. Figure 2 presents an example of three tours composed with the shift
shells presented in Figure 1. In this example, we assume that the DAG Γd for each day d ∈ D
is the same and corresponds to Γ. The planning horizon consists of seven days, the working
length should fall between 15 and 18 time intervals, the number of working days must fall
between 5 and 6 and there are no rules for the allocation of days-off and for the rest time be-
tween consecutive shifts. Additionally, S1 corresponds to and-node AS→RF,1d15 generating shifts

{rwbww, rwwbw}, S2 corresponds to and-node AS→FR,1d15 generating shifts {wbwwr,wwbwr}
and Do corresponds to allocating a day-off.

Model (1)-(8) should be modified to solve the discontinuous MATSP. To this end, we

define δΠ,k
dt as a parameter that takes value 1, if tour t includes the kth children of the root

node OSd1n built with production Π for day d, and assumes value 0 otherwise. We introduce
a set of decision variables xt denoting the number of employees assigned to tour t ∈ T .
Constraints (9) set the link between these variables and shift shell variables vΠ,k

d1n, A
Π,k
d1n ∈

ch(OSd1n). Constraints (5) are replaced by constraint (10), which guarantees that exactly |E|
employees are assigned to the set of tours T . Constraints (11) set the non-negativity and
integrality of tour-based variables xt.

vΠ,k
d1n =

∑
t∈T

δΠ,k
dt xt, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n), (9)∑
t∈T

xt = |E|, (10)

xt ≥ 0 and integer, ∀ t ∈ T . (11)

The grammar-based model for the anonymous discontinuous MATSP, denoted as GT , is
as follows:
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Z(GT ) = min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

cdijydij +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dijs

+
dij + c−dijs

−
dij)

subject to (2)− (4) and (6)− (11).

When the number of work activities and days grow and when the problem accounts for
a large number of work rules for the composition of shifts and tours, solving GT becomes a
difficult task because of the large number of constraints and variables involved in the formu-
lation. Next, we present the decomposition method we propose to solve large instances of
model GT .

4 Benders Decomposition/Column Generation Algorithm

Two ideas can be exploited in order to efficiently solve model GT . First, note that if tour-
based variables are fixed to particular values xt, t ∈ T , model GT can be decomposed by days
due to its particular block structure. The BD approach that exploits this idea is presented
in Section 4.1. Second, observe that tour-based variables xt do not need to be exhaustively
enumerated, since only a small subset of them will be present in an optimal solution. Section
4.2 describes the CG method that results from this idea. By combining these two ideas, we
obtain an exact algorithm, which is presented and analyzed in Section 4.3.

4.1 Benders Decomposition

The structure of model GT suggests to partition the set of vΠ,k
dil variables into two sets. Indeed,

due to the linking constraints (9), when variables xt, t ∈ T , are fixed and satisfy constraints

(10)-(11), variables vΠ,k
d1n, A

Π,k
d1n ∈ ch(OSd1n), associated with the shift shells (children of root

node OSd1n) are also fixed. Thus, the first set contains these variables, while the second set
contains the other variables, corresponding to the and-nodes that generate a subsequence of
work from time interval i, at day d of length l < n, denoted as vΠ,k

dil , A
Π,k
dil ∈ Ad \ ch(OSd1n).

This partition of the variables of model GT is the basic idea of the proposed BD approach.

4.1.1 Benders Daily Subproblems

After fixing tour-based variables to particular values xt, t ∈ T , the resulting model decomposes
into |D| independent Benders subproblems, one for each day in the planning horizon. Each
subproblem includes the variables associated with the and-nodes in Γd and with the allocation
of work activities and breaks to the shift shells. The formulation of the Benders subproblem,
denoted as Q(vd) for a given day d, is as follows:
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Z(Q(vd)) = min
∑
i∈ Id

∑
j ∈ J

cdijydij +
∑
i∈ Id

∑
j ∈ J

(c+
dijs

+
dij + c−dijs

−
dij) (12)

ydij − s+
dij + s−dij = bdij , ∀ i ∈ Id, j ∈ J, (13)∑

AΠ,k
dil ∈ ch(Oπdil)

vΠ,k
dil =

∑
AΠ,k
dil ∈ par(O

π
dil)

vΠ,k
d1n , ∀O

π
dil ∈ ch(AΠ,k

d1n) \ Ld, (14)

∑
AΠ,t
dil ∈ ch(Oπdil)

vΠ,k
dil =

∑
AΠ,k
dil ∈ par(O

π
dil)

vΠ,k
dil , ∀O

π
dil ∈ Od \ {OSd1n ∪ Ld ∪ ch(AΠ,k

d1n)},

(15)

ydij =
∑

AΠ,k
di1 ∈ par(O

j
di1)

vΠ,1
di1 , ∀ i ∈ Id, j ∈ J, (16)

vΠ,k
dil ≥ 0, ∀AΠ,k

dil ∈ Ad \ ch(OSd1n), (17)

s+
dij , s

−
dij ≥ 0, ∀ i ∈ Id, j ∈ J, (18)

ydij ≥ 0 and integer, ∀ i ∈ Id, j ∈ J. (19)

For a given number of employees assigned to each shift shell (fixed variables vΠ,k
d1n), the

objective, (12), of Q(vd) is to assign work activities to these shifts in order to minimize the
staffing cost plus the undercovering and overcovering of staff requirements. Constraints (13)
guarantee that staff requirements are met. Constraints (14)-(16) ensure that certain work
rules are guaranteed for the composition of shifts and the allocation of work activities and
breaks to the shifts. Constraints (17)-(19) set the non-negativity of variables vΠ,k

dil , s+
dij , s

−
dij

and the non-negativity and integrality of variables ydij .
Since variables ydij are required to be integer and Benders subproblems (12)-(19) do not

possess the integrality property, the classical BD approach needs to be modified to ensure
convergence to an optimal solution. First, we will generate classical Benders cuts by relaxing
the integrality constraints (19) on variables ydij . Second, we will generate integer Benders
cuts to guarantee the convergence of the method to an optimal solution.

4.1.2 Classical Benders Cuts

Let Q(vd) denote the LP relaxation of model (12)-(19). Observe that, due to the allowance of
undercovering and overcovering of staff requirements, Q(vd) is always feasible. The polyhedra
that define the Benders dual subproblems are thus bounded and contain no ray. Therefore,
when Q(vd) is solved to obtain classical Benders cuts, no feasibility cuts will be generated.

To define optimality cuts, we introduce the following notation for each day d ∈ D. Let ρdij ,
γπdil be the dual variables associated with constraints (13) and (14) from Q(vd), respectively.
Let ∆d be the polyhedron obtained from the projection, over the space of variables ρdij and
γπdil, of the set of feasible solutions to the dual of model Q(vd). Let E∆d

be the set of extreme
points of ∆d. Let θd be a non-negative variable that represents the value of the objective of
Q(vd). The Benders optimality cuts are then defined as follows:
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θd ≥
∑
i∈ Id

∑
j ∈ J

ρdijbdij +
∑

Oπdil ∈ ch(AΠ,k
d1n)

γπdil
∑

AΠ,k
d1n∈ par(O

π
dil)

vΠ,k
d1n, ∀ d ∈ D, (ρd, γd) ∈ E∆d

. (20)

Optimality cuts ensure that the value of each variable θd is larger than or equal to the
LP relaxation value of its corresponding Benders daily subproblem. To derive these cuts, we
have assumed that Benders subproblems are linear programs, i.e., the integrality of variables
ydij is relaxed. The relaxation of model GT obtained by relaxing the integrality of variables
ydij can thus be reformulated as the following master problem, denoted as BT :

Z(BT ) = min
∑
d∈D

θd

subject to (20), (9)− (11) and

vΠ,k
d1n ≥ 0, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n).

Optimality cuts (20) do not need to be exhaustively generated since only a subset of
them will be active in an optimal solution. An iterative cutting plane algorithm can thus be
used to generate only the subset of cuts that will yield an optimal solution of BT . Because
Benders subproblems (12)-(19) are MIP models that do not possess the integrality property,
this cutting plane algorithm will not, in general, identify a feasible solution of GT . Therefore,
a more complex algorithmic strategy must be adopted, which is presented next.

4.1.3 Algorithmic Strategy

Consider an iterative BD approach to generate optimality cuts (20) where l ≥ 1 is the index
of each iteration. Let θd(l) denote the optimal values of variables θd at iteration l. Note that
ZL(l) =

∑
d∈D θd(l) is a lower bound on Z(GT ) at iteration l. Let sd(l) be the optimal value of

Benders subproblem (12)-(19) for day d at iteration l when integrality constraints on variables
ydij are relaxed. Note that ZU (l) =

∑
d∈D sd(l) is an upper bound on Z(BT ) ≤ Z(GT ) at

iteration l, which we call the approximate upper bound. Finally, let vΠ,k
d1n(l) denote the values

of the shift shell variables vΠ,k
d1n used to solve the Benders daily subproblems corresponding to

the approximate upper bound at iteration l.
The proposed algorithmic strategy iterates between three steps. In the first step, we solve

relaxation BT of GT through a classical BD method obtained by relaxing the integrality
constraints on variables ydij . When a solution of BT is found, a feasibility check (second step)

is performed in order to verify if the approximate upper bound ZU (l) is a valid upper bound
on Z(GT ). If it is the case, we stop the computations. Otherwise, the third step will generate
cuts (the integer Benders cuts to be described in Section 4.1.4) that tend to eliminate solution

vΠ,k
d1n(l) from the master problem, unless it is part of an optimal solution of GT . The three

steps are described as follows.

• First step: In this step, we solve model BT (when integrality constraints on variables ydij
are relaxed) through a classical BD approach. In particular, a classical Benders optimality
cut (20) is generated for each day d at each iteration l until the difference between the
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approximate upper bound ZU (l) and the lower bound ZL(l) is small enough. A solution of

BT , (θd(l), sd(l), v
Π,k
d1n(l)), d ∈ D, is recovered at the end of this step.

• Feasibility check: The objective of this step is to verify if ZU (l) represents a valid upper
bound for the original problem. In particular, since integrality constraints on variables ydij
were relaxed in the first step, it might happen that the approximate upper bound ZU (l)
obtained at the end of the classical BD approach underestimates the optimal value of the
original problem, even if the first step is solved to optimality, i.e., ZU (l) = ZL(l). Clearly, if
all Benders daily subproblems corresponding to the approximate upper bound ZU (l) have
an optimal solution for which all variables ydij take integer values, then ZU (l) is an upper
bound on Z(GT ) and the computations are stopped. If this case does not happen, we solve

the MIP of each Benders daily subproblem (12)-(19) by using the values vΠ,k
d1n(l) obtained

at the end of the first step. Then, the optimal value sd(l) of each Benders daily subproblem
(12)-(19) is computed and compared with sd(l) for each day d ∈ D. If sd(l) < sd(l) for
at least one day d ∈ D, the value of ZU (l) does not represent a valid upper bound for

the original problem and the solution vΠ,k
d1n(l) must be eliminated from the Benders master

problem BT , unless it can be shown that it is part of an optimal solution of GT . Otherwise,
if sd(l) = sd(l) for each d ∈ D, the approximate upper bound is valid and the computations
are stopped.

• Third step: This step adds an integer Benders cut to the master problem BT for each
day d ∈ D such that sd(l) < sd(l). Integer Benders cuts tend to eliminate the solution

vΠ,k
d1n(l) from model BT by changing at least one employee from its assigned shift shell to

another. The three steps are then repeated until ZU (l) is a valid upper bound on Z(GT ).
The detailed algorithm, along with its convergence analysis, are presented in Section 4.3.

4.1.4 Integer Benders Cuts

Constraints (5) state that the total number of employees assigned at each day d ∈ D to the
shift shells is lower than or equal to the total number of employees |E|. The slack variables
in constraints (5) represent the number of employees having a day-off on day d. If we denote
these variables as vRd , we have

∑
AΠ,k
d1n ∈ ch(OSd1n)

vΠ,k
d1n + vRd = |E|, ∀ d ∈ D.

To simplify the presentation, we define a set Sd, d ∈ D, composed by the children of the
root node OSd1n plus an element corresponding to a day-off. Variables vΠ,k

d1n, AΠ,k
d1n ∈ ch(OSd1n),

and vRd are then rewritten as zdi, denoting the number of employees allocated to i ∈ Sd during
day d. Therefore, we have, corresponding to constraints (5)-(6), a set of feasible solutions
described by the following relations:
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∑
i∈Sd

zdi = |E|, ∀ d ∈ D,

zdi ≥ 0 and integer, ∀ d ∈ D, i ∈ Sd.

In order to derive an integer Benders cut for the problem, we express each variable zdi
with |E| binary variables zedi, which take value 1 if employee e ∈ E is assigned to i ∈ Sd at
day d ∈ D, and assume value 0 otherwise. We assume that employees are ordered arbitrarily
such that E = {1, ..., |E|}. The binary variables are then defined as follows:

∑
e∈E

zedi = zdi, ∀d ∈ D, i ∈ Sd, (21)

ze+1
di ≤ z

e
di, ∀d ∈ D, i ∈ Sd, e ∈ E \ {|E|}, (22)

zedi ∈ {0, 1}, ∀ d ∈ D, i ∈ Sd, e ∈ E.

Equations (21) guarantee, for every day d ∈ D, that the sum of the binary variables zedi
is equal to the number of employees assigned to i ∈ Sd, while (22) are symmetry breaking
constraints. Due to these constraints, each integer variable zdi has a unique representation in
terms of the binary variables: if zdi = m, then zedi = 1 for e ≤ m and zedi = 0 for e > m. As a
consequence, any solution representing an assignment of shifts (work or rest) on day d to |E|
employees is represented uniquely with the binary variables zedi.

Let zedi(l) be the value of variable zedi corresponding to the current solution vΠ,k
d1n(l) for day

d and Bd(l) = {(i, e) ∈ Sd × E | zedi(l) = 0}. Since the objective is to eliminate the current

solution vπ,kd1nl by swapping at least one employee from its assigned shift (work or rest) to a
different one, the integer Benders cut for a given day d, is as follows:

θd ≥ sd(l)− (sd(l)− θd(l))

 ∑
(i,e)∈Bd(l)

zedi

 . (23)

Because the value of θd is to be minimized, this constraint tends to eliminate the current
shift shell assignment on day d, since the value of the right-hand side is then maximized and
is equal to sd(l), the value of the Benders daily subproblem Q(vd). For any other shift shell
assignment on day d, this constraint is trivially valid, since the right-hand side is then smaller
than or equal to θd(l). This optimality cut exploits the fact that exactly |E| binary variables
take value 1 and is the adaptation to this case of the optimality cut used in the integer L-shaped
method for stochastic programming [22]. Other types of cuts based on 0-1 variables have been
used in variants of Benders decomposition, such as logic-based Benders decomposition [19],
branch-and-cut-based Benders decomposition [33] and combinatorial Benders decomposition
[9].
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4.2 Column Generation

In model BT , it is assumed that the complete set of tours T is known. However, with the
incorporation of shift and tour flexibility, the complete enumeration of the set of feasible tours
might be intractable. Therefore, we propose a CG method in which the master problem is
defined as the LP relaxation of model BT over a restricted set of tours T̃ ⊆ T . The CG
method alternates between this master problem and a pricing subproblem. The variables are
generated iteratively by the pricing subproblem according to their reduced cost.

4.2.1 Pricing Subproblem for Tour Generation

Let λΠ,k
d1n and δ be the dual variables associated with constraints (9) and (10), respectively.

The reduced cost ct of column (tour) t is given by:

ct =

( ∑
d∈D

∑
AΠ,k
d1n ∈ ch(OSd1n)

λΠ,k
d1nδ

Π,k
dt

)
− σ. (24)

Expression (24) corresponds to the objective function to be minimized in the pricing
subproblem, whose goal is to build tours that meet the work rules related with the minimum
and maximum number of working days in a tour (Λl and Λu, respectively); the minimum
and maximum tour length in time intervals (Θl and Θu, respectively); the maximum number
of days-off in a tour (Φ = |D| − Λl); and the minimum rest time between two consecutive
daily shifts (β). To find these tours, we define the set S =

⋃
d∈D ch(OSd1n) as the union,

over the set of days in the planning horizon, of all the children of root node OSd1n, d ∈ D.
Shift shell s ∈ S inherits a set of attributes from its corresponding and-node: start period
(ts), working time (ws), length considering breaks (ls), end period (fs = ts + ls − 1) and day
(ds). In addition, we define a directed acyclic graph G(N ,A), composed by a set of nodes
N = {vs | s ∈ S ∪ {vb, ve}}, where vs corresponds to shift shell s and vb, ve are the source
and sink nodes, respectively. The set of arcs A, is divided into three types: arcs going from
the source node to a shift shell node A1 = {(vb, vs) | vs ∈ N , ds ≤ Φ + 1}; arcs connecting two
shift shell nodes A2 = {(vs, vs′ ) | vs, vs′ ∈ N , s 6= s

′
, ts′ − fs ≥ β, ds′ − ds ≤ Φ + 1}; and arcs

connecting a shift shell node to the sink, A3 = {(vs, ve) | vs ∈ N , ds ≥ Λl}.
Each node in graph G(N ,A) has, besides a list of immediate successors N (vs) = {vi ∈

N|(s, i) ∈ A}, a cost that represents its contribution to the reduced cost of the column. The
source node has a cost equal to zero, the sink node has a cost equal to the negative of dual
variable σ and the remaining nodes have a cost given by the corresponding value of their dual
variables λΠ,k

d1n. The list of successors of each node is generated according to the work rules
for tour composition, as expressed in the arc types definition. Thus, successors of source node
vb are nodes that, depending on their start day, allow enough time to meet the constraints
related with the minimum number of working days required in a tour. In the same way, sink
node ve is a successor of node vs if the day associated with vs is greater than or equal to the
minimum number of working days required in a tour. Finally, a node vs′ is a successor of
node vs if its start time guarantees that there is a minimum rest time between both shifts,
and if its start day meets the constraints related with the minimum and maximum number
of days-off and their consecutiveness.
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New variables (tours) for the master problem are generated by using a label setting al-
gorithm for the resource-constrained shortest-path problem over the directed acyclic graph
G(N ,A). In the algorithm, the total length of the tour and the number of working days,
represent global resources that are consumed by the labels while they are extended. If a
column with negative reduced cost is found, the column is sent to the master problem, which
is re-optimized to start a new iteration. The CG method stops when it is not possible to find
any column t with ct < 0.

4.2.2 Branch-and-Price Algorithm

The CG method solves the LP relaxation of BT , with some classical and integer Benders cuts
added. However, step 1 of the algorithmic strategy of Section 4.1.3 requires solving BT with
all the integer tour-based variables. That is why we embedded the CG method within a B&P
algorithm, where integrality is obtained by branching.

At any node of the B&P tree, we denote by x∗t the optimal LP relaxation value of xt. Two
cases are considered. In the first case, we search for a tour variable with a fractional value x∗t
greater than one. If such a variable exists, we create two nodes. In the left node, we impose the
constraint xt ≤ bx∗t c, while in the right node, we impose the constraint xt ≥ dx∗t e. The second
case occurs when all the fractional variables have a value lower than one. In this situation, we
cannot impose the constraint xt = 0 because it would result in the same tour being generated
again by the subproblem, unless a specialized algorithm for the resource-constrained shortest-
path problem is used. Henceforth, a different branching rule should be applied to the problem,
which is an adaptation of existing rules (see, e.g., Barnhart et al. [3], Côté et al. [12]). We
select two tours, xt(1) and xt(2), corresponding to the associated variables with the largest
fractional values. Then, we identify the first divergent day d′ between xt(1) and xt(2), meaning
that both tours differ in their shift shells. Let s(1) ∈ Sd′ and s(2) ∈ Sd′ be the assigned shift
shells at day d′ for tours xt(1) and xt(2), respectively. A partition of Sd′ into subsets Sd′(1)
and Sd′(2) is created, such that s(l) ∈ Sd′(l), for l = 1, 2. The rest of the shift shells in Sd′
are equally distributed between the two partitions. After generating the partitions, two nodes
are created. At each node l = 1, 2 it is ensured that the tour generated will not include the
shift shells in Sd′(l) at day d′. The rule is easily handled in the subproblem, since if a shift
shell s is forbidden at day d, the associated node vs receives a large cost in graph G(N ,A).
Therefore, the suggested branching rule preserves the structure of the pricing subproblem.

At each node of the B&P algorithm, we perform the CG method until ct ≥ 0 for each
t ∈ T . At the root node, a lower bound ζL on Z(GT ) is thus obtained and the MIP of the
master problem including only the current set of generated columns is solved by a state-of-
the-art B&B code until the gap between the lower and upper bounds is small enough. In
particular, the upper bound ζU found by the B&B code corresponds to a feasible solution of
BT . This solution might not be optimal for BT , since only a reduced set of tours T̃ ⊆ T
has been considered. However, the quality of this solution can be measured against the lower
bound ζL. The bounds computed at the root are then improved by branching and as soon as
the gap between them is small enough, the B&P algorithm is stopped (this might happen at
the root node, even before any branching is performed). Note that the B&P algorithm always
produces at least one integer solution (in variables xt), which corresponds to the upper bound
ζU .
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4.3 Overall Algorithm

The core of the BD/CG algorithm corresponds to the three-step algorithmic strategy pre-
sented in Section 4.1.3, but some modifications and refinements are included to enhance its
performance. The pseudocode of the algorithm is presented in Algorithm 1, where l is the
iteration counter, ZL(l) is the best lower bound, ZU (l) is the best approximate upper bound
and ZU (l) is the best upper bound on Z(GT ).

The algorithm consists in two phases. In the first phase, the algorithm solves the LP
relaxation of model BT , following McDaniel and Devine [24]. This is achieved by alternating
between the CG method (without B&P) and the generation of classical Benders cuts (20) until
no more cuts can be found or the gap between the approximate upper bound ZU (l) and the
lower bound ZL(l) is small enough. The generation of classical Benders cuts is improved by
adopting the method presented in Papadakos [28], which is an alternative to solving the extra
auxiliary subproblem introduced in Magnanti and Wong [23]. The algorithm then enters
the second phase, where it seeks integer solutions by performing B&P. In this phase, the
algorithm alternates between the B&P algorithm and the generation of classical Benders cuts
(20), but when no more of these cuts can be generated, the algorithm solves the MIPs of the
Benders subproblems. Then, a feasible solution is computed and integer Benders cuts (23)
are generated, if needed, in which case the algorithm restarts with the cycle B&P/classical
BD.

In the algorithm, we denote by B+
T , with optimal value Z(B+

T ), the master problem corre-
sponding to model BT , to which we add integer Benders cuts (23) and corresponding binary
variables with their defining constraints (21)-(22). Note that B+

T plays the role of the BD
master problem, where both classical and integer Benders cuts are gradually added, but also
acts as the CG master problem, where tour-based variables are gradually generated.

The algorithm uses the following Boolean variables: Int indicates if the algorithm is in the
first (Int=false) or in the second (Int=true) phase and Cut indicates if some cuts, classical or
integer, have been generated (Cut=true) or not (Cut=false). In addition, vd(l) is the primal

solution (in variables vΠ,k
d1n) obtained by performing the CG method (when Int=false) or the

B&P algorithm (when Int=true). Since the B&P method can be stopped before optimality
is proven, we need to distinguish the values of variables θd that correspond to the lower (ζL)
and upper (ζU ) bounds computed by the B&P algorithm: θd(l) are the values of θd for the
relaxed solution (ζL =

∑
d∈D θd(l)) and θd(l) are the values of θd for the best feasible solution

(ζU =
∑

d∈D θd(l)). To simplify the algorithm description, we use the same notation when
the CG method is used in the first phase, even though in that case, we have θd(l) = θd(l) for
each d ∈ D, since the CG algorithm is performed until all columns have non-negative reduced
costs.

The algorithm uses five parameters εi ∈ [0, 1], i = 1, ..., 5, which represent thresholds on
different relative gaps: ε1 is used to stop the algorithm when the relative gap between ZU (l)
and ZL(l) is small enough; ε2 is used to stop the B&P algorithm when the relative gap between
the upper bound ζUand the lower bound ζL computed by the B&P method is small enough;
ε3 controls the generation of classical Benders cuts in case the relative gap between θd(l)
and the upper bound associated to the LP relaxation of the Benders subproblem Q(vd(l)) is
large enough; ε4 controls when the first phase (solving the LP relaxation of BT ) is stopped
using the relative gap between ZU (l) and ZL(l), which has to be small enough; ε5 controls
the generation of integer Benders cuts in case the relative gap between the MIP and the LP
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l = 0, ZL(l) = −∞, ZU (l) =∞, ZU (l) =∞, Int = false, Cut = true
while ((ZU (l)− ZL(l))/ZU (l) > ε1) and (Cut==true) do

l = l + 1
if Int==false then

Perform CG until ct ≥ 0,∀t ∈ T (solve LP relaxation of B+
T ), return θd(l), θd(l),vd(l), d ∈ D

else
Perform B&P until (ζU − ζL)/ζU ≤ ε2 (solve B+

T ), return θd(l), θd(l),vd(l), d ∈ D
ZL(l) =

∑
d∈D θd(l)

Cut = false
for d ∈ D do

Solve the LP relaxation of the Benders subproblem Q(vd(l)), return sd(l)
if (sd(l)− θd(l))/sd(l) > ε3 then

Add classical Benders cut (20) to B+
T , Cut = true

if Int==false then
ZU (l) = min{ZU (l),

∑
d∈D sd(l)}

if (ZU (l)− ZL(l))/ZU (l) ≤ ε4 or (Cut==false) then
Int=true, Cut=true

if Cut==false then
for d ∈ D do

Solve the MIP of the Benders subproblem Q(vd(l)), return sd(l)
if (sd(l)− sd(l))/sd(l) > ε5 then

Add integer Benders cut (23) to B+
T , Cut=true

ZU (l) = min{ZU (l),
∑
d∈D sd(l)}

if ZU (l) =
∑
d∈D sd(l) then

vd = vd(l)

Use vd to find the working schedule for each employee

Algorithm 1 – BD/CG algorithm for the MATSP

relaxation bounds of the Benders subproblem Q(vd(l)) is small enough.
The next two propositions state that the algorithm, independently of the values of the

tolerance parameters εi, delivers at least one feasible solution when it terminates and that
it computes a lower bound on Z(GT ) at every iteration. Then, we show that the algorithm
converges to optimal solutions of GT and its LP relaxation, when the appropriate tolerance
parameters are set to 0.

Proposition 1. The algorithm terminates with a feasible solution of GT in a finite number
of iterations.

Proof. Because the maximum number of classical Benders cuts (20) is bounded by the number
of extreme points of |D| polyhedra, the first phase (when Int=false) ends in a finite number
of iterations. During the second phase (when Int=true), the B&P algorithm always generates
an integer solution (in variables xt). Since the number of classical Benders cuts is finite, the
algorithm solves the MIP of each Benders subproblem Q(vd) at least one time, identifying
then a feasible solution of GT . Finally, because the number of classical and integer Benders
cuts is finite, the algorithm terminates in a finite number of iterations. �

Proposition 2. At every iteration l, the algorithm computes a lower bound ZL(l) on Z(GT ).

Proof. As long as Int=false, the algorithm computes, at every iteration l, a lower bound on
the LP relaxation of BT , which is itself a relaxation of GT . After the algorithm has entered
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the second phase (Int=true), every iteration l performed until Cut=false computes a lower
bound on the MIP relaxation of BT where variables xt take integer values, but variables ydij
might assume fractional values (again, a relaxation of GT ). When Int=true and Cut=false
for the first time, say at iteration l′, either the algorithm terminates immediately or integer
Benders cuts are generated for each d ∈ D such that (sd(l

′)−sd(l′))/sd(l′) > ε5. Let us assume
this last case happens. As shown in Section 4.1.4, each integer Benders cut for day d is valid,
i.e., no feasible solution of GT is removed by the addition of such cut to B+

T . Moreover,
after adding an integer Benders cut for day d, variable θd always represents a lower bound
on the optimal value of the corresponding daily Benders subproblem. This implies that, at
the next iteration l′ + 1, we have ZL(l′ + 1) ≤ Z(GT ). At any subsequent iteration l, the
same arguments as above show that the lower bound ZL(l) on Z(B+

T ) is also a lower bound
on Z(GT ). �

Proposition 3. If ε3 = ε4 = 0, the algorithm converges to an optimal solution of the LP
relaxation of GT in a finite number of iterations of the first phase (when Int=false).

Proof. Since the number of classical Benders cuts (20) is finite, the first phase (when Int=false)
terminates in a finite number of iterations. The CG algorithm is stopped only when the LP
relaxation of BT has been solved, which implies θd(l) = θd(l) for each d ∈ D. Since ε4 = 0, the
first phase cannot stop prematurely and necessarily ends with ZU (l) ≤ ZL(l) or Cut=false. In
fact, these two conditions are equivalent when ε3 = 0, since Cut=false if sd(l) ≤ θd(l) for each
d ∈ D, which implies that ZU (l) ≤

∑
d∈D sd(l) ≤

∑
d∈D θd(l) =

∑
d∈D θd(l) = ZL(l). Because

ZU (l) ≥ ZL(l), the first phase ends with ZU (l) = ZL(l), meaning that the LP relaxation of
BT (hence, of GT ) is solved. �

Proposition 4. If ε1 = ε2 = ε3 = ε5 = 0, the algorithm converges to an optimal solution of
GT in a finite number of iterations.

Proof. Since the number of classical and integer Benders cuts is finite, the algorithm ter-
minates in a finite number of iterations. Because ε1 = 0, the algorithm cannot stop pre-
maturely and necessarily ends when ZU (l) ≤ ZL(l) or Cut = false (we show below that
these two conditions are equivalent under the assumption that ε2 = ε3 = ε5 = 0). Since
ε2 = 0, the B&P algorithm is exact and always produces an optimal solution (in vari-
ables xt) to the current master problem, which implies θd(l) = θd(l) for each d ∈ D. Be-
cause ε3 = 0, we have, when Cut=false, sd(l) ≤ θd(l) for each d ∈ D, which implies that∑

d∈D sd(l) ≤
∑

d∈D θd(l) =
∑

d∈D θd(l) = ZL(l). At the last iteration l, no integer Benders
cut is generated (Cut=false) and, since ε5=0, we have sd(l) ≤ sd(l) for each d ∈ D, which
implies that

∑
d∈D sd(l) ≤

∑
d∈D sd(l) ≤ ZL(l). By definition of ZU (l) and using Proposition

2, we have
∑

d∈D sd(l) ≥ ZU (l) ≥ Z(GT ) ≥ ZL(l) ≥
∑

d∈D sd(l), from which we conclude
that ZL(l) = ZU (l) = Z(GT ). �

5 Computational Experiments

In this section, we present the computational experiments we have performed on our imple-
mentation of the BD/CG method. The computing environment used for the tests consists of
a 1-processor Intel Xeon X5675 with 96 GB of RAM running at 3.07GHz and operating on a
64-bit GNU/Linux operating system. The BD/CG algorithm was implemented in C++. Both
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the LP relaxation of the master problem and the LP relaxation of the Benders subproblems
were solved by using the barrier method of CPLEX version 12.5.0.1. A relative gap tolerance
of 0.01 was set as a stopping criterion for solving the MIPs with CPLEX B&B. We used the
following values for the tolerance parameters: ε1 = ε3 = ε5 = 0.00001 and ε2 = ε4 = 0.01.

In Section 5.1, we show the results obtained on MATSP instances defined over a one-week
planning horizon, which are compared with the ones obtained when using the B&P approach
presented in Restrepo et al. [32] for the personalized variant of the problem. In Section 5.2,
we show the results obtained on MASSP instances, the special case of MATSP defined over a
single day, which are compared with the ones obtained when using the grammar-based integer
programming approach presented in Côté et al. [11].

5.1 Results on MATSP Instances

In this section, we present results on MATSP instances. First, we introduce the definition of
the problem and the grammar used to create the daily shifts. Then, we present the set of
instances used in the experiments. Finally, we present and analyze the computational results.

5.1.1 Problem Definition and Grammar

Tour generation
1. The planning horizon is seven days, where each day is divided into 96 time intervals of

15 minutes.
2. Shifts are not allowed to span from one day to another (discontinuous problem).
3. The tour working length should fall between 35 and 40 hours per week.
4. The number of working days in the tour should fall between five and six.
5. There must be a minimum rest time of twelve hours between consecutive shifts.

Daily shift generation
1. Shifts can start at any time interval during any day d, allowing enough time to complete

their duration in day d.
2. Three types of shifts are considered: 8-hour shifts with 1-hour lunch break in the middle

and two 15-minute breaks. 6-hour shifts with one 15-minute break and no lunch, and
4-hour shifts with one 15-minute break and no lunch.

3. If performed, the duration of a work activity is at least one hour and at most five hours.
4. A break (or lunch) is necessary between two different work activities.
5. Work activities must be inserted between breaks, lunch and rest stretches.
6. A fixed number of employees |E| is given, therefore undercovering and overcovering of

staff requirements is allowed.
Let aj be a terminal symbol that defines a time interval of work activity j ∈ J . Let b, l

and r be the terminal symbols that represent break, lunch and rest periods, respectively. In
productions Π ∈ P, Π →[min, max] restrict the subsequences generated by a given production
to a length between a minimum and maximum number of periods. The grammar and the
productions that define the anonymous discontinuous MATSP are as follows:
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G =(Σ = (aj ∀j ∈ J, b, l, r),
N = (S, F,Q,N,W,Aj ∀j ∈ J,B, L,R), P, S),

S → RFR|FR|RF |RQR|QR|RQ|RNR|NR|RN, B → b, L→ llll,

F →[38,38] NLN, Q→[25,25] WBW,

N →[17,17] WBW, R→ Rr|r,
W →[4,20] Aj ∀j ∈ J, Aj → Ajaj |aj ∀j ∈ J.

5.1.2 Instances

Instances are divided into two groups according to the shape of the demand profile: smooth
demand behaviour and erratic demand behaviour. Instances with smooth demand behaviour
correspond to real data from a small retail store, where the staff requirements for up to ten
work activities vary slightly from one day to the next. Instances with erratic demand be-
haviour show significant variations in the staff requirements for up to five work activities.
These instances were randomly generated in the following way. Given a fixed number of em-
ployees |E|, we start creating a set of feasible schedules (multi-activity tours), then randomly
choose one schedule per employee e ∈ E. From these schedules, we derive the associated de-
mand profile along the planning horizon. The demand profile represents the required number
of employees for each work activity at each time interval in the planning horizon. Undercov-
ering and overcovering of staff requirements are generated by randomly adding or removing
demand.

Table 1 shows the size of the instances, divided into two groups: G1 includes instances
with a smooth demand profile, while G2 includes randomly generated instances with an erratic
demand profile. Ten different staff requirements were generated for each instance. For each set
of instances, we present the number of activities (Nb.Act), the average number of employees
(Nb.Emp) and several grammar-related statistics: the average number of children of the root
node (Nb.ChRoot), the average number of and-nodes (Nb.AndNodes) without including the
children of the root node, the average number of or-nodes (Nb.OrNodes) without including
the leaves, and the average number of leaves (Nb.Leaves) of DAG Γd. We also present the
average number of nodes in the directed acyclic graph from the pricing subproblem and the
average number of arcs denoted by Nd. G(N ,A) and Arcs G(N ,A), respectively. Observe
that the number of variables in the master problem is equal to Nd. G(N ,A) + number of
columns generated.
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Group Nb.Act Nb.Emp Nb.ChRoot Nb.AndNodes Nb.OrNodes Nb.Leaves Nd. G(N ,A) Arcs G(N ,A)

G1

1 8 106 4,997 4,044 202 744 166,184

2 9 104 6,773 4,994 260 731 160,567

3 11 107 8,808 6,138 325 749 166,933

4 19 107 10,724 7,190 388 751 168,430

5 24 109 12,843 8,379 455 768 175,379

6 28 114 15,206 9,722 530 797 188,923

7 32 112 17,057 10,721 590 789 185,010

8 40 113 19,062 11,822 655 792 186,374

9 37 111 20,830 12,772 713 782 182,525

10 36 114 23,180 14,088 787 800 189,741

G2

1 18 139 6,535 5,320 246 973 275,745

2 22 139 8,819 6,567 318 973 275,745

3 29 139 11,103 7,814 390 973 275,745

4 37 139 13,387 9,061 462 973 275,745

5 43 139 15,671 10,308 534 973 275,745

Table 1 – Size of MATSP instances

5.1.3 Results

Tables 2 and 3 present the computational results on the smooth demand and the erratic de-
mand instances, respectively, for the BD/CG algorithm (BD/CG) and for the B&P approach
(B&P). We set a 2-hour time limit to solve the instances with up to five work activities and a
3-hour time limit to solve the instances with more than five work activities. For the BD/CG
algorithm, we present the average of the total CPU time in seconds to solve the problem (T.
time). The total CPU time is decomposed into four parts: the time spent solving the MIP
of the master problem (T. MIP), the time spent in the CG approach (T. CG) (time to solve
the pricing subproblems + time to solve the LP relaxation of the problem when the method
adds new columns), the time used to solve the LP relaxation of the Benders subproblems (T.
LR BSP) and the time spent to solve the MIP of the Benders subproblems (T. MIP BSP).
We also present the total number of integer Benders cuts generated over the total number of
problems that required these cuts (IBC/Nb.P ), the average gap (in %) between the upper
bound (ZU ) and the lower bound (ZL) of the problem computed as: Gap = 100× (ZU −ZL)/
ZU , and the number of instances solved to optimality (Opt.). The solution of an instance is
considered to be optimal if no more Benders cuts (classical and integer) need to be added
when the algorithm stops. Results for the B&P approach are presented in the rows labeled
B&P. The average CPU time in seconds to solve the LP relaxation of the problem at the root
node is presented in T. root. T. time shows the average total time to solve the problem (LP
relaxation at the root node + branching). Gap presents the integrality gap between the best
upper bound (ZU ) and best lower bound (ZL). Gap is defined in a similar fashion as for the
BD/CG algorithm. Opt. shows the number of instances solved to optimality. In this case, the
solution of an instance is considered to be optimal if the integrality gap is less than or equal
to 1%. Results for instances with an erratic demand profile, as well as results for the smooth
demand profile with more than four work activities are not reported for the B&P approach,
because the method exhibited convergence issues for these instances.
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Nb.Act 1 2 3 4 5 6 7 8 9 10

BD/CG

T.time 24.59 94.02 97.30 722.25 343.04 3,269.97 2,099.40 1,362.20 1,933.60 6,285.78

T. MP 6.75 53.80 36.86 573.17 206.72 2,807.81 1,548.53 1,029.31 1,487.80 3,933.20

T. CG 9.89 15.97 17.34 68.21 26.19 230.78 341.89 35.73 50.21 615.17

T. LR BSP 7.53 23.51 41.83 78.51 105.95 220.41 191.52 230.69 371.24 623.38

T.MIP BSP 0.24 0.44 0.82 1.59 3.45 11.76 7.64 65.51 22.68 1,113.64

IBC/Nb. P 0/0 0/0 0/0 0/0 0/0 5/4 2/2 0/0 0/0 3/2

Gap 0.80% 0.75% 0.75% 0.89% 0.75% 0.86% 1.10% 0.58% 0.66% 2.37%

Opt. 10 10 10 10 10 10 9 9 9 6

B&P

T. root 20.13 243.08 598.49 2,008.12 - - - - - -

T. time 245.94 6,619.27 7,884.65 7,251.86 - - - - - -

Gap 0.44% 8.15% 37.32% 56.69% - - - - - -

Opt. 10 2 0 0 - - - - - -

Table 2 – Results on MATSP instances with smooth demand shape

Nb.Act 1 2 3 4 5

BD/CG

T.time 333.65 2,254.24 1,383.11 2,788.48 4,950.17

T. MP 240.10 2,029.86 1,162.28 1,908.43 2,151.28

T. CG 89.83 148.90 61.12 234.37 509.26

T. LR BSP 23.25 76.13 156.28 215.18 438.32

T.MIP BSP 0.29 30.45 2.70 429.15 1,853.03

IBC/Nb. P 0/0 2/2 0/0 5/2 3/1

Gap 0.89% 0.87% 0.98% 1.91% 3.03%

Opt. 10 10 9 7 4

Table 3 – Results on MATSP instances with erratic demand shape

From Tables 2 and 3, one can observe that the time to solve the master problem is the
highest among the four components. Solving the LP relaxation of the master problem does
not require too much time, but when the algorithm switches to the integer version of the
master problem and more optimality cuts are added, the time to solve the master problem
increases with each iteration. The time spent to find new columns, as well as the time to solve
the LP relaxation of the Benders subproblems, represent small portions of the total time.

Note that the BD/CG algorithm is able to find high-quality integer solutions for almost
all instances with smooth demand behaviour and, when optimality is not reached within the
time limit, the value of Gap is most often within 1% and does not exceed 2.37%. For instances
with erratic demand behaviour, computational times and solution quality are worse than those
reported in Table 2. However, one can observe that even if the instances are not solved to
optimality, the value of Gap does not exceed 3.03%. We found that the instances that have
more quantity of overcovering than undercovering are easier to solve than the instances that
have a similar quantity of undercovering and overcovering. Observe that few instances required
the generation of integer Benders cuts and, among these instances, the majority required just
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one or two cuts (only one instance in the group of 4 activities and erratic demand behavior
needed four integer Benders cuts).

The comparison between the proposed method and the B&P approach developed for the
personalized variant of the problem suggests that the BD/CG algorithm is a better alternative
when employees have the same skills. Notably, in almost all the instances, the average total
CPU time to solve the instances when using the BD/CG algorithm is smaller than the average
time to solve the LP relaxation at the root node when the B&P approach is used. This can be
mostly attributed to the symmetry issues exhibited by the B&P method when all employees
have the same skills.

5.2 Results on MASSP Instances

In this section, we present computational results on MASSP instances. In this case, some
modifications have been done to the proposed approach in order to solve daily problems.
First, it is not necessary to generate columns, since the master problem only includes variables
related with shift shells. Thus, the B&P method used to solve the master problem is replaced
by a call to a state-of-the-art B&B code (we use CPLEX). Second, constraints (9)-(10) in

the master problem are replaced by
∑

AΠ,k
d1n∈ch(OSd1n)

vΠ,k
d1n = |E|. Third, the integer Benders

cuts do not include the variables related with employee days-off. Observe that the Benders
subproblem has the same structure, but that only one Benders subproblem is solved per
iteration. The detailed definition of the problem and the grammar used to compose shifts are
presented in Section 5.2 of Côté et al. [11]. Before analyzing the results, we first present the
instances used in our tests.

5.2.1 Instances

Instances are divided into two groups. The first group, G1, contains smooth demand profile
instances from a small retail store, allowing up to ten work activities. The second group,
G2, consists of instances that follow a normal distribution, allowing from eleven up to thirty
work activities. The shape of the demand profile was generated based on the number of
employees |E|, the number of activities |J |, a random standard deviation and a total demand
to distribute along the planning horizon. The characteristics and size of the instances are
summarized in Table 4. The notation used in this table is the same as the one used in Table
1. Ten different staff requirements were generated for each instance.
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Group Nb.Act Nb.Emp Nb.ChRoot Nb.AndNodes Nb.OrNodes Nb.Leaves

G1

1 5 119 33,879 8,229 229

2 7 119 35,365 9,227 288

3 9 119 37,649 10,415 351

4 18 120 39,965 11,621 415

5 22 121 42,308 12,842 480

6 28 124 46,064 14,473 556

7 36 123 47,562 15,477 616

8 38 123 49,521 16,611 679

9 38 123 51,479 17,745 742

10 37 124 53,957 19,044 811

G2

11 42 143 68,409 23,295 1,006

12 41 143 70,730 24,562 1,079

13 41 143 73,051 25,829 1,152

14 42 143 75,372 27,096 1,225

15 44 143 77,693 28,363 1,298

16 45 143 80,014 29,630 1,371

17 49 143 82,335 30,897 1,444

18 48 143 84,656 32,164 1,517

19 53 143 86,977 33,431 1,590

20 55 143 89,298 34,698 1,663

30 137 143 112,508 47,368 2,393

Table 4 – Size of MASSP instances

5.2.2 Results

Table 5 presents the computational results on instances dealing with up to 30 work activities
for the anonymous discontinuous MASSP. We set a 2-hour time limit to solve these instances.
For the Benders decomposition approach (BD), we present the average total CPU time in
seconds to solve the problem (Tot. time). This time is divided into three parts: the time
required to solve both the LP relaxation and the MIP of the master problem (T. BMP),
the time spent to solve the LP relaxation of the Benders subproblem (T. LR BSP) and the
time required to solve the MIP of the Benders subproblem (T. MIP BSP). We also present
the total number of integer Benders cuts generated over the total number of problems that
required those cuts (IBC/Nb.P ), the average gap between the upper bound (ZU ) and the
lower bond (ZL) of the problem (Gap = 100× (ZU − ZL)/ZU ), and the number of instances
solved to optimality (Opt.), which corresponds to the number of instances for which no addi-
tional Benders cuts could be generated. Results for the grammar-based integer programming
approach are presented in the columns labeled GB, where T. time presents the average CPU
time to find an integer solution with a relative MIP gap tolerance lower than 1%, Gap shows
the average relative MIP gap between the best upper bound (ZU ) and the best lower bound
(ZL), where Gap = 100 × (ZU − ZL)/ZL. The number of instances solved to optimality is
presented in the column labeled Opt.
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BD GB

Nb.Act Tot. time T. BMP T. LR BSP T. MIP BSP IBC/Nb.P Gap Opt. Tot. time Gap Opt.

1 208.65 0.63 89.17 118.85 6/2 0.10% 10 272.19 0.09% 10

2 194.45 0.58 145.67 48.20 15/2 0.32% 10 241.15 0.17% 10

3 243.57 1.36 238.24 3.97 4/3 0.45% 10 1,159.92 0.25% 10

4 289.47 0.88 285.95 2.64 1/1 0.49% 10 178.69 0.25% 10

5 396.14 1.61 390.52 4.01 3/3 0.28% 10 367.62 0.05% 10

6 490.45 2.05 480.80 7.60 5/5 0.36% 10 351.04 0.05% 10

7 773.08 4.63 749.08 19.37 9/5 0.64% 10 438.28 0.17% 10

8 633.34 3.08 600.86 29.40 13/7 0.67% 10 428.83 0.08% 10

9 496.03 0.91 487.03 8.09 3/3 0.52% 10 588.02 0.14% 10

10 621.62 1.73 603.17 16.72 5/4 0.64% 10 772.57 0.12% 10

11 702.99 0.48 658.80 43.72 1/1 0.61% 10 3,096.72 0.04% 10

12 793.93 0.57 664.22 129.14 4/4 0.61% 10 3,680.88 0.00% 10

13 678.30 0.38 649.76 28.17 0/0 0.62% 10 3,013.46 0.06% 10

14 877.10 0.51 776.61 99.99 3/2 0.56% 10 3,453.49 2.69% 9

15 935.29 0.76 907.70 26.83 1/1 0.66% 10 2,724.59 0.08% 10

16 1,201.13 1.66 1,151.41 48.06 2/2 0.46% 10 3,120.24 0.05% 10

17 881.29 0.55 849.94 30.80 2/2 0.64% 10 2,976.84 0.26% 10

18 1,168.27 1.94 1,107.95 58.37 3/3 0.59% 10 3,685.44 0.87% 9

19 1,389.03 3.06 1,353.20 32.77 1/1 0.52% 10 3,380.61 0.18% 10

20 1,375.73 2.70 1,309.36 63.67 4/4 0.67% 10 3,416.84 0.00% 10

30 4,026.44 0.84 3,245.40 780.20 4/3 0.78% 10 6,130.31 7.16% 4

Table 5 – Results on MASSP instances

From Table 5, we can conclude that the BD approach succeeds to find, within the com-
putational time limit, high-quality solutions, within 1% of optimality, for all the instances
tested. When the proposed approach is compared with the grammar-based integer program-
ming approach, results show that BD presents a better average total CPU time for 16 out of
21 instances, and that, in the best case, the method is five times faster (instances with 3 and
12 work activities). The difference in performance of the two methods can be attributed to
the fact that solving the problem with a B&B method requires more effort than solving the
problem by adding Benders cuts. The proposed BD approach takes advantage of the structure
of the problem by fixing the shift shell variables to efficiently solve the Benders subproblem
(which is the part that requires more time).

Regarding CPU times, note that, contrary to what we observed for the MATSP instances,
the most time-consuming component is related with the LP solution of the Benders subprob-
lem, for which CPU times increase with the number of activities. Solving the master problem
(both LP relaxation and MIP) was the part that required the least effort. This can be at-
tributed to the fact that allocating the work activities and the breaks to the shifts in order
to minimize undercovering and overcovering is more difficult than assigning daily shifts to
employees. Finally, observe that in only 58 out of 210 instances, the generation of integer
Benders cuts was needed.
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6 Concluding Remarks

In this paper, we presented a combined Benders decomposition and column generation ap-
proach to solve the MATSP. Due to its structure, the master problem is solved by column
generation. Benders subproblems were modelled with context-free grammars to implicitly
tackle all the work rules for the composition of shifts and to allocate work activities and
breaks to the shifts. Although the Benders subproblems do not possess the integrality prop-
erty, we showed that the generation of integer Benders cuts, in addition to classical Benders
cuts, guarantees the convergence of the method under mild assumptions.

The proposed approach was tested on real-world instances and randomly generated in-
stances of the MATSP (one-week planning horizon) and the MASSP (one-day planning hori-
zon). Results on MATSP instances showed that our method was able to find high-quality
integer solutions for instances dealing with up to ten work activities. When compared with a
B&P approach, our method exhibited faster solution times and provided better upper bounds
for the most difficult instances. Regarding the MASSP, the Benders decomposition approach
was able to solve, within 1% of optimality, instances with up to 30 work activities. When
the method was compared with the grammar-based integer approach presented in Côté et al.
[11], our approach presented competitive and often better solution times.
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