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1 Introduction

The multi-activity tour scheduling problem (MATSP) is the integration of two problems, the
multi-activity shift scheduling problem (MASSP) and the days-off scheduling problem. In the
MASSP, the planning horizon is usually one day divided into time periods of equal length.
Since employees can perform different work activities during the same shift, the MASSP is
concerned with choosing the work activities and the rest periods to assign to shifts to respond
to a demand for service, that is translated into a demand for the number of employees required
for each work activity and time interval. The days-off scheduling problem deals with the
selection of employee working days and days-off over a planning horizon of at least one week.
In the MATSP, the constraints characterizing the feasibility of daily shifts and weekly tours,
as well as the work rules for the allocation of work activities and rest breaks to the shifts,
are usually defined by employee regulations and workplace agreements. The MATSP can be
categorized into different variants depending on the characteristics considered. For instance,
the personalized version of the MATSP appears when employees have individual preferences
and skills. The anonymous version of the MATSP corresponds to the case when employees
have identical skills. When shifts are allowed to span from one day to another, the continuous
version of the MATSP arises; otherwise, we have the discontinuous version of the problem.
In this paper, we consider the discontinuous anonymous version of the MATSP.

Realistic applications of the MATSP for companies that operate outside the standard
8-hours shift, 5-days per week schedule and that face wide fluctuations in demand become
challenging due to several factors. First, complex large-scale models result as a consequence
of considering multiple work activities and flexibility in the composition of daily shifts and
weekly tours. Second, since demand is typically unknown when scheduling decisions needs
to be taken, specialized solution techniques that allow to include this variability should be
developed. Specifically, such techniques allow to make a decision on the employee schedule
before a realization of the demand is known. Then, after demand becomes known, a recourse
action should be implemented to compensate deficiencies in the previously made schedules
(e.g., undercovering and overcovering of demand).

In this paper, we address the discontinuous stochastic multi-activity tour scheduling prob-
lem (SMATSP) for employees with identical skills. In this problem, a long-term staffing
decision needs to be made while hedging for the short-term demand uncertainty. The prob-
lem is formulated as a two-stage stochastic programming model, decomposable by days and by
scenarios, in which first-stage decisions correspond to the assignment of employees to weekly
tours, while second-stage decisions (recourse actions) are related with the allocation of work
activities and breaks to daily shifts. The contribution of this paper lies in the proposal of an
approach to efficiently solve practical instances of the problem. A heuristic multi-cut L-shaped
method is implemented as a solution approach. Because the complete enumeration of weekly
tours makes the problem intractable, the first-stage problem is solved via column generation.
Additionally, the second-stage problems benefit from the use of context-free grammars to in-
clude work rules regarding the definition of shifts and to efficiently handle the multi-activity
context.

The paper is organized as follows. In Section 2, we review the relevant literature on
shift scheduling and tour scheduling problems with multiple work activities and stochastic
demand. Then, we present some background material related with the use of grammars
for multi-activity shift scheduling problems. In Section 3, we describe the two-stage model
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for the SMATSP. In Section 4, we introduce the solution approach to solve the problem.
Computational experiments are presented and discussed in Section 5. The concluding remarks
are presented in Section 6.

2 Background Material

In this section, we review some literature on the models and methods to solve the MASSP
and the MATSP. We also present some references on workforce problems under stochastic
demand. Then, we finish with an introduction on the use of grammars for the MASSP.

2.1 Literature Review on Multi-Activity Shift and Tour Scheduling

Although mono-activity shift scheduling and tour scheduling problems have been extensively
studied in the literature during the last few decades [1, 15, 16, 32], only recently some at-
tention has been given to the problem that deals with multiple work activities. Ritzman
et al. [30] propose one of the first approaches to solve the MATSP. The method is based
on a heuristic solution approach that integrates a construction method with a simulation
component. Although employees are assigned to specific operations, breaks and rules related
with switching between work activities are not considered. Heuristic approaches that use
column generation (CG) [27] and tabu search [10] are also proposed to solve multi-activity
shift scheduling problems over multiple days. Even though both approaches tackle long time
horizons, the constraints characterizing the feasibility of weekly tours (e.g., total tour length)
are not included in the formulation of the problem. In a similar way, Detienne et al. [12] and
Lequy et al. [18] solve a multi-activity assignment problem by using decomposition techniques
and heuristics based on CG and branch-and-bound (B&B) as solution methods.

Fixing the sequences of work, rest days, shift types and breaks, might reduce the complex-
ity of personnel scheduling problems, but it can also lead to sub-optimal solutions. Constraint
programming (CP) techniques aim to solve that difficulty by offering modeling languages to
handle complex optimization problems. Demassey et al. [11] present a CP-based CG algo-
rithm to model complex regulation constraints in a real-world MASSP. Quimper and Rousseau
[25] use formal languages to model the work rules related with the composition of shifts in
a multi-activity context. Côté et al. [7] propose two approaches for the MASSP: the first
one uses an automaton to derive a network flow model, while the second one takes advan-
tage of context-free grammars to obtain a MIP model in which an and/or graph structure
is used. Côté et al. [8] present an implicit grammar-based model for the MASSP that ad-
dresses symmetry issues by using general integer variables. Computational results show that,
in the mono-activity case, the solution times of the model are comparable and sometimes
superior to the results presented in the literature and that, in the multi-activity case, the
model is able to solve to optimality instances with up to ten work activities. Côté et al. [9]
and Boyer et al. [5] present grammar-based CG methods to solve the personalized MASSP
and the personalized multi-activity multi-task shift scheduling problem, respectively. Both
approaches use formal languages and dynamic programming to efficiently formulate and solve
the pricing subproblems, but some limitations regarding long time horizons (e.g., one week)
are present. To overcome these issues, Restrepo et al. [29] and Restrepo et al. [28] present
approaches based on branch-and-price (B&P) and Benders decomposition (BD), respectively.
In the former approach [29], two B&P algorithms are presented for the personalized MATSP.
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In the latter approach [28], a combined BD and CG method is introduced for the anonymous
MATSP. In both approaches, the work rules for the composition of multi-activity shifts are
expressed with context-free grammars, while some constraints that guarantee the feasibility
of weekly tours are embedded into a directed acyclic graph.

2.2 Literature Review on Stochastic Shift and Tour Scheduling

Different models and solution approaches have been proposed in the literature to deal with
stochastic demand in personnel scheduling problems. As an illustration, Easton and Rossin
[14] and Easton and Mansour [13] develop heuristic methods that aim to tackle problems
where demand is uncertain. Easton and Rossin [14] propose a tabu search method to solve a
stochastic goal programming model that integrates and optimizes labor demand and employee
scheduling. Easton and Mansour [13] present a genetic algorithm to solve shift scheduling
problems in which the recourse decisions are related with the undercovering and overcovering
of demand. Although both approaches aim to solve problems over a one-week planning hori-
zon, employee patterns are previously defined and only a small set of stochastic scenarios is
considered. Bard et al. [3] propose a heuristic two-stage model that addresses tour scheduling
problems over a one-week planning horizon. First-stage variables are related with the number
of full-time and part-time employees hired, while second-stage decisions correspond to the
allocation of employees to specific shifts during the week. Computational experiments on real
instances that consider three stochastic scenarios (high, medium and low demand) show that
significant savings are likely when the recourse problem is used.

Some studies that use decomposition approaches have been recently proposed as alterna-
tives to solve workforce planning problems when demand is uncertain. Pacqueau and Soumis
[21] propose a heuristic two-stage model to solve a shift scheduling problem. The proposed
model is based on a decomposition of Aykin’s [2] implicit model, where first-stage variables
are associated to the allocation of full-time shifts to the employees and recourse decisions
correspond to hiring part-time employees, using overtime for full-time shifts, the allocation of
breaks and the allowance of understaffing. Punnakitikashem et al. [24] introduce a stochastic
nurse scheduling problem that aims to minimize staffing costs and excess workload. The au-
thors present a BD approach, a Lagrangian relaxation with a BD approach and a nested BD
approach as solution methods. Computational results suggest that simultaneously considering
nurse staffing and assignment is more desirable than doing them sequentially. Similarly, Kim
and Mehrotra [17] present an integrated staffing and scheduling approach applied to nurse
management when demand is uncertain. The problem is formulated as a two-stage stochastic
integer program, where daily shifts and weekly patterns are previously enumerated. First-
stage decisions correspond to the number of employees assigned to daily shifts and to weekly
patterns, while second-stage decisions correspond to: 1) the possibility of adding or can-
celing daily shifts for every working pattern; 2) allowing undercovering or overcovering of
demand. A set of valid mixed-integer rounding inequalities that describe the convex hull of
feasible solutions in the second-stage problem are included. Consequently, the integrality of
the second-stage decision variables can be relaxed. Computational experiments show that
the use of the stochastic model prevents the hospital from being overstaffed. An L-shaped
method is presented in Robbins and Harrison [31] to solve a combined server-sizing and staff
scheduling problem for call centers in which a service level agreement must be satisfied. First-
stage decisions correspond to the employee staffing, while second-stage decisions correspond
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to the computation of a telephone service shortfall. Computational results show that ignor-
ing variability is a costly decision, since the value of the stochastic solution for the model is
substantially high.

Very limited literature is available on stochastic workforce planning for employees who
have various skills to work on different activities, tasks or unit departments. Zhu and Sherali
[34] address a workforce planning problem for employees with multiple skills between service
centers. A two-stage model under demand fluctuations is presented, where first-stage deci-
sions correspond to personnel recruiting and allocation of employees to multiple locations,
while second-stage decisions consists in reassigning the workforce among the locations. The
scheduling of cross-trained workers in a multi-department service environment with random
demand is addressed in Campbell [6]. The author presents a two-stage model decomposable
by days and by scenarios, where first-stage decisions are related with the scheduling of days-off
and second-stage decisions correspond to the allocation of available employees at the begin-
ning of each day. In the approach, days-off are previously defined and only a small number
of scenarios is considered (10 in total). Parisio and Jones [23] present a two-stage stochastic
model for a multi-skill tour scheduling problem in retail outlets, where first-stage variables
are associated with the assignment of employees to weekly schedules, while recourse decisions
correspond to the allocation of overtime and to the undercovering and overcovering of de-
mand. Although multiple work activities are included in the problem, the authors assume
employees are allowed to work in only one activity per shift.

Even though some authors have tried to tackle personnel scheduling problems under
stochastic demand, none of the previous studies consider the integration of days-off scheduling
with shift scheduling in a multi-activity context. The method proposed in this paper addresses
the discontinuous MATSP when demand is uncertain and employee skills are identical. Un-
like the previous approaches, employee patterns and daily shifts are not previously fixed and
a high degree of flexibility is included in their composition. Additionally, the multi-activity
context is efficiently handled with context-free grammars, which are reviewed next.

2.3 Grammars for Multi-activity Shift Scheduling

In shift scheduling, a context-free grammar (CFG) can be defined as a finite set of work
rules that are used to generate valid sequences of work (shifts) for a given day d ∈ D,
where |D| denotes the number of days in the planning horizon. A CFG consists of a tuple
Gd = 〈Σd, Nd, Sd, Pd〉, where:

• Σd represents an alphabet of characters called the terminal symbols for day d, which
consists of work activities, breaks, lunch breaks, and rest stretches.

• Nd is a finite set of non-terminal symbols for day d.

• Sd ∈ Nd is the starting symbol for day d.

• Pd is a set of productions for day d, represented as A → α, where A ∈ Nd is a non-
terminal symbol and α is a sequence of terminal and non-terminal symbols. The work
rules used to generate shifts are represented by the set of productions. The productions
of a grammar can be used to generate new symbol sequences until only terminal symbols
are part of the sequence.
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A parse tree is a tree where each inner-node is labeled with a non-terminal symbol Nd

and each leaf is labeled with a terminal symbol Σd. A grammar recognizes a sequence if and
only if there exists a parse tree where the leaves, when listed from left to right, reproduce the
sequence.

A DAG Γd is a directed acyclic graph that embeds all parse trees associated with words
(shifts) for day d of a given length n recognized by a grammar. The DAG Γd has an and/or
structure where the and-nodes represent productions (work rules) from Pd and the or-nodes
represent non-terminals from Nd and letters from Σd. An and-node is true if all of its children
are true. An or-node is true if one of its children is true. The root node is true if the grammar
accepts the sequence encoded by the leaves. In Γd, O

π
dil denotes the or-node associated with

π ∈ Nd∪Σd, i.e., with non-terminals from Nd or letters from Σd, that generates a subsequence
at position i of length l for day d. Note that if π ∈ Σd, the node is a leaf and l is equal to one.
On the contrary, if π ∈ Nd, the node represents a non-terminal symbol and l > 1. AΠ,k

dil is the
kth and-node representing production Π ∈ Pd that generates a subsequence from position i
of length l at day d. There are as many AΠ,k

dil nodes as there are ways of using Pd to generate
a sequence of length l from position i. In Γd, the root node is described by OSd1n and its

children by AΠ,k
d1n ∈ ch(OSd1n). The children of or-node Oπdil are represented by ch(Oπdil) and its

parents by par(Oπdil). Similarly, the children of and-node AΠ,k
dil are represented by ch(AΠ,k

dil )

and its parents by par(AΠ,k
dil ). The sets of or-nodes, and-nodes and leaves in Γd are denoted

by Od, Ad and Ld, respectively. The DAG Γd is built by a procedure proposed in Quimper
and Walsh [26].

Grammar G1 presents an example on the use of context-free grammars for multi-activity
shift scheduling. Two activities, w1 and w2, must be scheduled, shifts have a length of n = 4
periods and should contain exactly one break, b, of one period that can be placed anywhere
during the shift except at the first or the last period. For clarity, we do not include the
subscript of the day in the notation of grammar G1 and nodes from Γ1. The grammar that
defines the set of feasible shifts on this example follows:

G1 = (Σ = (w1, w2, b), N = (S,X,W,B), P, S),
where productions P are: S → XW , X →WB, W →WW |w1|w2, B → b,
and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2 and B → b generate the
terminal symbols associated with working on activity 1, working on activity 2, or having a
break, respectively. Production W →WW generates two non-terminal symbols, W , meaning
that the shift will include a working subsequence. Production X →WB means that the shift
will include working time followed by a break. Finally, production S → XW generates a
sequence of length four (the daily shift), which includes working time followed by a break to
finish with more working time.

Figure 1 represents the DAG Γ1 associated with G1. Observe that there are 16 parse
trees (different shifts) embedded in Γ1. As an illustration, we present a dotted-parse tree that
generates shift w1bw1w2, and a dashed-line parse tree that generates shift w2w2bw1.
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Figure 1 – DAG Γ1 on words of length four and two work activities.

Note that the children of the root node ({AS→XW,114 , AS→XW,214 } ∈ ch(OS14)) can be seen
as shift “shells” because they do not consider the allocation of specific work activities to the
shifts, only the shift starting time and its length. Hence, and-nodes AΠ,k

d1n are characterized

by their starting time tΠ,kd1n, working length wΠ,k
d1n, and length including breaks lΠ,kd1n. In Γ1,

and-node AS→XW,114 generates shift wbww, while and-node AS→XW,214 generates shift wwbw.
Both shifts have a working length of three time intervals, a total length of four time intervals
and both start at time interval one (i = 1).

Although the expressiveness of grammars allow to encode a large number of work rules
for the composition of daily shifts, some limitations regarding shift total length are present
when long planning horizons are included in the problem (e.g., one week). To circumvent
this problem, Restrepo et al. [28] present an approach that combines BD and CG to solve the
deterministic discontinuous MATSP for employees with identical skills. The model combines
an explicit definition of weekly tours with the implicit definition of daily shifts from Côté
et al. [8]. Since the model presents a nice block structure decomposable by days, it is used in
the formulation of the two-stage stochastic problem, presented next.

3 Two-Stage Stochastic Problem

Stochastic shift and tour scheduling formulations extend and adapt deterministic models to
allow schedule modifications at a time closer to the actual demand realization. Two-stage
stochastic programming models give an example of such extensions. In these models, some
decisions must be made in the first-stage before values of random variables are observed.
Then, in the second-stage, a recourse action can be adopted after observing the actual values
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of the random variables to adjust any bad decision previously taken. In the model proposed,
first-stage decisions correspond to the number of employees assigned to each tour and to each
daily shift shell, while second-stage decisions (recourse actions) correspond to the allocation of
breaks and work activities to daily shifts and to the undercovering or overcovering of demand.

The second-stage problem is formulated with the implicit model proposed in Côté et al.
[8]. In this approach, the authors translate the logical clauses associated with Γd, d ∈ D,
into linear constraints on integer variables, where the number of employees assigned to each
and-node (Ad), each or-node (Od) and each leaf (Ld) in Γd are represented by an integer
variable.

In the first-stage problem, we define a feasible tour as the integration of daily shift shells
(children of root nodes OSd1n, d ∈ D) and days-off, over the set of days in the planning horizon.
Tours must meet the work rules related with the total working length, with the number of
working days, with the rest time between consecutive shifts and with the allocation of days-
off. Figure 2 presents an example of three tours composed with the shifts presented in Γ1. In
this example, we assume that the DAG Γd for each day d ∈ D is the same. Additionally, the
planning horizon corresponds to seven days, the working length should fall between 15 and 18
time intervals, the number of working days must fall between 5 and 6, and there are no rules
for the allocation of days-off and for the rest time between shifts. Finally, S1 corresponds to
AS→XW,1d14 → wbww, S2 corresponds to AS→XW,2d14 → wwbw and DO corresponds to a day-off.

Days
1 2 3 4 5 6 7

T
o
u
rs

1

2

3

S1 DO DO S1 S2 S1 S2

S1 S1 S2 S2 S2 DO S2

DO S1 S2 S2 DO S2 S1

Figure 2 – Weekly tours composed of shifts from Γ1.

In defining a model for the discontinuous SMATSP, we assume that, at the moment we
can act on second-stage variables, the scenario for day d ∈ D is fully known. Hence, staffing
decisions (allocation of tours and daily shifts to employees) that are feasible to schedule with-
out knowing in advance the demand, will be generated well ahead in time, while adjustments
(allocation of work activities, position of breaks, overcovering and undercovering of demand)
are made once improved (daily) demand information is available. We also assume that the
random vector ξ representing the stochastic perturbations of demands is non-negative and has
a finite support. Henceforth, we define Ω as the set of its possible realizations and p(w) > 0
as the probability of occurrence of scenario w ∈ Ω with

∑
w∈Ω p

(w) = 1. The notation for the
stochastic model follows.
Sets

J : set of work activities;

D: set of days in the planning horizon;

Id: set of time intervals at day d ∈ D;
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E: set of employees;

T : set of feasible tours.

First-stage problem
Parameter

δΠ,k
dt : parameter that takes value 1, if tour t includes the kth shift shell built with production

Π for day d (variable vΠ,k
d1n), and assumes value 0 otherwise.

Decision variables

xt: integer variable that represents the number of employees assigned to tour t;

vΠ,k
d1n: variable that represents the number of employees assigned to the kth and-node built

with production Π (children of the root node OSd1n from Γd).

Second-stage problem
Parameters

bdij : deterministic demand for day d, time interval i and activity j;

ξ
(w)
dij : stochastic perturbation of demand for day d, time interval i and activity j for scenario
w;

b
(w)
dij : stochastic demand for day d, time interval i and activity j for scenario w, b

(w)
dij =

bdij + ξ
(w)
dij ;

cdij : cost associated to one employee working on activity j, at time interval i, at day d;

c+
dij , c

−
dij : demand overcovering and undercovering costs for day d, time interval i and

activity j, respectively.

Decision variables

y
(w)
dij : variable that denotes the number of employees assigned to activity j, at time interval
i, for day d under scenario w;

v
Π,k,(w)
dil : variable that denotes the number of employees assigned to the kth and-node,

representing production Π from Γd and that generates a sequence from i of length l < n,
under scenario w (this set of variables excludes the children of the root node OSd1n);

s
+(w)
dij , s

−(w)
dij : slack variables representing overcovering and undercovering of demand of

activity j, at time interval i, for day d under scenario w, respectively.

Additionally, let V denote the set of variables corresponding to the union, over the set of
days d ∈ D, of variables vΠ,k

d1n. Given that notation, the formulation for the first-stage model,
denoted GT , is as follows.
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f(GT ) = min Q(V) (1)

vΠ,k
d1n =

∑
t∈T

δΠ,k
dt xt, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n), (2)∑
t∈T

xt = |E|, (3)

xt ≥ 0 and integer, ∀ t ∈ T , (4)

vΠ,k
d1n ≥ 0, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n). (5)

The objective of GT , (1), is to minimize the expected recourse cost Q(V). Constraints
(2) represent the link between daily shifts (children of root nodes OSd1n in Γd, d ∈ D) and
tours. Since a fixed number of employees is given and all the employees have the same
skills, constraint (3) guarantees that exactly |E| employees are assigned to the tours. Finally,
constraints (4)-(5) set the non-negativity and integrality of variables xt and the non-negativity

of variables vΠ,k
d1n.

The expected recourse function is denoted by Q(V) ≡ Eξ[Q(V, ξ)]. The recourse function
Q(V, ξ(w)), for a given realization w of ξ, is represented by:

Q(V, ξ(w)) = min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

cdijy
(w)
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dijs

+(w)
dij + c−dijs

−(w)
dij ) (6)

y
(w)
dij − s

+(w)
dij + s

−(w)
dij = b

(w)
dij , ∀d ∈ D, i ∈ Id, j ∈ J, (7)∑

AΠ,k
dil ∈ ch(Oπdil)

v
Π,k,(w)
dil =

∑
AΠ,k
dil ∈ par(O

π
dil)

vΠ,k
d1n,

∀d ∈ D,Oπdil ∈ ch(Aπ,kd1n) \ Ld, (8)∑
AΠ,t
dil ∈ ch(Oπdil)

v
Π,k,(w)
dil =

∑
AΠ,k
dil ∈ par(O

π
dil)

v
Π,k,(w)
dil ,

∀d ∈ D,Oπdil ∈ Od \ {OSd1n ∪ Ld ∪ ch(Aπ,kd1n)}, (9)

y
(w)
dij =

∑
AΠ,k
di1 ∈ par(O

j
di1)

v
Π,1,(w)
di1 , ∀d ∈ D, i ∈ Id, j ∈ J, (10)

v
Π,k,(w)
dil ≥ 0, ∀ d ∈ D,AΠ,k

dil ∈ Ad \ ch(OSd1n), (11)

s
+(w)
dij , s

−(w)
dij ≥ 0, ∀d ∈ D, i ∈ Id, j ∈ J, (12)

y
(w)
dij ≥ 0 and integer, ∀d ∈ D, i ∈ Id, j ∈ J. (13)

Problem (6)-(13) is based on the implicit model presented in Côté et al. [8]. The objective,
(6), is to assign work activities to daily shifts in order to minimize the staffing cost plus the
undercovering and overcovering of demand. Constraints (7) ensure that the demand per day
d, time interval i and work activity j is met for each demand realization w. Due to the
structure of Γd, d ∈ D, constraints (8)-(9) guarantee for every or-node Oπdil, excluding the
root node OSd1n and the leaves Ld, that the summation of the value of its children, ch(Oπdil),
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is the same as the summation of the value of its parents, par(Oπdil). Constraints (10) set

the value of variables y
(w)
dij equal to the summation of the value of the parents of leaf nodes

Ojdi1. Constraints (11)-(13) set the non-negativity of variables v
Π,k,(w)
dil , s

+(w)
dij , s

−(w)
dij and the

non-negativity and integrality of variables y
(w)
dij .

Observe that problem (1)-(5) (first-stage problem) has complete recourse because for any

realization of the random vector ξ and value of variables vΠ,k
d1n, problem (6)-(13) (second-

stage problem) is always feasible due to the allowance of undercovering and overcovering of
demand. Additionally, note that problem Q(V, ξ(w)) is decomposable by days due to its
particular block structure. Therefore, V, Ω and p(w) > 0 can also be decomposed by days:

Vd, Ωd, p
(w)
d > 0, d ∈ D, and the expected recourse function Q(V) can be represented as:

Q(V) ≡ Eξ[
∑
d∈D
Q(Vd, ξd)] ≡

∑
d∈D

Eξ[Q(Vd, ξd)] (14)

In the following, we present the solution method proposed to solve the SMATSP.

4 Heuristic Multi-cut L-shaped Method

The basic idea behind the L-shaped method is to approximate the nonlinear term, Q(V),
in the objective function of the two-stage stochastic problem (1)-(5). In particular, since
the expected recourse function involves solving all second-stage recourse problems, the main
principle of the L-shaped method is to avoid numerous function evaluations by using an outer
linearization of Q(V), as in BD. Since ξd follows a non-negative distribution with a finite

support, with Ωd as the set of its possible realizations for each day d ∈ D, and p
(w)
d > 0

as the probability of occurrence of scenario w ∈ Ωd (
∑

d∈D
∑

w∈Ωd
p

(w)
d = 1), Q(V) can be

expressed as Q(V) =
∑

d∈D
∑

w∈Ωd
p

(w)
d Q(Vd, ξd(w)). By defining θ

(w)
d as an additional set

of free variables, the two-stage stochastic problem GT can be reformulated as the following
model, denoted as BT .

f(BT ) = min
∑
d∈D

∑
w∈Ωd

θ
(w)
d (15)

vΠ,k
d1n =

∑
t∈T

δΠ,k
dt xt, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n), (16)

θ
(w)
d ≥ p(w)

d Q(Vd, ξd(w)), ∀ d ∈ D, w ∈ Ωd, (17)∑
t∈T

xt = |E|, (18)

xt ≥ 0 and integer, ∀ t ∈ T , (19)

vΠ,k
d1n ≥ 0, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n). (20)

Optimality cuts (17) ensure that the value of each variable θ
(w)
d is larger than or equal

to the optimal value of its corresponding second-stage problem for each day d ∈ D and each
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scenario w ∈ Ωd. Observe that the structure of problem (15)-(20) allows the L-shaped method
to be extended to include multiple cuts at each iteration, i.e., one per day and per scenario,
instead of adding one aggregated cut. Birge and Louveaux [4] showed that in an iterative
algorithm, adding multiple cuts at the same iteration may speed up convergence and reduce
the number of iterations.

Since the second-stage problems (6)-(13) are MILP models that do not possess the inte-

grality property, we relax integrality constraints (13) on variables y
(w)
dij because 1) the dual

to the LP relaxation of each second-stage problem will produce a cut that forces θ
(w)
d to be

at least as great as the objective value of the relaxation, which is a valid lower bound for
the actual recourse function value; 2) Restrepo et al. [28] showed that, in practice, problems
(6)-(13) do not exhibit a large integrality gap and that optimal or near-optimal solutions can
be found by solving the LP relaxation of the second-stage problems.

LetQ(Vd, ξd(w)) denote the LP relaxation of problem Q(Vd, ξd(w)). Let ρ
(w)
dij , γ

π,(w)
dil be

the dual variables associated with constraints (7) and (8) fromQ(Vd, ξd(w)), respectively. Let

∆
(w)
d be the projection over the space of variables ρ

(w)
dij , γ

π,(w)
dil of the polyhedron defined by

the constraints associated with the dual of model Q (Vd, ξd(w)). Note that ∆
(w)
d is itself a

polyhedron [33]. Let E
∆

(w)
d

be the set of extreme points of ∆
(w)
d . Inequalities (17) in model

BT are replaced by the following ones, defining formulation B
′
T :

θ
(w)
d ≥ p(w)

d

( ∑
i∈ Id

∑
j ∈ J

b
(w)
dij ρ

(w)
dij +

∑
Oπdil ∈ ch(Aπ,kd1n)\Ld

γ
π,(w)
dil

∑
AΠ,k
d1n∈ par(O

π
dil)

vΠ,k
d1n

)
,

∀ d ∈ D, w ∈ Ωd, (ρd, γd) ∈ E∆
(w)
d

(21)

Since these new optimality cuts are using linear approximations of Q(Vd, ξd(w)), model
B
′
T is a MILP relaxation of BT i.e., f(BT ) ≥ f(B

′
T ). Optimality cuts (21) do not need to be

exhaustively generated, since only a subset of them are active in the optimal solution of the
problem. Hence, an iterative algorithm can be used to generate only the subset of cuts that
will represent the optimal solution.

The algorithm consists in a multi-cut version of the L-shaped method where, at each
iteration l ≥ 1, a relaxation of the first-stage problem is solved. Such relaxation is obtained
by replacing the set of extreme points at each day d ∈ D and each scenario w ∈ Ωd, by subsets
El

∆
(w)
d

⊆ E
∆

(w)
d

. Note that in the first-stage model, B
′
T , it is assumed that the complete set of

tours T is known. However, with the incorporation of shift and tour flexibility, the complete
enumeration of the set of feasible tours might be intractable. To address this issue, we propose
a heuristic CG approach in which a master problem BLP

T̃
, is defined as the LP relaxation of B

′
T

over a restricted set of tours T̃ ⊆ T . We also define the MILP associated to BLP
T̃

as BMILP
T̃

,

where for a given subset of columns T̃ ⊆ T , the integrality constraints on xt variables are
imposed to obtain a heuristic integer solution (i.e., BMILP

T̃
is solved by a state-of-the-art B&B

method, using only the columns corresponding to T̃ ). The algorithm for the L-shaped method
is then divided into two parts: multi-cut generation and CG.

Two algorithm enhancements were implemented to speed-up the convergence of the multi-
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cut L-shaped method. First, we adopted the strategy proposed in McDaniel and Devine [20],
which consists in initially solving the LP relaxation of the first-stage problem to generate, in
a fast way, a number of valid cuts. Then, when some criterion is met (i.e., the relative gap
between the upper bound and the lower bound of the problem is smaller than a certain value),
the method then solves the MILP of the first-stage problem. Second, we implemented the
method presented in Papadakos [22] for the generation of strong optimality cuts. The author
proposes an alternative to eliminate the necessity of solving the extra auxiliary subproblem
introduced in Magnanti and Wong [19]. Additionally, since finding a core point for the problem
is a difficult task, the author suggests to use an approximation of the core point that consists
of a convex linear combination of the previously generated core point and the current solution
for the first-stage problem.

Let ε1 be the tolerance that defines if an optimality cut is added or not to the first-stage
problem and let ε2 be the tolerance we used to stop solving BLP

T̃
, i.e., stop the McDaniel

and Devine [20] strategy. Let Int be a boolean variable that indicates whether the MILP

(BMILP
T̃

) of the first-stage problem is solved (Int=true) or not (Int=false). Let θ
(w)
dl

∗
denote

the optimal value of variables θ
(w)
d from BLP

T̃
, at iteration l. Note that θl =

∑
d∈D

∑
w∈Ωd

θ
(w)
dl

∗

denotes a lower bound on f(GT ) at iteration l. Since we are using a heuristic approach to

find integer solutions for the first-stage model, we also denote θdl
(w)∗

as the optimal values of

variables θ
(w)
d when BMILP

T̃
is solved at iteration l. To simplify the algorithm description, we

use the same notation when solving BLP
T̃

, even though in that case, we have θ
(w)
dl

∗
=θdl

(w)∗
for

each d ∈ D,w ∈ Ωd, since the CG algorithm is performed until all columns have non-negative

reduced costs. Let s
(w)
dl

∗
, sdl

(w)∗ be the optimal value of second-stage problem (6)-(13) for day

d, under scenario w at iteration l, when integrality constraints on variables y
(w)
dij are imposed

and relaxed, respectively. Note that θ̄l =
∑

d∈D
∑

w∈Ωd
p

(w)
d s

(w)
dl

∗
is an upper bound on f(GT )

at iteration l. Similarly, θ̃l =
∑

d∈D
∑

w∈Ωd
p

(w)
d sdl

(w)∗ is an upper bound on f(B
′
T ) ≤ f(GT )

at iteration l, which we call the approximated upper bound. Let vπ,kd1nl

∗
, vπ,kd1nl

0
denote an

optimal solution and the core point approximation, respectively of first-stage variables vπ,kd1n

from model B
′
T at iteration l. The flow diagram of the algorithm is presented in Figure 3.

The description of the multi-cut L-shaped method follows.
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no
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yes

no

Figure 3 – Flow chart for the multi-cut L-shaped method.

• Initialization: The multi-cut L-shaped algorithm starts with an empty set of optimality
cuts, El

∆
(w)
d

= ∅, d ∈ D,w ∈ Ωd. In this step, the number of iterations l is set to zero,

the lower and upper bounds of the problem are initialized as θ̄l =∞, θ̃l =∞, θl = −∞,
the Boolean variable Int is set to false, and an initial set of columns, generated with
the procedure shown in the Column generation step, is added to BLP

T̃
.

• Int=true? : In this step of the algorithm, we verify if the Boolean variable Int is true or
false. If Int = false, we continue with the step Get primal sol. from BLP

T̃
. If Int = true

we continue with the step Solve BMILP
T̃

get primal sol. The value of Int is changed from

false to true when (θ̃l − θl)/θ̃l < ε2 and Int = false.

• Get primal sol. from BLP
T̃

: In this step of the algorithm, we get the primal solution

vπ,kd1nl

∗
, θ

(w)
dl

∗
from BLP

T̃
. Then, we calculate the approximation of the core point as:
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vπ,kd1nl

0
= 1

2v
π,k
d1n l−1

0
+ 1

2v
π,k
d1nl

∗
, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OSd1n) and we update the lower

bound of the problem as: θl =
∑

d∈D
∑

w∈Ωd
θ

(w)
dl

∗
. The values of vπ,kd1nl

∗
, vπ,kd1nl

0
are sent

to the second-stage problems.

• Solve BMILP
T̃

get primal sol.: In this step of the algorithm, we get the primal solution

θ
(w)
dl

∗
from BLP

T̃
to update the lower bound of the problem as: θl =

∑
d∈D

∑
w∈Ωd

θ
(w)
dl

∗
.

Then we solve BMILP
T̃

to get the primal solution θdl
(w)∗

, vπ,kd1nl

∗
and to calculate the

approximation of the core point as: vπ,kd1nl

0
= 1

2v
π,k
d1n l−1

0
+ 1

2v
π,k
d1nl

∗
, ∀ d ∈ D, AΠ,k

d1n ∈
ch(OSd1n). The values of vπ,kd1nl

∗
, vπ,kd1nl

0
are sent to the second-stage problems.

• Multi-cut generation: The objective of the multi-cut step is to generate optimality cuts
(21) in order to approximate the recourse function Q(V, ξ). The procedure to generate
and to add new optimality cuts to the first-stage problem follows.

– Solve LP rel. second-stage prob.: In this step of the algorithm, we solve the LP
relaxation of the second-stage problems twice. First, we fix variables vπ,kd1n with the

value of core point vπ,kd1nl

0
to get a dual solution (ρd, γd). Second, we fix variables

vπ,kd1n with the value of point vπ,kd1nl

∗
to recover the real objective value of the second-

stage problems and to update the approximated upper bound of the problem as:

θ̃l = min{θ̃l,
∑

d∈D
∑

w∈Ωd
p

(w)
d sdl

(w)
∗
}.

– Opt. cuts? and add opt. cuts: In order to add optimality cuts to the first-stage

problem, we verify if (sdl
(w)∗ −θdl

(w)∗
)/sdl

(w)∗ > ε1, in which case a new optimality
cut is added for scenario w and day d. After adding the optimality cuts, we increase
by one the number of iterations l.

• Column generation: The CG method consists of a master problem BLP
T̃

and a pricing
subproblem. The former problem, as mentioned before, is the LP relaxation of model
B
′
T over a reduced set of tours T̃ ⊆ T . The latter problem is responsible for finding

tours with negative reduced cost that will be added to BLP
T̃

in an iterative way.

Let λΠ,k
d1n and δ be the dual variables associated with the constraints (16) and (18)

from BLP
T̃

, respectively. Let S =
⋃
d∈D ch(OSd1n) be a set of shift shells, defined as the

union, over the set of days in the planning horizon, of all the children of root nodes
OSd1n, d ∈ D. Let G(N ,A) be a directed acyclic graph, composed of a set of nodes
N = {vs | s ∈ S∪{vb, ve}}, where vs corresponds to shift s and vb, ve are the source and
sink nodes, respectively. Each shift s ∈ S holds, besides a set of attributes inherited from
its corresponding and-node (start period, working time, and length including breaks), a

“reduced cost contribution” corresponding to value of the dual variable λΠ,k
d1n. The set

of arcs A represents the connection between nodes depending on the work rules for the
allocation of days-off and rest time between consecutive shifts.
New columns for BLP

T̃
correspond to resource-constrained shortest paths over G(N ,A).

More specifically, each feasible tour t ∈ T̃ must meet the work rules related with the
minimum and maximum number of working days in a tour, with the minimum and
maximum tour length in time intervals, with the maximum number of days-off, and
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with the minimum rest time between two consecutive daily shifts. Additionally, the
reduced cost c̄t of tour t is given by

c̄t =

( ∑
d∈D

∑
AΠ,k
d1n ∈ ch(OSd1n)

λΠ,k
d1nδ

Π,k
dt

)
− σ. (22)

The procedure to generate and add new columns for BLP
T̃

is as follows:

– Solve BLP
T̃

, get dual sol.: In this step of the algorithm, we solve problem BLP
T̃

to

get the dual solution (λ, σ) that will be sent to the pricing subproblem.

– Solve pricing subp.: New variables (tours) for the BLP
T̃

are generated by using
a label setting algorithm for the resource-constrained shortest-path problem over
graph G(N ,A). In the algorithm, the total length of the tour and the number of
working days represent global resources that are consumed by the labels while they
are extended.

– c̄t < 0? and add columns to BLP
T̃

: In this step of the algorithm we evaluate if
negative reduced cost columns were found by the pricing subproblem. If yes, such
columns are sent to BLP

T̃
which is re-optimized to start a new iteration.

• Solve MILP second-stage prob.: In this step of the algorithm, we solve the MILP of the
second-stage problems when vπ,kd1n variables are fixed with the value of vπ,kd1nl

∗
. In this

step, we also compute the value of the upper bound as θ̄l =
∑

w∈Ω

∑
d∈D p

(w)
d s

(w)
dl

∗
and

the gap with respect to the approximated upper bound: 100 × (θ̄l − θ̃l)/θ̄l. This gap
helps to measure the quality of the solution obtained when the integrality constraints

on second-stage variables y
(w)
dij are relaxed.

• Compute the value of the stochastic sol.: The multi-cut L-shaped algorithm ends with
the computation of the value of the stochastic solution (VSS) which is defined as V SS =
EEV − HN . HN corresponds to the value of the two-stage stochastic programming
problem and EEV corresponds to the expected value of the expected-value problem
(EV). Recall that, since second-stage problems are MILP models that do not possess
the integrality property, the final (heuristic) solution of the two-stage stochastic problem
might not be optimal and HN = θ̄l ≥ θ̃l.

5 Computational Experiments

In this section, we test the proposed multi-cut L-shaped method on real and randomly gen-
erated instances of the SMATSP. First, we describe the generation and the characteristics of
the set of instances used. Second, we present the problem definition and the grammar built
for the composition of daily shifts. Third, we report and analyze the computational results.

The computational experiments were performed on a 64-bit GNU/Linux operating system,
96 GB of RAM and 1 processor Intel Xeon X5675 running at 3.07GHz. The multi-cut L-shaped
algorithm was implemented in C++. The LP relaxation of both the first-stage problem and

16

A Two-Stage Stochastic Programming Approach for Multi-Activity Tour Scheduling

CIRRELT-2015-58



0

5

10

15

20

25

30

Day 1 Day 2

E
m
p
lo
ye
es

(a) Unimodal

0

1

2

3

4

5

6

7

8

9

Day 1 Day 2

E
m
p
lo
ye
es

(b) Level

Figure 4 – Deterministic demand profiles.

the second-stage problems was solved by using the barrier method of CPLEX version 12.5.0.1.
We set a time limit of 3 hours to solve each instance. Additionally, a relative gap tolerance
of 0.01 was set as a stopping criterion for solving the MILPs with CPLEX. The value of
tolerances ε1, ε2 were set to 0.0001 and 0.01, respectively.

5.1 Instances Generation

The set of instances used to test our method is divided into two groups: randomly generated
instances and real instances from a small retail shop. The deterministic demand profiles for
the set of random instances were generated such that they follow a unimodal behavior. The
deterministic demand profiles for the real instances, are presented in Côté et al. [8]. These
demand profiles present a constant (uniform) demand across hours (level behavior). Figure
4 shows an illustration, over two days, of the demand profiles used for the computational
experiments.

Stochastic instances were created by adding to the deterministic demand profile, a random
perturbation that follows a discrete uniform distribution. We created instances with 11, 49,
81 and 125 scenarios. Their description follows.

• Instances with 11 scenarios: In this group of instances, one large perturbation is gener-
ated for the complete week. Such perturbation follows a discrete uniform distribution
between -5 and 5.

• Instances with 49 scenarios: In this group of instances, two perturbations that follow
a discrete uniform distribution between -3 and 3 are generated. The first perturbation
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will affect the first 12 hours of each day during the week, while the second perturbation
will affect the last 12 hours of each day during the week.

• Instances with 81 scenarios: In this group of instances, we generate perturbations for
each day of the week every two hours between 10am and 6pm. Such perturbations follow
a discrete uniform distribution between -1 and 1.

• Instances with 125 scenarios: In this group of instances, we generate perturbations for
each day of the week every two hours between 11am and 5pm. The perturbations follow
a discrete uniform distribution between -2 and 2.

It is important to highlight that the demand is not perturbed when b
(w)
dij = bdij + ξ

(w)
dij ≤ 0.

However, this case only applies when bdij = 0 because when the demand takes a positive
value, this value is always higher than the value of the lower realization of the stochastic

perturbation ξ
(w)
dij .

5.2 Problem Definition and Grammar

The work rules for shift and tour generation, as well as the grammar used in the problem are
as follows.
Tour generation

1. The planning horizon is seven days, where each day is divided into 96 time intervals of
15 minutes.

2. Shifts are not allowed to span from one day to another (discontinuous problem).
3. The tour working length should fall between 35 and 40 hours per week.
4. The number of working days in the tour should fall between five and six.
5. There must be a minimum rest time of twelve hours between consecutive shifts.

Daily shift generation
1. Shifts can start at any time interval during any day d, allowing enough time to complete

their duration in day d.
2. Three types of shifts are considered: 8-hour shifts with 1-hour lunch break in the middle

and two 15-minute breaks. 6-hour shifts with one 15-minute break and no lunch, and
4-hour shifts with one 15-minute break and no lunch.

3. If performed, the duration of a work activity is at least one hour and at most five hours.
4. A break (or lunch) is necessary between two different work activities.
5. Work activities must be inserted between breaks, lunch and rest stretches.
6. A fixed number of employees |E| is given, therefore undercovering and overcovering of

demand is allowed.
Let aj be a terminal symbol that defines a time interval of work activity j ∈ J . Let b, l

and r be the terminal symbols that represent break, lunch and rest periods, respectively. In
productions Π ∈ P, Π→[min, max] restricts the subsequences generated by a given production
to a length between a minimum and maximum number of periods. The grammar and the
productions that define the multi-activity shifts are as follows:
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G =(Σ = (aj ∀j ∈ J, b, l, r),
N = (S, F,Q,N,W,Aj ∀j ∈ J,B, L,R), P, S),

S → RFR|FR|RF |RQR|QR|RQ|RNR|NR|RN, B → b, L→ llll,

F →[38,38] NLN, Q→[25,25] WBW,

N →[17,17] WBW, R→ Rr|r,
W →[4,20] Aj ∀j ∈ J, Aj → Ajaj |aj ∀j ∈ J.

5.3 Computational Results

Tables 1 - 2 present the computational results on stochastic weekly instances dealing with up
to five work activities. Ten different demands were tested for each activity (Nb.Act) and for
each version on the number of scenarios (Scen.). We present the average CPU time in seconds
to solve the problem (T. time), the average CPU time spent in the CG approach (Time
CG), which includes the time to solve the pricing subproblems and the time to solve the LP
relaxation when new columns are added, the average CPU time to solve the first-stage problem
(Time F-S ), and the average CPU time to solve the second-stage problems (Time S-S ). The
average gap between the best upper bound and best lower bound is presented in Gap1. This
gap is computed as: Gap1 = 100× (θ̄−θ)/θ̄. Since the second-stage problems are MILPs that
do not possess the integrality property and we are relaxing integrality constraints on variables

y
(w)
dij , we also calculate the average gap between the upper bound θ̄ and the approximated upper

bound θ̃: Gap2 = 100× (θ̄ − θ̃)/θ̄. Conv. presents the number of instances that converged to
a near-optimal solution, i.e., the algorithm stopped when no more optimality cuts are added
to the first-stage model. The average value of the stochastic solution (VSS ), in percentage, is
presented in the last column. This value is computed as: V SS = 100× (EEV −HN)/EEV
and it is only calculated for instances that converged (Conv.=1).

Scen. Nb. Act T. time Time CG Time F-S Time S-S Gap1 Gap2 Conv. VSS

11

1 242.75 23.04 11.14 185.99 1.01% 0.00% 10 5.40%
2 1,587.45 97.11 188.8 1,123.27 0.91% 0.00% 10 9.05%
3 2,114.18 94.6 200.1 1,655.17 0.85% 0.00% 10 8.63%
4 2,602.97 101.37 133.23 2,227.37 0.87% 0.00% 10 8.97%
5 3,502.28 117.21 134.1 3,092.78 1.09% 0.02% 10 7.69%

49

1 990.11 47.96 41.04 872.56 0.66% 0.00% 10 2.70%
2 4,344.01 126.26 144.8 4,001.32 0.88% 0.00% 10 5.48%
3 8,069.22 568.29 544.45 6,390.64 0.95% 0.00% 7 8.01%
4 8,463.06 385.56 386.02 7,226.97 1.14% 0.01% 6 8.08%
5 10,664.8 647.37 488.32 8,632.84 11.85% 0.02% 0 -

81

1 2,171.04 221.63 163.12 1,671.75 0.76% 0.00% 10 0.29%
2 8,577.45 669.39 661.43 7,023.38 0.86% 0.00% 8 0.92%
3 9,603.11 292.43 285.7 8,909.98 0.82% 0.01% 7 1.54%
4 10,537.88 267.65 250.83 9,927.05 1.34% 0.01% 2 1.61%

125

1 2,189.07 212.81 237.51 1,630.95 0.89% 0.00% 10 1.51%
2 9,415.76 635.78 726.83 7,826.62 0.84% 0.00% 10 2.07%
3 10,321.03 371.64 419.09 9,409.37 0.74% 0.01% 6 2.78%
4 10,619.85 192.11 197.47 10,144.59 3.23% 0.01% 2 3.17%

Table 1 – Results on stochastic weekly instances with unimodal demand shape.
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Scen. Nb. Act T. time Time CG Time F-S Time S-S Gap1 Gap2 Conv. VSS

11

1 152 18.02 5.34 81.44 0.56% 0.00% 10 1.96%
2 279.16 14.31 7.78 203.67 0.46% 0.02% 10 0.87%
3 616.06 27.13 30.33 452.17 0.72% 0.02% 10 0.81%
4 607.65 20.78 11.56 504.91 0.50% 0.02% 10 1.55%
5 962.64 31.6 22.07 763.5 0.54% 0.03% 10 1.27%

49

1 575.32 59.7 25.18 387.53 0.60% 0.00% 10 0.00%
2 1,451.61 75.4 42.33 10,59.27 0.56% 0.01% 10 0.43%
3 2,838.99 87.35 153.01 2,123.57 0.83% 0.02% 10 0.42%
4 3,166.09 93.83 78.68 2,625.82 0.54% 0.01% 10 1.11%
5 4,557.47 94.44 127.76 3,813.78 0.59% 0.02% 10 0.95%

81

1 1301.52 224.75 81.07 694.34 0.66% 0.00% 10 -0.75%
2 2,812.83 269.58 117.27 1,804.07 0.65% 0.01% 10 -0.77%
3 6,177.93 298.59 611.18 4,174.32 0.80% 0.03% 9 0.01%
4 6,261.87 486.49 169.65 4,719.92 0.53% 0.01% 10 -0.03%
5 9,766.28 263.26 535.85 7,452.06 0.72% 0.01% 9 0.14%

125

1 1,842.3 368.16 155.31 877.35 0.69% 0.00% 10 -0.47%
2 4,322.38 597.87 283.89 2,376.46 0.58% 0.02% 10 -0.06%
3 7,510.87 513.18 436.21 4,891.14 0.64% 0.03% 10 0.37%
4 8,129.87 607.49 324.75 5,912.99 0.51% 0.01% 10 1.53%
5 10,818.7 371.01 388.89 7,572.3 22.19% 0.01% 0 -

Table 2 – Results on stochastic weekly instances with level demand shape.

From Table 1, we can conclude that the proposed approach was able to find high quality
solutions for most of the instances with up to 125 stochastic scenarios and three work activities.
Our method was not able to find solutions that converged for any of the instances with five
activities when evaluated on 49 stochastic scenarios, providing solutions with 11.85% average
optimality gap. However, for most of the other instances, the final gap is, on average, less
than 1.15%. From Table 2, we can conclude that our method was able to find near-optimal
solutions for almost all the instances with up to five work activities when evaluated on 11,
49 and 81 stochastic scenarios and with up to four work activities when evaluated on 125
stochastic scenarios. Regarding the CPU time, we observe that the most time-consuming
component is related with the LP solution of the second-stage problems, which increases
significantly with the number of activities and scenarios.

Although integrality constraints on second-stage variables were relaxed, we can conclude
that in most cases, the approximated upper bound θ̃ was the same as or very close to, the
real upper bound θ̄. The above can be observed from the average values of Gap2, which are
at most 0.03%.

We observe some negative values for the VSS since the algorithm is heuristic. These cases
are rare, however: they are observed only on the instances with level demand shape and
when the stochastic perturbations of demand do not exhibit a lot of variability (81 and 125
scenarios). The values of the stochastic solution (V SS) depend on the demand profile used.
When a unimodal demand profile is tested, the stochastic model prevents the occurrence of
additional staffing costs when compared with the expected value problem. On the contrary,
when a level demand profile is used, a deterministic approach based on the expected demand
appears to be sufficient, especially when 81 and 125 stochastic scenarios are used and not a
lot of variability is included in the stochastic perturbation of demand.
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6 Concluding Remarks

In this paper, we presented a two-stage stochastic programming approach to solve the discon-
tinuous multi-activity tour scheduling problem when demand is uncertain and employees have
identical skills. In the model, first-stage decisions correspond to the allocation of employees
to weekly tours and to daily shifts, while second-stage decisions correspond to the allocation
of work activities and breaks to shifts and to the undercovering and overcovering of demand.
Since the number of tours becomes large with an increase in shift and tour flexibility, the
first-stage problem was solved via CG. Second-stage problems were modeled with context-
free grammars in order to efficiently handle the work rules for the composition of the shifts
and the allocation of work activities to the shifts.

A heuristic multi-cut L-shaped method was implemented as a solution approach. Two
algorithmic refinements were used to enhance the performance of the method. First, we
adopted the strategy of McDaniel and Devine [20] in order to generate an initial set of valid
cuts in a fast way. Second, we implemented the idea of Papadakos [22] to generate strong
optimality cuts. Additionally, we showed that, although second-stage problems are MILP
models that do not possess the integrality property, high-quality solutions can be achieved by
relaxing the integrality constraints to generate optimality cuts.

Computational results suggest that the performance of the method depends on the dis-
tribution of the demand profile, as well as on the number of scenarios and work activities
included. Specifically, the multi-cut L-shaped method exhibited a better performance, in
terms of CPU time, when evaluated on instances with a level demand behavior than when
evaluated on instances with a unimodal behavior. However, we observed that the use of the
stochastic model has a larger impact on instances with unimodal demand behavior, since it
prevents the occurrence of additional staffing costs when compared with the expected value
problem. On the contrary, since the value of the stochastic solution is close to zero, a deter-
ministic approach based on the expected demand often appears to be sufficient for instances
with a level demand behavior.

References

[1] H. K. Alfares. Survey, categorization, and comparison of recent tour scheduling literature.
Annals of Operations Research, 127(1-4):145–175, 2004.

[2] T. Aykin. Optimal shift scheduling with multiple break windows. Management Science,
42(4):591–602, 1996.

[3] J. F. Bard, D. P. Morton, and Y. M. Wang. Workforce planning at USPS mail processing
and distribution centers using stochastic optimization. Annals of Operations Research,
155(1):51–78, 2007.

[4] J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operational Research, 34(3):384–392, 1988.

[5] V. Boyer, B. Gendron, and L.-M. Rousseau. A branch-and-price algorithm for the multi-
activity multi-task shift scheduling problem. Journal of Scheduling, 17(2):185–197, 2014.

21

A Two-Stage Stochastic Programming Approach for Multi-Activity Tour Scheduling

CIRRELT-2015-58



[6] G. M. Campbell. A two-stage stochastic program for scheduling and allocating cross-
trained workers. Journal of the Operational Research Society, 62(6):1038–1047, 2011.
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