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Abstract. The Multi-Depot Vehicle Routing Problem (MDVRP) is an important variant of the 
classical Vehicle Routing Problem (VRP), where the customers can be served from a number of 
depots. This paper introduces a cooperative coevolutionary algorithm to minimize the total route 
cost of the MDVRP. Coevolutionary algorithms are inspired by the simultaneous evolution 
process involving two or more species. In this approach, the problem is decomposed into smaller 
subproblems and individuals from different populations are combined to create a complete 
solution to the original problem. This paper presents a problem decomposition approach for the 
MDVRP in which each subproblem becomes a single depot VRP and evolves independently in its 
domain space. Customers are distributed among the depots based on their distance from the 
depots and their distance from their closest neighbor. A population is associated with each depot 
where the individuals represent partial solutions to the problem, that is, sets of routes over 
customers assigned to the corresponding depot. The fitness of a partial solution depends on its 
ability to cooperate with partial solutions from other populations to form a complete solution to the 
MDVRP. As the problem is decomposed and each part evolves separately, this approach is 
strongly suitable to parallel environments. Therefore, a parallel evolution strategy environment 
with a variable length genotype coupled with local search operators is proposed. A large number 
of experiments have been conducted to assess the performance of this approach. The results 
suggest that the proposed coevolutionary algorithm in a parallel environment is able to produce 
high-quality solutions to the MDVRP in low computational time. 
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1 Introduction

A vehicle routing problem (VRP) is a generic name for a large class of combina-
torial optimization problems (Doerner and Schmid, 2010; Montoya-Torres et al.,
2015). The goal is to find a set of routes for serving customers with a certain
number of vehicles in a given environment. In the classical VRP, a problem
instance is specified by a set of customers to be served with their corresponding
locations and demands and other primary information such as distance between
two costumers, distance between a customer and the depot, number of vehicles
and vehicle capacity (Baldacci and Mingozzi, 2009). In a solution, each vehicle
leaves the depot and executes a route over a certain number of customers be-
fore returning to the depot, while insuring that the total demand on the route
does not exceed vehicle capacity. In some cases, a maximum route duration
(or distance) constraint is enforced. The Multi-Depot Vehicle Routing Problem
(MDVRP) is a variant of the classical VRP in which more than one depot is
considered (Cordeau and Maischberger, 2012; Escobar et al., 2014; Subramanian
et al., 2013; Vidal et al., 2012).

The number of studies on the MDVRP is rather limited when compared to
the classical VRP. A survey of these studies, based on either exact methods
or heuristics, can be found in Montoya-Torres et al. (2015). In recent years,
evolutionary-based metaheuristics proved to be a popular approach to address
this problem, as described in Section 3. But, in spite of this popularity, no co-
evolutionary algorithm has yet been proposed in the literature for the MDVRP.
As the problem can be easily decomposed into a number of single-depot VRPs,
with a population of partial solutions associated with each depot, a coevolution-
ary approach looks relevant. Each partial solution or individual in a population
corresponds to vehicle routes defined over the subset of customers assigned to
the corresponding depot. Although each population can evolve separately, this
evolution is guided by the ability of each individual to form good complete solu-
tions with individuals from the other populations. This is the problem-solving
approach proposed in this work.

The remainder of this paper is organized as follows. First, some prelimi-
naries about the MDVRP and coevolution are found in Section 2. Section 3
presents a literature review. Sections 4 and 5 describe the proposed methodol-
ogy while Section 6 reports computational results. Future avenues for research
are proposed in the conclusion in Section 7.

2 Preliminaries

In this section, some preliminary information about the mathematical formula-
tion of the MDVRP and cooperative coevolutionary algorithms are presented.
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2.1 Multi-Depot Vehicle Routing Problem Formulation

As mentioned earlier, the MDVRP is a variant of the classical VRP where more
than one depot is considered (Montoya-Torres et al., 2015). Figure 1 shows a
typical solution of this problem with two depots and two vehicle routes associ-
ated with each depot. Typically, the fleet of vehicles is limited and homogeneous
(Cordeau and Maischberger, 2012; Escobar et al., 2014; Montoya-Torres et al.,
2015; Subramanian et al., 2013; Vidal et al., 2012).

Figure 1: MDVRP solution.

Basically, a solution to this problem is a set of vehicle routes such that:
(i) each vehicle route starts and ends at the same depot, (ii) each customer is
served exactly once by one vehicle, (iii) the total demand on each route does
not exceed vehicle capacity (iv) the maximum route time is satisfied and (v) the
total cost is minimized (Montoya-Torres et al., 2015).

The MDVRP can be formalized as follows. Let G = (V,A) be a complete
graph, where V is the set of nodes and A is the set of arcs. The nodes are
partitioned into two subsets: the customers to be served, VC = {1, ..., N}, and
the multiple depots VD = {N+1, ..., N+M}, with VC∪VD = V and VC∩VD = ∅.
There is a non-negative cost cij associated with each arc (i, j) ∈ A. The demand
of each customer is di (there is no demand at the depot nodes). There is also
a fleet of K identical vehicles, each with capacity Q. The service time at each
customer i is ti while the maximum route duration time is set to T . A conversion
factor wij might be needed to transform the cost cij into time units. In this
work, however, the cost is the same as the time and distance units, so wij = 1.

In the mathematical formulation that follows, binary variables xijk are equal
to 1 when vehicle k visits node j immediately after node i. Auxiliary variables
yi are also used in the subtour elimination constraints.

Minimize

N+M∑

i=1

N+M∑

j=1

K∑

k=1

cijxijk , (1)

2

A Cooperative Coevolutionary Algorithm for the Multi-Depot Vehicle Routing Problem

CIRRELT-2016-08



subject to:

N+M∑

i=1

K∑

k=1

xijk = 1 (j = 1, ..., N); (2)

N+M∑

j=1

K∑

k=1

xijk = 1 (i = 1, ..., N); (3)

N+M∑

i=1

xihk −
N+M∑

j=1

xhjk = 0 (k = 1, ...,K; h = 1, ..., N +M); (4)

N+M∑

i=1

N+M∑

j=1

dixijk ≤ Q (k = 1, ...,K); (5)

N+M∑

i=1

N+M∑

j=1

(cijwij + ti)xijk ≤ T (k = 1, ...,K); (6)

N+M∑

i=N+1

N∑

j=1

xijk ≤ 1 (k = 1, ...,K); (7)

N+M∑

j=N+1

N∑

i=1

xijk ≤ 1 (k = 1, ...,K); (8)

yi − yj + (M +N)xijk ≤ N +M − 1; for 1 ≤ i 6= j ≤ N and 1 ≤ k ≤ K; (9)

xijk ∈ {0, 1} ∀ i, j, k; (10)

yi ∈ {0, 1} ∀ i; (11)

The objective (1) minimizes the total cost. Constraints (2) and (3) guar-
antee that each customer is served by exactly one vehicle. Flow conservation
is guaranteed through constraint (4). Vehicle capacity and route duration con-
straints are found in (5) and (6), respectively. Constraints (7) and (8) check
vehicle availability. Subtour elimination constraints are in (9). Finally, (10) and
(11) define x and y as binary variables.

In the original formulation of the MDVRP, a fixed number of vehicles is
allocated to each depot. In our work, though, the search is allowed to consider
a larger number of vehicles (at a penalty cost in the objective). This is discussed
in Section 5.
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2.2 Coevolutionary Algorithms

Coevolutionary Algorithms (CA) is a class of evolutionary algorithms inspired
by the simultaneous evolution process involving two or more species. Recently,
various engineering problems have been solved with this approach (Blecic et al.,
2014; Chen et al., 2014; Ladjici and Boudour, 2011; Ladjici et al., 2014; Wang
and Chen, 2013; Wang et al., 2014). Coevolutionary algorithms are categorized
into two groups depending on the type of interaction among the species, which
can be either competitive or cooperative. Competitive coevolution can be viewed
as an arms race, that is, individuals in the populations compete among them-
selves. One group attempts to take advantage over another, which responds
with an adaptive strategy to recover the advantage (Katada and Handa, 2010).
A biological example is the predator-prey competitive coevolution, in which the
evolution of one population affects the evolution of the other. This approach
has been used in virtual and simulated evolution (Ebner, 2006) and also for
evolving agent behaviors or artificial players for games (Engelbrecht, 2007). In
Cooperative coevolution, the interaction among species is beneficial for all or, at
least, does not cause any damage. The species may live together in the same
area and one population needs the other ones to survive and evolve. Typically,
species cooperate to attain a global benefit. This is the case in symbiosis, for
example (Engelbrecht, 2007).

In a cooperative coevolutionary algorithm, each population represents a part
of a complex decomposable problem (Engelbrecht, 2007). Accordingly, the true
fitness of an individual can only be obtained from its interaction with other indi-
viduals from the same or other populations. Each individual receives a reward or
punishment, being rewarded when it interacts well with the others while getting
a punishment otherwise. A cooperative coevolutionary algorithm is considered
in this work because the problem can be decomposed into smaller subproblems,
each one evolving in parallel. Partial solutions for those subproblems cooperate
to create a complete solution for the MDVRP. In this situation, a competitive
strategy would not be suitable because a complete solution is obtained from
information gathered from all subproblems and there is no competition among
these subproblems. Figure 2 depicts a general cooperative coevolutionary algo-
rithm with decomposition. A complex problem is first decomposed into smaller
subproblems. Each population is evolved on its subproblem and, after a num-
ber of generations, individuals from these populations are combined to create
complete solutions to the original problem. Through this process, it is possible
to compute the fitness of these complete solutions. Some feedback information
is then returned to each population, such as the best solution found so far, any
required updates to the individuals in the population, etc.

Coevolutionary Algorithms can be distinguished from traditional evolution-
ary algorithms by their evaluation process (Ficici, 2004). As mentioned above,
individuals can only be evaluated through interaction with other individuals
from the same or different populations.

Fitness Sampling (Engelbrecht, 2007) or Fitness Assessment (Luke, 2013)
defines how individuals are combined for the purpose of fitness evaluation. These
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Figure 2: Cooperative coevolutionary algorithm with problem decomposition.

methods are the followings (Engelbrecht, 2007; Luke, 2013):

a) All versus All: All possible combinations of individuals from all populations
are considered. This method is very expensive and can be appropriate for
populations with only a few individuals.

b) Random: Individuals are randomly selected from the coevolving popula-
tions. This method is less expensive than the previous one and the number
of evaluations is typically a parameter of the method.

c) All versus best: All individuals of one population are combined with the
best individuals from other populations. This is repeated for each popula-
tion.

d) Tournament sampling: This process consists of selecting individuals from
each population based on their fitness. Then, a tournament is performed
among all selected individuals to determine a winner. This is typically used
in competitive models.

e) Shared sampling: Only individuals with higher shared fitness are com-
bined to favor individuals that are significantly different from the others in
a population.
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3 Literature Review

The literature review focuses on the main issues addressed in this work. First,
Section 3.1 introduces evolutionary-based algorithms for the MDVRP, followed
by parallel algorithms for the MDVRP in Section 3.2. Then, Section 3.3 is
devoted to known applications of sequential and parallel coevolutionary algo-
rithms.

3.1 Heuristics for the Multi-Depot Vehicle Routing Prob-
lem

Evolutionary algorithms (EAs) use a set of candidate solutions, known as a
population, and heuristic mechanisms to evolve it like selection and reproduction
(also called genetic operators). Evolution proceeds from one generation to the
next until a stopping condition is satisfied (Engelbrecht, 2007; Luke, 2013).
Evolutionary algorithms have been widely used to solve the VRP, as surveyed
in Potvin (2009). The main contributions with regard to the MDVRP are
reported below.

Genetic algorithms (GAs) are probably the most widely used class of evolu-
tionary algorithms and were applied as well to the MDVRP. A comprehensive
survey of different types of GAs for the MDVRP can be found in Karakatič and
Podgorelec (2015), while GAs for the MDVRP, among other VRP variants, are
also described in Gendreau et al. (2008). With regard to hybrids, a simulated
annealing-based solution acceptance criterion is applied after reproduction in
Chen and Xu (2008). The Clarke and Wright savings heuristic and the near-
est neighbor heuristic are used in Ho et al. (2008) to create initial solutions
for the GAs. A combination of simulated annealing, bee colony optimization
and GA is also proposed in Liu (2013). Vidal et al. (2012) and Vidal et al.
(2014) introduce a powerful hybrid GA using neighborhood-based heuristics
and population-diversity management schemes to address many different types
of VRPs, including the MDVRP.

Particle Swarm Optimization (PSO) is inspired by the social behavior of
agents, such as swarms and birds flock. Individuals are named particles, flying
in the search space according to simple rules that combine local and global in-
formation (Engelbrecht, 2007; Luke, 2013). This problem-solving methodology
was used in Wenjing and Ye (2010) for solving the MDVRP.

In addition to EAs, some noteworthy heuristics were proposed to solve the
MDVRP. Tabu Search (TS) has been used in several contexts. In particular,
Renaud et al. (1996) and Cordeau et al. (1997) use this heuristic for some VRP
problems including MDVRP. A hybrid granular TS algorithm was proposed
by Escobar et al. (2014). Those authors introduce the idea of granular neigh-
borhoods, in which the search process uses restricted neighborhoods for each
customer defined by a granularity threshold value.

An adaptive large neighborhood search (ALNS) approach was introduced by
Pisinger and Ropke (2007). It was applied to solve five different variants of the
VRP, including the MDVRP.
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The method developed by Subramanian et al. (2013) combines an exact pro-
cedure based on the set partitioning formulation with an Iterated Local Search
(ILS). A Mixed Integer Programming solver is used for the exact procedure.

3.2 Parallel algorithms for the Multi-Depot Vehicle Rout-
ing Problem

A few parallel algorithms for the MDVRP are reported in the literature. A
parallel version of Ant Colony Optimization (ACO) is introduced in Yu et al.
(2011). In this work, the MDVRP was simplified through the definition of a
single virtual depot, while insuring that the capacity constraint of each vehicle
is satisfied. The algorithm was implemented using a distributed coarse-grained
environment composed of eight computers each equipped with a Pentium pro-
cessor (3 GHz with 512 MB RAM).

A parallel iterated Tabu Search (TS) is proposed in Maischberger and Cordeau
(2011); Cordeau and Maischberger (2012). In the first paper, some preliminary
results are reported on eight classes of VRPs including the MDVRP. The al-
gorithm was run on a cluster made of 128 nodes (each with a 3GHz Xeon
processor). The second paper reports results over four VRP variants, including
the MDVRP, as well as other variants with time windows.

3.3 Coevolutionary algorithms

In this section, we review different applications of CAs. Note that a discus-
sion about sequential and parallel versions of CAs can be found in Popovici
and De Jong (2006). The authors show in particular how different population
update strategies can impact the overall performance. The authors empirically
demonstrate the superiority of the parallel version over the sequential one on
benchmark functions, using a number of different metrics.

A competitive model with three populations is used in Li et al. (2014) to
solve constrained design problems. The first population is made of candidate so-
lutions from the design space while the other populations represent disturbances
due to uncertainties. Li and Yao (2012) propose a cooperative coevolutionary
algorithm in a particle swarm environment. They apply it to large scale opti-
mization problems on functions with up to 2,000 variables. Other methodologies
using particle swarm and coevolution can also be found in Aote et al. (2015)
and Chen et al. (2010).

A study on sequential and parallel versions of a cooperative coevolutionary
algorithms based on the ES(1+1) evolution strategy is presented in Jansen and
Wiegand (2003, 2004). The authors identify situations where a cooperative
scheme could be inappropriate, like problems involving non separable functions.
Depending on the decomposition method or the characteristics of the function,
the coevolutionary algorithm could even be harmful.

As far as we know, the coevolutionary paradigm has never been applied to
the MDVRP. With regard to vehicle routing in general, a large scale capaci-
tated arc routing problem is addressed in Mei et al. (2014) using a coevolution-
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ary algorithm. In this work, the routes are grouped into different subsets to
be optimized and problem instances with more than 300 edges are solved. A
multi-objective capacitated arc routing problem is also studied in Shang et al.
(2014). A coevolutionary algorithm is presented in Wang and Chen (2013) for
a pickup and delivery problem with time windows. To minimize the number of
vehicles and the total traveling distance, the authors use two populations: one
for diversification purposes and the other for intensification purposes. In the
scheduling domain, a competitive coevolutionary quantum genetic algorithm
for minimizing the makespan of a job shop scheduling problem is reported in
Gu et al. (2010).

4 Cooperative coevolutionary model for the MD-
VRP

A cooperative coevolutionary model with problem decomposition is proposed
here to solve the MDVRP. The main contribution of this method is the compu-
tational efficiency resulting from the decomposition of the problem into subprob-
lems. Each subproblem becomes a single depot VRP and evolves independently
in its domain space. The decomposition approach considers the depots sepa-
rately and assigns a subset of customers to each one. Some overlap is possible,
that is, customers might be associated to one or more depots depending on
their neighbors (other customers or depots). An evolving population is associ-
ated with each subproblem and the (partial) solutions in each population must
then cooperate to form a complete solution to the MDVRP. In this section, we
explain the decomposition approach. Then, Section 5 describes the evolution
process for solving the subproblems.

Each customer is assigned to a depot using the two following rules:

1. The closest depot;

2. The closest depot to the closest neighbor node (if different from the one
in rule 1);

When the two rules identify the same depot, the assignment is obvious.
When the two rules identify two different depots, then the conflict must be
addressed in some way. Figure 3 illustrates how these rules are applied. In the
figure, there are three depots (nodes A, B and C) and twenty customers (nodes
1 to 20). For customer 1, rule 1 identifies A as the closest depot. Then, rule 2
identifies the closest neighbor to customer 1 as customer 2, whose closest depot
is also A. Thus, customer 1 can only be assigned to depot A. In the figure, all
white nodes can only be assigned to their closest depot.

Now, let us consider customer 6. Rule 1 identifies B as the closest depot.
Then, rule 2 identifies the closest neighbor to customer 6 as customer 7, whose
closest depot is A. Since we do not know if it is better to assign customer 6
to depot A or B, customer 6 is initially assigned to both depots. That is, this
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Figure 3: Problem decomposition: Assignment of customers to depots.

Figure 4: Cooperative coevolutionary model for the MDVRP.

customer will be part of the two evolving populations associated with depots A
and B. It implies that there is some overlap among the subproblems. In Figure
3, all gray nodes are assigned to two different depots.

The assignment procedure is further detailed in Algorithm 1. The procedure
starts with the set of customers VC , the set of depots VD, as well as the set of
arcs A. In Line 3 the closest depot mi to customer i is selected according to rule
1 and inserted in the assignment group Ami

of depot mi (Line 4). The closest
neighbor to customer i is defined as customer j (Line 5) and the closest depot to
j, identified as mj , is selected according to rule 2. The depots are compared in
Line 7. If the two depots are different (mi 6= mj), customer i is also inserted in
the allocation group Amj

of depot mj (Line 8). After processing all customers,
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the assignment groups are returned (Line 11).

Algorithm 1: Assignment of customers

1 assignCustomers(VC , VD, A)
2 for i← 1 to N do // for each customer i

// Rule 1: closest depot

3 mi ← getClosestDepot(VD, i);
4 insert(Ami

, i);
// Rule 2: depot of the closest neighbor

5 j ← getClosestNeighbor(VC , i);
6 mj ← getClosestDepot(VD, j);
7 if (mi 6= mj) then // Different depots

8 insert(Amj
, i);

9 end if

10 end for
11 return(A1 . . . AM );

12 end

After this decomposition, each subproblem becomes a classical single depot
VRP for a subset of customers identified by the two assignment rules above.
Given that the gray nodes are duplicated, a repair operator will be needed to
obtain a valid complete solution (see Section 5.5). Each subproblem is solved
with an evolutionary algorithm, in which each individual represents a partial
solution to the MDVRP. Figure 4 illustrates the structure of the proposed co-
evolutionary model. For each depot, there is one population which evolves and
searches the best routes for the set of customers assigned to it. Then, one in-
dividual for each population is selected to create a complete solution for the
MDVRP.

A decomposition approach is particularly interesting for problem instances
with a low degree of interdependency (coupling) between the subproblems. For
example, customer 19 in Figure 3 should clearly be served by depot C. It is
unlikely that good solutions will be obtained by assigning this customer to
depots A or B, and these solutions are automatically eliminated through the
decomposition approach. It is clear that some degree of interdependency exists
among the subproblems for the instance illustrated in Figure 3, due to the
presence of gray nodes.

This model is strongly suitable for a parallel environment where each pop-
ulation evolves separately and cooperates with other populations to solve the
problem. A parallel architecture for this model is proposed in the next section.

5 Parallel evolution strategy

A parallel environment exploiting the Evolution Strategy (ES) paradigm, called
CoES, supports the evolution of our cooperative coevolutionary model. Evolu-
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tion Strategy (Engelbrecht, 2007; Freitas et al., 2014; Luke, 2013) is an evolution-
ary algorithm using mutation as the main operator to generate new solutions.
ES was chosen because each subproblem has a variable length representation
(genotype) and the design of a recombination operator in this case would be
rather cumbersome (see Section 5.2).

The proposed parallelization scheme, which is operational under asynchronous
updates, is shown in Algorithm 2. CoES first receives all required information
about the problem, in particular the number of customers (N), number of depots
(M) and vehicle capacity (Q). Each population is initialized with µ individuals
(Line 3), which are encoded using the representation scheme presented in Section
5.1. The initialization procedure uses a semi-greedy method to insert customers
from a given list. Parameter α defines the number of customers in this list, as
discussed in Section 5.2. Complete solutions are then created with a Random
fitness sampling strategy (Engelbrecht, 2007) (Line 4). Here, individuals from
each initial population are selected randomly to create complete solutions. It
should be noted that another strategy is used in the following populations, as
explained in Section 5.5. In Line 5, all complete solutions are evaluated and the
best one is selected (Line 6). Then, a number of parallel modules are started
(Line 7). At the end, the best complete solution to the MDVRP is returned
(Line 8).

The representation and initialization procedures are described in Sections
5.1 and 5.2. The parallel modules are introduced in Section 5.3.

Algorithm 2: CoES – general scheme

1 CoES(VC , VD, A,N,M,Q)
2 A1 . . . AM ← assignCustomers(VC , VD, A);
3 [P1 . . . PM ]← initializePopulations(A1 . . . AM , µ, α) ;
4 S ← createCompleteSolutions(P1 . . . PM );
5 f ← evaluateSolutions(S);
6 s∗ ← getBestSolution();
7 startModules();
8 return(s∗);

9 end

5.1 Representation

Individuals from each population are represented by a giant tour, without route
delimiters. It is basically a single sequence made of all customers assigned
to a depot, as shown in Figure 5(a). Since each individual in a population
corresponds to a particular depot and subset of customers, the length of the
giant tour is likely to change (variable genotype). Individual routes are created
from this giant tour with the Split algorithm (Prins, 2004), which can optimally
extract feasible routes from a single sequence. In constrained problems, the
Split algorithm can be relaxed at the beginning to allow infeasible routes that
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Figure 5: Giant tour representation and the obtained routes

violate one or more constraints. During the execution of the coevolutionary
algorithm, this relaxation is progressively reduced to converge towards feasible
routes. Figure 5(b) illustrates two routes that could be obtained from the giant
tour representation in 5(a).

5.2 Initialization

The population initialization procedure is shown in Algorithm 3. The first
individual in each population is constructed with the Nearest Insertion Heuristic
(NIH) (Bodin et al., 1983) while the other ones are constructed with a semi-
greedy approach based on NIH. With regard to the first individual, the closest
customer to the depot is first inserted in the giant tour. Then, the next customer
to be inserted is the one which is closest to the previous one. This is repeated
until the giant tour is complete.

Based on this greedy heuristic, a semi-greedy variant generates the remaining
individuals. The first customer is selected at random. Then, the remaining
customers are sorted based on their distance from the previous one. A restricted
candidate list (RCL) is created with the α best-ranked customers and the next
customer to be inserted is selected at random in the RCL. This is repeated until
the giant tour is complete.

Algorithm 3: Populations initialization

1 initializePopulations(A1 . . . AM , µ, α)
2 for i← 1 to M do
3 for j ← 1 to µ do
4 if (j == 1) then // Greedy construction

5 indj ← greedy(Ai);

6 else // Semi-Greedy construction

7 indj ← semiGreedy(Ai, α);
8 end if

9 end for
10 insert(Pi, indj);

11 end for

12 end
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5.3 Parallel modules and coordination

The parallel modules are executed until a stopping criterion, based on the exe-
cution time, is met. Figure 6 depicts the architecture of these modules within
CoES as well as their communication scheme.

Figure 6: Architecture of the parallel modules in CoES.

The Start Modules procedure is shown in Algorithm 4. It is called in Line 7 of
Algorithm 2 to create a thread for each module and to initialize the environment.
A start flag is used to indicate that each module should wait until all modules
have been initialized. At the beginning of the procedure, the flag is set to FALSE
(Line 2). At the end, the start flag is set to TRUE (Line 7) so that all modules
can be executed.

Algorithm 4: Start Modules

1 startModules()
2 start← FALSE;
3 createThread(Monitor());
4 createThread(PE());
5 createThread(CSE());
6 createThread(EG());
7 start← TRUE;

8 end

The Monitor module manages the parallel processes and transmits informa-
tion about the MDVRP problem. When the time-based stopping criterion is
met, all modules are terminated by the Monitor module and the best solution
is returned.

The Population Evolve (PE) module evolves each population with ES. The
Complete Solutions Evaluate (CSE) module combines individuals from different
populations to create and evaluate complete solutions. In addition, it applies
local search heuristics to improve the complete solutions. The Elite Group (EG)
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module maintains an elite set of complete solutions, and also applies local search
heuristics to these elite solutions. The various modules mentioned above are
explained in detail in the following sections.

5.4 Population Evolve (PE) module

The Population Evolve (PE) module manages the ES-based evolution by creat-
ing a thread for each population. Within a thread, the evolution process is run
sequentially. This is represented in Figure 7. Note that the ES-based evolution
is highlighted in the gray box of Figure 7.

Figure 7: Population Evolve module.

With regard to the ES-based population evolution, each one of the λ offspring
is generated as follows. First, a parent is selected at random, so that each
parent generates λ/µ offspring on average. The self-adaptive procedure updates
the number of mutations (strategy parameter σ) using a binomial distribution
B(n, p). The distribution is computed with n equal to the number of customers
in the giant tour (genotype length) and p equal to 0.5. The mutation is applied
to the giant tour by selecting two different random positions and by swapping the
corresponding customers. This is repeated σ times. Then, the Split algorithm is
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applied and individual routes are created, thus allowing for a local, population-
based, fitness evaluation of the newly generated partial solution. With regard to
fitness evaluation, the fixed number of vehicles at the depot is accounted for in
different ways depending on the status of the parent. Basically, if this number
is not exceeded in the parent, then its offspring incur a penalty cost for each
vehicle in excess (if any). If this number is already exceeded in the parent, then
no penalty is incurred in its offspring. With this approach, a mix of solutions
with and without extra vehicles is maintained throughout the search.

Figure 8: Complete Solutions Evaluate module.

A Local Search (LS) procedure is applied to the offspring with probability
ρls. Nine neighborhood structures are defined to improve the routes. They are
the same as those presented in Prins (2004); Siqueira Ruela et al. (2013); Vidal
et al. (2012). It is important to note that the local search is performed at the
population or subproblem level, therefore only routes starting and ending at the
depot and visiting the subset of customers in the subproblem are considered.
Let us suppose that u and v are two customer nodes belonging to the same or
different routes, x is the successor of u and y is the successor of v along their
respective routes. The following moves are applied in random order, and the
exploration of the corresponding neighborhood stops as soon as an improving
move is found:

• Move 1: move u after v;

• Move 2: move (u, x) after v;

• Move 3: move (x, u) after v;

• Move 4: exchange u and v;

• Move 5: exchange (u, x) with v;
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• Move 6: exchange (u, x) and (v, y);

• Move 7: if (u, x) and (v, y) are in the same route (but not adjacent),
replace them by (u, v) and (x, y);

• Move 8: if (u, x) and (v, y) are in distinct routes, replace them by (u, v)
and (x, y);

• Move 9: if (u, x) and (v, y) are in distinct routes, replace them by (u, y)
and (v, x).

Move 7 is a 2-opt move, while moves 8 and 9 are 2-opt* moves. When all
neighborhoods have been explored and no improvement to the current solution
has been found, the local search procedure stops (Siqueira Ruela et al., 2013).

Once all offspring are created, parents and offspring are ranked according
to their local fitness and the ES(µ + λ) selection is applied to produce the
next population. Using a producer-consumer synchronization scheme, the new
population is then processed by the CSE module. The corresponding thread
waits until the end of the evaluation of all complete solutions before restarting.

5.5 Complete Solutions Evaluate (CSE) module

The Complete Solutions Evaluate module receives a population of partial solu-
tions from the PE module and evaluates the global fitness of complete solutions.
Each complete solution is created and evaluated in a multithread environment,
where a thread is started for each individual i in population p, as illustrated in
Figure 8.

The CSE module is notified by the PE module to process population p at
instant A in Figure 8. It combines each individual in p with the best individuals
obtained from the other populations to create a complete solution. More pre-
cisely, the partial solutions associated with the other depots are taken from the
best solution in the Elite Group module (All versus best strategy), see instant
B in Figure 8.

Once a complete solution is created, a repair procedure is applied to remove
duplicate customers and to insert customers that are not included in the so-
lution. In both cases, the least additional cost heuristic is used (Bodin et al.,
1983). The additional cost when customer i is between customers x and y is
defined in Equation (12). The least additional cost is looked for when inserting
a customer between two consecutive customers in the solution. When duplicates
must be removed, only the copy with least additional cost is kept.

Cxiy = cxi + ciy − cxy (12)

To illustrate the removal of a duplicate customer, we refer to Figure 9 where
customer i is included in two routes associated with depots A and B. The
additional cost is calculated in both cases with Equation (12) to obtain Cxiy for
depot A and Cris for depot B. If Cxiy < Cris, then customer i is kept in the
route of depot A and the duplicate is removed from the route of depot B.
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Figure 9: Repair procedure – remove duplicates

When inserting a customer in a solution, all insertion positions between two
consecutive customers are considered and the least cost one is chosen. In Figure
10, customer i is inserted between customers x and y in a route of depot A.

Figure 10: Repair procedure – insert customer

The complete solution is evaluated and submitted to a local search procedure
with probability ρls. The local search is based on the same moves than those
presented in Section 5.4. However, it is now possible for a customer to be moved
from one depot to another, thus changing individuals in the populations. This
is the reason for the population update at instant C in Figure 8. After the
update, the PE module is notified and can restart.

Each complete solution created is sent to the EG module at instant D in
Figure 8. The module checks if the complete solution can be part of the elite
group, as it is explained next.

5.6 Elite Group (EG) module

The Elite Group (EG) module maintains a set of τ elite complete solutions,
including the best solution to the MDVRP found so far. This is illustrated in
Figure 11. Assuming that a complete solution is submitted by the CSE module,
the EG module will try to add the solution to the elite group. If there are
less than τ solutions in the elite group, the solution is automatically added.
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Otherwise, the new solution can enter the elite group only if it is better than
the worst solution in the group, in which case it replaces the latter.

Figure 11: Elite Group module.

The local search for the elite group operates in two steps, called PR and RI,
where PR stands for Path Relinking and RI for Route Improvement. The local
search is run in a multithread environment with a thread for each solution in
the elite group.

PR uses each solution in the elite group as an initial solution and the best
solution so far as the guiding solution. To apply PR in this setting, the difference
between an initial solution i and the guiding solution g must be calculated. We
assume that each customer in a solution is characterized by the vehicle serving
this customer and the corresponding depot. For each customer, the triplet
(customer, depot, vehicle) from the guiding solution is added to set ∆ when it
differs from the initial solution.

We refer to Figures 12 and 13 for an example. Here, we have an initial
solution (Figure 12) and a guiding solution (Figure 13). There are two depots
A and B, twelve customers and two vehicles at each depot (represented by the
pentagons numbered 1 and 2). The difference between the initial and guiding
solutions corresponds to the nodes in gray, namely customers 2 and 11. Thus
∆ = {(2, B, 2), (11, A, 1)}. The triplets in ∆ are then processed one by one
to progressively modify the initial solution. That is, the customer in the first
triplet is removed from its route in the initial solution and reinserted in the route
indicated by the depot and vehicle of the guiding solution. A new solution is
obtained which is closer to the guiding solution. The procedure is then applied
again using the new solution and the second triplet. This is repeated until all
triplets are done. It is hoped that a solution better than the guiding solution
will emerge along the path between the initial and guiding solutions.

The RI improvement procedure is applied to the solution returned by PR.
This procedure is the local search mentioned in Section 5.5. If the solution
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Figure 12: Path Relinking – Initial solution

Figure 13: Path Relinking – Guiding solution

obtained at the end is better than the best solution, then the elite group is
updated.

6 Computational results

The performance of the proposed CoES algorithm was assessed through a num-
ber of computational experiments. They were conducted on the 33 MDVRP
benchmark instances taken from the literature (Cordeau et al., 1997; Cordeau
and Maischberger, 2012; Vidal et al., 2012; Subramanian et al., 2013; Escobar
et al., 2014)1. These instances are Euclidean and the time units are the same as
the distance units. They are divided into S1 (P01−P23) and S2 (P24−P33)2

and have various sizes ranging from 48 to 360 customers, see Table 4.

1The MDVRP instances might also be obtained in https://github.com/fboliveira/

MDVRP-Instances
2Those instances were proposed by Cordeau et al. (1997) and they are also named pr01-

pr10.
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The algorithm was implemented in C++ 113 and all experiments were run
on a computer with two 2.50 GHz Intel Xeon (E5-2640) processors with 12 cores
per CPU and 96 GB RAM. The computer was run under the Ubuntu 14.04.1
LTS operational system.

A first experiment was realized to set the parameter values, as it is discussed
in Section 6.1. A comparison with the best solutions reported in the literature
follows in Section 6.2.

6.1 Parameter settings

The algorithm stops when it reaches either the allowed total computation time
Tmax or the maximum computation time without improvement to the best so-
lution Tupd. Also, the number of individuals µ in each population and the
maximum number of complete solutions in the elite group τ must be defined.
Finally, the local search procedure in the PE and CSE modules are applied with
a probability ρls.

After some preliminary tests and using some values commonly found in the
literature, lower and upper bound values were determined for the above param-
eters. These values are presented in Table 1.

Table 1: Selected parameter values
Parameter Lower bound Upper bound

Tmax 600 sec. 1,800 sec.
Tupd 300 sec. 600 sec.
µ 20 100
τ 5 50
ρls 0.2 0.8

As there are two values (levels) for each parameter (factors), a 2k factorial
experiment was designed to study the impact of each factor as well as their
interactions. There are 5 factors with 2 levels each, resulting in 32 observations
(25) for each instance. Selecting the instance in group S1 (P01−P23) from the
benchmark, we obtain a total of 736 observations (i.e., 32×23). Given the large
number of factors and total observations, an experiment with a single replication
was performed. In this situation, the Sparsity-of-effects principle applies, that
is, the main effects and low-order interactions usually dominate. Then, we can
use an experiment with one replication and combine highest-order interaction
for calculating the mean square error (Montgomery and Runger, 2011; Campelo,
2015). The response variable corresponds to the gap between the solution value
obtained by CoES and the best-known solution value reported in Vidal et al.
(2012).

The experiment is performed with theAnalysis of variance (ANOVA) method
from the R-Project (R Core Team, 2015). Among other assumptions, ANOVA

3C++ 2011 Standard
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requires a normal distribution for the residuals. As the number of samples is
large, they are approximately normal because of the Central Limit Theorem
(CLT) and this assumption is satisfied.

Table 2 reports only the significant factors and interactions identified by
ANOVA. In this case, the null hypothesis states that there is no significant im-
pact and a p-value smaller than 0.05 invalidates this assumption. Table 2 shows
the significant factors identified by ANOVA along with their corresponding p-
value.

Table 2: Significant factors and interactions
Factor/Interaction p-value

µ < 2−16

τ 0.035
µ : ρls : τ 0.016

Two main factors and one interaction have a significant impact on the results.
The most significant factor is the number of individuals in each population µ.
The second one is the elite group size τ . The third one corresponds to the
interaction of the two previous factors with the local search rate ρls. Figure 14
shows box plots of the main factors. Based on these plots, µ was set to 20 and
τ was set to 50.

20 10
0

0

2

4

6

8

Number of individuals

10 50

0

2

4

6

8

Elite group size

Figure 14: Boxplots of the two main factors

Then, the other parameters can be set by fixing µ and τ to the above values
and by observing the interactions. Figure 15 shows boxplots of the interaction
of µ = 20 and τ = 50 with ρls, Tmax and Tupd, respectively. The parameter
values associated with the first two boxplots are shown in the format µ. τ. ρls.
In the case of the four last boxplots, the format is µ. τ. ρls. Tmax .Tupd. The
interaction between µ, τ and ρls was shown to be a significant factor in Table 2.
Figure 15 indicates that an appropriate value for ρls is 0.2. With regard to
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Tmax and Tupd, Figure 15 shows that suitable values are Tmax = 1, 800 and
Tupd = 600.
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Figure 15: Boxplots of interactions

The final parameter settings for the CoES algorithm are summarized in Table
3. The comparison with other algorithms in the next section is based on these
parameter values.

Table 3: Final parameter values
Parameter Value

Tmax 1,800 sec.
Tupd 600 sec.
µ 20
τ 50
ρls 0.2

6.2 Comparison with other methods

The performance of our CoES was compared with the best heuristics proposed
for the MDVRP, namely, the tabu search (CGL) (Cordeau et al., 1997), the
adaptive large neighborhood search (ALNS) (Pisinger and Ropke, 2007), a fuzzy
logic guided genetic algorithm (FLGA) (Lau et al., 2010), a parallel iterated tabu
search heuristic (ITS) (Cordeau and Maischberger, 2012), a hybrid algorithm
combining Iterated Local Search and Set Partitioning (ILS-RVND-SP) (Subra-
manian et al., 2013), a hybrid genetic algorithm with adaptive diversity control
(HGSADC+) (Vidal et al., 2014) and a hybrid Granular Tabu Search (ELTG)
(Escobar et al., 2014).

22

A Cooperative Coevolutionary Algorithm for the Multi-Depot Vehicle Routing Problem

CIRRELT-2016-08



CoES was run 10 times on all benchmark instances, using the previously
defined parameter settings. To remove any factor that could impact the per-
formance, the order of execution of all replicates was randomized. Note that
heuristics CGL and ELTG were run only once on each instance and the value
reported was used to compare with the best value of CoES.

The results from CoES are shown in Table 4. The instance name is in
column Inst, M is the number of depots, N is the number of customers, Q is
the vehicle capacity and T is the maximum duration time of a vehicle route
(∞ means that there is no time constraint). The next two columns present
the average computation time to reach the best solution (in seconds) and the
average solution cost. When (*) appears, the same solution was produced by
CoES in each of the 10 runs. The last column shows the best solution cost
obtained by CoES.

The best and mean solution values, when compared with the other methods,
are shown in Tables 5 and 6, respectively. These tables report the gap (in %),
that is,

100×
(ZCoES − Zlit)

Zlit

where ZCoES is the solution value of CoEs and Zlit the value of one of the other
methods (as reported in the literature). A negative value indicates that CoES
performs better. The Average line reports the average gap over all instances.
The lines S1 and S2 show the average gap over the instances in each subset. In
the Tables, the entries in bold indicate that the same or better solution values
were obtained by CoES over the corresponding method.

With regard to the solutions reported in Table 4 labeled with (*), it should
be noted that the gap with the other methods in Table 6 for those instances
is always null (gap = 0.00) or negative (gap < 0.00). When considering the
gap between CoES and the other methods in Table 6 for the mean values, the
average over all test instances is always smaller than 1.2%. It is less than 0.9%
for subset S1, and less than 1.9% for S2. When considering the gap in Table 5
for the best values, the average over all test instances is always less than 0.6%.
It indicates that CoES provides competitive results.
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Table 4: CoES(λ = µ): results

Inst M N Q T
Average values

Best cost
Time (s) Cost

P01 4 50 80 ∞ 1.00 (*) 576.87 576.87
P02 4 50 160 ∞ 0.50 475.06 473.87
P03 5 75 140 ∞ 2.50 643.57 641.19
P04 2 100 100 ∞ 189.70 1011.42 1007.40
P05 2 100 200 ∞ 26.60 752.39 750.11
P06 3 100 100 ∞ 77.30 877.86 876.50
P07 4 100 100 ∞ 24.20 893.36 888.41
P08 2 249 500 310 803.40 4474.23 4450.37
P09 3 249 500 310 513.30 3904.92 3895.70
P10 4 249 500 310 719.90 3680.02 3666.35
P11 5 249 500 310 396.20 3593.37 3569.68
P12 2 80 60 ∞ 0.90 (*) 1318.95 1318.95
P13 2 80 60 200 0.00 (*) 1318.95 1318.95
P14 2 80 60 180 0.00 (*) 1360.12 1360.12
P15 4 160 60 ∞ 107.00 2549.65 2526.06
P16 4 160 60 200 8.20 (*) 2572.23 2572.23
P17 4 160 60 180 14.70 2733.80 2709.09
P18 6 240 60 ∞ 429.10 3781.66 3771.35
P19 6 240 60 200 72.60 (*) 3827.06 3827.06
P20 6 240 60 180 190.20 4094.86 4058.07
P21 9 360 60 ∞ 554.90 5668.97 5608.26
P22 9 360 60 200 214.00 5708.78 5702.16
P23 9 360 60 180 529.30 6159.90 6129.99

P24 4 48 200 500 0.00 (*) 861.32 861.32
P25 4 96 195 480 370.95 1311.83 1306.44
P26 4 144 190 460 452.48 1812.86 1806.53
P27 4 192 185 440 872.02 2098.21 2060.85
P28 4 240 180 420 399.90 2441.42 2392.31
P29 4 288 175 400 808.95 2780.06 2760.03
P30 6 72 200 500 134.93 1092.70 1089.56
P31 6 144 190 475 343.88 1691.90 1665.01
P32 6 216 180 450 1107.15 2169.92 2150.52
P33 6 288 170 425 216.22 2971.21 2913.66

Average 290.36 2460.89 2445.61

S1 211.98 2694.69 2682.55

S2 470.65 1923.14 1900.62
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Table 5: CoES(λ = µ): comparison with results of the literature – Best values
Instance CGL ITS ILS-RVND-SP HGSADC+ ELTG

P01 0.00 0.00 0.00 0.00 0.00

P02 0.00 0.07 0.07 0.07 0.07
P03 -0.61 0.00 0.00 0.08 0.00

P04 0.07 0.64 0.64 0.82 0.64
P05 -0.43 0.01 0.01 0.01 0.01
P06 -0.15 0.00 0.00 0.00 0.00

P07 -0.40 0.73 0.73 0.73 0.42
P08 -0.72 1.41 1.62 1.77 1.80
P09 -0.64 0.90 0.94 0.96 0.38
P10 -1.30 0.97 0.96 0.97 1.01
P11 -0.31 0.62 0.67 0.67 0.69
P12 0.00 0.00 0.00 0.00 0.00

P13 0.00 0.00 0.00 0.00 0.00

P14 0.00 0.00 0.00 0.00 0.00

P15 -0.32 0.82 0.82 0.82 0.82
P16 0.00 0.00 0.00 0.00 0.00

P17 -0.41 0.00 0.00 0.00 0.00

P18 1.64 1.85 1.85 1.85 1.85
P19 0.00 0.00 0.00 0.00 0.00

P20 0.00 0.00 0.00 0.00 0.00

P21 1.31 2.44 2.44 2.44 2.44
P22 -0.24 0.00 0.00 0.00 0.00

P23 -0.16 0.84 0.84 0.84 0.57

P24 0.00 0.00 0.00 0.00 0.00

P25 -0.65 -0.07 -0.07 -0.07 -0.36

P26 -0.50 0.15 0.15 0.15 0.15
P27 -1.59 0.12 0.12 0.07 -0.16

P28 -0.66 2.62 2.62 2.22 1.82
P29 -0.29 3.08 2.96 2.91 1.83
P30 -0.23 0.00 0.00 0.00 0.00

P31 -0.67 0.01 0.01 0.00 -0.03

P32 -1.21 0.81 0.81 0.77 -0.04

P33 -5.70 1.23 1.37 0.94 0.10

Average -0.43 0.58 0.59 0.58 0.42
S1 -0.12 0.49 0.50 0.52 0.47
S2 -1.15 0.80 0.80 0.70 0.33
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Table 6: CoES(λ = µ): comparison with results of the literature – Mean values

Instance CGL ALNS FLGA ITS ILS-RVND-SP HGSADC+ ELTG

P01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P02 0.25 0.32 0.32 0.32 0.32 0.32 0.32
P03 -0.25 0.37 0.37 0.37 0.37 0.46 0.37
P04 0.47 0.53 0.98 1.01 1.04 1.08 1.04
P05 -0.13 0.01 0.04 0.31 0.29 0.31 0.31
P06 0.00 -0.58 -0.55 0.16 0.16 0.16 0.16
P07 0.16 0.45 0.61 1.29 1.29 1.29 0.98
P08 -0.18 1.20 0.81 1.60 1.83 2.07 2.35
P09 -0.41 0.32 -0.29 0.92 1.05 1.14 0.62
P10 -0.93 0.36 0.28 1.17 1.25 1.33 1.39
P11 0.35 0.56 0.32 1.27 1.33 1.30 1.36
P12 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

P13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P14 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P15 0.61 1.19 1.42 1.77 1.77 1.77 1.77
P16 0.00 -0.07 -0.24 0.00 0.00 0.00 0.00

P17 0.50 0.91 0.91 0.91 0.87 0.91 0.91
P18 1.92 1.21 1.43 2.13 2.13 2.13 2.13
P19 0.00 -0.30 -0.35 0.00 -0.01 0.00 0.00

P20 0.91 0.74 0.78 0.91 0.91 0.91 0.91
P21 2.40 3.04 2.59 3.55 3.55 3.55 3.55
P22 -0.13 -0.23 -0.42 0.12 0.05 0.12 0.12
P23 0.33 1.10 1.00 1.33 1.33 1.31 1.06

P24 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P25 -0.24 0.34 -0.08 0.34 0.25 0.34 0.06
P26 -0.15 0.38 0.18 0.48 0.49 0.50 0.50
P27 0.19 1.81 1.06 1.81 1.81 1.94 1.65
P28 1.38 4.43 2.09 4.46 4.42 4.73 3.91
P29 0.43 3.44 1.87 3.62 3.53 3.88 2.57
P30 0.05 0.29 0.29 0.29 0.29 0.29 0.29
P31 0.93 1.63 1.52 1.58 1.61 1.63 1.59
P32 -0.32 1.57 0.83 1.45 1.62 1.72 0.86
P33 -3.83 2.82 1.77 2.93 3.08 3.59 2.08

Average 0.13 0.84 0.59 1.09 1.11 1.18 1.00
S1 0.26 0.48 0.44 0.83 0.85 0.88 0.84
S2 -0.16 1.67 0.95 1.70 1.71 1.86 1.35
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As HGSADC+ uses an evolutionary approach, some analyses have been
performed using the average costs of that method as a reference. Figure 16
shows the average gap of our algorithm with HGSADC+ when the instances
are sorted in increasing order of the ratio between the number of customers
and the number of depots. The graph presents a subtle trend suggesting that
increasing the number of customers in each subproblem could make the problem
harder for CoES. However, the correlation factor is R2 = 40.20% and needs to
be further investigated.

Figure 16: Average gap based on the ratio between customers and depots.

Figure 17 shows the average gap with HGSADC+ when the instances are
sorted in increasing order of the ratio between the number of customers as-
signed to more than one depot and the number of depots. It measures the
overlap among the subproblems. The results suggest that the performance of
the coevolutionary approach is not directly affected by this characteristic, even
for instances in which the overlap is important, e.g., P08 and P33.

Overall, the coevolution paradigm was able to produce competitive solutions,
even if its inherent parallel nature was not fully exploited in our implementation.

7 Conclusion and future work

This paper proposed a cooperative coevolutionary algorithm to solve the MD-
VRP. In this algorithm, each depot is associated with a population with its as-
signed customers. Individuals in each population represent partial single-depot
solutions to the problem. Each population evolves separately, but the quality
of an individual depends on its ability to cooperate with partial solutions from
other populations to form a good complete solution to the MDVRP.

27

A Cooperative Coevolutionary Algorithm for the Multi-Depot Vehicle Routing Problem

CIRRELT-2016-08



Figure 17: Average gap based on the ratio between customer assignments and
depots.

The results show that our coevolutionary algorithm produces competitive
solutions when compared with the best known solutions, even improving some
of them. The benefit of our approach comes from its ability to decompose com-
plex problems into simpler subproblems and evolve solutions to the subproblems
in parallel. The decomposition approach also makes the method more scalable.
In large MDVRP instances, it is unlikely that customers close to a depot will be
allocated to a distant depot. Therefore, the coevolutionary algorithm incorpo-
rates important characteristics of a problem instance and allows a reduction of
the search space. Moreover, the evolutionary engine leads to simpler represen-
tations and genetic operators. Finally, the coevolutionary algorithm proposed
in this work would greatly benefit from cloud computing architectures, cluster
computing and GPU programming.

One interesting avenue of research would be to integrate mathematical pro-
gramming into the local searches (matheuristic). Since each subproblem reduces
to a single-depot VRP, the use of mathematical programming within each pop-
ulation could be beneficial. Additionally, other sophisticated local search strate-
gies could be incorporated into the EG module, like Tabu Search. Finally, we
intend to improve the parallel implementation by exploiting GPU programming
for the PE, CSE and EG modules.
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belo Oliveira, Brayan Neves, Vicente Peixoto Amorim, and Larissa Maiara
Fraga. A parallel hybrid genetic algorithm on cloud computing for the vehicle
routing problem with time windows. In IEEE International Conference on
Systems, Man, and Cybernetics, pages 2467–2472, 2013.

Anand Subramanian, Eduardo Uchoa, and Luiz Satoru Ochi. A hybrid al-
gorithm for a class of vehicle routing problems. Computers & Operations
Research, 40(10):2519 – 2531, 2013.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and
Walter Rei. A hybrid genetic algorithm for multidepot and periodic vehicle
routing problems. Operations Research, 60(3):611–624, 2012.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins.
Implicit depot assignments and rotations in vehicle routing heuristics. Euro-
pean Journal of Operational Research, 237(1):15 – 28, 2014.

Hsiao-FanWang and Ying-Yen Chen. A coevolutionary algorithm for the flexible
delivery and pickup problem with time windows. International Journal of
Production Economics, 141(1):4 – 13, 2013.

Xingwei Wang, Hui Cheng, and Min Huang. Qos multicast routing protocol
oriented to cognitive network using competitive coevolutionary algorithm.
Expert Systems with Applications, 41(10):4513 – 4528, 2014.

Zhang Wenjing and Jianzhong Ye. An improved particle swarm optimization
for the multi-depot vehicle routing problem. In International Conference on
E-Business and E-Government, pages 3188–3192, 2010.

B. Yu, Z. Z. Yang, and J.-X. Xie. A parallel improved ant colony optimization
for multi-depot vehicle routing problem. Journal of the Operational Research
Society, 62(1):183–188, 2011.

32

A Cooperative Coevolutionary Algorithm for the Multi-Depot Vehicle Routing Problem

CIRRELT-2016-08


