

Solving a Wind Turbine Maintenance
Scheduling Problem

Aurélien Froger
Michel Gendreau
Jorge E. Mendoza
Eric Pinson
Louis-Martin Rousseau

 February 2016

 CIRRELT-2016-10

Solving a Wind Turbine Maintenance Scheduling Problem

Aurélien Froger1,2,*, Michel Gendreau2, Jorge E. Mendoza3, Éric Pinson2,
Louis-Martin Rousseau2

1
 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, P.O. Box
6079, Station Centre-Ville, Montréal, Canada H3C 3A7

2
 L’UNAM, Université Catholique de l’Ouest, LARIS EA 7315, Angers,France

3
 Université François-Rabelais de Tours, CNRS, LI EA 6300, OC ERL CNRS 6305, Tours, France

Abstract. Driven by climate change mitigation efforts, wind energy has significantly

increased in recent years. In this context, it is essential to make its exploitation cost-

effective. Maintenance of wind turbines therefore playsan essential role reducing

breakdowns and ensuring high productivity levels. In this paper we discuss a challenging

maintenance scheduling problem rising in wind farms. While the research in the field

primarily focuses on condition-based maintenance strategies, we aim to address the

problem on a short-term horizon considering fine-grained resource management. The

objective is to find a maintenance plan that maximizes the production of the turbines while

taking into account wind predictions, multiple task execution modes, and task-technician

assignment constraints. To solve this problem, we propose a constraint programming-

based large neighborhood search approach. We also propose two integer linear

programming formulations that we solve using a commercial solver. We report results on

randomly generated instances built with input from wind forecasting and maintenance

scheduling software companies.

Keywords. Maintenance, scheduling, large neighborhood search, constraint

programming.

Acknowledgements. This work was supported by Angers Loire Métropole through its

research grant program; and by the Natural Sciences and Engineering Research Council

of Canada (NSERC) through a grant that enabled the collaboration with the Canadian

company WPred, which we would like to thank for their expertise. This support is gratefully

acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Aurélien.Froger@cirrelt.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2016

© Froger, Gendreau, Mendoza, Pinson, Rousseau and CIRRELT, 2016

I�����������

With a 52-Gigawatts (GW) increase in the global installed capacity in 2014 (and a total of about 370
GW), wind energy is currently the world’s fastest-growing source of electricity1. Boosted by the ever-
increasing environment awareness and the constantly-decreasing cost of turbines, wind power is expected to
account for up to 20% of the global electricity production by 20501 (vs. 2.4% in 2015). The Paris Agreement
(resulting from the 2015 United Nations Climate Change Conference - COP21) is in this respect a clear
evidence that the renewable energy sector will keep growing in order to reduce greenhouse gas emissions. In
this context, efficient wind turbine maintenance planning and scheduling becomes a critical tool to prevent
unnecessary downtime and excessive operational costs.

Maintenance planning and scheduling has been widely studied in different industrial contexts (see for
example Budai et al. (2008) for a survey). In general, however, solutions remain sector-specific. In the
particular case of traditional electricity generation plants, the problem is concerned with the definition of
time intervals for preventive maintenance of generating units under financial (cost minimization, profits
maximization) and/or reliability (leveling, maximization of the net reserves) considerations. By now, the
literature reports on a number of solution approaches to tackle these problems. We refer the reader to
Froger et al. (2016) for a comprehensive review. Unfortunately, these approaches are inapplicable to the
wind power industry. One of the main reasons is that wind farms are usually owned by investment funds,
and the operation and the maintenance of the turbines are often outsourced to a third party. As it stands,
the stakeholders and the contractors face potentially conflicting objectives: maximize energy production vs.
minimize maintenance costs. Another specificity of the wind power industry is that maintenance decisions are
not correlated with the electricity demand since producers are not required to satisfy production goals. The
objective is then to maximize the efficiency of the turbines. Last but not least, the wind power production
is inherently volatile, and the meteorological conditions have a great impact on the maintenance plan.

Maintenance optimization for wind turbines has only recently started to received attention in the litera-
ture (we refer the reader to Ding et al. (2013) for a survey). This stream of research primarily focuses on the
definition of maintenance policies according to failure models or/and condition monitoring. For instance,
Carlos et al. (2013) proposed a stochastic model to find a maintenance strategy minimizing the operational
costs and maximizing the annual energy production while taking into account meteorological conditions,
degradation, and failures. The underlying methodology uses the Nelder-Mead method. The results of the
optimization process is a maintenance time interval for each turbine. However, the study considers only each
turbine in isolation. Although existing studies precisely define time intervals during which the maintenance
has to be performed in order to reduce the loss of energy production, they do not consider a fine-grained
resource management. Therefore, the obtained results are used more as guidelines to define maintenance
time windows, than as an actual maintenance schedule. It is worth noticing that these time windows may
also be specified by service contracts (e.g., preventive maintenance has to be performed every six months
on each turbine).

Fine-grained resource management implies, among others, considering a skilled workforce, coping with
individual or global resource unavailability periods (e.g., vacations), and taking into account resource lo-
cations constraints. Dealing with these issues requires considering a short-term planning horizon. In this
context existing studies do not provide a solution to the problem but do provide valuable input. Indeed, they
allow planners to define the tasks to be performed during the planning horizon and to set the maintenance
time window constraints. Considering fine-grained resource management not only leads to maintenance
scheduling problems that are closer to reality but also allows to obtain detailed maintenance plans that can
be used on a daily or weekly basis. Detailed plans provide more accurate estimates of turbine downtimes
and loss of production; two metrics that can otherwise be underestimated leading to significant prediction
errors. For instance, producing a maintenance plan in which no operation generates a loss of production
(e.g., is scheduled during periods of wind speed under 4 m/s, which is too low to produce energy) can almost
never be achieved in practice, since human resources are a major bottleneck.

1The Global Wind Energy Council - Global wind report annual market update 2014 - http://www.gwec.net/wp-
content/uploads/2015/03/GWEC Global Wind 2014 Report LR.pdf, last accessed: 2016-02-15

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 1

T� �	
 ���
������ �������� �� ���� ����� � �!� ���" ��	�" ���� ��
 �� #��$�
� ���
���	
�� %�����%���

while scheduling maintenance operations on wind turbines. These authors aimed to minimize lost production
due to maintenance and failures. They introduced incompatibilities between pairs of tasks and managed the
assignment of teams of skilled workers to tasks. They modeled the problem as a integer linear program (IP)
and solved it using a commercial solver. They performed experiments on instances with up to 50 tasks.

In this paper, we introduce a maintenance scheduling problem with resource management rising in the
wind power industry. Our problem differs from that introduced by Kovács et al. (2011) in several ways. First,
we manage resources (i.e., technicians) individually rather than by teams. Second, we consider multiple task
execution modes that impact the duration of tasks as well as the resource requirements (De Reyck et al.,
1998). Third, we present an alternative way to consider technician transfer times by introducing location-
based incompatibility constraints between tasks. The objective of this new problem is to maximize the profits
generated by the total power production of the wind turbines. The work targets a short-term horizon as
wind predictions can only be reliably established few days in advance. When the length of the time horizon
increases, or when good quality forecasts are unavailable, we maximize the availability of the turbines as an
alternative objective.

The contributions of this paper are twofold. First, we introduce a new maintenance scheduling problem
that is especially relevant to the wind power industry. We formally define our problem using two differ-
ent paradigms, namely, integer linear programming and constraint programming. Second, we introduce a
constraint programming-based large neighborhood search to efficiently tackle the problem. The proposed
approach uses destruction operators either specifically conceived for the problem or adapted from the lit-
erature. The repair operator consists in solving a constraint programming (CP) model with some fixed
variables using branching strategies specially tailored for the problem. We also present a new acceptance
criterion based on elitism and Metropolis. We report computational results on instances with up to 90 tasks,
3 different skills and 40-period time horizons.

The remainder of this paper is organized as follows. In Section 1 we describe the problem. In Sections 2
and 3, we introduce two integer linear programming formulations and a constraint programming formulation
for the problem. In Section 4 we present our constraint programming-based large neighborhood search
approach. In Section 5 we discuss computational experiments. Finally in Section 6 we present our conclusions
and outline research perspectives.

1. Problem statement

In our maintenance scheduling problem, we consider a finite time horizon T partitioned in periods of
identical length that span over several days from a set D. We denote Td the set of periods covered by day
d ∈ D. We denote as W a set of wind turbines geographically distributed over a set L of wind farms. We
denote by I the set of tasks to be scheduled during the planning horizon. Each task i ∈ I is associated
with a specific location, denoted as li. We define Il = {i ∈ I|li = l} as the set of tasks to perform at
location l ∈ L. To execute these tasks, we have a finite set R of human resources (hereafter referred to as
technicians). Technicians master specific skills from a set S. Technician skills are expressed by a boolean
vector λr over S such that λrs = 1 if technician r masters skill s ∈ S, and λrs = 0 otherwise.

During a day, a technician is allowed to perform tasks at locations that are sufficiently close to be reached
without too much travel time. We thus introduce a binary parameter σll′ taking value 1 if a technician is
allowed to work at both locations l, l′ ∈ L during the same day, and 0 otherwise. Note that σll′ = σl′l for
every couple of locations (l, l′). Each technician r ∈ R has an individual availability schedule expressed by a
boolean vector πr, with πt

r = 1 if r is available at period t ∈ T , and πt
r = 0 otherwise. In the latter case, the

location of technician r is fixed to ltr ∈ L. This allows to take into account assignments to tasks that are not
part of the optimization for external reasons (e.g., tasks that cannot be moved or/and that are performed
along with external companies).

Technicians enjoy a rest period between two consecutive days in D. A rest period can be a night, a
weekend, or a holiday. Tasks can be preempted during the rest periods (i.e, a technician can start a task
at the end of one day and complete it at the beginning of the next day). Although we exclude rest periods

Solving a Wind Turbine Maintenance Scheduling Problem

2 CIRRELT-2016-10

f
�% ��� T , we count in the objective function the loss of production generated by tasks overlapping these
specific times.

Tasks may have different impact on the availability of the turbines. Some tasks shut down one (or
more) turbine(s) since the task starts until the task ends. For instance, during the maintenance of a wind
farm’s substation2 no turbine in the farm can produce energy. Some tasks shut down the turbines when
the technicians are effectively working on the task but not necessarily during the rest periods if the task is
preempted. This is the case for the majority of the preventive maintenance jobs, as well as for wind turbines
retrofit. Other tasks do not have any impact on energy production (e.g., wind farm inspections). We model
task impact on energy production using two parameters. Parameter bwi takes the value of 1 if task i ∈ I
shuts down turbine w ∈ W when technicians are effectively working on the task, and 0 otherwise. Parameter
b̃wi takes the value of 1 if task i additionally shuts down turbine w during the rest periods it overlaps, and 0
otherwise. In virtually all the cases, it must be noted that parameters bwi and b̃wi are equal to 0 if turbine
w is not located at wind farm li.

Tasks can only be executed during some specific periods. These take into account maintenance periodicity
time windows, spare parts availability, safety work conditions (e.g., a technician cannot perform certain tasks
on a turbine when the wind is too strong), and external restrictions imposed by the operator and/or the
owner of wind farms.

Furthermore, each task i ∈ I has a set Mi of execution modes. For each mode m ∈ Mi, there is an
associated task duration dim and a number qim of required technicians. Switching modes after starting the
execution of a task is forbidden. Additionally, only technicians mastering a specific skill si ∈ S can work on
task i. For the sake of clarity, we denote as Ri the set of technicians that can perform task i. Note that
Ri = {r ∈ R|λrsi = 1}. Moreover, a technician assigned to a task has to work on it from the beginning to
the end, even if the task is preempted during one or multiple rest periods.

Some subsets of tasks cannot overlap (i.e., be executed in parallel). We define ov (I) the set containing
all subsets of non-overlapping tasks.

The objective of the problem is to determine a schedule that maximizes the profits generated by the
wind farms while meeting the constraints described above. We denote gtw the profit generated by wind
turbine w ∈ W if it can produce energy during period t ∈ T . Similarly, we denote g̃dw the profit generated
by wind turbine w if it can produce energy during the rest period following day d ∈ D. These profit values
are defined depending whether the objective is to maximize the production of the wind turbines or their
availability. While the first objective requires reliable wind speed forecasts, the latter considers profit values
to be constant. Outsourcing a task i ∈ I is allowed but penalized with a cost of oi. To model the outsourcing
of task i, we create an additional execution mode m0

i and we add it toMi. In this study we do not consider
other maintenance costs: we assume that, as it is common in practice, technicians earn a fixed salary, and
we disregard travel costs as they are insignificant. Appendix Appendix A summarizes the notation used in
this paper.

2. Integer linear programming formulations

In the following subsections, we present two integer linear programming models for the problem. The
first formulation is an immediate natural formulation, whereas the second one aggregates some decision
variables leading to a more compact formulation.

2.1. Natural formulation

For the first formulation, we use the following decision variables:

xim =

{
1 if task i ∈ I is executed in mode m ∈Mi,
0 otherwise.

2A wind farm substation collects the energy produced by all the turbines of the farm and distributes it through the grid

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 3

s
t
i =

{
1 if task i ∈ I starts at t ∈ T ,
0 otherwise.

yri =

{
1 if technician r ∈ R is assigned to task i ∈ I,
0 otherwise.

cti =

{
1 if task i ∈ I ends at t ∈ T ,
0 otherwise.

eti =

{
1 if task i ∈ I is executed at t ∈ T ,
0 otherwise.

ud
i =

{
1 if task i ∈ I is executed during day d ∈ D,
0 otherwise.

f t
w =

{
1 if turbine w ∈ W can produce energy at t ∈ T ,
0 otherwise.

f̃d
w =

{
1 if turbine w ∈ W can produce energy during the rest period following day d ∈ D,
0 otherwise.

ztri =

{
1 if technician r ∈ R is assigned to task i ∈ I during period t ∈ T ,
0 otherwise.

vtrl =

{
1 if technician r ∈ R is at location l ∈ L during period t ∈ T ,
0 otherwise.

An intuitive formulation is defined as the following integer linear program [P1]:

[P1] max
∑

w∈W

(
∑

t∈T

gtwf
t
w +

∑

d∈D

g̃dwf̃
d
w

)
−
∑

i∈I

oixim0
i

(1)

subject to:
∑

m∈Mi

xim = 1 ∀i ∈ I, (2)

e0i = 0 ∀i ∈ I, (3)

eti = et−1
i + sti − cti ∀i ∈ I, ∀t ∈ T , t > 0, (4)

∑

t∈T

sti = 1 ∀i ∈ I, (5)

∑

t∈T

cti = 1 ∀i ∈ I, (6)

eti ≤ γt
i ∀i ∈ I, ∀t ∈ T , (7)

∑

i∈B

eti ≤ 1 ∀B ∈ ov (I) , ∀t ∈ T , (8)

∑

t∈Td

eti ≤ |Td|u
d
i ∀i ∈ I, ∀d ∈ D, (9)

f t
w + bwie

t
i ≤ 1 ∀w ∈ W, ∀i ∈ I, ∀t ∈ T , (10)

fd
w + b̃wi

(
ud
i + ud+1

i

)
≤ 2 ∀w ∈ W, ∀i ∈ I, ∀d ∈ D, (11)

∑

t∈T

eti =
∑

m∈Mi

dimxim ∀i ∈ I, (12)

∑

r∈Ri

yri =
∑

m∈Mi

qimxim ∀i ∈ I, (13)

eti + yri − ztri ≤ 1 ∀i ∈ I, ∀r ∈ Ri, ∀t ∈ T , (14)

Solving a Wind Turbine Maintenance Scheduling Problem

4 CIRRELT-2016-10

z
t
ri ≤ yri ∀i ∈ I, ∀r ∈ Ri, ∀t ∈ T , (15)

ztri ≤ eti ∀i ∈ I, ∀r ∈ Ri, ∀t ∈ T , (16)
∑

i∈Il∩Ri

ztri ≤ πt
rv

t
rl ∀r ∈ R, ∀l ∈ L, ∀t ∈ T , (17)

∑

l∈L

vtrl = 1 ∀r ∈ R, ∀t ∈ T , (18)

vtrltr = 1 ∀r ∈ R, ∀t ∈ T s.t.πt
r = 0, (19)

vtrl +
∑

l′∈L|σll′=0

vt
′

rl′ ≤ 1 ∀r ∈ R, ∀d ∈ D, ∀(t, t′) ∈ Td × Td, t 6= t′, ∀l ∈ L, (20)

eti, s
t
i, c

t
i ∈ {0, 1} ∀i ∈ I, ∀t ∈ T , (21)

ud
i ∈ {0, 1} ∀i ∈ I, ∀d ∈ D, (22)

f t
w ∈ {0, 1} ∀w ∈ W, ∀t ∈ T , (23)

fd
w ∈ {0, 1} ∀w ∈ W, ∀d ∈ D, (24)

yri ∈ {0, 1} ∀i ∈ I, ∀r ∈ Ri, (25)

ztri ∈ {0, 1} ∀i ∈ I, ∀r ∈ Ri, ∀t ∈ T , (26)

vtrl ∈ {0, 1} ∀r ∈ R, ∀l ∈ L, ∀t ∈ T . (27)

The objective in (1) is defined as the difference between the profits generated by the turbines and the
penalties induced by task outsourcing. Constraints (2) guarantee that exactly one execution mode is selected
for each task. For each task, constraints (3)-(6) ensure consistency between the starting time, ending time,
and execution time variables. Constraints (7) prevent a task to be scheduled during forbidden periods.
Constraints (8) are the non-overlapping constraints. Constraints (9) couple the periods during which each
task is performed to the execution days of this task. Constraints (10) and (11) compute the impact of the
tasks on the availability of the turbines to produce energy. Constraints (12) connect the duration of each
task to its selected execution mode. Constraints (13) ensure that the technician requirements are fulfilled.
Constraints (14) force technicians to be assigned to a task for the task’s entire duration. For each technician,
constraints (15)-(16) ensure consistency between the global assignment and the time-indexed assignment
variables. Constraints (17) couple the technicians’ locations to the tasks they perform. Constraints (18)
prevent technicians to perform multiple tasks during the same period. When technicians are not available,
constraints (19) ensure compliance with their known locations. Inequalities (20) are the location-based
incompatibility constraints. Finally, (21)-(27) state the binary nature of the decision variables.

2.2. Compact formulation

In order to restrict the number of constraints involved in the formulation [P1], we propose a second
model based on the concept of plans. A plan associated with task i ∈ I defines a feasible schedule for
i by setting an execution mode, a consistent starting date, and, by induction, a duration, and a resource
requirement. For example, consider a task i∗ with two execution modesm1 andm2. Let dm1 and dm2 denote
the corresponding durations and qm1

and qm2
the corresponding number of required technicians. Assume

that i∗ can be executed during the whole time horizon. For each t ∈ T such as t ≤ |T | − dm1 , a feasible
plan is created to represent the planning of task i∗ within mode m1 from period t to period t+ dm1 with a
requirement of qm1

technicians. The same procedure is applied for mode m2.
All the plans are generated a priori. Since in practice the planning horizon is short (because of weather

predictions) and there are only a few execution modes, the total number of plans is relatively small. We
denote by P the set of plans, ip the task involved in plan p ∈ P, and Pi the set of all plans involving task
i (i.e., Pi = {p ∈ P|ip = i}). We also create for each task i a plan p0i ∈ Pi representing the outsourcing of
the task. For a plan p, execution periods of ip are expressed by a boolean vector ap where atp = 1 if ip is

executed during period t ∈ T , and atp = 0 otherwise. Similarly, we introduce boolean vector ãp where ã
d
p = 1

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 5

 f ip is preempted during the rest period following day d ∈ D, and ãdp = 0 otherwise. With a slight abuse

of notation, we introduce parameters bwp, b̃wp, and Rp respectively equal to bwip , b̃wip and Rip . Moreover,
we define qp as the number of technicians required when selecting plan p ∈ P. Finally, parameter op is the
penalty if plan p is selected (note that ∀i ∈ I, ∀p ∈ Pi \ {p

0
i }, op = 0 and op0

i
= oi).

Scheduling the tasks becomes rather implicit as it simply means to select a plan for each task. Neverthe-
less, we still need to manage the technician-to-task assignment while meeting the incompatibility constraints.

We use the decision variables f t
w, f̃

d
w, and vtrl defined in Section 2.1. We also introduce the following

decision variables:

x̄p =

{
1 if plan p ∈ P is selected,
0 otherwise.

ȳrp =

{
1 if technician r ∈ Rp is assigned to plan p ∈ P,
0 otherwise.

As a result, we obtain the following integer linear program, denoted as [P2] .

[P2] max
∑

w∈W

(
∑

t∈T

gtwf
t
w +

∑

d∈D

g̃dwf̃
d
w

)
−
∑

p∈P

opx̄p (28)

subject to:
∑

p∈Pi

x̄p = 1 ∀i ∈ I, (29)

∑

i∈B

∑

p∈Pi

atpx̄p ≤ 1 ∀B ∈ ov (I) , ∀t ∈ T , (30)

f t
w + bwpa

t
px̄p ≤ 1 ∀w ∈ W, ∀p ∈ P, ∀t ∈ T , (31)

f̃d
w + b̃wpã

d
px̄p ≤ 1 ∀w ∈ W, ∀p ∈ P, ∀d ∈ D, (32)

∑

r∈Rp

ȳrp = qpx̄p ∀p ∈ P, (33)

∑

i∈Il|r∈Ri

∑

p∈Pi

atpȳrp ≤ πt
rv

t
rl ∀r ∈ R, ∀l ∈ L, ∀t ∈ T , (34)

(18), (19), (20),

x̄p ∈ {0, 1} ∀p ∈ P, (35)

ȳrp ∈ {0, 1} ∀p ∈ P, ∀r ∈ Rp, (36)

(23), (24), (27).

The objective in (28) is defined as the difference between the profits generated by the turbines and the
penalties induced by task outsourcing. Constraints (29) ensure that exactly one plan is selected for each task.
Constraints (30) are the non-overlapping constraints. Constraints (31) and (32) couple energy production
variables to plan selection variables. Constraints (33) ensure that the technician requirements are fulfilled.
Constraints (34) couple the technicians location to the tasks they perform. This new formulation [P2] uses
the same constraints as formulation [P1] to manage the technicians locations. Finally, (35)-(36) state the
binary nature of the new decision variables.

To potentially improve the quality of the linear relaxation upper bound, and consequently speeding up
the solution, we add a disaggregated form of constraints (33) that prevent a technician to be assigned to a
plan p if the plan is not selected.

∀p ∈ P, ∀r ∈ Rp, ȳrp ≤ x̄p (37)

Solving a Wind Turbine Maintenance Scheduling Problem

6 CIRRELT-2016-10

3& '��(��)��� *��+�),,��+ -��,�.)����

Alternatively, the problem can be approached using constraint programming. The CP paradigm is a
powerful and flexible tool which makes expressing complex constraints relatively easy. It has been successfully
applied for a variety of scheduling problems (Baptiste et al., 2001; Rodriguez, 2007; Malapert et al., 2012).
In the remainder of this section, we introduce a CP model for our problem.

First of all, note that selecting: i) an execution mode, ii) a starting time, and, iii) a technician assignment
for each task, is enough to obtain a solution to our problem. Therefore, for each task i ∈ I, we denote
Mi ∈ Mi its execution mode, Si ∈ T its starting period, and we use binary variables (yri)r∈Ri

introduced
in Section 2.1 to decide if technician r performs or not task i. To make some constraints easier to model, we
introduce integer variables Ci ∈ T , Di ∈ {dim}m∈Mi

, Qi ∈ {qim}m∈Mi
and set variables Ei ⊆ T defining

for task i its ending time, its duration, its number of assigned technicians, and its set of execution periods,
respectively.

Execution periods of each task are coupled to their starting and ending time with constraints (38)-(39).

Si +Di = Ci ∀i ∈ I, (38)

t ∈ Ei ⇔ t ∈ [Si;Ci[∩ ◆ ∀i ∈ I (39)

The duration of each task (40) as well as the number of assigned technicians (41) are coupled with the
selected execution mode.

Di = diMi
∀i ∈ I, (40)

Qi = qiMi
∀i ∈ I (41)

Constraints (42) are the non-overlapping constraints.

⋂

i∈B

Ei = ∅ ∀B ∈ ov (I) (42)

Constraints (43) ensure that the technician requirements are fulfilled for each task.

∑

r∈Ri

yri = Qi ∀i ∈ I (43)

To forbid a technician r ∈ R to be assigned to multiple tasks during a period, we introduce set variables
Y t
r ⊆ I ∪ {i

0} defining the set of tasks that the technician could potentially perform at period t ∈ T . Index
i0 represents a dummy task, created in order to prevent a technician to work during unavailability periods.
Constraints (44) couple these variables to the global assignment variables (yri)i∈I|r∈Ri

. Restrictions imposed

on the locations visited by a technician within each day lead to the introduction of set variables V t
r ⊆ L

defining the set of potential locations for technician r during period t. Constraints (45)-(46) restrict the set of
tasks that a technician can possibly execute according to his or her potential locations. Set L(Î) defines the
set of locations where the tasks in set Î have to be performed. Note that L(Î) = {l ∈ L | ∃i ∈ Î s.t. li = l}.

yri = 1⇒
(
Y t
r = {i} ∀t ∈ Ei

)
∀i ∈ I, ∀r ∈ Ri, (44)

V t
r = L(Y

t
r) ∀r ∈ R, ∀t ∈ T , s.t. πt

r = 1, (45)

V t
r = {l

t
r} ∧ Y t

r = {i
0} ∀r ∈ R, ∀t ∈ T , s.t. πt

r = 0 (46)

Constraints (47) ensure that technicians satisfy every day the location-based incompatibility constraints.

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 7

V
t
r = {l} ⇒

(
l′ /∈ V t′

r ∀l′ ∈ L, s.t. σll′ = 0
)
∀r ∈ R, ∀d ∈ D, ∀t, t′ ∈ Td s.t. t′ 6= t, ∀l ∈ L (47)

In order to define the objective function of our problem, we introduce two set variables. Variables
F day
w ⊆ {1, . . . , |T |} define the set of all periods during which turbine w ∈ W can produce energy. Variables

F rest
w ⊆ {1, . . . , |D|} define the set of days for which turbine w can produce energy during the corresponding

rest periods. More specifically, a day d belongs to this set if w can produce energy during the rest period
between d and d+ 1. Additionally, we denote by trestd the last period t ∈ T before the rest period following
day d ∈ D.

We therefore introduce the following constraints:

t ∈ Ei ⇒ t /∈ F day
w ∀w ∈ W, ∀i ∈ I s.t. bwi = 1, ∀t ∈ T , (48)

t /∈
⋃

i∈I|bwi=1

Ei ⇒ t ∈ F day
w ∀w ∈ W, ∀t ∈ T , (49)

trestd ∈ Ei ∧ (t
rest
d + 1) ∈ Ei ⇒ d /∈ F rest

w ∀w ∈ W, ∀i ∈ I, s.t. b̃wi = 1, ∀d ∈ D, (50)
∧

i∈I|̃bwi=1

(
{trestd , (trestd + 1)} /∈ Ei

)
⇒ d ∈ F rest

w ∀w ∈ W, ∀d ∈ D (51)

Constraint (52) defines the objective function variable obj ∈ ◆ of our problem.

obj =
∑

w∈W




∑

t∈Fday
w

gtw +
∑

d∈F rest
w

g̃dw


−

∑

i∈I|Mi=m0
i

oi (52)

To remove some symmetries, we add constraints (53) to impose the starting time of an outsourced task
to be equal to 0.

Mi = m0
i ⇔ Si = 0 ∀i ∈ I (53)

4. A CP-based large neighborhood approach

We use the CP model introduced in Section 3 as the main building block of a CP-based large neighborhood
search (CPLNS) approach.

This method is based on the large neighborhood search metaheuristic (LNS) originally proposed by Shaw
(1998) for a vehicle routing problem. In the LNS, the current solution is successively destroyed and repaired
in order to improve its quality. The adaptive large neighborhood search (ALNS), introduced by Ropke
and Pisinger (2006), is an extension of the LNS applying several destroy and repair operators. In ALNS,
operators are selected with an adaptive layer based on their performance in previous iterations. After
some preliminary experimentation we decided to drop the adaptive layer because its contribution to the
accuracy of the method did not payoff the loss of simplicity and the effort needed to fine tune the additional
parameters. We then randomly select operators with equal probability as suggested in (Pisinger and Ropke,
2010).

Algorithm 1 presents the general structure of the method. The algorithm involves an iterative process.
In every iteration, a destroy operator o1 and a repair operator o2 are randomly selected. First, the current
solution is destroyed using o1 (see Section 4.1). Then, a new solution sol

′

is built using the repair operator
o2 (see Section 4.2). In the case where the resulting solution sol

′

meets the acceptance criteria (see Section
4.3), it replaces the current solution sol for the next iteration. If sol

′

is better than the best solution found
so far, it replaces sol∗. Then, the search moves to the next iteration. The whole procedure is repeated until
one of the stopping criteria is met.

Solving a Wind Turbine Maintenance Scheduling Problem

8 CIRRELT-2016-10

A.+����/, 01 Script of the CPLNS algorithm

1 sol← initial solution
2 sol∗ ← sol
3 repeat

4 Select a destroy operator o1 and a repair operator o2 from the operators pool

5 sol
′

← repair (o2,destroy (o1, s) , sol)

6 if sol
′

is accepted then

7 sol← sol
′

8 end

9 if f(sol
′

) > f(sol∗) then

10 sol∗ ← sol
′

11 end

12 until one of the stopping criteria is met ;
13 return sol∗

4.1. Destroy operators

At each iteration, the algorithm selects Γ tasks to remove from the current solution. The value of Γ is
randomly fixed in the interval [max (n−, n× p−) ;min (n+, n× p+)], where n− and n+ denote the minimal
and maximal number of tasks that are allowed to be removed during an iteration; similarly, p− and p+

denote the minimal and maximal proportion of tasks that could be removed. The parameters p− and p+

allow the algorithm to adapt to all instances independently of their size. We use the following settings:
(n−, n+, p−, p+) = (5, 20, 0.1, 0.4). We also always consider outsourced tasks in the current solution as tasks
to be removed. However, we do not count them among the Γ tasks to remove.

After setting Γ, the algorithm selects the tasks using one of the following six removal operators:

• Operator A: random removal
This operator randomly removes Γ tasks from the current solution. The intuition behind this operator
is to diversify the search.

• Operator B: worst removal
This operator removes the tasks which penalize the most the objective function of the current solution.
Let f be the current value of the objective function, f−i its value if task i is not considered anymore,
and ∆f(i) = f − f−i. The tasks with the greatest values of ∆f(i) are removed from the current
solution in order to insert them at better positions.

• Operator C: technicians duties removal
This operator randomly selects a skill s∗. Then it randomly selects technicians mastering s∗. Next, it
removes from the current solution those tasks in which the selected technicians use s∗. The procedure
is repeated until Γ tasks are removed. Freeing up a pool of technicians along the whole time horizon
may allow the reinsertion of possibly misplaced tasks in more convenient periods (i.e, periods where
they penalize less the profits).

• Operator D: similar tasks removal
This operator removes similar tasks. More specifically, the operator removes non-overlapping tasks (or
tasks that overlap as little as possible) having similar duration and skill requirements. The similarity
φ(i, j) between two tasks i, j ∈ I in a solution sol is formally defined as: φ(i, j, sol) = α1×|d̄i−d̄j |+α2×

1(si 6=sj) + α3 × ov(i, j, sol), where d̄i is the average duration of task i (i.e., d̄i =
1

|Mi|

∑
m∈Mi

dim).

Function ov(i, j, sol) computes the number of overlapping periods between i and j in the current
solution sol. Coefficients α1, α2, α3 weight the three components of the similarity function, namely, the

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 9

����� �	
�� ��� �!� �� ���
�t	
�%����� ��� �!� ����� ���
��22 ��� 4� �	
 �52�
 %����� �α1, α2, α3) =

(1, 3, 5). To select the tasks to remove, the operator first initializes a set Ĩ with a random task. While

|Ĩ| ≤ Γ, the procedure randomly selects a task i∗ from Ĩ and then it adds to Ĩ the task j ∈ I \ Ĩ with
the minimal value of φ(i∗, j). The intuition behind this operator is to remove similar tasks that are
scheduled in non-overlapping periods in order to increase the likelihood of a solution improvement.

• Operator E: turbine maximal regret
This operator removes the tasks having the largest difference between the current loss of profits they
generate and the minimal loss of profits they can induce. For each turbine w ∈ W, the procedure
first computes a metric called lossbestw estimating the smallest profit loss that can be achieved when
only the tasks having an impact on Iw (i.e., the tasks that prevent turbine w to produce energy when
scheduled) are considered. The value of lossbestw is computed using the CP formulation of Section 3 on
the underlying instance. Let Iw be the tasks having an impact on the energy production of turbine w.
Let lossw be the profit loss generated in the current solution sol by the tasks in Iw. The costs related
to outsourced tasks are included in the computation of lossw. Let w

∗ denote the turbine associated to
the largest value of ∆loss(w) = lossbestw − lossw. The procedure removes all the tasks from Iw∗ from
the current solution sol. Removing tasks that currently generate considerably more lost profit than
they could may allow the algorithm to schedule those tasks in better positions in the next iteration. It
is then plausible to assume that this operator increase the probability to find better quality solutions.

• Operator F: task maximal regret
This operator works almost in the same way as operator E. Instead of reasoning by turbine, we focus
on the loss of profits induced by each scheduled task. Let Wi denote the set of turbines shutdown by
the execution of a task i. Clearly, Wi = {w ∈ W|bwi = 1∨ b̃wi = 1}. The loss induced by i is equal to
the sum over all the turbines in Wi of the profit lost directly due to the scheduling of i. If multiple
tasks impact a turbine at a specific period, the loss is set proportionally to the number of these tasks.

We work with randomized versions of operators B, D, E and F to explore the search space more broadly.
Indeed, an operator can destroy different parts of the same solution each time it is applied on it. This
can then lead to build different solutions. Although the randomization strategy we use is relatively simple,
we explain it here for the sake of completeness. The strategy is based on the one proposed in (Cordeau
et al., 2010). Let ̺o denote the randomization factor of operator o. When selecting tasks for removal, the
operator first sorts a list L containing all the tasks using its selection criterion (e.g., largest penalization
for operator B, largest similarity with a specified task for operator D, largest regret for operators E and
F). The first positions of L contains the tasks that the destroy operator has to target first according to its
criterion. Then the operator draws a random number y ∈ [0; 1[and it selects for removal task i in position
⌊y̺o × |L|⌋ in L (positions in L are indexed from 0). A randomization factor ̺o = 1 makes the operator
completely random, while higher values of ̺o make the operators more deterministic. In our experiments
we set ρB = ρD = ρE = ρF = 3 and we use only the randomized versions of these four operators.

Although it is very simple, Algorithm 2 presents the general structure of a destroy operator used as a
subroutine in Algorithm 1.

Algorithm 2: Destroy(o,sol)

Data: a solution sol
a destroy operator o
Result: a set of tasks to remove from sol

1 F ← ∅
2 F ←Apply destroy operator o to sol
3 return F

Solving a Wind Turbine Maintenance Scheduling Problem

10 CIRRELT-2016-10

6787 9:;<=> ?;:><@?>B

We use the CP formulation introduced in Section 3 to repair partially destroyed solutions. More specif-
ically, if F denotes the set of tasks that have been removed, we fix the values of the variables Mi, Si and
(yri)r∈Ri

for all tasks i ∈ I \ F and solve the resulting model.
A solution to the CP model is found as soon as the decision variables (Mi, Si and (yri)r∈Ri

) are
instantiated for all task i ∈ I. Therefore, the branching strategy should focus only on these variables.
It is worth noting that a CP solver can only make deductions when executing modes and starting times
variables are instantiated for the tasks. Indeed, the duration and the technician requirements of each task
are only defined when the execution mode is fixed. Then, fixing the starting time of a task before knowing its
execution mode leads to a weak propagation. Moreover, variables yri have an impact only on the feasibility
of a solution but not on its quality. Fixing last these variables (i.e., after having fixed the variables Mi

and Si for all tasks i ∈ I) implies that the solver has to explore a large sub-tree before decision refutations
that may lead to an improvement of the best solution. Based on these observations we adopt a task-by-task
scheduling strategy in which the technicians assignment is made after having chosen an execution mode and
a starting time for the current task.

It is well-known that quickly reaching a good-quality solution increases the efficiency of the search. It
is, however, not clear if fixing the execution mode of a i ∈ I, Mi, to a specific execution mode and then
exploring all its potential starting times before setting Mi to another value is the best searching strategy.
This observation leads to set simultaneously variables Mi and Si to achieve a greater flexibility during the
search. We choose therefore to reuse the notion of plan introduced in Section 2.2. For each task i ∈ I, we
introduce variable Xi ∈ Pi that defines the plan selected for task i. We add the constraints (54)-(55) to
couple these variables to the variables Mi and Si.

Mi = modeXi
∀i ∈ I, (54)

Si = startXi
∀i ∈ I (55)

For a plan p ∈ P, modep is the selected execution mode for the task ip and startp = min
t∈T |at

p=1
t represents

the starting time of ip. In summary, task by task, we first define its execution mode along with its starting
time by fixing variable Xi, and we finally assign the required technicians by fixing the variables (yri)r∈Ri

.
To reach feasible solutions faster, we design custom propagators that try to keep the domain of Xi

consistent during the search. These propagators rely on the number of technicians available at each period
of the time horizon considering the required skills and the locations incompatibility constraints. They also
take into account that technicians have to work on tasks from the beginning to the end.

The most critical part of the procedure is the selection of the next task to be considered by the branching
strategy. We select the next task to schedule using a look-ahead regret heuristic. This heuristic tries to
anticipate future decisions. We then select the task with the largest regret value. The regret value of a task
is an estimation, according to the current partial schedule, of the additional cost incurred if the task is not
scheduled by selecting the plan leading to the smallest loss of profits.

Let I0 denote the set of tasks which have not yet been processed at the current node of the search. We
denote ∆fk

i the k-th smallest value of the loss of profits that task i can generate when scheduled using one

of its possible plans. The procedure regret-q chooses task i∗ = argmax
i∈I0

∑k=q
k=2

(
∆fk

i −∆f1
i

)
to be considered

for scheduling. The algorithm computes ∆fk
i according to the values of Ψ(i, p), a function representing the

loss of profit if task i uses plan p ∈ Pi (i.e., performed in mode modep starting at period startp). Function
Ψ(i, p) is computed using functions Ψday(i, p) and Ψrest(i, p) which represent the loss of profits during the
periods from T and during the rest periods if task i uses plan p ∈ Pi. These functions are defined as follows:

Ψ(i, p) = Ψday(i, p) + Ψrest(i, p),

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 11

C
day(i, p) =





op if p = p0i ,

∑
w∈W|bwi=1

t<startp+dim∑
t=startp

g(w, t) otherwise.
,

Ψrest(i, p) =





0 if p = p0i ,∑

w∈W|̃bwi=1

∑
d∈D̄p

g̃(w, d) otherwise. ,

where D̄p = {d ∈ D|startp ≤ t−d ∧ t+d < startp + dimp
}. Functions g(w, t) and g̃(w, d) are defined as:

∀w ∈ W, ∀t ∈ T , g(w, t) =

{
gtw if t ∈ Env(F day

w),
0 otherwise.

,

∀w ∈ W, ∀d ∈ D, g̃(w, d) =

{
g̃dw if d ∈ Env(F rest

w),
0 otherwise.

,

where Env(X) denotes the set of elements that may belong to the set variable X in a solution at the current
node of the search tree.

Let Dom(x) denote the domain of variable x (i.e., all the possible values that x can take). We have
∆f1

i = min
p∈Dom(Xi)

Ψ(i, p). More generally, ∆fk
i is the k-th smallest value of Ψ(i, p). Once task i∗ has been

selected, it is scheduled using plan p∗ = argmin
p∈Dom(Xi)

Ψ(i, p).

Sometimes, we observe that the look-ahead heuristic can be inadequate to obtain good solutions. It is
indeed possible that a task with a small regret at a given point of the search is not chosen to be scheduled
but that this decision leads to a large loss of profits in the associated subtree. To overcome this possible

issue, we design another branching strategy that selects the task i∗ = argmax
i∈I0

(
min
p∈Pi

Ψ(i, p)

)
for which the

minimal loss of profits is maximal. We refer to this branching strategy as MinMaxLoss.
The resources assignment is then done technician by technician as long as the request is not fulfilled. Let

Dp be the set of days that task ip of plan p ∈ P overlaps. We choose as a priority the compatible technician
which is already working during the days that belong to Dp∗ . Since incompatibility constraints (47) are
very restrictive, it should be preferable to use technicians that are already working at the same location
or at compatible locations. Otherwise, it could restrict drastically the number of technicians that will be
available for other tasks, especially those at incompatible locations. If during the days d ∈ Dp∗ multiple
technicians work the same number of periods, we choose first the technician that could perform the least
number of tasks among those remaining. If several technicians can still be selected, we select one randomly.

Exploring the whole neighborhood of a solution is time-consuming; therefore we only allow a certain
number ̟max of backtracks (we set ̟max = 200 in our experiments). Thus, different solutions can be
obtained using different branching strategies. Different repair operators are therefore defined using different
branching strategies. In our experiments, we use regret-2 and regret-3 branching strategies, as well as a
randomized version of MinMaxLoss, where the probability of selecting a task is inversely proportional to
the minimal loss of profits it generate at this point of the search.

Algorithm 3 presents the general structure of a repair operator used as a subroutine in Algorithm 1.

4.3. Acceptance criteria

The original version of LNS proposed by Shaw (1998), uses an elitist strategy to accept solutions (i.e.,
it accepts only improving solutions). On the other hand, the LNS by Pisinger and Ropke (2007) uses the
Metropolis criterion to accept solutions. According to this criterion, solutions are accepted with a given
probability. If the newly found solution s′ improves the current solution s the probability equals one.

Otherwise, the probability is computed using the Boltzmann expression: e−(f(s)−f(s′))/Υ. Parameter Υ

Solving a Wind Turbine Maintenance Scheduling Problem

12 CIRRELT-2016-10

A.+����/, 31 DE*)��(o,F ,s)

Data: a solution sol
a set F of tasks
a repair operator o (branching strategy)
Result: a new solution sol′

1 foreach i ∈ I \ F do

2 Fix the values of Mi, Si, (yri)r∈Ri
as in solution sol in the CP model

3 end

4 Solve the CP model applying repair operator o, yelding sol′

5 return sol′

is refereed as the temperature. It is updated after each iteration using what is commonly known as the
geometric cooling schedule: Υ = Υ× c̄, where c̄ ∈ [0, 1[. Then, the probability for accepting non-improving
solutions decreases over the iterations. We tested the two approaches in our experiments.

We also tested a mix of them: we apply an elitist strategy during the k first iterations, and then we
activate the Metropolis criterion. We based our choice in two observations. First, using the elitist strategy,
the search is often trapped in local optima after a certain amount of iterations, and then it struggles to
improve the solution. Second, as we do not ensure that our algorithm starts from a good-quality solution,
reaching a good solution can be time-consuming.

In our experiments, k is set to 1, 000 and c̄ to 0.99975. The initial temperature is fixed to −
0.25

ln0.5
f(s0)

where f(s0) is the value of the objective function of the initial solution s0. Therefore, in the first iteration
our approach accepts solutions that are 2.5% worse than the current solution with a probability of 0.5.

5. Computational experiments

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We relay on Gurobi 6.0.4 for solving the
IP models [P1] and [P2] and Choco 3.3.1 for solving the CP formulation (see Prud’homme et al. (2014)).
We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R) X5675 (3.07Ghz) and 10GB
of RAM.

5.1. Instance families

To test our approach, we generated a set of instances based on a real-world application. Our testbed
is composed of 60 instances. For each instance, we consider different time horizons of different lengths (20
or 40), number of tasks (30, 60 or 90), and number of skills (1 or 3). Each task can be executed in several
modes (1 to 4). Note that |S| = 1 simply means that no skills are considered. We generate the profit values
following three steps. We first generate wind speed values at each location. We then compute the production
generated by each turbine based on the work of Giorsetto and Utsurogi (1983). Finally, we fix the profit
values using a wind energy market price. We did not consider the alternative objective (i.e., maximizing the
availability of the turbines) as the problem becomes much more easier since the availability of the turbines
is essentially impacted by the execution mode chosen for each task but not by their starting time. For a
thorough discussion on the instance generation process and a full description of our instances the reader is
referred to Appendix Appendix B. Table 1 presents the twelve families of instances in our testbed.

In order to assess the quality of the results, we compute the gap to the optimal solution when it is known
or, otherwise, to the minimal upper bound found by Gurobi when solving the two integer linear formulations
after 3 hours of branch-and-bound.

5.2. IP formulations

Table 2 shows the average number of variables and constraints introduced by the two integer linear
formulations [P1] and [P2] for each family of instances. Formulation [P2] contains in average 1.5 more

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 13

FGHJK LM NOPQGORK SGUWJWKP
Family |T | |I| |S| # instances

20 30 1 20 30 1 5

20 30 3 20 30 3 5

20 60 1 20 60 1 5

20 60 3 20 60 3 5

20 90 1 20 90 1 5

20 90 3 20 90 3 5

40 30 1 40 30 1 5

40 30 3 40 30 3 5

40 60 1 40 60 1 5

40 60 3 40 60 3 5

40 90 1 40 90 1 5

40 90 3 40 90 3 5

variables than formulation [P1] but it divides by more than 4 the number of constraints to consider. This
impacts significantly the results obtained when solving the models.

These results are summarized in Table 3. For each formulation, we report the average (Avg), minimal
(Min) and maximal (Max) gap obtained for each family of instances. We also report the number of optimal
solutions found within the time limit (# Opt), the average resolution time (Time), and a ratio between the
upper bound computed by the formulation and the minimal upper bound computed by the two formulations
(UB ratio). We observe that formulation [P2] outperforms formulation [P1]. We believe these results
can be explained as follows. First, the compact formulation contains far less constraints than the natural
formulation. Second, the upper bound computed using formulation [P2] is always tighter and in average
1.3% tighter than the one computed using the formulation [P1]. On the two families of larger instances,
formulation [P2] provides worst results than formulation [P1] but these results should be interpreted with
care since results are still very far from the optimal solution. As a matter of fact, optimality is proved only
for few instances within the 3-hour time limit.

In conclusion, solving directly the IP formulations does not seem an efficient solution method as the
average gap is still considerable for several family of instances.

Table 2: Average number of variables and constraints introduced by the two integer linear formulations

Family
[P1] [P2]

#Vars #Cts #Vars #Cts

20 30 1 12,397 28,835 16,364 7,163

20 30 3 12,099 26,986 14,678 6,537

20 60 1 41,788 103,762 61,453 17,997

20 60 3 37,002 89,094 47,775 14,668

20 90 1 85,870 217,641 135,168 32,217

20 90 3 78,276 194,699 102,786 27,787

40 30 1 19,343 47,698 28,156 20 134

40 30 3 20,449 49,678 26,029 18,620

40 60 1 63,610 167,247 96,763 47,791

40 60 3 62,130 161,173 77,028 43,044

40 90 1 140,938 381,217 224,029 87,299

40 90 3 127,415 339,880 152,922 72,575

All 58,443 150,659 81,929 32,986

Solving a Wind Turbine Maintenance Scheduling Problem

14 CIRRELT-2016-10

FGHJK XM YZU[\QGQWZOGJ]KP\JQP SZ] Q^K Q_Z WOQK`K] JWOKG] SZ]U\JGQWZOP

Family
Gap #Opt Time (s) UB ratio

[P1] [P2]
[P1] [P2] [P1] [P2] [P1] [P2]

Avg Min Max Avg Min Max

20 30 1 0.9% 0.0% 3,2% 0.0% 0.0% 0.0% 0 5 10,800 1,838 1.003 1.000

20 30 3 6.3% 0.0% 24.5% 0,2% 0.0% 1.0% 1 2 9,024 7,037 1.016 1.000

20 60 1 2.8% 0.0% 12.0% 0.0% 0.0% 0.0% 0 5 10,800 1,025 1.001 1.000

20 60 3 156.9% 3,2% 524,2% 2.4% 0.7% 4.3% 0 0 10,800 10,800 1.013 1.000

20 90 1 7.6% 0.4% 15.6% 0.0% 0.0% 0.0% 0 5 10,800 2,135 1.002 1.000

20 90 3 19.7% 10.4% 28,2% 3.0% 1.9% 4,2% 0 0 10,800 10 800 1.011 1.000

40 30 1 8.4% 0.7% 18.8% 5.0% 0.0% 12,2% 0 1 10,800 10 790 1.008 1.000

40 30 3 52.8% 3.1% 224.1% 10.3% 2.7% 19.1% 0 0 10,800 10,800 1.017 1.000

40 60 1 95.0% 33.8% 247.9% 64.4% 6.0% 260.0% 0 0 10,800 10,800 1.006 1.000

40 60 3 185.4% 16,2% 269.9% 138.7% 24.0% 340.4% 0 0 10,800 10,800 1.040 1.000

40 90 1 104.3% 69.3% 158.7% 166.4% 16.9% 228.4% 0 0 10,800 10,800 1.003 1.000

40 90 3 63.6% 30.6% 101.7% 149.4% 10.6% 457.4% 0 0 10,800 10,800 1.033 1.000

All 58.6% 0.0% 524,2% 45.0% 0.0% 457.4% 1 18 10,651 8,202 1.013 1.000

5.3. CP formulation

Table 4 summarizes the global results found solving directly the CP model with the default branching
strategy of the solver (BS1), with our regret-2 branching strategy (BS2), and with a randomized version
of the latter coupled to a geometrical restart policy based on the number of backtracks (BS3). On one
hand, the default strategy struggles when it comes to finding feasible solutions. This is somehow expected
since we work with many different kinds of variables. On the other hand, a solution is always quickly found
using our regret branching strategy. Guaranteeing feasibility is, however, relatively easy since tasks can be
outsourced.

Additionally, we observe that the initial solutions are little improved during the search when using the
regret-2 branching. It seems that the CP model is facing some symmetry issues. One way to overcome
this drawback is to restart frequently the search from the root node. Jointly using a randomized branching
strategy allows us to explore different parts of the search tree which increases the likelihood of finding better
solutions. The results confirm this intuition as the average gap is improved approximately by 10%.

Table 4: Aggregated computational results solving the CP model using different branching strategies

instances with
a feasible solution

1 min 5 min 30 min

BS1 3 4 4

BS2 60 60 60

BS3 60 60 60

Average gap
1 min 5 min 30 min

BS1 1144.8%∗ 989.4%∗ 985.3%∗

BS2 20.7% 19.3% 19.1%

BS3 11.1% 10.0% 9.4%
∗: Computed for instances with a feasible solution

5.4. CPLNS

Previous results show the limitation of solving directly the CP model. This demonstrates the relevance
of a CPLNS approach. For this latter method, we imposed a time limit as the stopping criterion. Since the
neighborhoods are partially randomized, we launched the algorithm ten times for each instance.

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 15

a� #
�� ����"b� �!�
�������� �f ��%c � �� �� �� � �� ��
����"
 �! �!� d��
�2�� � ����2����� �
 ��
 ���

Table 5 summarizes the results found with different time limits: 1,5 or 30 minutes; and different solution
acceptance criteria: elitism (El), Metropolis (MT), and both (El+MT). Coupling an elitist strategy with
the Metropolis acceptance criterion proves to lead to the best results independently of the time limit. We
therefore use this acceptance criterion in the remainder of our experiments.

Table 5: Computational results according to the solution acceptance criterion

Time limit
Average gap

1 min 5 min 30 min

El 4.9% 3.6% 2.7%

MT 5.9% 4.5% 2.5%

El + MT 4.9% 3.6% 2.5%

We now discuss more thoroughly the performance of the CPLNS algorithm. Table 6 reports the perfor-
mance of the CPLNS for each instance family. It shows in the different columns the relative average mean
gap 3(Mean), the average best gap4(Best), and the average worst gap5(Worst) for the CPLNS with 1 minute,
5 minutes, and 30 minutes of time limit. Since optimality is proved only for 40% of the instances, assessing
the intrinsic quality of the CPLNS using only the gap is not conclusive enough. However, the overall average
gaps of 4.9%, 3.6% and 2.5% after 1 minute, 5 minutes and 30 minutes of CPU time, respectively, show
the effectiveness of our approach. We also observe that the algorithm provides near optimal solutions for
instances with a 20-length time horizon and no skills. However, the CPLNS is less effective on the instances
with a 40-length time horizon, 3 skills, and more than 30 tasks. It is worth noting that the difficulty of the
instances seems to be related to the length of the time horizon and the number of skills. Conversely, the
number of tasks seems to only have a relatively small impact. Last but not least, our method seems to have
a suitable stability as in average the difference between the best and the worst solution found over the 10
runs is a reduced 1.3%.

6. Conclusions and research perspectives

In this study, we have introduced a new and challenging maintenance scheduling problem faced by the
wind power industry. Some of the special features of this problem are the presence of alternative execution
modes for each task and an individual management of the technicians through a space-time tracking. We have
also introduced an original objective function, far from the classical scheduling concerns, linking the profits
to the periods during which the maintenance operations are performed. We have conducted computational
experiments on instances with up to 90 tasks, 4 execution modes, and 3 skills.

We have proposed three mathematical formulations based on both integer and constraint programming.
Computational results indicate that, generally, the models cannot be directly used to solve realistic instances.
IP models are unable to solve to optimality most of the instances after 3 hours and the gap is still very
large for many families of instances. Nevertheless, we have shown that a IP compact formulation using the
notion of plans outperforms the more natural IP formulation of the problem. The number of skills and the
length of the time horizon appear to make the problem difficult to solve as their values increase. Similarly,
the performance of our CP model seems to be affected by symmetry issues.

To provide an alternative solution approach, we have developed a CP-based large neighborhood search.
We have successfully adapted some destroy operators to this new problem and have proposed some new ones.
Moreover, we have designed several branching strategies to effectively repair solutions solving a CP model
with fixed variables. We have also introduced and have demonstrated the relevance of a new acceptance
criterion combining elitism and Metropolis. The CPLNS shows an average gap of 2.5% with respect to

3average of the mean gap found for each instance over 10 runs
4average of the best (minimal) gap found for each instance over 10 runs
5average of the worst (maximal) gap found for each instance over 10 runs

Solving a Wind Turbine Maintenance Scheduling Problem

16 CIRRELT-2016-10

FGHJK eM YZU[\QGQWZOGJ]KP\JQP SZ] Q^K Yghij kGlK]G`K ZlK] Lm]\OPn

Family
Average gap

1 min 5 min 30 min
Mean Best Worst Mean Best Worst Mean Best Worst

20 30 1 0.4% 0.3% 0.6% 0,2% 0.1% 0.3% 0.1% 0.1% 0.3%

20 30 3 1.7% 0.9% 2.7% 0.9% 0.4% 1.8% 0.8% 0,2% 1.6%

20 60 1 0.5% 0.3% 0.7% 0.5% 0.3% 0.6% 0.1% 0.0% 0,2%

20 60 3 3.9% 3.0% 5.0% 3.5% 2.7% 4,2% 1.6% 1.1% 2.1%

20 90 1 0.7% 0.4% 1.1% 0.6% 0.3% 0.8% 0,2% 0.1% 0.4%

20 90 3 4.9% 3.8% 6.3% 4.1% 3,2% 5.0% 2.7% 2.3% 3.3%

40 30 1 2.3% 1.7% 3,2% 1.4% 0.9% 1.9% 0.8% 0.5% 1.5%

40 30 3 5.5% 2.9% 8.6% 3,2% 2,2% 4.4% 2.8% 1.8% 3.9%

40 60 1 5.4% 3.8% 7,2% 4.1% 2.6% 5.5% 1.9% 1.3% 2.7%

40 60 3 14.5% 11.0% 17.8% 11.6% 9.5% 13.6% 7.4% 6,2% 8.6%

40 90 1 4.6% 3,2% 6.3% 3.1% 2.2% 4.2% 2.9% 2.2% 4.0%

40 90 3 13.4% 10.2% 16.6% 10.0% 7.9% 12.2% 9.1% 7.5% 10.3%

All 4.8% 3.5% 6.3% 3.6% 2.7% 4.6% 2.5% 1.9% 3.2%

the optimal solutions if known, or to the best found upper bounds otherwise. These computational results
demonstrate the efficiency of the proposed method.

Futures works will include the development of efficient exact approaches. One can think about a column
generation process embedded in a branch-and-price to solve formulation [P2] more efficiently. Constraints
(31)-(33) must then be generated on the fly. However, a simultaneous column and row generation is a
complex process and it is not clear that the results will be significantly improved. One can also observe
an intrinsic decomposition of the problem into a scheduling problem on one hand and into a resource
management problem on the other hand. This lead to investigate a branch-and-check approach as well as
cut generation processes. Last but not least, we have only addressed the deterministic problem, but, as a
matter of fact, the problem is stochastic by nature.

References

Baptiste, P., Le Pape, C., and Nuijten, W. (2001). Constraint-based scheduling: applying constraint programming to scheduling
problems. Kluwer Academic Publishers.

Budai, G., Dekker, R., and Nicolai, R. (2008). Maintenance and Production: A Review of Planning Models. In Complex
System Maintenance Handbook, Springer Series in Reliability Engineering, pages 321–324. Springer London.

Carlos, S., Sánchez, A., Martorell, S., and Marton, I. (2013). Onshore wind farms maintenance optimization using a stochastic
model. Mathematical and Computer Modelling, 57(7-8):1884–1890.

Cordeau, J.-F., Laporte, G., Pasin, F., and Ropke, S. (2010). Scheduling technicians and tasks in a telecommunications
company. Journal of Scheduling, 13(4):393–409.

De Reyck, B., Demeulemeester, E., and Herroelen, W. (1998). Local search methods for the discrete time/resource trade-off
problem in project networks. Naval Research Logistics (NRL), 55(6):553–578.

Ding, F., Tian, Z., and Jin, T. (2013). Maintenance modeling and optimization for wind turbine systems: A review. In 2013
International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), pages 569–575.

Froger, A., Gendreau, M., Mendoza, J., Pinson, E., and Rousseau, L.-M. (2016). Maintenance scheduling in the electricity
industry: A literature review. European Journal of Operational Research, 251(3):695–706.

Giorsetto, P. and Utsurogi, K. (1983). Development of a New Procedure for Reliability Modeling of Wind Turbine Generators.
IEEE Transactions on Power Apparatus and Systems, PAS-102(1):134–143.

Kovács, A., Erds, G., Viharos, Z., and Monostori, L. (2011). A system for the detailed scheduling of wind farm maintenance.
CIRP Annals - Manufacturing Technology, 60(1):497–501.

Malapert, A., Guéret, C., and Rousseau, L.-M. (2012). A constraint programming approach for a batch processing problem
with non-identical job sizes. European Journal of Operational Research, 221(3):533 – 545.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers and Operations Research,
34(8):2403–2435.

Pisinger, D. and Ropke, S. (2010). Large Neighborhood Search. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of
Metaheuristics, volume 146 of International Series in Operations Research & Management Science, pages 399–419. Springer
US.

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 17

g]\op^ZUUKq Yrq uG`KPq vrwxrq GOo hZ]RGq yr k{mL|nr Choco3 Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241,
COSLING S.A.S.

Rodriguez, J. (2007). A constraint programming model for real-time train scheduling at junctions. Transportation Research
Part B: Methodological, 41(2):231–245.

Ropke, S. and Pisinger, D. (2006). An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem
with Time Windows. Transportation Science, 40(4):455–472.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. Principles
and Practice of Constraint Programming-CP 1998, pages 417–431.

Appendix A. Notations

Time

– T : time horizon

– D : set of days

– Td : set of periods belonging to day d ∈ D

– trestd : last period t ∈ T before the rest period following day d ∈ D

Locations

– L : set of locations (wind farms and technician home depots)

– δll′ =

{
1 if a technician is allowed to work at both locations l and l′ during the same day,
0 otherwise.

Technicians

– S : set of skills

– R : set of technicians

– λrs =

{
1 if technician r ∈ R masters skill s ∈ S,
0 otherwise.

– πt
r =

{
1 if technician r ∈ R is available during period t ∈ T ,
0 otherwise.

– ltr : location of technician r ∈ R when he or she is not available at period t ∈ {t′ ∈ T , πt′

r = 1}

Tasks

– I : set of tasks to be performed on the turbines

– ov(I) : family of sets of tasks that cannot overlap

– li : location where task i ∈ I has to be performed

– Mi : set of execution modes for task i ∈ I

– m0
i : execution mode related to the outsourcing of task i ∈ I (m0

i ∈Mi)

– qim : number of technicians required at each period to perform task i ∈ I in mode m ∈ Mi

(qim0
i
= 0)

– dim : duration of task i ∈ I if performed in mode m ∈Mi (dim0
i
= 0)

– γt
i =

{
1 if task i ∈ I can be executed at t ∈ T ,
0 otherwise.

– si : skill required to perform task i ∈ I

– oi : penalty if task i ∈ I is outsourced.

Solving a Wind Turbine Maintenance Scheduling Problem

18 CIRRELT-2016-10

}��~��E(

– W : set of turbines

– bwi =





1 if the execution of task i ∈ I shuts down the turbine w ∈ W
when technicians are effectively working on i,

0 otherwise.

– b̃wi =





1 if the execution of task i ∈ I shuts down the turbine w ∈ W
during the rest periods it overlaps,

0 otherwise.

– gtw : profit if turbine w ∈ W can produce energy at period t ∈ T

– g̃dw : profit if turbine w ∈ W can produce energy during the rest period following day d ∈ D

Plans

– P : set of plans

– Pi : set of plans involving task i ∈ I

– ip : task involved in plan p ∈ P

– atp =

{
1 if task ip is executed in period t ∈ T
0 otherwise.

– qp : number of required technicians if plan p ∈ P is selected

– Rp = Rip

– bwp = bwip

– b̃wp = b̃wip

– op = oip

Appendix B. Data generation

An instance of the problem is characterized by:

• a finite time horizon,

• a set of wind farms,

• a set of turbines distributed over the wind farms,

• a set of maintenance tasks to schedule,

• a set of technicians to perform the tasks,

• profits generated by the turbines that are available to produce energy,

• outsourcing penalties.

The generator is based on the following parameters:

• |T |, |D|, |L|, |I|, |S| (length of time horizon, number of days, number of wind farms, number of tasks,
and number of skills),

• DnLW : distribution of the number of turbines per wind farm,

• DnWI : distribution of the number of tasks per turbine,

• DnIS : distribution of the number of skills required by each task,

• pinc : probability that a technician is not allowed to work at two different wind farms during the same
day,

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 19

� pSBL, pBL, pSST , pST , pNS : probability for a task to shutdown respectively all the turbines of a wind
farms even during the rest periods; only the turbine on which the task is executed even during the rest
periods; all the turbines of a wind farms except during the rest periods; only the turbine on which the
task is executed except during the rest periods; no turbines,

• Didur : distribution of the duration of a task if performed by a single technician,

• Direq : distribution of the number of technicians that can perform a task at the same time,

• Dr#skills : distribution of the number of skills mastered by a technician,

• Dr#unv : distribution of the number of periods during which a technician is unavailable,

• Dwpower : distribution of the nominal power (in kW) of each turbine,

• ω̄ : average wind-speed values on each wind farm,

• ω̄max : maximal wind-speed value allowed to perform a task.

We generate an instance following multiple steps. We first fix the number of wind farms, turbines and

tasks. We then build the matrix
(
δl,l′
)

(l,l′)∈L2
taking into account the geographical distribution of the wind

farms and the parameter pinc.
For each task i ∈ I, according to the distributionDidur, we generate a duration duri if only one technician

performs the task. Then, we sort based on Direq a minimal number nmin
i and a maximal number nmax

i

of technicians that can perform i at any given period. Based on these two values, we build the set Mi

of execution modes by assuming that the duration of a task is proportional to the number of technicians

assigned to the task (i.e., the duration is set to ⌊
duri
n

+ 0.5⌊ if n technicians are assigned to i). We create

therefore nmax
i −nmin

i +1 execution modes, as well as an additional mode corresponding to the outsourcing
of i. Since we round values, some execution modes can have the same duration with different requirements.
We then perform a postprocessing procedure such that the setMi meets the two following requirements:

• ∀m,m′ ∈Mi, qim 6= qim′ ,

• ∀m,m′ ∈Mi, qim < qim′ ⇔ dim > dim′ .

We also randomly generate the skills required by task i according to DnIS . Arbitrarily, we build ov(I)
considering that overlapping tasks are forbidden on the same turbine.

After generating the tasks, we compute the number of technicians that has to be associated with each
skill. More specifically, for each skill we first sum all the duration of the tasks (that require this particular
skill) if they are executed by only one technician. The result is then divided by the product of the length of
the time horizon and the average number of skills mastered by a technician (based on Drskills). Being an
empirical method, we have noted that to multiply this final number by a factor of ǫ = 1.2 allows to schedule
at least 80% of the tasks. A technician is first created with a single mastered skill. We add randomly more
skills to each technician according to Dr#skills. Finally, we generate his or her availability schedule using
Dr#unv.

As it concerns the profits generation, the main purpose is to use realistic values. Therefore, it is mainly
based on the work of (Giorsetto and Utsurogi, 1983). First, we generate wind-speed values ωt

l for every wind
farm l ∈ L and every period t ∈ T using a Rayleigh distribution based on ω̄. This implies independence
between wind forecasts from a period to another one. This assumption is not always verified in practice. To
smooth out the speed-values, a 3-moving average is used. The resulting values compare well to real data.
Afterwards, we compute the parameters (γt

i)t∈T ,i∈I according to the value of ω̄max. Then, we set for each

turbine its nominal power Pw based on Dwpower. The power P
t
w generated at each period t by every turbine

w ∈ W is then computed using the formula from (Giorsetto and Utsurogi, 1983) :

Solving a Wind Turbine Maintenance Scheduling Problem

20 CIRRELT-2016-10

� t
w =























0 if ωt
lw

< V CI

Pw

(

A+Bωt
lw

+ C
(

ωt
lw

)2
)

if V CI ≤ ωt
lw

< V R

Pw if V R ≤ ωt
lw

< V CO

0 if ωt
lw

> V CO

.

where V CI, V R and V CO are respectively the cut-in, the rated, and the cut-out wind speed and lw
denotes the location of turbine w. We compute constants A,B, and C with the following equations:

A =
1

(V CI − V R)2

(
V CI (V CI + V R) − 4V CI · V R

(
V CI + V R

2V R

)3)

B =
1

(V CI − V R)2

(
4 (V CI + V R)

(
V CI + V R

2V R

)3

− 3 (3V CI + V R)

)

C =
1

(V CI − V R)2

(
2 − 4

(
V CI + V R

2V R

)3)
.

The last step consists in computing the profit values from the power P t
w generated by the turbine w ∈ W

at each period t ∈ T . Let ĝ be the profit generated by the production of 1 kWh and hday an estimation
of the number of hours per period. We compute the profit gtw generated by each turbine w ∈ W that is
available at period t ∈ T as follows:

gtw = ĝ · hday · P t
w. (B.1)

The same process is repeated for the rest periods. Finally, we compute outsourcing penalties multiplying
the maximal duration of a task by the the maximal power that could be generated by a turbine in one
period. With this definition, outsourcing a task is almost always non-profitable.

Table B.7 presents the detail parameter setting used in the generation process.

Table B.7: Detail parameter setting used by the instance generator

Parameters Values

(|T |, |D|) (20, 10) (40, 10)
(|L|, |I|) (6, 30) (10, 60) (15, 90) (6, 30) (10, 60) (15, 90)
Didur U(4, 10) U(4, 20)
|S| 1 or 3
DnL

W
U(1, 6)

DnW
I

U(1, 3)
DnI

S
1

pinc 0.3
(pSBL, pBL, pSST , pST , pNS) (0.05, 0.25, 0.05, 0.25, 0.15)
Direq U(1, 4)
Dr#skills U(1, 3)
Dr#unv U(1, 4)
Dwpower U(1500, 2500)
ω̄ 5
ω̄a 12
(V CI, V R, V CO) (3, 14, 25)

Solving a Wind Turbine Maintenance Scheduling Problem

CIRRELT-2016-10 21

	CIRRELT-2016-10-pp
	CIRRELT-2016-10-abstract
	CIRRELT-2016-10

