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Abstract. Fairness has recently become a key concern for crisis managers. In the 

aftermath of a disaster, when needs overcome response’s capacity, decision makers are 

expected to distribute the available relief efficiently, but also in such a way that nobody 

might perceive any injustice in the access to relief. This paper presents three multi-period 

models to support relief distribution decisions. The models consider fairness but also 

tackle the demand’s and offer’s changes over time. In addition, demand can be 

backordered as it is the case in realistic situations. The paper discusses the notion of 

fairness and proposes several proxies to measure it. Numerical tests are run on a set of 

academic instances to analyze the behaviour of the considered models and assess their 

performance. 
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1. Introduction  

In the past decade, the number of scientific contributions on relief distribution has grown 

significantly and nowadays humanitarian logistics has become an independent and important 

body of research. In particular, relief distribution logistics, have many characteristics that 

differentiates them from business logistics (Holguín-Veras et al. 2012; Kovács & Spens 2007). 

Among them, three major features inspire and motivate this work. Firstly, demand is uncertain 

and it may evolve very quickly as the population might tend to mobilize after a disaster. Thus 

multi-period models are needed to tackle the demand’s dynamics. Secondly, relief distribution 

logistics focuses on demand satisfaction rather than profit maximization or costs minimization, 

because if the relief demand is not satisfied in terms of both quantities and time, the safety and 

well-being of the affected people are jeopardized. Thirdly, relief must be distributed in a “fair” 

manner among the people in need (Anaya-Arenas et al. 2014; Holguín-Veras et al. 2012; 

Holguín-Veras et al. 2013). Our concern on justice in distribution was also promoted by Fujitsu 

Consulting (Canada) Inc., one of our previous partners in emergency logistics developments. Past 

results on design and planning of relief distribution (Rekik et al. 2013) showed that when the 

response’s capacity is smaller than demand, and if fairness is not seek explicitly in the 

optimization models, some PoDs can be completely neglected while others are fully covered. 

This behavior was rejected by our partner, understanding then the importance of the principals of 

justice and impartiality for humanitarian decision makers.  

This paper proposes two main contributions. Firstly, we propose a multi-period formulation for 

the design of a relief distribution network where the opening decisions of humanitarian aid 

distribution centers (HADC), and the allocation of demand to the HACDs, are reconsidered at 

every period. In addition, because of the limited amounts of relief available, we allow the demand 
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to be backordered, although only for a limited time or number of periods. A limited backorder of 

demand allows us to provide a more flexible and realistic logistic plan. Secondly, since this 

network must be planned in such a way that it maximizes fairness in the distribution, three 

different objective functions will be proposed and their performance assessed using a set of 

metrics. 

The rest of this article is organized as follows. Section 2 reports the most relevant works in the 

literature. Section 3 presents a discussion on the notion of fairness, and what we expect from a 

fair relief distribution plan. Section 4 states the addressed problem. Section 5 presents three 

different mathematical formulations for fair distribution network design and operations. Section 6 

presents numerical experiments, while Section 7 concludes this work and suggests research 

perspectives. 

2. Fair relief distribution in humanitarian logistics 

Relief distribution logistics (also called post disaster humanitarian logistics) have received 

increasing attention in recent years. For instance, in their review, Anaya-Arenas et al. (2014) 

reported 83 articles, from which 76 were published after 2004. However, the most recent works 

claim that despite of the important contributions made up to date, additional efforts must be made 

in order to truly understand the complexity of relief distribution and capturing the challenges of 

disaster response in optimization models.  

One of these challenges is to capture the variety of managers’ objectives. According to Anaya-

Arenas et al. (2014)’s review of the existing literature, 50% of the relief distribution literature 

focuses on cost minimization. However, the acknowledgment of saving lives as the ultimate 

purpose of relief distribution motivates the proposition of different objectives as satisfaction of 
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demand (20% of the literature) or rapidity of the response (20%). To the best of our knowledge, 

only 10% of the literature on relief distribution networks has considered the fairness concept, and 

it is almost exclusively done from a routing problems’ perspective. For instance, Tzeng et al. 

(2007) proposed a multi-objective optimization problem for a transportation problem. Fairness of 

distribution is the third objective, after cost and rapidity, and it is sought by maximizing the 

minimum satisfaction level among clients. Suzuki (2012) used a similar approach. Lin et al. 

(2011) also proposed a transportation problem for relief distribution with three different 

objectives, and it is pursued by the minimization of the maximum gap of the unsatisfied demand. 

Vitoriano et al. (2010; 2009) proposed a multi-criteria optimization model as well, where fairness 

is sought by minimizing the deviation of normalized unsatisfied demands. The model considered 

both costs and routes’ reliability. Finally, Huang et al. (2012) presented three different ways to 

measure what they call equity. The first approach computed a deviation measure like the one 

used in Lin et al. (2011) and Tzeng et al. (2007). The second one measured the standard deviation 

of the demand satisfaction using a non-linear formulation. The third approach used a piecewise-

linear function to penalize inequity. They tested the three approaches on a set of routing instances 

and compared their efficiency. Only two contributions on the relief distribution network design 

literature included the fairness objective. Lin et al. (2012) included a penalty cost for unfairness 

in service in its cost minimization objective function to design temporal depots in the affected-

area, and Yushimito et al. (2012) used an economic function including social cost. As we can see, 

the use of fairness objectives is still spare, and the most common approach for it is a deviation 

minimization. However, we will show how other cost functions can indeed be more efficient, as 

it was presented by Huang et al. (2012) and Holguín-Veras et al. (2013). 
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Holguín-Veras et al. (2013) is one of the few works to underline the need for objective functions 

to represent the real challenge of post-disaster humanitarian logistic models. They discussed how 

social costs must be included in the objective function, in addition to the logistics cost. To do it, a 

monotonic, non-linear and convex cost function, in respect to the deprivation time, is proposed to 

estimate the human suffering caused by the supplies’ deficit of goods or services to a community 

in the aftermath of a disaster. Their contribution was later extended in Pérez-Rodríguez and 

Holguín-Veras (2015) were this proposition was applied for a routing and inventory allocation 

problem. Through their analysis, they underlined the opportunity cost linked to the satisfaction of 

clients’ demand and the need for multi-period models that account for the temporal effect of 

demand’s dissatisfaction. These two aspects are highly important for the development of a fair 

distribution chain and are therefore captured in our proposition.  

Although several objectives are pursued when designing and operating a relief distribution 

network, the fairness objective is the major focus of our work. This is due to its significance and 

rareness, which also makes this principle the hardest one to define and measure. The next section 

discusses fairness and how to apply and measure it in a relief distribution network design.  

3. What should be expected and how to measure fairness in relief 

distribution? 

Relief distribution decisions need to be anchored in the principle of fairness and justice. The 

principle of justice is based on how each person has an inviolability founded on justice that even 

the welfare of society as a whole cannot override (Rawls 2009). In the context of goods or relief 

distribution, several aspects need to be observed. First, in terms of demand satisfaction, equity 

should be pursued. The term equity implies that everyone’s demand will be satisfied to the same 
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proportion, according to their needs. Since each point of demand (PoD) may require a different 

amount of help, equity should be measured as a percentage of satisfied demand or, alternatively, 

as a percentage of the demand’s shortage. Furthermore, this idea of equity in demand satisfaction 

(or dissatisfaction) needs to be refined in a dynamic, multiperiod context. What we mean by this 

is that, even if all the PoDs have the same percentage of demand satisfaction at the end of the 

planning horizon, the way in which they receive relief during the planning horizon is of 

paramount importance. Clearly, a fair relief distribution should ensure that every PoD maintains a 

supply level as close as possible, not only to its total needs, but to its needs at each period. It 

follows that eventual shortages should be “distributed” in a fair manner among the PoD and, 

whenever there is a shortage at a given PoD, it should be “compensated” as soon as possible. 

Finally, response time should be, in the best possible way, the same for every PoD, and this 

interest is beyond a distance minimization objective. Of course, geography and population 

distribution make this goal very difficult to attain, but a fairness’s perception can be reinforced by 

ensuring that every PoD can be supplied in less than a given time by at least one open HADC. 

The next subsection discusses how to assess the fairness of a given distribution plan.  

 Fairness metrics  3.1.

Beamon and Balcik (2008) developed a complete framework for performance measurement 

inspired by commercial supply chains. They suggested that a good relief distribution network 

needs to achieve a high performance in efficiency, effectiveness and flexibility. They recognised 

the need of fairness, but they did not specify any indicator or proxy related to it.  

We believe that in a multiperiod context, fairness needs to be achieved within the same period, 

and across periods. With fairness within periods we aim at minimizing the differences on the 
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percentage of demand satisfaction between PoDs in a given period. Consequently, if there is a 

shortness at a given period 𝑡, it is preferred to deliver to each customer an equal fraction of their 

demand rather than fully satisfy some PoDs while leaving others suffering important shortages. 

On the other hand, fairness across periods refers to how the distribution plan balances eventual 

shortages by “rationing” the available supplies among the PoDs during the planning horizon. In 

other words, it might be preferable to deliver PoDs with a portion of their demand, rather than to 

fully satisfy demand in a period and fully unsatisfying it in another. In the following, we name 

the fairness within periods as “equity” and fairness across periods as “stability”. Aiming at 

quantifying the fairness of a given distribution plan, we define four measures on the differences 

in shortage among the deserved PoDs. These measures are based on the range and the dispersion 

and specifically concern equity and stability. 

Equity and stability as ranges in proportion of demand shortage 

Let uzt be the shortage (in percentage) of PoD z at period t. We define the two following range-

based measures: 

𝑅1
̅̅ ̅ =  

∑ (max𝑧{𝑢𝑧𝑡}− min𝑧{𝑢𝑧𝑡})𝑡 ∈𝑇

|𝑇|
  and 𝑅2

̅̅ ̅ =  
∑ (max𝑡{𝑢𝑧𝑡}− min𝑡{𝑢𝑧𝑡})𝑧∈𝑍

|𝑍|
  

where T refers to the set of periods in the planning horizon and Z to the set of PoDs. Range 𝑅1
̅̅ ̅ 

computes the average, over all periods, of the demand shortage ranges of PoDs for each period. 

Alternatively, range 𝑅2
̅̅ ̅ computes the average, over all PoDs, of the range of each PoD shortage 

over all periods. Therefore, whereas a small value in 𝑅1
̅̅ ̅ shows that all the PoDs are similarly 

satisfied at each period, a small value of 𝑅2
̅̅ ̅ testifies that, on average, PoDs have received a 

relatively stable satisfaction of demand. 
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Equity and stability in terms of global dispersion  

Variance and standard deviation are measures used to quantify the dispersion of a set of data 

around its average value. Let us define 𝑢.. as the global average of the demand shortage over all 

PoDs and all periods (in percentage), and 𝜎2
𝑔𝑙𝑜𝑏𝑎𝑙 be the shortage’s global variance over all 

PoDs and periods computed as:  

𝜎2
𝑔𝑙𝑜𝑏𝑎𝑙 =  

∑ ∑ (𝑢𝑧𝑡 − 𝑢∙∙)
2

𝑧 ∈𝑍𝑡 ∈𝑇

|𝑇| × |𝑍| − 1
 

The following paragraphs show how a classic analysis of variance allows us to identify the 

components of equity (within a period) and stability (across periods) in the relief distribution 

decisions. The numerator of 𝜎2
𝑔𝑙𝑜𝑏𝑎𝑙 is a Total Sum of Squares (TSS) of the deviations of the 

shortages’ values from their average value. Taking periods as a main factor, TSS can be 

decomposed in two independent terms: Sum of Squares Within periods (𝑆𝑆𝑊𝑇) and Between 

periods (𝑆𝑆𝐵𝑇). This decomposition let us quantify how much of the global dispersion is due to 

the variability inside (within) the periods and how much is due to the variability of distribution 

decisions between the periods. More precisely,  

∑ ∑ (𝑢𝑧𝑡 −  𝑢∙∙)
2

𝑧 ∈𝑍𝑡 ∈𝑇 = 𝑇𝑆𝑆 = 𝑆𝑆𝑊𝑇 + 𝑆𝑆𝐵𝑇  

with: 

𝑆𝑆𝑊𝑇 = ∑ ∑ (𝑢𝑧𝑡 − 𝑢∙𝑡)2
𝑧 ∈𝑍𝑡 ∈𝑇   and 𝑆𝑆𝐵𝑇 = |𝑍| ∑ (𝑢∙𝑡 −  𝑢∙∙)

2
𝑡 ∈𝑇  , 

where 𝑢∙𝑡 is the average over all PoD’s of the shortage percentage for period t (i.e. 𝑢∙𝑡 =

 ∑ 𝑢𝑧𝑡𝑧 ∈𝑍   |𝑍|⁄ ). 𝑆𝑆𝑊𝑇 measures in the planning horizon if, period by period, the PoDs are all 
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similarly satisfied; therefore, it is the basic component of equity among PoDs. On his side, 𝑆𝑆𝐵𝑇 

shows the dispersion of the average demand shortage per period around the global mean value 

(𝑢..). Therefore, 𝑆𝑆𝐵𝑇 is related to the stability of the distribution decisions in time (all PoDs 

combined). We believe that 𝑆𝑆𝐵𝑇 is a good measurement of how the distribution decisions are 

able to “smooth” the supply variations in the planning horizon. 

Since global variance (𝜎2
𝑔𝑙𝑜𝑏𝑎𝑙) is computed by dividing TSS by its degrees of freedom (|𝑇| ×

|𝑍| − 1), one can find the mean value of each component by dividing it by its respective degree 

of freedom. Therefore, and based in the previous decomposition analysis, it is possible to define 

two dispersion measures, named 𝑊𝑇̅̅ ̅̅ ̅, 𝐵𝑇̅̅ ̅̅ , as follows: 

𝑊𝑇̅̅ ̅̅ ̅ =
𝑆𝑆𝑊𝑇

|𝑇| × (|𝑍| − 1)
 and 𝐵𝑇̅̅ ̅̅ =

𝑆𝑆𝐵𝑇

|𝑇| − 1
 

It is worth mentioning that, although the variance decomposition presented in the previous 

paragraphs uses periods as main factor, a similar decomposition could have been done using the 

PoDs as the main factor. Indeed, doing so, the decomposition exercise would have led to two 

alternative dispersion measures on stability (𝑊𝑍̅̅ ̅̅ ̅) and equity (𝐵𝑍̅̅ ̅̅ ) : 

𝑊𝑍̅̅ ̅̅ ̅ =
∑ ∑ (𝑢𝑧𝑡 −  𝑢𝑧∙)

2
𝑧 ∈𝑍𝑡 ∈𝑇

|𝑍| × (|𝑇| − 1)
 and 𝐵𝑍̅̅ ̅̅ =

|𝑇| ∑ (𝑢𝑧∙ −  𝑢∙∙)
2

𝑡 ∈𝑇

|𝑍| − 1
 

4. Problem definition and formulations 

This section defines the considered distribution context and proposes three different mathematical 

formulations that aimed tackling explicitly the notion of fairness in the satisfaction of the PoDs’ 

demand. We consider a multi period planning horizon composed of 𝑡 ∈ 𝑇 periods. The network 
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includes three types of nodes: the outside suppliers 𝑠 ∈ 𝑆, the potential HADCs 𝑙 ∈ 𝐿, and the 

PoDs 𝑧 ∈ 𝑍. The exact location of all the nodes is known, and the transportation time between 

each two nodes 𝑖 and 𝑗 is denoted 𝑐𝑖𝑗. We consider a set of different products’ families or relief’s 

kits, named in the following humanitarian functions 𝑓 ∈ 𝐹 such as survival (e.g., meals, water), 

safety, medical, technical, etc. (Rekik et al, 2013). We assume that each PoD 𝑧 has a given 

demand 𝑑𝑧𝑓𝑡 for each particular function 𝑓 and period 𝑡, expressed in number of pallets or any 

other standard measure.  

If a PoD does not receive its complete demand for a given period, we assume that it can be 

backordered and fulfilled within the next period. If the backordered demand is not delivered 

during the next period, this demand is considered lost. We have fixed the limit of backordered 

demand to one period, considering that compensating demand after more than one period can be 

too late and cause as much damage as if demand is never delivered. Evidently, this can be 

adjusted accordingly to the time’s discretization used and the needs of the crisis managers. Please 

notice that the formulation can be easily extended to consider two periods of backorder or more. 

On the other side, allowing backorders gives flexibility to managers, but it must be avoided 

whenever possible. To reflect this, we establish a penalty cost 𝛽1𝑓 if the demand for a function 𝑓 

is delayed by one period, and 𝛽2𝑓 if demand is lost, with 𝛽2𝑓 ≫ 𝛽1𝑓. 

Each HADC 𝑙 has a specific global capacity limit by period (𝐺𝑙𝑜𝑏𝑙𝑡) and a capacity limit by 

function (𝐶𝑎𝑝𝐷𝑙𝑓𝑡), also by period. This capacity is expressed in number of pallets. On the other 

hand, suppliers’ capacity is also limited to a number of pallets for each function at each period 

(𝐶𝑎𝑝𝑆𝑠𝑓𝑡). Finally, each HADC needs a specific number of professionals (𝑛𝑙) to operate at its 

full capacity. However, there is a restriction on the total number of personnel 𝑁𝑡 available at each 
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period 𝑡, which in fact limits the total number of HADC to open. Also, the opening of an HADC 

requires some setting-up activities, decreasing in practice the center’s available operation time for 

the period. We therefore assume that, during the period when a center is open, its capacity of 

incoming and outgoing flow is reduced by a factor α < 1. Contrariwise, a center can be closed at 

any period without any additional cost. 

The transportation of relief (from suppliers to HADCs and finally from HADCs to PoDs) is 

assumed to be done by truckloads of capacity 𝑃 (same vehicle type). A transportation capacity 

limit is established for both the number of trips between a supplier 𝑠 and a center 𝑙 (𝑉𝑠𝑠𝑙), as well 

as the number of trips between a pair of HADC 𝑙 and PoD 𝑧 (𝑉𝑑𝑙𝑧) at any period. 

The proposed optimization models seek to define a relief distribution network focusing in three 

primary aspects. First, we seek to minimize the demand shortage while maximizing fairness. The 

secondary objective (efficiency) is achieved by minimizing the total travel time, affecting directly 

the allocation decisions. Lastly, rapidity in distribution is not included in the objective function, 

but assured using maximum access time constraints for the supply (τ1) and the distribution (τ2). 

In the following, we introduce additional notation and then we present common constraints for 

the three models. Finally, each of the alternative objective functions are proposed. Notice that all 

the quantities as well as capacities are expressed in pallets, but they can be expressed using any 

other standard measure. 

Sets 

𝑆𝑙 Set of suppliers within the maximum distance of HADC 𝑙 (𝑠 ∈ 𝑆𝑙 ∶  𝑐𝑠𝑙 ≤  𝜏1); 

𝐿𝑠 Set of HADCs that are within the maximum distance of supplier 𝑠 (𝑙 ∈ 𝐿𝑠 ∶ 𝑐𝑠𝑙 ≤  𝜏1); 

𝐿𝑧 Set of HADCs that are within the maximum distance of PoD 𝑧 ( 𝑙 ∈ 𝐿𝑧 : 𝑐𝑙𝑧 ≤  𝜏2); 

Models for a Fair Humanitarian Relief Distribution

10 CIRRELT-2016-11



 

 

𝑍𝑙 Set of PoDs that are within the maximum distance of HADC 𝑙 (𝑧 ∈ 𝑍𝑙 ∶  𝑐𝑙𝑧 ≤  𝜏2); 

Decisions variables  

𝑥𝑡𝑙 binary variable equal to 1 if the HADC 𝑙 is open at period 𝑡, zero otherwise; 

𝑦𝑡𝑙 binary variable equal to 1 if the HADC 𝑙 is operating at period 𝑡, zero otherwise; 

𝑄𝑠𝑠𝑙𝑓𝑡 quantity of function 𝑓 sent from supplier 𝑠 to HADC 𝑙 at the beginning of period 𝑡; 

𝑄𝑑𝑙𝑧𝑓𝑡 quantity of function 𝑓 sent from HADC 𝑙 ∈ 𝐿𝑧 to PoD 𝑧 ∈ 𝑍 during period 𝑡; 

𝑆𝑧𝑓𝑡,𝑡+1
−  quantity of function 𝑓 not delivered at PoD 𝑧 during period 𝑡, scheduled to be delivered 

at period t + 1; 

𝑆𝑧𝑓𝑡,𝑡+2
−  quantity of function 𝑓 not delivered at PoD 𝑧 during period 𝑡, and that will not be 

delivered at the end of period 𝑡 +  1, so it is counted as lost demand; 

𝐼𝑙𝑓𝑡 inventory at HADC 𝑙 of function 𝑓 at the end of period 𝑡;  

 Common constraints  4.1.

The following set of constraints defines the general framework of the described system (as the 

distribution and flow dynamics) and the basic restrictions of the resources (capacity limits). 

These constraints are common to the three proposed models. 

𝑆𝑧𝑓1,2
− + 𝑆𝑧𝑓1,3

− + ∑ 𝑄𝑑𝑙𝑧𝑓1𝑙∈𝐿𝑧
= 𝑑𝑧𝑓1  ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹 (1) 

𝑆𝑧𝑓𝑡,𝑡+1
− + 𝑆𝑧𝑓𝑡,𝑡+2

− + ∑ 𝑄𝑑𝑙𝑧𝑓𝑡𝑙∈𝐿𝑧
= 𝑑𝑧𝑓𝑡 + 𝑆𝑧𝑓𝑡−1,𝑡

−   ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 2, … 𝑇 (2) 

𝑆𝑧𝑓𝑡,𝑡+1
− + 𝑆𝑧𝑓𝑡,𝑡+2

−  ≤  𝑑𝑧𝑓𝑡 ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (3) 

∑ (𝑥𝑙𝑡 + 𝑦𝑙𝑡)𝑙 ∈𝐿𝑧
≥ 1  ∀ 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇 (4) 

∑ 𝑄𝑠𝑠𝑙𝑓𝑡𝑙∈𝐿𝑠
≤  𝐶𝑎𝑝𝑆𝑠𝑓𝑡  ∀ 𝑠 ∈ 𝑆, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (5) 

𝐼𝑙𝑓0 = 0 ∀ 𝑙 ∈ 𝐿, 𝑓 ∈ 𝐹 (6) 
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𝐼𝑙𝑓𝑡 = 𝐼𝑙𝑓𝑡−1 + ∑ 𝑄𝑠𝑠𝑙𝑓𝑡𝑠∈𝑆𝑙
− ∑ 𝑄𝑑𝑙𝑧𝑓𝑡𝑧∈𝑍𝑙

  ∀ 𝑙 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (7) 

∑ 𝐼𝑙𝑓𝑡
𝐹
𝑓 ≤  𝐺𝑙𝑜𝑏𝑙𝑡(𝑥𝑙𝑡 + 𝑦𝑙𝑡)  ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (8) 

𝐼𝑙𝑓𝑡 ≤  𝐶𝑎𝑝𝐷𝑙𝑓𝑡 ∀ 𝑙 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (9) 

∑ 𝑄𝑠𝑠𝑙𝑓𝑡
𝐹
𝑓

𝑃
≤ 𝑉𝑠𝑠𝑙𝑡(𝛼𝑥𝑙𝑡 + 𝑦𝑙𝑡)  ∀ 𝑠 ∈ 𝑆𝑙, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (10) 

∑ 𝑄𝑑𝑙𝑧𝑓𝑡
𝐹
𝑓

𝑃
 ≤  𝑉𝑑𝑙𝑧𝑡(𝛼𝑥𝑙𝑡 + 𝑦𝑙𝑡)  ∀ 𝑧 ∈ 𝑍𝑙 , 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (11) 

∑ 𝑛𝑙(𝑥𝑙𝑡 + 𝑦𝑙𝑡)𝐿
𝑙 ≤ 𝑁𝑡  ∀ 𝑡 ∈ 𝑇 (12) 

𝑥𝑙𝑡 + 𝑦𝑙𝑡 ≤ 1 ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (13) 

𝑦𝑙𝑡 ≤ 𝑥𝑙𝑡−1 + 𝑦𝑙𝑡−1 ∀ 𝑙 ∈ 𝐿, 𝑡 = 2 … 𝑇 (14) 

𝑦𝑙𝑡−1 + 𝑥𝑙𝑡 ≤ 1 ∀ 𝑙 ∈ 𝐿, 𝑡 = 2 … 𝑇 (15) 

𝑥𝑙𝑡−1 + 𝑥𝑙𝑡 ≤ 1 ∀ 𝑙 ∈ 𝐿, 𝑡 = 2 … 𝑇 (16) 

𝑥𝑙𝑡, 𝑦𝑙𝑡 =  {0,1} ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (17) 

𝑆𝑧𝑓𝑡,𝑡+1
− , 𝑆𝑧𝑓𝑡,𝑡+2

− , 𝑄𝑠𝑙𝑓𝑡, 𝑄𝑙𝑧𝑓𝑡, 𝐼𝑙𝑓𝑡, ≥ 0 ∀ 𝑠 ∈ 𝑆𝑙 𝑧 ∈ 𝑍𝑙 , 𝑙 ∈ 𝐿, 𝑓 ∈ 𝐹,   

  𝑡 ∈ 𝑇 

(18) 

Constraints set (1) defines the quantity of the humanitarian function 𝑓 not delivered to PoD 𝑧 at 

period 1, which are scheduled to be delivered at period 2 or will be considered as lost. This 

equation is generalized in constraints (2) for the other periods. Constraints (3) limit the quantity 

that can be backordered (or lost) for a given period to the demand of the period. These constraints 

also assure that backordered demand is delivered during the period where it is expected. 

Constraints (4) require that an active HADC (opened or already in operation) within the covering 

distance of each PoD must be open at every period. Constraints (5) state that the total flow of a 

given function sent to the HADCs from a given supplier 𝑠 at period 𝑡 must respect the supplier’s 

Models for a Fair Humanitarian Relief Distribution

12 CIRRELT-2016-11



 

 

capacity. Constraints (6) and (7) stablish the balance of flow to define the inventory levels at each 

center 𝑙, at each period 𝑡 and for each function 𝑓. This inventory level has to respect the total 

capacity limit of every HADC (8), as well as the capacity limit by function (9), at every period. 

Constraints (10) and (11) define the number of loads that will traverse an arc (𝑠, 𝑙) and (𝑙, 𝑧), 

respectively, at period 𝑡 considering that each trip can carry 𝑃 pallets, and state that the total 

number of trips, from suppliers to HADCs and from HADCs to PoDs, needs to respect the 

imposed limits. They also consider that the capacity of a center 𝑙 is reduced by α at its opening 

period. Finally, constraints (12) establish the available staff’s limit at every period. Constraints 

(13) to (16) link the opening and the operation variables for every HADC at every period. They 

ensure that a HADC cannot be operating and opened at the same period (constraint 13) and if it is 

operating a certain period 𝑡, it is because it was already opened or operating (constraint 14). 

Constraints 15 states that in order to open a HADC in a period 𝑡, it has to be closed (not 

operating) in the previous period. Finally, constraints (16) state that a HADC cannot be opened 

for two periods in a row. These last two constraints are only useful in the specific case where the 

global capacity is greater than the demand; otherwise they are redundant with constraints (10) 

and (11).   

 Fair distribution modeling approaches 4.2.

As mentioned before, among the variety of objectives that can be pursued in the design of relief 

distribution networks, this paper seeks to minimize the percentage of unsatisfied demand with a 

major focus on fairness. We therefore present three objective functions to seek a fair relief 

distribution. In addition we include an efficiency objective by minimizing the total travel time 

seeking to guide the model to make smart decisions in the use of resources. Thus, we propose 

three different multi-criteria objective functions to be minimized using weighted-sum 
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optimization method. The details of each objective function and the additional constraints 

required for each model are presented in the following. 

4.2.1.  M1: Minimization of the penalty associated to the total unsatisfied demand 

The first model is one of the most popular in relief distribution. It concentrates in minimizing the 

penalty due to the unsatisfied demand. However, this approach has been adapted to account for 

backordered and lost demand. Finally, it includes the efficiency objective of minimizing total 

travel time. To present this three objectives in a single objective function, each term 𝑖 is affected 

by a penalty factor δ𝑖. Let 𝑢𝑧𝑓𝑡 be the percentage of unsatisfied demand of humanitarian function 

𝑓 at PoD 𝑧 in period 𝑡, if any. We define Obj1 (19) as the penalty cost for the percentage of 

unsatisfied demand penalized by factor δ1; Obj2 (20) is the penalty cost of backordered and lost 

demand penalized by factor δ2; and Obj3 (21) is the cost associated with the number of trips 

multiplied by their distance and penalized by factor δ3. Each objective is formulated as follows:  

𝑂𝑏𝑗1 = 𝛿1(∑ ∑ ∑ 𝑢𝑧𝑓𝑡𝑓 ∈𝐹𝑧∈𝑍 𝑡 ∈ 𝑇 )  (19) 

𝑂𝑏𝑗2 = 𝛿2 (∑ ∑ ∑ 𝛽1𝑓

𝑆𝑧𝑓𝑡,𝑡+1
−

𝑑𝑧𝑓𝑡
𝑓 ∈𝐹𝑧∈𝑍 𝑡 ∈ 𝑇 +  ∑ ∑ ∑ 𝛽2𝑓

𝑆𝑧𝑓𝑡,𝑡+2
−

𝑑𝑧𝑓𝑡
𝑓 ∈𝐹𝑧∈𝑍 𝑡 ∈ 𝑇  )  

(20) 

𝑂𝑏𝑗3 = 𝛿3 (∑ ∑ ∑ 𝑐𝑠𝑙

∑ 𝑄𝑠𝑠𝑙𝑓𝑡
𝐹
𝑓

𝑃𝑙 ∈𝐿𝑠 ∈ 𝑆 𝑡 ∈ 𝑇 + ∑ ∑ ∑ 𝑐𝑙𝑧

∑ 𝑄𝑑𝑙𝑧𝑓𝑡
𝐹
𝑓

𝑃𝑧 ∈ 𝑍𝑙 ∈ 𝐿 𝑡 ∈ 𝑇 )  
(21) 

 

Model 1 (M1) is then formulated as: 

Min 𝑂𝑏𝑗1 + 𝑂𝑏𝑗2 + 𝑂𝑏𝑗3  (22) 

subject to: 

𝑢𝑧𝑓𝑡 ≥ 1 −
∑ 𝑄𝑑𝑙𝑧𝑓𝑡𝑙∈𝐿𝑧

𝑑𝑧𝑓𝑡
  ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇 (23) 

𝑢𝑧𝑓𝑡 ∈  [0,1]  ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (24) 

in addition to constraints (1) to (18) . 
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4.2.2. M2: Minimization of the maximum gap  

The second approach to maximize distribution fairness is similar to the one in Tzeng (2007) and 

Lin et al. (2011). It consists in minimizing the largest gap among the unsatisfied demand (in 

percentage) for all pairs of zones. We have adapted and extended this approach to take 

backorders into account. Let 𝛾𝑓𝑡,𝑡+1 be the maximum gap between PoDs of the percentage of 

demand of humanitarian function 𝑓 that is backordered at period 𝑡 to be payed at period 𝑡 + 1. 

Likewise, we define 𝛾𝑓𝑡,𝑡+2 as the maximum gap among the PoDs of the percentage of demand of 

humanitarian function 𝑓 that is lost at period 𝑡. We thus define Obj4 (25) as the penalty cost for 

unsatisfied demand’s range, penalized by factor 𝛿4 and we add constraints (27) and (28) to the 

model.  

𝑂𝑏𝑗4 =  𝛿4(∑ ∑ 𝛽1𝑓𝛾𝑓𝑡,𝑡+1 +  𝛽2𝑓𝛾𝑓𝑡,𝑡+2𝑓 ∈𝐹𝑡 ∈ 𝑇 )  (25) 

In this model we include also the minimization of backorders and lost demands and total travel 

time as presented in M1 (𝑂𝑏𝑗2 and 𝑂𝑏𝑗3) 

The second model (M2) can be stated as follows:  

Min 𝑂𝑏𝑗4 + 𝑂𝑏𝑗2 + 𝑂𝑏𝑗3  (26) 

Subject to: 

𝑆𝑖𝑓𝑡,𝑡+1
−

𝑑𝑖𝑓𝑡
−

𝑆𝑗𝑓𝑡,𝑡+1
−

𝑑𝑗𝑓𝑡
≤ 𝛾𝑓𝑡,𝑡+1 ∀ 𝑖, 𝑗 ∈ 𝑍 (𝑖 ≠ 𝑗 ), 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (27) 

𝑆𝑖𝑓𝑡,𝑡+2
−

𝑑𝑖𝑓𝑡
−

𝑆𝑗𝑓𝑡,𝑡+2
−

𝑑𝑗𝑓𝑡
 ≤  𝛾𝑓𝑡,𝑡+2 ∀ 𝑖, 𝑗 ∈ 𝑍 (𝑖 ≠ 𝑗 ), 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (28) 

in addition to constraints (1) to (18). 
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M3: Minimum dissatisfaction cost with a piecewise penalty function 

We were inspired by Holguín-Veras et al. (2013) and Huang et al. (2012), which suggested the 

use of a monotonic, non-linear and convex function to express the cost associated to human 

suffering caused by the deficit of supplies or services in the aftermath of a disaster. Indeed, the 

perception of the people in need is clearly not linear, and higher values of dissatisfaction of 

demand must be penalized more strongly than lower values. In a similar manner, delays of two 

periods in demand’s satisfaction has a larger cost (penalty) than twice the penalty for one period 

delay. We propose to model penalties related to the percentage of unsatisfied demand as an 

exponential function. Using non-linear penalties in the objective function is a way to seek 

fairness. In order to introduce such effect in our model while keeping its linearity, we 

approximated the penalty curve for a given unsatisfied demand percentage of PoD 𝑧, 

humanitarian function 𝑓 at period 𝑡 (i.e. 𝑢𝑧𝑓𝑡) by a piecewise linear function as depicted in Figure 

1, where it can be observed that the penalty increases significantly from one piece 𝑘 to the next 

one. We refer the reader interested in the mathematical aspects of this linearization to Padberg 

(2000).  

 

Figure 1 – Example of a piecewise cost function for 𝒖𝒛𝒇𝒕. 
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In addition, we need to adapt this approach to take backorders and lost demands into account. We 

thus define Obj5 (29) as the piecewise penalty cost for the percentage of total dissatisfaction 

percentage with a penalty weight of 𝛿5 and Obj6 (30) as the piecewise penalty cost for 

backordered and lost demand percentage with a penalty weight of 𝛿6: 

𝑂𝑏𝑗5 = 𝛿5 ∑ ∑ ∑  𝑓 ∈ 𝐹𝑧 ∈ 𝑍 𝑡 ∈ 𝑇 [𝑓(𝑢𝑧𝑓𝑡𝑘)]  (29) 

𝑂𝑏𝑗6 = 𝛿6[𝛽1𝑓𝑓(𝑢𝑧𝑓𝑡,𝑡+1,𝑘) + 𝛽2𝑓𝑓(𝑢𝑧𝑓𝑡,𝑡+2,𝑘)]  (30) 

Then, we include the efficiency objective (𝑂𝑏𝑗3) as is done in M1 and M2. M3 can be stated as 

follows: 

𝑀𝑖𝑛 𝑂𝑏𝑗5 + 𝑂𝑏𝑗6 +  𝑂𝑏𝑗3  (31) 

The first two terms of (31) accounts for the penalty associated to unsatisfied demand (as well as 

the backorder and lost demand) for each product, each PoD and each period. This is given by the 

piecewise linear function defined by the following functions:  

𝑓(𝑢𝑧𝑓𝑡𝑘) = ∑ 𝑐𝑘 𝐾
𝑘=1 𝑢𝑧𝑓𝑡𝑘   (32) 

𝑓(𝑢𝑧𝑓𝑡,𝑡+1,𝑘) = ∑ 𝑐𝑘 𝐾
𝑘=1 𝑢𝑧,𝑓,𝑡,𝑡+1,𝑘   (33) 

𝑓(𝑢𝑧𝑓𝑡,𝑡+2,𝑘) = ∑ 𝑐𝑘 𝐾
𝑘=1 𝑢𝑧,𝑓,𝑡,𝑡+2,𝑘   (34) 

where 𝑢𝑧𝑓𝑡𝑘  ∈ [0, 𝑎𝑘 − 𝑎𝑘−1] is the percentage, of the demand of function 𝑓 not delivered to 

PoD 𝑧 at period 𝑡, that is inside the piece 𝑘, 𝑐𝑘 is the slope of piece 𝑘 (𝑐𝑘 =
𝑏𝑘−𝑏𝑘−1

𝑎𝑘−𝑎𝑘−1
) and (𝑎𝑘, 𝑏𝑘) 

is the breaking point of the piecewise function related to piece 𝑘 (same for backorder and lost 

demand). The last term computes the penalty associated to distribution time as in the previous 

models. Model M3 requires the following constraints (in addition to constraints (1) to (18)): 
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∑ 𝑢𝑧𝑓𝑡𝑘
𝐾
𝑘=1 ≥ 1 −

∑ 𝑄𝑑𝑙𝑧𝑓𝑡𝑙∈𝐿𝑧

𝑑𝑧𝑓𝑡
  ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇 (35) 

∑ 𝑢𝑧,𝑓,𝑡,𝑡+1,𝑘
𝐾
𝑘=1 =

𝑆𝑧𝑓𝑡,𝑡+1
−

𝑑𝑧𝑓𝑡
  ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇 (36) 

∑ 𝑢𝑧,𝑓,𝑡,𝑡+2,𝑘
𝐾
𝑘=1 =

𝑆𝑧𝑓𝑡,𝑡+2
−

𝑑𝑧𝑓𝑡
  ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇 (37) 

𝑢𝑧𝑓𝑡𝑘  ≤ (𝑎𝑘 − 𝑎𝑘−1) ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇, 𝑘 ∈ 𝐾 (38) 

𝑢𝑧𝑓𝑡,𝑡+1,𝑘  ≤ (𝑎𝑘 − 𝑎𝑘−1) ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇, 𝑘 ∈ 𝐾 (39) 

𝑢𝑧𝑓𝑡,𝑡+2,𝑘  ≤ (𝑎𝑘 − 𝑎𝑘−1) ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 = 1, … 𝑇, 𝑘 ∈ 𝐾 (40) 

𝑢𝑧𝑓𝑡𝑘, 𝑢𝑧𝑓𝑡,𝑡+1,𝑘, 𝑢𝑧𝑓𝑡,𝑡+2,𝑘  ∈  [0,1] ∀ 𝑧 ∈ 𝑍, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (41) 

 

Constraints (35) to (37) link the piecewise variables and the demand shortage quantities, 

computing the total percentage of unsatisfied demand, the demand backorder at periods t + 1 and 

t + 2 (lost demand) respectively, divided by demand of period 𝑡. Notice that in the case of a 

compensation (i.e. if backordered demand is paid in a given period 𝑡), the total delivery might be 

higher than the demand of 𝑡. In this case, the dissatisfaction percentage is computed as null. 

Constraints (38) to (40) ensure that variables 𝑢𝑧𝑡𝑓,𝑡+1,𝑘 and 𝑢𝑧𝑡𝑓,𝑡+2,𝑘 cannot be greater that the 

length of interval 𝑘. These constraints, together with the objective function, force the sequential 

use of each piece of the piecewise function for variables 𝑢𝑧𝑓𝑡𝑘, 𝑢𝑧𝑓𝑡,𝑡+1,𝑘, 𝑢𝑧𝑓𝑡,𝑡+2,𝑘 respectively. 

Constraint set (41) define the domain for the piecewise variables. Needless to say, the quality of 

the solutions produced by model M3 depends on the number and the bounds of the pieces used in 

the piecewise function. Therefore, a heuristic procedure is proposed to find a good compromise 

in this matter. This method is presented in the next paragraphs. 
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 Iterative approach to construct the piecewise linear function 4.3.

The number of pieces in the piecewise linear function and their breakpoints have a strong 

influence on the quality of the solution as well as on its solvability. Three considerations must be 

kept in mind when designing the piecewise function. First, a better approximation of the 

exponential function may be obtained by using more pieces, but by doing so the model becomes 

more difficult to solve. Second, since the piecewise cost function is intended to enforce equity by 

trying to group all PoDs in the same dissatisfaction level (the same piece) pieces should be small 

enough. Third, the fairest value of unsatisfied demand depends on the offer/demand ratio of a 

period and its evolution in time. In other words, the proper number and value of each piece can 

differ according to the specific instance. We therefore propose a heuristic procedure to fix the 

number of pieces, the bounds of each one as well as the slope of each piece by an iterative 

approach.  

In the following, we illustrate the algorithm used to set the piecewise function of a particular 

humanitarian function 𝑓 (i.e. considering 𝑢𝑧𝑓𝑡 as 𝑢𝑧𝑡). The heuristic is initialized with only two 

pieces per variable (|𝐾| = 2). We define 𝐴 as the set of breakpoints 𝑎𝑘. 𝐴 is initialized with the 

minimum value of the ratio offer/demand in the horizon (named 𝑚𝑖𝑛𝑡 𝜌𝑡), seeking to fix an upper 

bound of dissatisfaction i.e. 𝐴 =  {0; min𝑡 𝜌𝑡 ;  1}. Then, M3 is solved to optimality and the 

solution produced is analyzed in order to decide if new pieces should be added to the piecewise 

function and the model solved again (next iteration).  

At a given iteration 𝑖, the average unsatisfied demand’s percentage (𝑢..
𝑖) and the global standard 

deviation (𝜎𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  as defined in Section 3.1) of the present solution are computed. If 𝜎𝑔𝑙𝑜𝑏𝑎𝑙

𝑖  is 

greater than the standard deviation goal (𝜎𝑤𝑎𝑛𝑡𝑒𝑑 set arbitrary to zero), three new pieces are 
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added around 𝑢..
𝑖, with three new breakpoints added to set 𝐴 as {𝑢..

𝑖 −
𝜎𝑔𝑙𝑜𝑏𝑎𝑙

𝑖

2
;  𝑢..

𝑖 ;  𝑢..
𝑖 +

𝜎𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

2
}. 

Slopes for all the pieces are recalculated. To this end, we set a base penalty value for the first 

piece in the function, and then the slope for each piece is increased by 1.1 times the rate between 

the highest and the lowest demand (i.e. 𝑐𝑘 = 𝑐𝑘−1 × 1.1 
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
 ). After the recalculating the cost 

piecewise function, the model is redefined and solved again. If the new solution results in a 

reduction in 𝜎𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  a new iteration 𝑖 + 1 begins. If no improvement is achieved, the same 

procedure is applied over the backorder and lost demand variables. The procedure is repeated 

until a given stop criterion is met (e.g. maximal number of iterations, or until the improvement 

obtained with current iteration is not significant or null). At the end, the last solution is retained 

and reported as the solution of M3. The Algorithm 1 allows us to adapt the shape of the piecewise 

function dynamically.  

Algorithm 1 – Procedure to construct our piecewise function. 

1. Initialize: Set |K| = 2 with 𝐴 =  {0; min𝑡 𝜌𝑡 ;  1}, 𝜎𝑔𝑙𝑜𝑏𝑎𝑙
0 = ∞; 𝑖 = 0 and maxIter = 5. 

2. Set 𝑖 = 𝑖 + 1, 𝑠 ← MIP Solution to optimality using 𝐴 as bounds, estimate 𝜎𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  and 𝑢..𝑖

 

3. If 𝜎𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 >  𝜎𝑤𝑎𝑛𝑡𝑒𝑑 and 𝜎𝑔𝑙𝑜𝑏𝑎𝑙

𝑖 <  𝜎𝑔𝑙𝑜𝑏𝑎𝑙
𝑖−1 then  

Go to step 4 

else  

Go to step 6. 

4. Estimate breakpoints of three new pieces:  

4.1. Fix breakpoint = 𝑢..𝑖
−  𝜎𝑔𝑙𝑜𝑏𝑎𝑙

𝑖 2⁄  

4.2. Fix breakpoint = 𝑢..𝑖
 

4.3. Fix breakpoint = 𝑢..𝑖
+  𝜎𝑔𝑙𝑜𝑏𝑎𝑙

𝑖 2⁄  

5. If the new bounds defined do not exist in 𝐴 and 𝑖 ≤ 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 , then  

5.1 add the bounds to 𝐴  

5.2 go to step 2;  
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else  

Go to step 6. 

6. Return 𝑠  

5. Numerical experiments  

This section seeks to examine and to analyse, through numerical experiments, the behaviour of 

the three different modeling approaches for a fair relief distribution over different scenarios.  

 Problem generation and demand scenarios 5.1.

In order to test the models, a flexible instance generator was designed to define and create a large 

variety of test scenarios. All the parameters specified in the following paragraphs can be adapted 

to the needs of a particular problem. The size of an instance is defined by the cardinality of the 

following sets: PoDs (|Z|), HADCs (|L|), suppliers (|S|), humanitarian functions (|F|), and the 

number of periods in the planning horizon (|T|). A problem is defined over a total area (TA) of 

[1000 × 900], inside of which we define an affected area (AA) of [600 × 500]. The PoDs’ and 

HADCs’ location is randomly generated inside the AA, and the set of suppliers inside the TA, but 

outside the AA. The demand for each PoD at the first period is randomly generated in the range 

of [20;70] for every humanitarian function. The capacity of any HADC 𝑙 is set at 60% of the total 

demand (𝐶𝑎𝑝𝐷𝑙𝑓𝑡 = 0.6 ∑ 𝑑𝑧𝑓𝑡𝑧∈𝑍 ). In all our numerical experiments we seek to represent our 

main interest in minimizing the unsatisfied demand percentage and the fairness objective, which 

has been overlooked in the past. Therefore, in M1 we applied δ1 ≫ δ2 ≫ δ3, with δ1 ≅ 100δ2 ≅

1000δ3; for M2 we applied δ4 ≫ δ2 ≫ δ3, with δ4 ≅ 100δ2 ≅ 1000δ3 and for M3 we applied 

δ5 ≫ δ6 ≫ δ3, with δ5 ≅ 100δ6 ≅ 1000δ3. 

Depending on the nature and the gravity of the event (demand) and the availability of resources 

(number and capacity of responders), different supply scenarios can be considered. Following 

that, we defined two basic theoretical scenarios.  
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Scenario 1 - Temporary shortness of resources 

In the first periods in the aftermath of a disaster, the available resources are limited and vary from 

one period to another on the planning horizon. In other words, periods of shortness alternate with 

others showing reasonable offer levels corresponding to the arrival of help from national and 

international organizations. In this case, the backordering of the unsatisfied demand becomes an 

interesting solution available to crisis managers.  

Scenario 2: Extreme shortness of resources 

In this scenario, the available supplies, in addition to the foreseen arrivals of relief, will be 

systematically under the requirements. Crisis managers cannot make a commitment towards 

future deliveries to compensate for the shortness. In this case, crisis managers would try to 

distribute the available relief in the most fair manner.  

We model both of our instances’ scenarios for a particular humanitarian function on an 

offer/demand ratio 𝜌𝑡 for each time periods. In temporary shortness, suppliers have the capacity 

to respond to the demand during the first periods. Then, 𝜌𝑡  drops under one when local supplies 

are finished, and finally external supplies start to arrive (𝜌𝑡 > 1). In extreme shortness, we 

consider that, during the first periods, local capacity is limited (𝜌𝑡 ≈ 0.8), and then it decreases 

until a deep strong (𝜌𝑡 ≈ 0.2). In the following, numerical results produced for temporary 

shortness are presented, followed by those produced for extreme shortness.  

 Models’ performance in a temporary shortness scenario 5.2.

In order to characterize the behavior of the solutions produced by the three models with respect to 

fairness, we will use in this section a set of 10 small instances (two suppliers, three HADCs, six 
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PoDs, one humanitarian function, and eight periods). Instances were solved to optimality with 

Gurobi v.6.0 for M1, M2, and M3. This later is solved several times according to the iterative 

heuristic described in section 4.3.  

We have thoroughly analyzed the solutions produced to the first instance I1 where 𝜌𝑡, the 

offer/demand ratio at each period, is set to {1.0; 1.0; 0.7; 0.5; 0.9; 1.2; 1.2;1.2}. In other words, 

after two periods in which the demand can be satisfied, there is a three periods shortness where 

the offer falls to only 70% and then to 50% of the demand. From period five, offer rises to 90% 

of the demand and, during the last three periods, it exceeds the requirements. Figure 2 shows the 

dissatisfaction percentage at each PoD and period in the solutions produced by M1 (leftmost 

chart), M2 (central chart) and M3 (rightmost chart) and how they behave in very different 

manners.  

 

Figure 2 – Dissatisfaction percentage for instance I1 

 

If we look at how shortage is shared between the PoDs for a given period, M2 and M3 split the 

shortness in a rather homogeneous manner: all the PoDs suffer similar shortages. However, M1 

concentrates shortages only on a few PoDs, and those will experience very high values of 

dissatisfaction. For instance, PoD four’s demand is 100%, 50% and 50% unsatisfied in periods 

two to four. If we now look at how the global shortage is handled in time, we observe that M1 

and M2 simply distribute the available quantities at each period. However, M3 shows a more 
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elaborated behavior, which translates in a smoother distribution. In fact, M3 reserves some 

quantities during periods one and two in order to minimize the impact of the shortage in periods 

three to five. Doing so, the maximum dissatisfaction percentage suffered by any PoD and at any 

period is under 20%, while in M1’s solution some PoDs experience up to 100% of unsatisfied 

demand and in M2’s solution PoDs suffer up to 60%. The piecewise approximation achieves a 

rationalization of resources, resulting in an equitable distribution among PoDs (the same or 

almost the same dissatisfaction level) in a period, and this in a stable matter across time in the 

shortness periods. To sum up, both M2 and M3’s solutions achieve a good “equity” between the 

PoDs, but M3 is also able to achieve an excellent “stability”.  

Let us now see how these behaviors are captured by the proposed numerical indicators. Table 1 

reports the numerical results produced by models M1, M2 and M3. To measure the quality of the 

distribution plan obtained by each model, we report two global measures: the global average 

dissatisfaction percentage (𝑢..), and the global standard deviation (𝜎𝑔𝑙𝑜𝑏𝑎𝑙), which concerns to the 

dispersion in distribution. Then, we also compute mean sum of squares within time (𝑊𝑇̅̅ ̅̅ ̅) and 

between time (𝐵𝑇̅̅ ̅̅ ) and the two range indicators (𝑅1
̅̅ ̅ and 𝑅2

̅̅ ̅). Finally, we calculate the total 

traveled distance (𝐷) and record the total computation time to solve each model in seconds.  

Let us consider first the results produced for I1. We observe that M1 achieves a lower value for 

𝑢.. (i.e. a better global satisfaction). The reason is that, although all the three models distribute the 

same quantity of help, M1 prefers to give slightly higher quantities to PoDs 5 and 6 because the 

marginal impact of a single additional help unit is higher for PoDs with small demand. On the 

other hand, doing so deteriorates the equity and stability objectives. In fact, M1 is clearly 

outperformed by both M2 and M3 for almost all the others indicators (excluding 𝐵𝑇̅̅ ̅̅  in which M2 
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shows the poorest performance). As expected, concerning 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 (global dispersion over all PoDs 

and periods), M2 achieves 18% and is clearly dominated by M3, which produces only 9%. As per 

range indicators, 𝑅1
̅̅ ̅ and 𝑅2

̅̅ ̅ show the poor performance of M1. M2 has a perfect score in terms of 

equity (𝑅1
̅̅ ̅) and M3 shows an almost equal performance, but M3 offers a better performance with 

respect to stability (𝑅2
̅̅ ̅). This particular behaviour is confirmed by the dispersion indicators. 

Indeed, M2 and M3 achieve equal “perfect” scores for equity (𝑊𝑇̅̅ ̅̅ ̅), but M3 offers better results 

for stability (𝐵𝑇̅̅ ̅̅ ). This result is easily explained by the cost function structure of M3. The fact 

that the domain of 𝑢𝑧𝑓𝑡 is discretized in different pieces, with a higher cost function (slope) for 

each successive piece, makes it possible to seek the same (or almost the same) dissatisfaction 

percentage for each period, PoD and humanitarian function.  

We now analyze the rest of the results in Table 1. Lines Avg. show the average values for each 

column over the 10 instances and lines # best counts the number of instances in which the model 

achieved the best value of the indicator. 

Table 1 – Results produced for 10 small instances (temporary shortness). 

 

    𝒖..  𝝈𝒈𝒍𝒐𝒃𝒂𝒍 𝑾𝑻̅̅ ̅̅ ̅ 𝑩𝑻̅̅ ̅̅   𝑹𝟏
̅̅̅̅   𝑹𝟐

̅̅̅̅  D  Sec. 

I1 

M1 9% 26% 6% 12% 37% 50% 364 0.2 

M2 11% 18% 0% 21% 0% 50% 367 0.2 

M3 11% 9% 0% 6% 1% 21% 371 0.6 

Avg. 

M1 9% 24% 5% 11% 35% 45% 1338 0.2 

M2 11% 17% 0% 19% 0% 50% 1329 0.1 

M3 11% 9% 0% 6% 3% 20% 1380 0.6 

# best 

M1 10 0 0 0 0 0 3 4 

M2 0 0 10 0 10 0 7 7 

M3 0 10 10 10 0 10 0 0 

 

Globally speaking, results are quite similar to the ones produced for instance I1. M1 

systematically achieves the best average percentage of unsatisfied demand but at the cost of a 
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very poor equity and stability performances. M2 offers the best performance with regards to 𝑅1
̅̅ ̅, 

but M3’s performance is always very close to M2’s. As expected, M3’s stability performance is 

the best over the three models. To sum up, M2 and M3 achieve equal (perfect) scores for 𝑊𝑇̅̅ ̅̅ ̅ 

(equity indicator), but M3 offers better results when measuring stability (𝐵𝑇̅̅ ̅̅ ).  

Before moving on to the experiments on extreme shortness scenario, let us say few words about 

the efficiency of the produced solutions. Both M1 and M2 produce the shortest total distance for 

three and seven instances. However, M3’s average total distance is only 3.9% higher than M2. 

We can therefore conclude that an equitable and smooth distribution does not cost much in terms 

of transportation efficiency.   

 Models’ performance in an extreme shortness scenario 5.3.

In an extreme shortness scenario, when resources are really scarce, assuring equity in a period 

and across the horizon is of the highest importance, because rationalization is the only way to 

minimize suffering and reduce disparity in the relief given to affected people.  

To validate the behavior of the solutions produced by the three proposed models, we use the same 

set of instances of section 5.2., but this time the offer/demand ratio 𝜌𝑡 per period was set to 

{0.8, 0.8, 0.8, 0.6, 0.6, 0.2, 0.2, 0.6}. In the same way as it was done in previous section, we’ll use 

a single instance (I11) as an illustrative example to carefully explain each model’s behavior.  

Figure 3 shows the dissatisfaction percentage at each PoD and period for this instance. 

 

Figure 3 – Dissatisfaction percentage for instance I11. 
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First, it can be observed that M1 never visits PoD4, which is the POD with the highest demand. 

On the other hand, PoDs 5 and 6, the ones having the lowest demand, are always visited. PoD1 is 

also strongly penalized and is not visited in six out of eight periods. We believe that this 

behaviour should not be tolerated in practice. On its side, M2 shares the amount of relief 

available, assuring equity at every period, but again, it is not able to balance deliveries between 

periods. Hence, all PoDs suffer equivalent penuries, but theirs demand is fully met in some 

periods and totally unsatisfied in others (periods 4 and 7). We consider this as a questionable 

decision because the lowest offer/demand ratio on the horizon is 20%. Indeed, M3 is the only 

formulation that allows for equity among PoDs and stability throughout time, thus reducing the 

maximum non-satisfaction level from 80% to 54% (in period seven) and 42% in the other 

periods. Table 2 reports the performance values achieved by the solutions produced by models 

M1 to M3. 

Table 2 – Results produced for 10 small instances (extreme shortness). 

    𝒖..  𝝈𝒈𝒍𝒐𝒃𝒂𝒍 𝑾𝑻̅̅ ̅̅ ̅ 𝑩𝑻̅̅ ̅̅   𝑹𝟏
̅̅̅̅   𝑹𝟐

̅̅̅̅  D  Sec. 

I11 

M1 35% 46% 24% 8% 100% 33% 204 0.1 

M2 42% 35% 0% 86% 0% 97% 219 0.0 

M3 42% 5% 0% 2% 4% 16% 219 0.4 

Avg. 

M1 33% 46% 24% 4% 100% 22% 824 0.1 

M2 42% 31% 0% 68% 0% 89% 813 0.1 

M3 42% 5% 0% 2% 4% 14% 819 0.6 

# best 

M1 10 0 0 7 0 2 3 4 

M2 0 0 10 0 10 0 6 6 

M3 0 10 10 8 0 8 1 0 

As expected, M1 achieves again the lowest total dissatisfaction value. M3 shows a total deviation 

of only 5% while M1 and M2 produce values of up to 46% and 35%, respectively. Again, M2 

shows a perfect balance for all the PoDs within the same period, and M3’s results are not far. 

Indeed, M3 also achieves a perfect score of 0% for 𝑊𝑇̅̅ ̅̅ ̅ and only 4% for 𝑅1
̅̅ ̅. On the other hand, 
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M3 clearly outperforms both M1 and M2 in terms of distribution stability. We extend our 

analysis to nine more random generated instances. The numerical results are reported in Table 2.  

As in the temporary shortness case, M3 minimizes global deviation and offers the best possible 

equity and stability performances at a negligible increase in the distribution distance.  

 Models’ performance in larger-sized instances 5.4.

We will dedicate the last part of this section to show the models’ performance over a set of 20 

instances with a more realistic size. The objective is to test the models’ capacity to ensure a fair 

distribution over a much larger set of PoDs, and to test, at the same time, the computational effort 

of each model. Following the pattern described in section 5.2 and 5.3, we solve 10 instances for 

temporary shortness and 10 instances for extreme shortness cases. For each scenario we test five 

medium-size instances and five large-size instances. We define as “medium-size” instances with 

a total of 20 PoDs, 10 potential HADCs, six suppliers, one humanitarian function and eight 

periods. Large-size instances have 50 PoDs, 20 HADCs, six suppliers, one function and eight 

periods.  Table 3 and Table 4 summarize the results for the temporary and extreme shortness 

scenarios respectively. In the following, we will concentrate our analysis to models M2 and M3, 

because M1 shows still the poorest performance in most of the indicators. Table 3 and Table 4 

confirm that the models’ behaviors follow the same line observed in the smaller instances. M2 

and M3 achieved almost the same dissatisfaction percentage, but distributed the limited resources 

in a very different way. M3 achieves the best score in average global dispersion of only 9% and 

around 3% for the temporary and extreme shortness cases respectively. Therefore, we can 

observe that increasing the number of PoDs did not have an impact in the quality of the solution. 

M3 can still ensure an equitable distribution among PoDs as M2 does and a much stronger 
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stability in time. For the temporary shortness case, M3 has an 𝑅2
̅̅ ̅ of only 19% vs. 49% for M2, 

while for the extreme shortness case M3 has an 𝑅2
̅̅ ̅ of only 4% vs. 93% and 76% for M2. 

Table 3 – Results produced for larger-sized instances in temporary shortness. 

    𝒖..  𝝈𝒈𝒍𝒐𝒃𝒂𝒍 𝑾𝑻̅̅ ̅̅ ̅ 𝑩𝑻̅̅ ̅̅   𝑹𝟏
̅̅̅̅   𝑹𝟐

̅̅̅̅  D  Sec. 

Avg. over 5 

medium instances 

M1 9% 26% 6% 35% 62% 45% 3590 0.1 

M2 11% 17% 0% 63% 0% 49% 3475 2.3 

M3 11% 9% 0% 18% 3% 19% 4005 1.6 

Avg. over 5  

large instances 

M1 9% 27% 6% 89% 62% 49% 8003 0.3 

M2 11% 16% 0% 143% 0% 49% 7782 35.3 

M3 10% 9% 0% 45% 4% 19% 8840 3.4 

 

Table 4 – Results produced for larger-sized instances in extreme shortness. 

    𝒖..  𝝈𝒈𝒍𝒐𝒃𝒂𝒍 𝑾𝑻̅̅ ̅̅ ̅ 𝑩𝑻̅̅ ̅̅   𝑹𝟏
̅̅̅̅   𝑹𝟐

̅̅̅̅  D  Sec. 

Avg. over 5 

medium instances 

M1 33% 47% 23% 6% 100% 12% 2110 0.1 

M2 43% 30% 0% 205% 0% 93% 2062 2.9 

M3 42% 2% 0% 0% 4% 4% 2069 1.4 

Avg. over 5  

large instances 

M1 33% 47% 22% 1% 100% 4% 4751 0.2 

M2 42% 26% 0% 413% 0% 76% 4657 10.2 

M3 42% 3% 0% 1% 5% 4% 4723 0.9 

 

The numerical values previously reported show their sensibility with respect to the specific type 

of the scenario considered. In the extreme shortness scenario the obtained values tend to be 

higher than in the temporary shortness one. This is related to the variability of the offer/demand 

ratio defining each type of scenario. Finally, let us take a second to analyze the computational 

effort needed to solve larger instances. All the models can be solved to optimality in short time 

(less than a minute in average), even for large instances. However, M2 shows a high variability in 

CPU time, having a lot of trouble to close the optimality gap. For instance, in the temporary 

shortness case (for large instances) M2 takes 35 seconds on average with a standard deviation of 

27 seconds due to extremes values in three out of five instances, while M3 takes 3,4 seconds on 
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average with a standard deviation of only 0,4 seconds. We can conclude that M3 is the modeling 

approach that best suits the different objectives set for the complex problem of relief distribution. 

6. Conclusions and future research 

In this paper we proposed and discussed three different approaches for the design and the 

operation of a relief distribution network. This work is mainly centered in two important 

components that had been overlooked in the past: the fairness principle and the multi-period 

nature of relief distribution. We strongly believe that these major aspects need to be covered in 

response logistics, and they need to be addressed from the beginning of the response plan (the 

network design phase) in order to improve the other logistic tasks (procurement, delivery plans 

and transportation problems). Three important contributions were made in the fair relief 

distribution problem. First of all, a discussion on what can be defined as a fair distribution was 

presented, concluding that in order to obtain fairness, crisis managers should warrant equity in 

distribution within periods, but also, stability in delivery in the best possible way. In addition, we 

considered and modeled shortness by including the possibility of backordered demand. This 

allows crisis managers to gain flexibility in the distribution and seek compensation of unsatisfied 

PoDs on the planning horizon. Secondly, we proposed and adapted five performance indicators to 

measure the two components of fairness. Finally, we proposed and tested three different 

formulations to handle the complex context of relief distribution. These formulations seek mainly 

minimization of unsatisfied demand and effectiveness in distribution, but also two of them 

explicitly include the fairness objective. We compared them in some numerical examples and 

concluded that, M2 achieves a perfect score in equity in distribution in a single period, but is 

unable to maintain a stable distribution on the planning horizon. We proved, on its side, that M3 

accounts for both equity and stability.  
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Several promising research paths are currently being considered. For instance, the extension of 

our proposition to include routing planning, supplying an integral planning tool to CMs in 

response and preparedness of relief distribution. 
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