
 
 
 
 
 
 
 
 
 
 

 
 

 
 

  

Makespan Minimization for a Parallel 
Machine Scheduling Problem with 
Preemption and Job Incompatibility 
 
Simon Thevenin 
Nicolas Zufferey 
Jean-Yves Potvin 
 
 
 

 April 2016 
 
 

 CIRRELT-2016-22 

  



Makespan Minimization for a Parallel Machine Scheduling Problem with 
Preemption and Job Incompatibility 

Simon Thevenin1, Nicolas Zufferey1,2, Jean-Yves Potvin2,3,* 

1 Geneva School of Economics and Management, University of Geneva, UNIMAIL, 40 Boulevard du Pont-
d’Arve, 1211 Geneva 4, Switzerland 

2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 
3 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box 6128, 

Station Centre-Ville, Montréal, Canada H3C 3J7 

Abstract. In this paper, an extension of the graph coloring problem is introduced to model a 

parallel machine scheduling problem with job incompatibility. To get closer to real-world 

applications, where the number of machines is limited and jobs have different processing times, 

each vertex of the graph requires multiple colors and the number of vertices with the same color 

is bounded. In addition, several objectives related to scheduling are considered: makespan, 

number of preemptions, and summation over the jobs’ throughput times. Different solution 

methods are proposed, namely, two greedy heuristics, two tabu search methods and an adaptive 

memory algorithm. The latter uses multiple recombination operators, each one being designed 

for optimizing a subset of objectives. The most appropriate operator is selected dynamically at 

each iteration, depending on its past performance. Experiments show that the proposed 

algorithm is effective and robust, while providing high quality solutions on benchmark instances 

for the graph multi-coloring problem, a simplification of the considered problem. 

Keywords: Graph coloring, scheduling, metaheuristics, tabu search, adaptive memory. 
 
Acknowledgements. Financial support for this work was provided by the Natural Sciences and 

Engineering Research Council of Canada (NSERC). This support is gratefully acknowledged. 

 
Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du CIRRELT et 
n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Jean-Yves.Potvin@cirrelt.ca 
Dépôt légal – Bibliothèque et Archives nationales du Québec 

Bibliothèque et Archives Canada, 2016 

©  Thevenin, Zufferey, Potvin and CIRRELT, 2016 



1 Introduction

The graph coloring problem (GCP ) consists in coloring the vertices of a graph such that no pair of
adjacent vertices has a common color, while minimizing the number of colors. This problem is NP-
hard (Malaguti and Toth, 2010) and has attracted a lot of attention due to its simplicity and its
numerous practical applications, for example, in scheduling (Marx, 2004), frequency assignment
(Aardal et al., 2007) and exam timetabling (Lewis, 2007). This work examines its application to
the scheduling of jobs on parallel machines. The GCP is used to account for pairs of incompatible
jobs that cannot be processed simultaneously because they require a non-sharable resource (e.g.,
tools, operators, etc.). To this end, a so-called conflict graph is created where vertices represent
jobs and edges connect incompatible pairs of jobs. Next, each color corresponds to a time slot
and the total number of used colors corresponds to the makespan (i.e., completion time of all
jobs). This is depicted in Figure 1 for a problem instance with five jobs. The picture on the left
side shows the graph representation, whereas a production schedule is shown on the right side.
The information inside (resp. next to) each vertex is the identifier of the job (resp. its color,
represented as an integer number). Here, jobs a, b and c are mutually incompatible, as well as
jobs c, d, and e.

Figure 1: Graph coloring to model job scheduling on parallel machines

This model is however unrealistic for the following reasons. First, as each vertex requires a
single color, the jobs must have identical processing times (i.e., a single time slot). Second, as there
is no constraint on the number of vertices with the same color, the number of parallel machines is
unlimited. To consider jobs with different processing times, the multi-coloring problem (MGCP )
can be used. In this extension of the GCP , each vertex requires multiple colors. However, as the
colors assigned to a vertex are not necessarily consecutive, preemption can occur (i.e., a job can
be stopped and restarted later), which is usually undesirable in production systems. In addition,
preemption increases the throughput time of the jobs (i.e., the total time spent by each job in the
system). This is undesirable as it contributes to increase the inventory costs. In this work, we
extend the multi-coloring problem by limiting the number of vertices with the same color and by
considering the minimization of multiple objectives, corresponding to the makespan, number of
preemptions and summation of the jobs’ throughput times. A lexicographical ordering of these
three objectives is considered (i.e., each objective is infinitely more important than any lower
level one). This problem is denoted by P .

1

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



As P is an extension of the GCP , it is NP-hard too, and the use of heuristics and metaheuris-
tics is indicated to obtain high quality solutions for instances of realistic size. In this work, we
propose two greedy constructive heuristics, two tabu search methods and an adaptive memory
algorithm. A mixed integer programming formulation is also proposed for solving small instances.
The experiments show that the proposed methods are efficient for solving problem P . In addition,
the adaptive memory algorithm provides high-quality solutions on MCGP benchmark instances,
even if this problem is a simplification of problem P . The development of metaheuristics for lexico-
graphic multi-objective problems is a challenging task because it is difficult to efficiently optimize
lower level objectives without degrading higher level ones. The proposed adaptive memory al-
gorithm addresses this challenge by using different recombination operators and by dynamically
selecting one operator at each iteration depending on its past performance.

The reader interested in additional information about metaheuristics is referred to (Gendreau
and Potvin, 2010) and (Zufferey, 2012). A survey on the graph coloring problem and its extensions
can be found in (Malaguti and Toth, 2010) and (Galinier et al., 2013).

The rest of the paper is organized as follows. Section 2 formally describes problem P , intro-
duces a mixed integer programming model and discusses some practical applications. A literature
review is then presented in Section 3. The greedy heuristics and tabu search methods are pre-
sented in Section 4, whereas our adaptive memory algorithm is described in Section 5. Finally,
Section 6 reports computational results and a conclusion follows. From now on, the graph col-
oring terminology (e.g., vertex, color, edge) and the scheduling terminology (e.g., job, time slot,
incompatibility) will be used interchangeably, depending on the context.

2 Formal description of problem P with scheduling applications

This section provides a formal description of the problem, introduces a mathematical program-
ming formulation and motivates its study for scheduling applications.

2.1 Formal description

Given a graph G(V,E), where V is the vertex set and E is the edge set, problem P consists in
assigning a given number pj of colors to each vertex j of V , where pj is the processing time of
job j. No two adjacent vertices (i, j) in E must have a common color. In addition, no more
than mt vertices can be assigned color t. That is, the size of each color class Ct (i.e., set of
vertices with color t) must not exceed mt. A color t such that |Ct| = mt is said to be saturated.
Three objectives f1, f2 and f3 must be minimized based on a lexicographic ordering, where each
higher level objective is infinitely more important than any lower level objective: f1 is the total
number of used colors (makespan); f2 sums, over all vertices, the number of interruptions in the
sequence of colors assigned to a vertex (number of preemptions); f3 sums, over all vertices, the
range of colors assigned to a vertex, which is the difference between the largest and smallest colors
(throughput time).

A mathematical programming formulation with five different types of variables is given below.

2

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Its aim is to formally state problem P and to allow the computation of optimal solutions for small
instances. Let αj (resp. βj) be the smallest (resp. largest) color assigned to vertex j, with k the
largest color used over all vertices. Let ut = 1 if color t is used and ut = 0 otherwise. Finally,
xit = 1 if vertex i has color t and xit = 0, otherwise. Equation (1) lists the three objectives
to be minimized, where U is an upper bound on the required number of colors, typically set to
∑

j∈V pj . Note that in objective f2, there is an interruption when some color t is assigned to a
vertex, but color t− 1 is not (except for the smallest color assigned to each vertex, therefore n is
subtracted at the end). Dummy variables xj0 are set to 0.

The problem is solved in three steps. First, f1 is minimized while ignoring f2 and f3. Let us
denote by f?

1 the optimal value of f1. Next, the constraint f1 ≤ f?
1 is added to the mathematical

model and f2 is minimized resulting in a value f?
2 for f2. Finally, the constraint f2 ≤ f?

2 is added
and the model is solved for f3, which leads to the optimal solution to problem P .

f1 = k f2 =
∑

j∈V

U
∑

t=1

(

xjt − xj(t−1)

)

− n f3 =
∑

j∈V

(βj − αj) (1)

The constraints in the model are the following. Constraint (2) states that each vertex must
be colored with exactly pj colors. Constraint (3) forbids the assignment of color t to more than
mt vertices. Constraints (4), (5) and (6) establish relationships between the variables xjt, ut, αj ,
βj and k. Constraint (7) computes the value of ut and forbids two adjacent vertices to share the
same color. Finally, the domain constraints are found in (8) and (9). Note that variables αj , βj
and k will be integer in any optimal solution, so there is no need to force them to be integer. The
resulting mixed integer program, which is denoted as MILP , was implemented and solved with
CPLEX 12.5.

U
∑

t=1

xjt = pj j ∈ V (2)

∑

j∈V

xjt ≤ mt 1 ≤ t ≤ U (3)

t·xjt+U ·(1−xjt)≥αj 1 ≤ t ≤ U, j ∈ V (4)

t · xjt ≤ βj 1 ≤ t ≤ U, j ∈ V (5)

k ≥ t · ut 1 ≤ t ≤ U (6)

xit + xjt ≤ ut 1 ≤ t ≤ U, (i, j) ∈ E (7)

xjt, ut ∈ {0, 1} 1 ≤ t ≤ U, j ∈ V (8)

αj , βj , k > 0 j ∈ V (9)

2.2 Scheduling applications

The definition of problem P is motivated from scheduling applications (see (Pinedo, 2008) for a
general reference on scheduling). We provide below some practical insights and motivations about
the features of our problem: incompatible jobs, variable number of parallel machines, preemption
penalties and job’s throughput times.

3

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



As mentioned in (Thevenin, Zufferey, and Potvin, 2014), incompatibilities between jobs arise
when some scarce resources are required for processing the jobs. Examples of such resources
include expensive tools to equip the machines, employees with specific skills, etc. The tooling
constraints are particularly relevant in flexible manufacturing systems (Hertz and Widmer, 1996).
In addition, the authors in (Almeder and Almada-Lobo, 2011) mention three real-world examples
of such scarce resources: syrup tanks in the bottling of soft drinks, testing heads in wafer testing
and employees with specific skills in car production lines. When such resources come in a single
exemplar, or if they have already been pre-assigned, two jobs requiring that common scarce
resource are said to be incompatible. Note that incompatibility constraints have been studied in
different types of production problems, like planning (Pesenti and Ukovich, 2003), assembly line
balancing (Corominas, Pastor, and Plans, 2008) and lot-sizing and scheduling (Persi, Ukovich,
and Pesenti, 2001).

Parallel machines is a typical setting in job scheduling. We assume here that the number
mt of available machines can be different in each time slot t, as one or more machines might be
unavailable during a period of time due to preventive maintenance or to a variable workforce.
The reader is referred to (Ma, Chu, and Zuo, 2010) for a comprehensive survey on scheduling
with machine availability. Clearly, a special case of P is obtained when the number of machines
is a constant (i.e., mt = m for all t).

Preemption might occur when the setup time is negligible when compared to the length of
a time slot. But, generally speaking, preemption is not desirable and should be minimized (Liu
and Cheng, 2002). Another drawback of preemption is the increase in the throughput time of a
job, which is defined as the difference between the end time and the start time of a job. As a
partially-filled job cannot be shipped to a customer, the job must stay on the production floor
until its completion, which increases the work-in-progress inventory costs.

Finally, the lexicographic multi-objective optimization approach proposed here is common
practice, as reported in (Solnon et al., 2008) and (Prats et al., 2010). This approach is very
convenient when an ordering can be established among the objectives, as it is the case for problem
P .

3 Literature review

To the best of our knowledge, problem P has never been studied in the literature. Subsection 3.1
presents some related work, whereas subsection 3.2 reviews the graph multi-coloring and bounded
coloring problems.

3.1 Scheduling with job incompatibility

Scheduling with job incompatibility was considered in different environments and under different
constraints, like precedence constraints (Meuwly, Ries, and Zufferey, 2010), batch scheduling
(Epstein et al., 2009; Halldórsson, 2004; de Werra et al., 2005), multiprocessor task systems
(Giaro, Kubale, and Obszarski, 2009) and project scheduling (Zufferey, Labarthe, and Schindl,

4

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



2012). Here, the literature review will focus on some recent work in parallel machine scheduling
problems, with a bounded number of machines, job incompatibility constraints and different job
processing times (a comprehensive review on parallel machine scheduling can be found in (Cheng
and Sin, 1990)).

In (Even et al., 2009), the authors consider the problem of minimizing the makespan for a
parallel machine scheduling problem with job incompatibility. The authors propose an exact
algorithm for two machines and jobs with a processing time of one or two time units. They show
that the problem is NP-hard when the processing time of a job is allowed to be as large as four time
units. In addition, approximation methods are proposed for some special cases, including dynamic
job arrivals. (Bendraouche and Boudhar, 2012) extend this work by showing that the problem
with two machines and processing times of 1, 2 and 3 time units is NP-hard. They also show that
when release dates are considered, the problem is NP-hard for jobs with processing times of only 1
or 2 time units. A polynomial-time exact method is proposed for a problem defined on a bipartite
agreement graph (which is the complement of a conflict graph) and the same processing time for
all jobs. Finally, some lower bounds and a greedy heuristic are reported for a more general case.
(Lushchakova and Strusevich, 2010) consider two different sets of jobs to be scheduled on two
different machines with incompatibilities between the jobs in each set (bipartite conflict graph).
They propose an exact method running in linear time. (Hong, Sun, and Jou, 2009) describe a
genetic algorithm for a parallel machine scheduling problem with minimization of the makespan.
As each job requires a single mold, the considered incompatibilities exhibit a special structure.

Some of the papers mentioned above, by focusing on very specific problem cases, unveiled
interesting theoretical properties, although of limited applicability. This is to be opposed to our
goal, which is to develop methodologies for a more complex problem which is closer to what is
observed in the real-world.

3.2 Multi-coloring and bounded coloring problems

The MGCP , where multiple colors are assigned to each vertex, has applications in domains like
scheduling (Marx, 2004) and frequency assignment (Aardal et al., 2007). The solution methods
proposed in the literature include exact methods such as branch-and-bound (Xue, 1998) and
branch-and-price with column generation (Mehrotra and Trick, 2007; Gualandi and Malucelli,
2012). The MGCP being NP-hard, metaheuristics are relevant for tackling medium and large
instances. For example, (Lim et al., 2005) introduce a greedy heuristic, a tabu search, and a
squeaky wheel optimization approach; (Satratzemi, 2004) proposes four greedy heuristics; and
(Prestwich, 2008) describes a hybrid method involving local search and constraint programming.

Some recent applications of this problem in production scheduling are the following. The
authors in Halldórsson and Kortsarz (2002) consider parallel machine scheduling with and without
preemption. They study the minimization of two different objectives: the number of used colors
(makespan) and the sum, over all vertices, of the largest color assigned to each vertex (sum
of job completion times). They propose an approximation algorithm and a number of exact
methods for graphs with a particular structure. (Méndez-Dı́az and Zabala, 2010) consider a
graph multi-coloring problem where only a preset number of conflicts is allowed. This situation

5

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



corresponds to a production scheduling environment where conflicting resources can be shared up
to a certain limit. They propose a mathematical programming formulation and a branch-and-cut
method to solve it. (Blöchliger and Zufferey, 2013) model the problem of scheduling jobs in a
parallel machine environment with preemption, incompatibility penalties and assignment costs,
and propose problem-solving methods based on exact methods and metaheuristics. It is worth
noting that minimizing the sum of the completion times in a parallel machine environment with
preemption and job incompatibility can be modeled with a variant of the MGCP , called the sum
multi-coloring problem (Bar-Noy et al., 2000).

To the best of our knowledge, the MGCP has never been considered in a context where a
color cannot be assigned to more than a given number of vertices. However, such constraints
were added to the GCP , resulting in the bounded coloring problem (Baker and Coffman, 1996).
Lower and upper bounds, as well as exact methods running in polynomial time on graphs with
a special structure, are proposed in (Hansen, Hertz, and Kuplinsky, 1993). In fact, most papers
focus on particular classes of graphs, such as interval graphs (Gardi, 2009), permutation graphs
(Bonomo, Mattia, and Oriolo, 2011), permutation and overlap graphs (Demange, Stefano, and
Leroy-Beaulieu, 2008), permutation and comparability graphs (Jansen, 1998) and trees (Jarvis
and Zhou, 2001),

To summarize, this paper extends the literature on multi-coloring by introducing new con-
straints and objectives typically found in scheduling applications, thus reducing the gap between
the scheduling and graph coloring research communities.

4 Greedy heuristics and tabu search methods

In this section, two greedy heuristics, denoted as GRF and GRNF , are first presented in subsec-
tions 4.1 and 4.2. Two tabu search methods, denoted as TSF and TSNF , are then proposed in
subsections 4.3 and 4.4. GRF and TSF are based on a well known strategy in graph coloring
where a feasible solution with a fixed number k of colors is looked for. If successful, the search is
applied again with k − 1 colors. Starting from some upper bound on the number of colors, the
value of k is progressively reduced until no feasible coloring can be found. This is to be opposed to
the search strategy of GRNF and TSNF where the number of colors is free. Based on preliminary
experiments, the best way to combine these methods is described in subsection 4.5.

4.1 Greedy heuristic with fixed k (GRF )

The greedy construction heuristic GRF is an extension of the Dsatur method (Brélaz, 1979).
Here, the vertices are colored one by one with the required number of colors in {1, 2, . . . , k}.

Two metrics are used to select the next vertex to be colored: (1) the saturation degree
Dsat(j) of vertex j, which is the number of colors that cannot be assigned to j (because these
colors are saturated or assigned to adjacent vertices), and (2) the number δ(j) of non-colored
vertices adjacent to j. The selected vertex is the one that maximizes the Dsat metric, with ties
broken by selecting the vertex with maximum δ. The colors are then assigned one by one to the

6

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



selected vertex. At each step, the color t leading to the minimum increase ∆Dsat(t) in the sum
of the saturation degrees over all vertices in the graph is chosen, with ties broken randomly. Two
cases can occur: if there are mt − 1 vertices with color t, this color becomes saturated when it is
assigned to the selected vertex and ∆Dsat(t) is then equal to the number of non-colored vertices;
otherwise, ∆Dsat(t) is equal to the number of vertices, adjacent to the selected vertex, for which
color t was admissible but is not anymore when this color is assigned to the selected vertex.

The method stops when the graph is fully colored or when there is a non-colored vertex j
with a saturation degree larger than k− pj (such a vertex cannot be colored). Note that random
decisions take place in GRF when ties occur in the selection of the next vertex and in the color
assignment. As different runs of the method are likely to produce different solutions, a more
robust method can be obtained by restarting the procedure until some time limit is reached and
by returning the best solution found.

4.2 Greedy heuristic with free k (GRNF )

GRNF differs from GRF in the assignment of colors to each vertex. GRNF simply assigns the pj
smallest colors that are neither used by an adjacent vertex, nor saturated. In addition, since there
is no constraint on the number of colors, the method stops only when all vertices are colored.

4.3 Tabu search with fixed k (TSF )

Tabu search (Glover, 1986) is a local search method where small modifications (called moves) are
performed on the current solution s to obtain new solutions in the so-called neighborhood of s,
denoted by N(s). The best neighbor solution (either improving or not) then becomes the new
current solution for the next iteration. Tabu status are used to prevent cycling by forbidding
some recently performed moves to be undone.

The search space considered in TSF consists of feasible partial colorings of the graph, using
at most k colors. That is, non-colored vertices are allowed. As mentioned in (Malaguti and Toth,
2010), this search space usually leads to the best results for the GCP and its extensions. To
comply with the proposed search space, the first objective had to be modified. Now, the number
of non-colored vertices is minimized (instead of the number of colors). Therefore, the tabu search
is aimed at finding a coloring of the graph with k colors with as few non-colored vertices as
possible, while minimizing f2 and f3. Figure 2 shows a solution for a problem where each vertex
requires two colors and k = 4. In this case, one vertex is not colored because no color in the set
{1, 2, 3, 4} can be assigned to vertex b without creating a conflict.

A move Ms(j) consists in assigning a set C of pj colors (as described in the next paragraph)
to a non-colored vertex j in the current solution s. To be sure that two adjacent vertices do
not share the same color and that the bound mt on the number of vertices with color t (for
every color t) is not exceeded, the solution is repaired as follows. First, all colors are removed
from the vertices adjacent to j with a color in set C. These vertices are said to be uncolored.
Second, if a color t is assigned to more than mt vertices, all colors are removed from one of these

7

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Figure 2: Possible solution in the TSF search space

vertices (randomly selected but different from j). The tabu status forbids removing the colors of
a recently colored vertex for tabF iterations. This parameter was tested in the interval [1, 100]
and was finally set to 10.

The assignment of colors to vertex j depends on its saturation degree. If Dsat(j) > k − pj
then the repair process is unavoidable. In this case, the pj colors are chosen one by one and, at
each step, the color leading to the minimum number of additional uncolored vertices is inserted
in set C. If Dsat(j) ≤ k − pj then it is possible to find pj colors that are not saturated nor used
by any adjacent vertex. These colors are added one by one to set C by selecting at each step the
admissible color t that minimizes the increase of ∆Dsat(t).

All moves Ms(j) are evaluated for every non-colored vertex j in the current solution s, and
the best non-tabu move is performed at each iteration. A survey about this type of moves can
be found in (Zufferey and Vasquez, 2014). In particular, this approach was successfully applied
to the GCP in (Blöchliger and Zufferey, 2008).

4.4 Tabu search with free k (TSNF )

As opposed to TSF , the search space considered in TSNF consists of complete solutions without
any restriction on the number of colors. As shown in Figure 3, a solution can be represented as
a set of color classes, where all vertices in a given class share the same color. In this example, we
have k = 5 with |C5| = 1. The search strategy consists in minimizing the number of vertices with
the largest color k (in the hope of removing this color). The objectives are modified accordingly:
the first objective is to minimize k, the second is to minimize the size of color class Ck, whereas
the third and fourth are the original objectives f2 and f3, respectively.

A move Ms(j, t) consists in removing a vertex j from Ck and adding it to Ct with t < k (i.e.,
j is given a smaller color). The solution is then repaired. Three situations can occur depending
on |Ct| and the set J of vertices in Ct adjacent to j.

1. If J = ∅ and |Ct| ≤ mt (after the addition), then vertex j is successfully added to color
class Ct.

2. If J = ∅ and |Ct| = mt+1 (after the addition), then a vertex in Ct is randomly chosen and
moved to the smallest admissible color class. Note that a new color class can be created,
which increases the value of k.

8

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Figure 3: Representation of a solution as a set of color classes

3. If J 6= ∅, the vertices in J are examined one by one and each vertex is moved from Ct to
the smallest admissible color class (which can also create a new color class).

The tabu status associated with move Ms(j, t) forbids removing vertex j from color class Ct

for tabNF iterations. This parameter was tested in the interval [1, 100] and was finally set to 25.
At each iteration, all non-tabu moves Ms(j, t), j ∈ Ck, t < k, are considered and the best one is
performed at the end.

4.5 A complete tabu search framework (TS)

During preliminary tests (reported in subsection 6.2), we observed that GRF outperforms GRNF

whereas TSNF outperforms TSF . Accordingly, the following tabu search (TS) framework is
proposed:

1. Apply GRNF to find an initial upper bound k0 on the required number of colors. Set
k = k0 − 1.

2. Try to find a feasible solution with k colors using TSF . If a feasible solution is found,
decrement k by one.

3. If 100 consecutive restarts of GRF are performed without decreasing the value of k then go
to step 4, otherwise return to step 2.

4. Apply TSNF starting from the best feasible solution found in step 2.

5 Adaptive memory algorithms

Algorithm 1 shows the basic steps of an adaptive memory algorithm (AMA), as initially proposed
in (Rochat and Taillard, 1995). Recent and successful adaptations of adaptive memory algorithms
to the GCP can be found in (Galinier, Hertz, and Zufferey, 2008), (Lü and Hao, 2010a), (Lü and
Hao, 2010b). These successes motivate the choice of AMA for our problem. In the following,
subsection 5.1 describes the memory structure, the initialization step and the updating process.

9

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Next, in subsection 5.2, three different recombination operators are proposed, where each one
is effective on a subset of the three original objectives. Finally, an algorithm using the three
recombination operators is presented in subsection 5.3.

Algorithm 1 Adaptive memory algorithm (AMA)

Initialize the memory M with maximum stable sets.

While a stopping condition is not met do

1.1 Create a solution s from M with a recombination operator.

1.2 Improve s with the tabu search TSNF during I iterations.

1.3 Update M with s.

5.1 Memory structure

As mentioned in subsection 4.4, a solution s is represented as a set of color classes S = (C1, C2, . . .),
where Ct is the set of vertices with color t. Clearly, each color class in a feasible coloring cor-
responds to a stable set (i.e., a set of non-adjacent vertices). Thus, our adaptive memory M
contains maximum stable sets, that is, stable sets that are not contained in any other stable
set. The memory also records the number h(W ) of times that the maximum stable set W was
obtained from solutions returned by the tabu search (see step 1.3 of Algorithm 1), as well as the
average objective function values of these solutions, denoted by f1(W ), f2(W ), f3(W ). We also
have f(W ) < f(W ′) if the solution from which stable set W was obtained is better than the
solution from which stable set W ′ was obtained, based on the lexicographic ordering of the three
objectives f1, f2 and f3. Note that a similar memory structure was used in (Galinier, Hertz, and
Zufferey, 2008).

To start the algorithm, p randomly generated solutions are first created and improved with
TSNF during I iterations. Maximum stable sets are then extracted from these solutions to
initialize the memory M. Parameter p was tested in the interval [1, 100] and set to 20, whereas
parameter I was tested with different values between 50 and 100,000 and was finally set to 2, 000.
Next, the basic loop creates a starting solution for the tabu search by combining stable sets in
M in step 1.1, running the tabu search in step 1.2, and updating the memory with the solution
returned by the tabu search in step 1.3.

Just before updating M in step 1.3 of Algorithm 1, every stable set Ct in a solution returned
by the tabu search is transformed into a maximum stable set with the iterative procedure Extend.
More precisely, for every stable set Ct, Extend performs the following steps, where Ω is the set
of vertices that are not in the current stable set W (initially equal to Ct) and are not adjacent to
any vertex of W :

1. set W = Ct;

10

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



2. while Ω 6= ∅, do: (a) select a vertex j ∈ Ω; (b) add j to W ; remove j and its adjacent
vertices from Ω.

In step 2(a), the vertex j ∈ Ω with the least number of adjacent vertices in Ω is selected to
favor the creation of a large stable set W . In case of ties, the vertex j that maximizes pj/κj is
chosen, where κj is the number of stable sets in M that contains vertex j. Therefore, a vertex j
with a large pj value and only a few occurrences in M is favored.

If the stable set returned by the procedure Extend is already in M, h(W ) is increased by
one and f(W ) is updated accordingly. Otherwise, W is added to M and another stable set W ′

is removed from M to keep a constant memory size. If W ′ is the worst stable set in the memory
and f(W ) < f(W ′), then W replaces W ′. Otherwise, diversity is favored by removing the stable
set W ′ that is the most similar to the other stable sets in M. The similarity measure for W is
SimM(W ) =

∑

i,j∈W rij , where rij is the number of stable sets in M that contain both vertices
i and j. Clearly, W ′ is the stable set in M for which this measure is maximized.

The next subsection will now explain how different stable sets in the memory are combined
to form an initial solution for the tabu search (step 1.1 of Algorithm 1).

5.2 Recombination operators

Three different recombination operators are proposed here. Subsection 5.2.1 describes operators
RDeg and RCost aimed at coloring the graph with as few stable sets as possible to minimize f1.
In contrast, the recombination operator RNoInt presented in subsection 5.2.2 returns solutions
with as few interruptions as possible, in order to minimize f2 and f3.

5.2.1 Recombination operators RDeg and RCost

RDeg andRCost generate a solution from the memory in a similar way, therefore they are presented
together in this subsection. Both operators proceed in two phases. The construction phase first
uses the memory M to sequentially build a set S of stable sets (without assigning colors yet).
The color assignment phase assigns then a color label in {1, . . . , |S|} to each stable set in S (each
color label can only be used once) while minimizing f2 and f3. These two phases are presented
below with an example at the end.

Construction phase. This phase tries to generate as few stable sets as possible in S to mini-
mize f1. To allow a feasible solution to be obtained in the following color assignment phase, the
two conditions below must be satisfied.

(C1) Each vertex must appear in exactly pj stable sets of S (otherwise vertex j cannot be fully
colored).

(C2) There exists at least one color assignment to the stable sets in S such that each stable set

11

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Ct contains mt vertices or less (i.e., for each color t, the number of vertices with this color
does not exceed the bound mt).

The construction method, which is described in Algorithm 2, uses the following notation:

• k is the currently best known value for objective f1.

• V is the set of vertices in the graph.

• S is the current set of stable sets (iteratively constructed).

• Z is the set of vertices j that appear pj times in S (i.e., vertices that can be fully colored).

• Θ is the set that contains the different values of mt, for t ∈ {1, . . . , k}. For instance, with
k = 5, if m1 = m2 = 2 and m3 = m4 = m5 = 1, Θ = {1, 2} as mt takes either value 1 or 2.

• For each m ∈ Θ, am is the number of colors t ∈ {1, . . . , k} such that mt = m (i.e., the
number of colors with bound m). Note that

∑

m∈Θ am = k. For the above example, a1 = 3
and a2 = 2.

• For each m ∈ Θ, Ψm is a set of stable sets that can be assigned to any color with bound m.

The general flow of Algorithm 2 works as follows. After initialization, k stable sets that
satisfy condition (C2) are constructed in step 2.2. Indeed, at the end of this step, to obtain a
color assignment respecting the bounds, it suffices to assign the am colors with bound m to the
stable sets in Ψm, for each m ∈ Θ. However, it might happen that condition (C1) is not satisfied
at the end of step 2.2. In this case (i.e., if Z 6= V ), a new stable set W is created in step 2.4 for
time unit (color) K = k + 1. This is repeated with increasing values of K until all vertices can
be fully colored. At the end, the set S of all generated stable sets is returned.

Step 2.2(a) needs further explanation. First, a set Γm of candidate stable sets (generated
from memory M) is built through a candidate generation procedure. A stable set W ∈ Γm is then
selected among these candidates and added to Ψm during a candidate selection procedure. This
is explained below.

The candidate generation procedure produces the largest possible stable sets (in order to
minimize f1) but with no more vertices than the considered value m. Let L be the size of a
largest stable set in M. Two situations can occur when building Γm. If L ≤ m, then all stable
sets in M of cardinality L are added to Γm. Otherwise, all stable sets with more than m vertices
are added to Γm, but are reduced to only m vertices thereafter. If we define δ(j) as the degree
of vertex j in V −Z, the reduction process of a stable set W ∈ Γm removes at each iteration the
vertex j that minimizes δ(j) (as such vertices will be easier to color later) until the number of
vertices is equal to m.

The candidate selection procedure differs for RDeg and RCost. RDeg is degree-oriented and,
consequently, it selects the stable set W ∈ Γm that maximizes

∑

j∈W δ(j). On the other hand,

RCost is cost-oriented and selects the stable set W ∈ Γm based on the probability distribution

12

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Algorithm 2 Construction phase of the recombination operators RDeg and RCost

2.1 Initialization: set S = ∅, Ψm = ∅ (for each m ∈ Θ ) and Z = ∅.

2.2 For each m ∈ Θ (in decreasing order), create am stable sets by repeating am times the
following steps.

(a) Generate a stable set W from M (with maximum cardinality m) and add it to the set
Ψm.

(b) Compute Z and for each vertex j ∈ Z, remove j from the stable sets of M that contain
it (i.e., vertex j can be ignored, as it is now possible to fully color it).

(c) Augment the stable sets ofM involved in step 2.2(b) by applying the procedure Extend
to each one of them, using the subgraph induced by the vertices in V −Z (this step is
likely to favor larger stable sets in S, which helps to minimize f1).

Set S = S ∪Ψm.

2.3 If Z = V , go to step 2.5 (all vertices can be fully colored). Otherwise, set K = k.

2.4 While Z 6= V , do: set K = K +1 and create a stable set with at most m = mK vertices by
performing step 2.2.

2.5 Return S.

Pr(W,Γm) shown in Equation (10). The probability Pr(W,Γm) involves a function g(W ) which
is made of two components: the number of solutions h(W ) returned by the tabu search that
produced the maximum stable set W stored in memory M (quantity) and the average objective
function values fi(W ) (with i ∈ {1, 2, 3}) of the solutions returned by the tabu search that
produced W (quality). Three different g(W ) functions were tested, as shown in Equation (11),
where f̄i is the normalized value of objective fi. The best results were obtained with h

f1
, thus

indicating that the focus should be on the quality of the first objective. Therefore, from now on,
g(W ) = h

f1
.

Pr(W,Γm) =
g(W )

∑

W ′∈Γm
g(W ′)

(10)

g(W ) =
h(W )

f1(W )
, g(W ) =

h(W )

f2(W )
, g(W ) =

h(W )

f̄1(W ) + f̄2(W ) + f̄3(W )
(11)

Color assignment phase The color assignment phase must assign a color to each stable set
in S, while minimizing f2 and f3. Let us denote ∆t

2(W ) and ∆t
3(W ), respectively, the increase

13

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



in the objectives f2 and f3 if color t is assigned to a stable set W . The color assignment phase
then takes place as follows. The color t = 1 is first assigned to a randomly selected stable set
W ∈ Ψm1

⊆ S and set W is then excluded from further consideration. Then, for each color t in
increasing order, the stable set that minimizes ∆t

2(W ) ∈ Ψmt ⊆ S is assigned color t and excluded
from further consideration, with ties broken by selecting the stable set that minimizes ∆t

3(W ).
This procedure is repeated until all stable sets in S are done.

The recombination operators RDeg and RCost are now illustrated on a small example, based
on the graph of Figure 2. We assume the following: the vertices a, b, c and d require 2, 1, 2 and 2
colors, respectively; also, 2 (resp. 1) machines are available during time units 1 and 3 (resp. 2, 4,
5, 6); k = 5; M = {{a, d}, {c, d}, {b}}. Therefore, Θ = {1, 2} (set of different mt values), a1 = 3
(for colors 2, 4 and 5) and a2 = 2 (for colors 1 and 3). RDeg and RCost first create the set Ψ2.
In step 2.2(a) of Algorithm 2, there are two stable sets of cardinality 2, namely {a, d} and {c, d}.
RDeg selects a stable set randomly, as the sum of the degrees in both candidate stable sets is equal
to 3. RCost selects a stable set based on Equation (10). Let us assume that {a, d} is selected. A
second stable set of size 2 is then required in Ψ2 because a2 = 2. Therefore, the same procedure is
repeated, leading to Ψ2 = {{a, d}, {a, d}}. Now Z = {a, d}, as these vertices can be fully colored.
Afterward, the central memory is updated to M = {{c}, {b}}. Step 2.2 is then performed again to
build Ψ1 = {{c}, {c}, {b}}. In the color assignment phase, the stable set {a, d} from Ψ2 is assigned
color 1 because m1 = 2. The stable set assigned to color 2 is chosen randomly among {b} and
{c}, as both would increase f2 and f3 by 2 units (i.e., vertices a and d would be interrupted and
their completion times would increase by one time unit). Assuming that {b} is selected, the next
steps assign color 3 to the stable set {a, d}, and colors 4 and 5 to the stable set {c}. Thus, the
solution s obtained at the end corresponds to S = (C1, . . . , C5) = ({a, d}, {b}, {a, d}, {c}, {c}),
with f1 = 5, f2 = 2 and f3 = 5.

5.2.2 Recombination operator RNoInt

The recombination operator RNoInt creates a solution with stable sets that are similar to those
in M, but with no interruption, in order to minimize f2 and f3. The tabu search in step 1.2 of
Algorithm 1 will then tend to minimize f1, while trying not to increase too much f2 and f3.

The recombination operator is described in Algorithm 3, where all color classes are initially
empty. The process starts with t = 1 (where t denotes the current color) and Z = ∅. The
operator colors the vertices one by one. At each iteration, two main steps are performed. First,
a vertex j is selected from a set Q of candidates generated in step 3.1. Then (assuming Q 6= ∅),
the consecutive colors {t, t+ 1, . . . , t+ pj − 1} are assigned to vertex j. It should be noted that
no conflict is created when assigning these consecutive colors to j, because the color classes C ′

t

with t′ > t will necessarily be subsets of Ct. However, some colors (larger than t) might become
saturated (where a color class Ct′ is saturated if |Ct′ | = mt′). Therefore, the selected vertex j
in Q is the one with the largest pj which can be given colors {t, t+ 1, . . . , t+ pj − 1} without
over-saturating a color class. Vertices with large pj values are considered first, as they are more
difficult to fully color. If no such vertex exists, the current color is set to t+1 and the procedure
is repeated until all vertices are fully colored.

14

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Algorithm 3 Recombination operator RNoInt

Initialization: set t = 1 (current color) and Z = ∅.

While Z 6= V , do

3.1 Create a set Q of candidate vertices as follows.

(a) If Ct is a maximum stable set or if |Ct| = mt, set Q = ∅ and go to step 3.3.

(b) Compute Φ = {W ∈ M | Ct ⊆ W}.

(c) If Φ 6= ∅, a stable set W ′ is selected in Φ based on the probability Pr(W,Φ) in Equation
(10).

(d) If Φ = ∅, the procedure Extend is used to generate a maximum stable set W ′ from Ct.

(e) Set Q = W ′ − Ct.

3.2 Remove from Q every vertex j which is either in Z or would over-saturate a color class if
colored with pj consecutive colors (starting from color t).

3.3 If Q = ∅, set t = t+ 1 (no vertex can be colored with color t). Otherwise, select the vertex
j ∈ Q with the largest pj (break ties randomly), and put j in the consecutive color classes
Ct, Ct+1, . . . , Ct+pj−1.

3.4 Compute Z and for each vertex j ∈ Z, remove j from all stable sets of M that contain it.

This operator is illustrated below, based on the graph and memory M used in the example
at the end of Section 5.2.1. The method starts by building C1 which is initially empty. Thus,
for the first iteration, Φ corresponds to all stable sets in memory (i.e., Φ = {{a, d}, {c, d}, {b}})
and one of them is selected using Equation (10). If W ′ = {a, d} then Q = {a, d}, as C1 is empty.
Now, let us assume that vertex a is selected (randomly, because pa = pd = 2) and that colors
1 and 2 are assigned to it. Then C1 = {a}, Z = {a} and Φ is computed again in step 3.1(b),
leading to Φ = {{a, d}}. Therefore, Q is empty as a is in Z and d requires two colors that would
over-saturate the color class associated with time unit 2. The current set under investigation
becomes C2. As it already contains the vertex a, it is saturated. The method then considers C3.
At this time, Φ = {{c}, {b}, {d}}, and one of those sets is selected using Equation (10). If {c} is
chosen, it is assigned colors 3 and 4, and those color classes are now saturated (C3 = C4 = {c}).
After two additional iterations, C5 = {b}, C6 = {d} C7 = {d}. Thus, the solution s obtained at
the end corresponds to S = (C1, . . . , C7) = ({a}, {a}, {c}, {c}, {b}, {d}, {d}), with f1 = 7, f2 = 0
and f3 = 3.

15

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



5.3 Resulting adaptive memory algorithm (AMA)

Some experiments reported in subsection 6.3 show that RCost and RDeg are well adapted to
f1 and RNoInt to f2 and f3. To get a robust algorithm, the following AMA using the three
recombination operators is proposed. At each iteration, a recombination operator R is selected
in the set R =

{

RCost, RDeg, RNoInt
}

based on its past performance. More precisely, a value

score(R) is associated with each operator R. The selection probability of R is then score(R)∑
R∈R

score(R) .

After running the tabu search on the initial solution obtained from the selected operator R, its
score is updated as follows: if the resulting solution is a new best solution then score(R) =
score(R) + 2; otherwise, if it is better than the solution obtained at the previous iteration then
score(R) = score(R) + 1.

6 Numerical results

We first describe in subsection 6.1 how we generated test instances for our problem. Computa-
tional results for the greedy heuristics and the tabu search methods are then reported in subsection
6.2. A comparison of the various recombination operators used in the adaptive memory algorithm
is found in subsection 6.3. Finally, subsection 6.4 describes the results obtained with the best
algorithmic configurations.

The C++ language was used to implement the algorithms and the tests were performed on
a processor Intel(R) Xeon(R) CPU E5-2660 2.20GHz. Every method was run five times on each
instance, with a time limit of n minutes for each run (where n is the number of vertices in the
considered instance).

6.1 Generation of test instances

The instance generator is inspired from the one used in (Galinier, Hertz, and Zufferey, 2008).
First, the number of vertices n is chosen in the set {10, 20, 30, 40, 50, 100, 150, 200}. Second,
the graph density d, which is the probability for an edge to be present between two vertices, is
chosen in the set {0.2, 0.5, 0.8}. The last parameter β is related to the color bounds. A subset
of instances was created with a constant bound mt = β for all t, with β belonging to {3, 5, 10}.
In the remaining instances, the bound is not necessarily the same for each color. The bounds are
generated with three different distributions called small, medium and large. A distribution is
characterized by a mean µ, a standard deviation σ, a maximum value max, and a minimum value
min, as listed in Table 1. The mt values are cyclic, as it is observed in practice, and the size of a
cycle is set to 10 (i.e., m1 = m11 = m21, m2 = m12 = m22, m3 = m13 = m23, . . .). The number
pj of colors required for each vertex j is chosen uniformly in the interval [1, 10]. Three instances
are generated for each triplet (n, d, β). This leads to a total of 432 instances (since there are 8
values for n, 3 values for d and 6 values for β).

16

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



β min max µ σ

small 1 5 3 0.5

medium 2 10 6 2

large 5 15 10 3

Table 1: Parameters of the β distribution used to generate the mt values

6.2 Experiments with the greedy heuristics and tabu search

This subsection analyzes the performance of the four methods proposed in Section 4, using the
instances of size n = 100. Remember that GRF and TSF are the greedy and tabu search with a
fixed number of colors, whereas the number of colors is free in GRNF and TSNF . Table 2 shows
the average value of each objective (f1, f2, f3) obtained with GRNF and TSNF . For GRF and
TSF , four values are given: the minimum value of f1 (number of colors) with all vertices fully
colored, the rate of successful runs (over five runs) with that f1 value, and the average values of f2
and f3 over the successful runs. Each line in this table corresponds to the average obtained over
five runs on the three instances associated with the triplet (n, d, β). The entries in bold indicate
that the corresponding method performed the best.

d β GRF GRNF TSF TSNF

0.2

3 (175.3, 5/5, 48, 871.5) (175.3, 42.3, 923.3) (175.3, 5/5, 372.2, 8777.3) (175.3, 13.5, 810.9)

5 (103.3, 5/5, 67, 966.8) (105.3, 74.3, 1135.7) (103.3, 5/5, 353.1, 5498.5) (103.3, 18, 774.8)

10 (55.3, 3.7/5, 153, 1505) (62.3, 148.3, 1577.3) (55, 3.3/5, 367.2, 3267.4) (55, 28.7, 819)

small (176.7, 5/5, 105.1, 1195.3) (177.3, 113, 1414.3) (176.7, 5/5, 407.7, 9688.6) (177.3, 44, 1616.3)

medium (94, 4.7/5, 129.7, 1488.7) (95.7, 133, 1589) (94, 5/5, 383.1, 5247.1) (94, 41.1, 1157)

large (54.7, 4/5, 143.9, 1524.8) (59.7, 142.7, 1711.3) (54.3, 5/5, 316.3, 2751.8) (54, 37.1, 875.9)

0.5

3 (189.7, 5/5, 83.5, 1833.1) (192, 69.7, 1936.3) (189.7, 5/5, 430.8, 11050.1) (189.7, 28.5, 1405.6)

5 (110, 3.7/5, 133.3, 2471.1) (117.3, 108, 2459.7) (109.3, 5/5, 397.9, 6442.5) (108, 82.8, 2180.7)

10 (94.3, 2.3/5, 169.4, 2820.1) (102, 124.7, 2877.3) (84, 2.3/5, 294.5, 3859.2) (81.7, 250.2, 3971.7)

small (191, 4.7/5, 166.6, 2735.4) (194, 150, 2946) (191, 5/5, 427, 11198.4) (191, 81.9, 2783.7)

medium (110.3, 3.3/5, 168.9, 3037.4) (117.3, 135, 3127) (104.7, 3.7/5, 389.2, 5742.1) (98.6, 141.6, 3043.3)

large (95.3, 2.3/5, 147, 2808.2) (102, 121.3, 2722.7) (85.7, 3.7/5, 281.4, 3706.6) (82.4, 257.4, 4011.5)

0.8

3 (188, 2/5, 114.7, 3867) (200.3, 69.7, 3492.3) (186.3, 3.3/5, 424.3, 11273.6) (182.3, 82.2, 3460.3)

5 (169.7, 3.3/5, 114.7, 3754.5) (180, 75, 3694.4) (159, 3/5, 294.1, 5764.4) (152.1, 212.3, 6231.1)

10 (184.7, 2/5, 117.5, 4379.1) (199.7, 79, 4251.3) (170.3, 1/5, 292, 6245) (164.9, 244.3, 7233.6)

small (186.7, 2/5, 144.8, 4479.2) (192, 89.3, 4279.8) (178.3, 2.7/5, 414.4, 10373.9) (168.7, 152.4, 4970.6)

medium (178, 3.3/5, 114.4, 3851.1) (188.3, 71.7, 3731.5) (165.7, 2.7/5, 345.2, 7600.5) (159.1, 228.9, 6693)

large (177, 2.7/5, 122, 3807.5) (188.7, 67, 3529.2) (167, 2.7/5, 313.7, 6759.3) (160.2, 231.4, 6870.8)

Table 2: Comparison of the greedy and tabu search algorithms (n = 100)

These results indicate that GRF outperforms GRNF . With regard to f1, the minimum number

17

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



of colors produced byGRF with all vertices fully colored is smaller than the average value ofGRNF

on 17 (n, d, β) triplets, whereas the two heuristics are the same on the other one. Conversely, and
in contrast with the state-of-the-art graph coloring methods which are based on a fixed number
of colors, TSNF clearly outperforms TSF . First, the average value of objective f1 obtained by
TSNF is strictly smaller than the minimum number of colors identified by TSF on 11 triplets.
Otherwise, the two methods are the same on 6 triplets and TSF is the best on the remaining one.
Furthermore, TSNF finds better values for f2 and f3 when the two methods are the same with
regard to f1.

As expected, the tabu search methods outperform the greedy heuristics. With regard to
f1, the instances with d = 0.2 and β = small are the only ones for which a greedy heuristic
outperforms a tabu search, namely TSNF . Furthermore, when there is a tie, TSNF is always
better on f2 and f3. TS

F is always better than or equal to the two greedy heuristics on f1. But
when there is a tie, GRF outperforms TSF with regard to f2 and f3. These results indicate that
TSF is well adapted to f1, but not to f2 and f3.

6.3 Experiments with adaptive memory algorithms

This subsection compares the various recombination operators proposed for the adaptive memory
algorithm. Remember that RDeg (resp. RCost) creates an initial solution for the tabu search by
selecting stable sets in the memory with vertices of large degree (resp. stable sets that were part
of good solutions). On the other hand, RNoInt builds a solution without any interruption in the
sequence of colors assigned to a vertex. AMADeg, AMACost and AMANoInt are the adaptive
memory algorithms using the recombination operators RDeg, RCost and RNoInt, respectively.
They were tested on the instances of size n = 100. Table 3 reports the average values of each
objective using the format (f1, f2, f3).

With regard to objective f1 only, AMACost is strictly better than AMANoInt on 6 triplets out
of 18 (12 ties). On the other hand, AMADeg is better than AMANoInt on 6 triplets, but worse
on 2 (10 ties). Finally, AMACost is strictly better than AMADeg on 3 triplets and worse on 1
(14 ties). When there is a tie between the three methods, we might conjecture that the minimum
number of colors has been found. In these cases, AMANoInt obtains better average values on
f2 and f3. Therefore, we conclude that AMACost is slightly better than AMADeg with regard
to f1. However AMANoInt performs much better than the two other methods on f2 and f3.
As a consequence, AMACost or AMADeg should first be used, followed by AMANoInt when f1
cannot be improved further. This is exactly the goal of the dynamic operator selection proposed
in subsection 5.3.

6.4 Experiments with the best algorithms

This subsection reports results obtained with the tabu search framework TS proposed in subsec-
tion 4.5 which takes advantage of the strengths of the previous greedy and tabu search methods.
In addition, results are reported with the AMA of subsection 5.3 using the three recombination
operators. First, a comparison with optimal solutions is reported for small instances with up to 30

18

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



n d β AMADeg AMACost AMANoInt

100

0.2

3 (175.3, 7.7, 583.7 ) (175.3, 7.4, 614.3 ) (175.3, 0, 524.7 )

5 (103.3, 22.7, 810.9 ) (103.3, 24, 836.1 ) (103.3, 0.4, 516.9 )

10 (55, 41.3, 965.7 ) (55, 61.2, 1250.5 ) (55, 28.6, 928.5 )

small (177.3, 52.5, 1888.7 ) (177.3, 52.3, 1898.9 ) (177.3, 32.1, 1428.5 )

medium (94, 58.8, 1283.3 ) (94, 58.7, 1301.8 ) (94, 27.9, 1040.3 )

large (54, 72.5, 1283.3 ) (54, 72.5, 1300.3 ) (54, 46.4, 1042.5 )

0.5

3 (189.7, 29.7, 1523.5 ) (189.7, 36.3, 1418.9 ) (189.7, 0.3, 573.7 )

5 (108, 62.5, 2001.9 ) (108, 88.8, 2489.7 ) (108, 36.9, 1583.1 )

10 (81.3, 210.6, 3532.9 ) (81.4, 184.7, 3421 ) (81.5, 228.2, 3568.7 )

small (191, 100.2, 2400 ) (191, 100.1, 2396.6 ) (191, 65.9, 2248.6 )

medium (97.1, 242.6, 4222.7 ) (97.1, 218.9, 4032.1 ) (99.3, 147.3, 3038.7 )

large (82.5, 237.5, 3884.9 ) (82.4, 239.3, 3982.9 ) (82.4, 232.2, 3869.7 )

0.8

3 (182.3, 44.3, 2596.9 ) (182.3, 72.2, 3355.9 ) (182.3, 42.2, 2315.5 )

5 (152.1, 194.2, 5772.3 ) (152.1, 149.8, 4828.3 ) (152.2, 189.1, 5558.5 )

10 (165, 202.5, 6394.3 ) (164.6, 165.7, 5588.3 ) (165.1, 201.2, 6414.6 )

small (167, 201.1, 4517.4 ) (167, 192.7, 4942.2 ) (170.3, 141.7, 4718.5 )

medium (159.1, 223.5, 6509.3 ) (159.1, 219.4, 6334 ) (159.2, 198.5, 5859.5 )

large (160.4, 217.2, 6578.5 ) (160.3, 217.8, 6261.5 ) (160.3, 191.4, 6060.1 )

Table 3: Comparison of the recombination operators

vertices in subsection 6.4.1. These optimal solutions were obtained by solving the mixed integer
program of Section 2, which is denoted as MILP . Next, tests were performed for larger instances
with up to n = 200 vertices in subsection 6.4.2. The results indicate that TS and AMA can
solve problems of realistic size with hundreds of jobs, as exemplified by the manufacturing test
bed in (Le Pape, 2007)). Finally, AMA is compared with state-of-art methods on the MGCP in
subsection 6.4.3.

6.4.1 Results for small instances (with up to 30 vertices)

Our mixed integer program was solved with CPLEX 12.5 with a time limit of 10 hours for each
objective (for a total of 30 hours). The results are shown in Table 4. There is a ∗ besides a given
objective when the optimum is found on the three instances of the corresponding (n, d, β) triplet.
The average value of each objective (f1, f2, f3), along with the average time (in seconds) to reach
the best solutions, are indicated for both TS and AMA. MILP finds the optimal solutions for
the three objectives on 3 triplets with n = 10. It also finds the optimal value of f1 for all but one
triplet with n = 10, for all but 3 triplets with n = 20, for all triplets with n = 30, d = 0.2 and for
one triplet with n = 30, d = 0.5. As MILP already struggles for instances of size 30, this is is a
clear indication that it is not suitable for larger instances.

TS does a good job on objective f1, but the gap between MILP and TS can be substantial
on f2 and f3. When compared to MILP , TS finds a better or equal f1 value on 47 triplets (out

19

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



of 54). However, there is a tie on 40 triplets (out of 47) and TS is not very good with regard
to the second and third objectives. For example, TS finds solutions with more than 5 additional
interruptions on 10 triplets. AMA leads to much better results. In fact, AMA is better than or
equal to MILP on 46 triplets (out of 54), when considering the three objectives in lexicographic
order. In the few cases where MILP is better, the gap is very small. More precisely, AMA
requires 0.3 additional color on average on 2 triplets, whereas on the 6 remaining triplets the
f1 value is the same and AMA leads to a slightly larger number of interruptions (which never
exceeds 3). It should be noted that when the f1 and f2 values produced by MILP and AMA are
the same, the f3 value is also the same. Finally, note that the average computation times required
by TS and AMA to reach their best solutions are comparable (350 vs 334 seconds, respectively).

6.4.2 Results for larger instances (with up to 200 vertices)

We performed some preliminary experiments and observed that AMA often produces the best
solution for instances with 100 vertices, when compared to AMADeg, AMACost and AMANoInt.
Furthermore, its performance is not sensitive to the characteristics of the test instances, as opposed
to the other adaptive memory algorithms based on only one recombination operator. Therefore,
we decided to compare AMA with TS for instances of size n ∈ {100, 150, 200}. These results
are reported in Table 5, using the format of the previous table. We can see that AMA produces
better solutions than TS on 45 triplets (out of 54). On average, AMA outperforms TS by 0.1%,
57.2% and 45.0% on objectives f1, f2 and f3, respectively. It should be noted that the instances
defined on sparse graphs with d = 0.2 and with small color bounds seem to be relatively easy to
solve with regard to objective f1, given that AMA and TS often produce the same value. On
graphs with d = 0.2, AMA reaches its best solutions faster than TS (4057 vs 6309 seconds). On
the other hand, for graphs with d = 0.8, the convergence of AMA is slower than TS (7352 vs
4914 seconds) although it produces better results. Thus, it seems that TS has some difficulty to
overcome local optima.

Unsurprisingly, the numbers of colors decrease when the color bounds increase, because more
vertices can share the same color. At the same time, the number of interruptions and color ranges
increase, which indicates that objective f1 is in conflict with the two other objectives f2 and f3. If
we consider the group of instances with n = 100 and d = 0.5, the value of f1 decreases from 189.7
to 81.4 when β increases from 3 to 10, while f2 (resp., f3) increases from 26.4 to 245.9 (resp.,
from 1320.3 to 3798.4). No impact on f1 is observed when constant or variable color bounds are
used. However, it impacts f2, in particular when the bounds are small. On the same instances
with n = 100 and d = 0.5, f2 increases from 26.4 to 81.5 when β changes from the constant value
3 to the distribution small (in both cases, the average color bound is 3).

20

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



n d β MILP TS AMA Time TS Time AMA

10

0.2

3 (17.7*, 0*, 49.7) (17.7, 0.6, 52.9) (17.7, 0, 49.7) 141.7 1.5

5 (18*, 0.3, 56.3) (18, 1.2, 59.1) (18, 0.3, 56.3) 0.1 2.7

10 (16*, 0*, 52.3*) (16, 0, 52.3) (16, 0, 52.3) 0.1 0.1

small (21.7*, 5.3, 74.7*) (22, 8.5, 95) (22, 7.1, 84.3) 262.6 162.1

medium (21*, 0*, 60) (21, 0.4, 60.4) (21, 0, 60) 73.2 2.0

large (18.7*, 0*, 60.3) (18.7, 0.1, 61) (18.7, 0, 60.3) 87.8 0.5

0.5

3 (24.3*, 0*, 63*) (24.4, 3.3, 80.2) (24.3, 0, 63) 222.2 26.3

5 (24*, 0*, 64) (24, 0.7, 67.9) (24, 0, 64) 22.2 0.4

10 (26*, 0*, 51.3) (26, 1.2, 58.1) (26, 0, 51.3) 46.6 1.2

small (26*, 1.3, 56.7) (26, 3.9, 74.6) (26, 2, 60.1) 116.4 68.9

medium (23.3*, 0*, 56.3) (23.3, 2.3, 68) (23.3, 0, 56.3) 88.3 4.3

large (26*, 0*, 57) (26, 0.1, 57.1) (26, 0, 57) 85.3 3.4

0.8

3 (32, 1.3, 68) (32, 2.5, 76.1) (32, 0.3, 58.3) 170 70.1

5 (37*, 0*, 50.3) (37, 0.6, 54) (37, 0, 50.3) 77.5 1.5

10 (47.7*, 0*, 65.7) (47.7, 1.3, 80.3) (47.7, 0, 65.7) 0.1 5.1

small (30.3*, 0*, 48.3) (30.3, 0.2, 49.5) (30.3, 0, 48.3) 32.5 1.3

medium (37.3*, 0*, 51.3) (37.3, 0.5, 56.2) (37.3, 0, 51.3) 0.1 0.8

large (36.7*, 0*, 51.7) (36.7, 0.5, 56.1) (36.7, 0, 51.7) 34.5 1.0

20

0.2

3 (35*, 0.7, 104.7) (35.2, 5.3, 135.1) (35, 0, 103.7) 514.1 33.5

5 (25.3*, 0*, 92.3) (25.6, 7.7, 117.5) (25.3, 0.3, 93.9) 71.9 152.6

10 (24.7*, 0*, 112) (24.7, 7.8, 156.2) (24.7, 0.5, 114.8) 366.9 106.9

small (38.7*, 7.3, 140.3) (38.7, 10.5, 167.2) (38.7, 9.5, 162.2) 415.1 682.3

medium (23*, 6.3, 121.3) (23, 14.8, 163.7) (23, 9.6, 143.1) 473.7 522.0

large (25.3*, 0*, 112) (25.3, 7.9, 149.1) (25.3, 0, 112) 349.3 14.5

0.5

3 (40*, 10.7, 128) (40, 12.7, 232.9) (40, 2.3, 138.9) 477.0 411.1

5 (34*, 4.3, 139.7) (34, 13.3, 207.3) (34, 3.1, 144) 406.4 308.8

10 (36.7*, 2, 128.7) (36.7, 10.4, 210.5) (36.7, 0, 117) 109.2 45.7

small (37.3*, 36.7, 244.3) (37.3, 25.4, 276.8) (37.3, 18, 210.9) 459.2 768.4

medium (39.3, 12, 195) (39.3, 12.1, 231.2) (39.3, 3.9, 173.1) 186.0 311.7

large (33.3*, 0.3, 112) (33.3, 10.7, 185.3) (33.3, 1.5, 124.7) 185.0 135.8

0.8

3 (63.3*, 6, 121) (63.3, 4.1, 178) (63.3, 0, 110.7) 0.0 33.5

5 (60.7*, 1.3, 138.3) (60.7, 6.9, 211.2) (60.7, 0.5, 121.9) 97.9 190.7

10 (59, 16.3, 236) (59, 7.1, 203.7) (59, 0.7, 114.2) 234.0 257.2

small (56, 47, 219.7) (56.3, 16.7, 280.8) (56.3, 12.3, 238.7) 657.3 716.2

medium (50*, 16.7, 109.7) (50, 4.7, 163.7) (50, 0, 102.7) 153.3 35.8

large (56.3*, 1.3, 115.3) (56.3, 5.5, 185.9) (56.3, 0, 106.3) 0.1 27.7

30

0.2

3 (53.3*, 4.3, 190.7) (53.5, 7.4, 207.5) (53.3, 0, 159) 997.0 44.9

5 (35.3*, 6, 197.3) (35.3, 5.4, 197.9) (35.3, 1.2, 185.8) 711.6 953.6

10 (25.7*, 30.7, 218) (25.7, 20.3, 263.7) (25.7, 4.6, 196.7) 618.4 359.4

small (58.7*, 19, 296.3) (58.7, 19.9, 338.7) (58.7, 15.5, 324.9) 934.0 808.0

medium (28*, 20.3, 226) (28, 14.5, 237.1) (28, 10.5, 219.7) 716.5 1062.2

large (26.7*, 5.3, 193.7) (26.7, 23.3, 285.8) (26.7, 8.6, 219.6) 808.2 530.6

0.5

3 (51*, 37.7, 2964) (51, 17.8, 346.9) (51, 2.9, 201.7) 625.9 858.9

5 (134.3, 36, 348) (51.7, 22.5, 407) (51.7, 0, 172.3) 332.3 436.0

10 (43, 20.3, 272) (43, 24.2, 380.1) (43, 7.1, 238.9) 513.3 607

small (49.7*, 107.3, 389.7) (49.7, 36.7, 464.5) (49.7, 29.3, 404.7) 1088.4 1016.9

medium (40, 46.3, 463) (40, 33.9, 431.1) (40, 16.7, 291.9) 596.7 659.7

large (44.7, 79.3, 527.7) (43.3, 39.1, 519.1) (43.3, 23.1, 415.5) 729.9 724.6

0.8

3 (152.7, 982, 397) (76.7, 18, 494.9) (76.7, 6.3, 256.5) 196.3 651.4

5 (142, 40.3, 444) (67.7, 30.6, 559.3) (67.7, 6.3, 271.1) 898.5 600.8

10 (145.7, 67, 413) (70.7, 17.7, 379.3) (70.7, 3, 195.8) 463.1 571.6

small (224.7, 28, 2495.7) (69.4, 35.7, 621.4) (69.3, 22.3, 455.9) 720.9 1056.8

medium (145.3, 55.3, 418) (71.7, 31.1, 625.6) (71.7, 10.5, 320.8) 772.9 1218.4

large (167.3, 5.3, 271.3) (68.7, 27.9, 562) (68.7, 5.4, 267.8) 604.3 776.1

Table 4: Results of MILP , TS and AMA for small instances (n ≤ 30)

21

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



n d β TS AMA Time TS Time AMA

100

0.2

3 (175.3, 14.3, 780.7) (175.3, 0, 524.7) 2771.7 378.3

5 (103.3, 17, 729.3) (103.3, 3.1, 542.7) 4086.0 2420.2

10 (55, 27.8, 806.9) (55, 31.1, 950.6) 3082.7 3525.8

small (177.3, 44.1, 1692.6) (177.3, 33, 1345.9) 3720.3 2070.9

medium (94, 42.1, 1143.9) (94, 29.5, 1063.5) 2756.7 3856.2

large (54, 38.6, 888.3) (54, 45.5, 1037.3) 3374.0 4286.6

0.5

3 (189.7, 26.4, 1320.3) (189.7, 0.9, 587.9) 3691.8 3745.9

5 (108, 90.3, 2342.7) (108, 35.5, 1509.2) 2528.7 2813.6

10 (81.4, 245.9, 3798.4) (81.3, 194.3, 3405.3) 1839 4046.1

small (191, 81.5, 2703.5) (191, 65.9, 2137.5) 3944.4 2817.9

medium (98.3, 148.7, 3202.5) (97.1, 231.7, 4131.5) 3627.1 2317.4

large (82.4, 243.5, 3885.9) (82.5, 232.2, 3655.7) 2074.7 4220.0

0.8

3 (182.3, 84.9, 3728.3) (182.3, 45.1, 2467.2) 2791.5 3786.8

5 (152.1, 218.3, 6283.3) (152, 163.6, 5147.7) 2968.1 360.3

10 (164.9, 245.4, 7395.7) (164.7, 170.8, 5682.1) 3293.8 4150.4

small (168.7, 144.7, 4859) (167, 195.1, 5106.4) 3603.5 3929.6

medium (158.9, 232.6, 6722.5) (159.2, 208.9, 6288.5) 2551.7 3759.5

large (160.3, 226.4, 6830) (160.3, 197.1, 5939.9) 2780.1 3357.3

150

0.2

3 (271.7, 34.5, 2243.9) (271.7, 0, 814.3) 7062.5 1129.8

5 (173.7, 31.3, 1760.6) (173.7, 2.4, 890.9) 6919.4 3792.5

10 (85.3, 44.7, 1503.7) (85.3, 30.3, 1537.7) 5418.3 5881.8

small (242.7, 62.1, 2797.5) (242.7, 36.8, 1693.4) 6653.0 2180.5

medium (136.3, 48.7, 1769.9) (136.3, 40.9, 1687) 6257.3 3818.0

large (84.3, 46.9, 1445.9) (84.3, 46.1, 1613.7) 6229.8 6191.8

0.5

3 (268.3, 40.1, 2487.4) (268.3, 1, 818) 5546.8 5458.5

5 (164.3, 65.3, 2739.5) (164.3, 33.3, 2212.7) 5331.7 5874.2

10 (105.9, 364.1, 7233.7) (105.7, 250.1, 6251.7) 3756.9 3595.5

small (256, 87.9, 4367.1) (256, 34.4, 2569.5) 5466.7 6672.5

medium (150.3, 143.7, 4688.3) (150.3, 175.4, 5249.7) 5226.0 3653.2

large (108.7, 370, 7494.5) (108.9, 389.9, 7533.7) 3194.7 4724.9

0.8

3 (278.3, 73, 4671.1) (278.3, 44.1, 3903.5) 5870.6 7257.4

5 (204.9, 334.5, 12339.3) (204.5, 261.7, 10611.1) 4655.2 7344.5

10 (213.5, 361.3, 13360.7) (213.1, 271.9, 11488.8) 3516.5 7735.5

small (268.8, 209.6, 10709.3) (266, 289.7, 11181.5) 6813.5 8066.0

medium (217, 363.7, 13527.7) (217.5, 345.3, 12680.5) 4743.5 7098.5

large (221.7, 350.2, 13903.5) (221.9, 333.1, 13230.3) 3762.3 5662.3

200

0.2

3 (351.7, 46.9, 3740.5) (351.7, 0, 1053.7) 10099.3 1968.3

5 (219, 44.1, 2646) (219, 4.9, 1231.9) 9225.6 2487.9

10 (111.3, 126.2, 3681.1) (111.3, 34.1, 2124.3) 7300.9 8657.1

small (334, 81.3, 5012) (334, 43.7, 2336.5) 10535.2 3109.5

medium (178.3, 73.4, 2912.3) (178.3, 55.7, 2640.3) 9003.2 7123.3

large (113.3, 112.4, 3425.9) (113.3, 84.1, 3061.8) 9073.6 7123.3

0.5

3 (379.7, 64.7, 5084.9) (379.7, 1.1, 1184.9) 9735.4 6955.3

5 (216.3, 80.9, 4328.3) (216.3, 33.9, 2844.4) 9102.8 7088.7

10 (131, 508.9, 11972.4) (130.6, 373.3, 10755.2) 6491.7 6291.4

small (359.7, 108.7, 6881.1) (359.7, 65.3, 4037.7) 10491.2 6614.5

medium (195.6, 168.9, 7457.1) (195.3, 220.7, 8217.1) 9762.4 7245.3

large (138.2, 507, 12692.8) (137.1, 659.1, 13919.7) 5422.8 6070.2

0.8

3 (372.7, 216, 14884) (372.7, 42.5, 5146.3) 8103.2 11010.9

5 (267.1, 517.7, 22773.4) (266.4, 362.7, 18436.5) 6208.3 11055.7

10 (270.9, 505.3, 23080.9) (270.3, 376.1, 19127.5) 6435.1 11851.8

small (365.3, 262.4, 16911) (363.3, 238.2, 15186.9) 9605.8 7947.6

medium (258.7, 472.7, 20908.3) (257.9, 535.7, 20608) 5346.8 111065.1

large (258.9, 495.8, 21603.4) (259.3, 532.7, 21480.3) 5412.4 11560.5

Table 5: Results of TS and AMA for large instances (100 ≤ n ≤ 200)

22

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



6.4.3 Results on the MGCP benchmark instances

AMA was designed to solve a specific multi-coloring problem with applications in job scheduling.
But, if the problem is simplified by removing some of its features, we can use AMA to solve the
classical MGCP . Table 6 compares a single run of AMA with state-of-the art methods reported
in (Mehrotra and Trick, 2007), (Gualandi and Malucelli, 2012), (Prestwich, 2008), and (Lim et al.,
2005) on well-known MGCP benchmark instances (see http://mat.gsia.cmu.edu/COLOR04/ ).
In the following, these methods are denoted by MT , GM , Pr and LZLR, respectively. For each
method, the smallest number of colors is indicated.

On the GEOM instances, AMA produces the same number of colors as the other methods.
On the remaining 40 instances, AMA is competitive with Pr and GM : AMA found 8 better
solutions versus 6 better solutions for Pr (26 ties) whereas it found 12 better solutions versus
14 for MT (14 ties). However, AMA is outperformed by GM with only one better solution for
AMA and 12 for GM (17 ties). Nonetheless, these results show that AMA can provide high
quality solutions on the MGCP , even if it was not specifically designed for this problem.

An adequate comparison with regard to the computation times is not possible for different
reasons. First, the results presented in Table 6 were obtained in different, sometimes unspecified,
computational environments and under different experimental protocols (e.g., time limit). Second,
for some methods, only the time required to get a k-coloring (i.e., a solution using exactly k colors)
is specified, and not the time needed to minimize the number of used colors. Third, the design
of AMA was not optimized for the MGCP . Overall, the computation times of all methods are
rather erratic and change a lot from one instance to another. Only a few seconds are required by
all algorithms for the easiest instances (i.e., those for which all methods get the same result), but
the computation times can grow up to thousands of seconds for the most difficult instances.

23

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Instance AMA MT GM Pr LZLR Instance AMA MT GM Pr

GEOM20 28 28 28 28 28 R50-9ga 64 64 64 64

GEOM20a 30 30 30 30 30 R50-9gba 228 228 228 228

GEOM20b 8 8 8 8 8 R75-1ga 14 15 14 14

GEOM30 26 26 26 26 26 R75-1gba 53 54 53 53

GEOM30a 40 40 40 40 40 R75-5ga 39 38 38 39

GEOM30b 11 11 11 11 11 R75-5gba 133 131 131 132

GEOM40 31 31 31 31 31 R75-9ga 94 94 94 94

GEOM40a 46 46 46 46 46 R75-9gba 328 328 328 329

GEOM40b 14 14 14 14 14 R100-1ga 16 17 15 16

GEOM50 35 35 35 35 35 R100-1gba 56 57 56 56

GEOM50a 61 61 61 61 61 R100-5ga 45 43 43 43

GEOM50b 17 18 17 17 17 R100-5gba 157 153 153 154

GEOM60 36 36 36 36 36 R100-9ga 118 118 118 118

GEOM60a 65 65 65 65 65 R100-9gba 424 422 422 426

GEOM60b 22 22 22 22 22 myciel5 14 14 14 14

GEOM70 44 44 44 44 44 myciel5b 45 45 45 46

GEOM70a 71 71 71 71 71 myciel6 16 16 16 17

GEOM70b 22 23 22 22 22 myciel6b 58 58 58 60

GEOM80 63 63 63 63 63 myciel7 18 17 18 19

GEOM80a 68 68 68 68 68 myciel7b 64 61 63 67

GEOM80b 25 26 25 25 25 queen8-8 28 29 28 28

GEOM90 51 52 51 51 51 queen8-8b 113 113 113 113

GEOM90a 65 66 65 65 65 queen9-9 35 36 35 35

GEOM90b 28 29 28 28 28 queen9-9b 135 135 135 135

GEOM100 60 60 60 60 60 queen10-10 38 40 38 38

GEOM100a 81 81 81 81 81 queen10-10b 136 136 136 136

GEOM100b 30 31 30 30 30 queen11-11 41 44 41 41

GEOM110 62 63 62 62 62 queen11-11b 140 142 140 140

GEOM110a 91 92 91 91 91 queen12-12 42 47 44 42

GEOM110b 37 37 37 37 37 queen12-12b 163 165 163 163

GEOM120 64 64 64 64 64 DSJC125.1 19 21 19 19

GEOM120a 93 94 93 93 93 DSJC125.1b 67 68 67 67

GEOM120b 34 35 34 34 34 DSJC125.5 57 55 54 55

R50-1ga 12 12 12 12 - DSJC125.5b 168 164 163 164

R50-1gba 45 45 45 45 - DSJC125.9 140 140 139 140

R50-5ga 29 29 29 29 - DSJC125.9b 501 497 497 502

R50-5gba 101 100 100 100 -

Table 6: Comparison of AMA with state-of-the-art multi-coloring methods

24

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



7 Conclusion

In this paper, a mixed integer program is introduced and various methodologies are proposed to
solve an extension of the graph multi-coloring problem. This extension is aimed at modeling in
a more realistic way production scheduling environments with parallel machines and job incom-
patibility. In particular, three different objectives are considered in lexicographic order. The best
method is an adaptive memory algorithm coupled with a dynamic management of three recombi-
nation operators (each one being effective on specific objectives). This feature allows the method
to efficiently optimize lower level objectives, without degrading the performance of higher level
objectives. Future research avenues include the adaptation of AMA to scheduling problems in
other production environments, like flow-shop and job-shop, and the study of scheduling problems
with setup incompatibility (instead of job incompatibility).

References

Aardal, Karen, Stan van Hoesel, Arie Koster, Carlo Mannino, and Antonio Sassano. 2007. “Models
and solution techniques for frequency assignment problems.” Annals of Operations Research
153: 79–129.

Almeder, Christian, and Bernardo Almada-Lobo. 2011. “Synchronisation of scarce resources for
a parallel machine lotsizing problem.” International Journal of Production Research 49 (24):
7315–7335.

Baker, Brenda S, and Edward G Jr. Coffman. 1996. “Mutual exclusion scheduling.” Theoretical
Computer Science 162 (2): 225 – 243.

Bar-Noy, Amotz, Magnús M. Halldórsson, Guy Kortsarz, Ravit Salman, and Hadas Shachnai.
2000. “Sum Multicoloring of Graphs.” Journal of Algorithms 37 (2): 422 – 450.

Bendraouche, Mohamed, and Mourad Boudhar. 2012. “Scheduling jobs on identical machines
with agreement graph.” Computers & Operations Research 39 (2): 382 – 390.

Blöchliger, Ivo, and Nicolas Zufferey. 2008. “A graph coloring heuristic using partial solutions
and a reactive tabu scheme.” Computers & Operations Research 35 (3): 960 – 975.

Blöchliger, Ivo, and Nicolas Zufferey. 2013. “Multi-coloring and job-scheduling with assignment
and incompatibility costs.” Annals of Operations Research 211: 83–101.

Bonomo, Flavia, Sara Mattia, and Gianpaolo Oriolo. 2011. “Bounded coloring of co-comparability
graphs and the pickup and delivery tour combination problem.” Theoretical Computer Science
412 (45): 6261 – 6268.

Brélaz, D. 1979. “New Methods to Color Vertices of a Graph.” Communications of the Association
for Computing Machinery 22: 251–256.

25

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Cheng, T.C.E., and Sin, C.C.S. 1990. “A state-of-the-art review of parallel-machine scheduling
research.” European Journal of Operational Research 47 (3), 271 – 292.

Corominas, Albert, Rafael Pastor, and Joan Plans. 2008. “Balancing assembly line with skilled
and unskilled workers.” Omega 36 (6): 1126 – 1132.

de Werra, D., M. Demange, J. Monnot, and V. Th. Paschos. 2005. “A hypocoloring model for
batch scheduling.” Discrete Applied Mathematics 146 (1): 3–26.

Demange, Marc, Gabriele Di Stefano, and Benjamin Leroy-Beaulieu. 2008. “Online Bounded
Coloring of Permutation and Overlap Graphs.” Electronic Notes in Discrete Mathematics 30:
213 – 218.

Epstein, Leah, Magns M. Halldórsson, Asaf Levin, and Hadas Shachnai. 2009. “Weighted Sum
Coloring in Batch Scheduling of Conflicting Jobs.” Algorithmica 55: 643–665.

Even, Guy, M. M. Halldórsson, Lotem Kaplan, and Dana Ron. 2009. “Scheduling with conflicts:
online and offline algorithms.” Journal of Scheduling 12 (2): 199–224.

Galinier, Philippe, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel. 2013. “Recent
advances in graph vertex coloring.” In Handbook of Optimization, 505–528. Springer.

Galinier, P., A. Hertz, and N. Zufferey. 2008. “An Adaptive Memory Algorithm for the k-Coloring
Problem.” Discrete Applied Mathematics 156 (2): 267 – 279.

Gardi, Frédéric. 2009. “Mutual exclusion scheduling with interval graphs or related classes, Part
I.” Discrete Applied Mathematics 157 (1): 19 – 35.

Gendreau, Michel, and Jean -Yves Potvin, eds . 2010. Handbook of Metaheuristics. Springer. 2nd
Edition.

Giaro, K., M. Kubale, and P. Obszarski. 2009. “A graph coloring approach to scheduling of
multiprocessor tasks on dedicated machines with availability constraints.” Discrete Applied
Mathematics 157 (17): 3625–3630.

Glover, F. 1986. “Future paths for integer programming and linkage to artificial intelligence.”
Computers & Operations Research 13 (5): 533–549.

Gualandi, Stefano, and Federico Malucelli. 2012. “Exact solution of graph coloring problems via
constraint programming and column generation.” INFORMS Journal on Computing 24 (1):
81–100.

Halldórsson, M. M. 2004. “Multicoloring: Problems and Techniques.” Lecture Notes in Computer
Science 3153.

Halldórsson, Magnus M., and Guy Kortsarz. 2002. “Tools for Multicoloring with Applications to
Planar Graphs and Partial k-Trees.” Journal of Algorithms 42 (2): 334 – 366.

Hansen, Pierre, Alain Hertz, and Julio Kuplinsky. 1993. “Bounded vertex colorings of graphs.”
Discrete Mathematics 111 (13): 305 – 312.

26

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Hertz, Alain, and Marino Widmer. 1996. “An improved tabu search approach for solving the job
shop scheduling problem with tooling constraints.” Discrete Applied Mathematics 65 (1-3): 319
– 345.

Hong, Tzung-Pei, Pei-Chen Sun, and Sheng-Shin Jou. 2009. “Evolutionary Computation for
Minimizing Makespan on Identical Machines with Mold Constraints.” WSEAS Transaction on
System and Control 4 (7): 339–348.

Jansen, Klaus. 1998. “The mutual exclusion scheduling problem for permutation and compara-
bility graphs.” Lecture Notes in Computer Science 1373: 287–297.

Jarvis, Mark, and Bing Zhou. 2001. “Bounded vertex coloring of trees.” Discrete Mathematics
232 (1-3): 145 – 151.

Le Pape, Claude. 2007. “A Test Bed for Manufacturing Planning and Scheduling Discussion of
Design Principles.” In Proceedings of the International Workshop on Scheduling a Scheduling
Competition, Providence, Rhode Island USA.

Lewis, Rhyd. 2007. “A survey of metaheuristic-based techniques for university timetabling prob-
lems.” OR Spectrum 30 (1): 167–190.

Lim, A., Y. Zhu, Q. Lou, and B. Rodrigues. 2005. “Heuristic methods for graph coloring prob-
lems.” In Proceedings of the 2005 ACM Symposium on Applied Computing, Santa Fe, New
Mexico. SAC ’05. 933–939. New York, USA: ACM.

Liu, Zhaohui, and T. C. Edwin Cheng. 2002. “Scheduling with job release dates, delivery times
and preemption penalties.” Information Processing Letters 82 (2): 107 – 111.

Lü, Zhipeng, and Jin-Kao Hao. 2010a. “Adaptive tabu search for course timetabling.” European
Journal of Operational Research 200 (1): 235–244.

Lü, Zhipeng, and Jin-Kao Hao. 2010b. “A memetic algorithm for graph coloring.” European
Journal of Operational Research 203 (1): 241–250.

Lushchakova, Irina N., and Vitaly A. Strusevich. 2010. “Scheduling incompatible tasks on two
machines.” European Journal of Operational Research 200 (2): 334 – 346.

Ma, Ying, Chengbin Chu, and Chunrong Zuo. 2010. “A survey of scheduling with deterministic
machine availability constraints.” Computers & Industrial Engineering 58 (2): 199 – 211.

Malaguti, E., and P. Toth. 2010. “A Survey on Vertex Coloring Problems.” International Trans-
actions in Operational Research 17 (1): 1 – 34.

Marx, Dniel. 2004. “Graph Coloring Problems and Their Applications in Scheduling.” Electrical
Engineering 48 (1-2): 11 – 16.

Mehrotra, Anuj, and MichaelA. Trick. 2007. “A Branch-And-Price Approach for Graph Multi-
Coloring.” In Extending the Horizons: Advances in Computing, Optimization, and Decision
Technologies, Vol. 3715–29. Springer US.

27

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22



Méndez-Dı́az, Isabel, and Paula Zabala. 2010. “Solving a multicoloring problem with overlaps
using integer programming.” Discrete Applied Mathematics 158 (4): 349 – 354.

Meuwly, F.-X., B. Ries, and N. Zufferey. 2010. “Solution Methods for a Scheduling Problem with
Incompatibility and Precedence Constraints.” Algorithmic Operations Research 5 (2): 75 – 85.

Persi, Piero, Walter Ukovich, and Raffaele Pesenti. 2001. “Two Job Cyclic Scheduling With
Incompatibility Constraints.” International Transactions in Operational Research 8 (2): 167 –
181.

Pesenti, Raffaele, and Walter Ukovich. 2003. “Economic lot scheduling on multiple production
lines with resource constraints.” International Journal of Production Economics 81-82 (1):
469–481.

Pinedo, Michael. 2008. Scheduling: Theory, Algorithms, and Systems. Springer. Third Edition.

Prats, Xavier, Vicenç Puig, Joseba Quevedo, and Fatiha Nejjari. 2010. “Lexicographic optimi-
sation for optimal departure aircraft trajectories.” Aerospace Science and Technology 14 (1):
26–37.

Prestwich, Steven. 2008. “Generalised graph colouring by a hybrid of local search and constraint
programming.” Discrete Applied Mathematics 156 (2): 148 – 158.

Rochat, Y., and E. Taillard. 1995. “Probabilistic Diversification and Intensification in Local Search
for Vehicle Routing.” Journal of Heuristics 1 (1): 147–167.

Satratzemi, M. 2004. “A heuristic algorithm for the set T-coloring problem.” In Information and
Communication Technologies: From Theory to Applications, 531 – 532. Damascus, Syria.

Solnon, Christine, Van Dat Cung, Alain Nguyen, and Christian Artigues. 2008. “The car se-
quencing problem: overview of state-of-the-art methods and industrial case-study of the
ROADEF2005 challenge problem.” European Journal of Operational Research 191 (3): 912–
927.

Thevenin, Simon, Nicolas Zufferey, and Jean-Yves Potvin. 2014. “Multi-objective parallel machine
scheduling with incompatible jobs.” In Proceedings of the 15th Annual Congress of the French
Operations Research Society, ROADEF 2014, Bordeaux, France.

Xue, Jue. 1998. “Solving the Minimum Weighted Integer Coloring Problem.” Computational
Optimization and Applications 11 (1): 53–64.

Zufferey, Nicolas. 2012. “Metaheuristics: Some Principles for an Efficient Design.” Computer
Technology and Applications 3: 446 – 462.

Zufferey, Nicolas, Olivier Labarthe, and David Schindl. 2012. “Heuristics for a project manage-
ment problem with incompatibility and assignment costs.” Computational Optimization and
Applications 51 (3): 1231–1252.

Zufferey, Nicolas, and Michel Vasquez. 2014. “A Generalized Consistent Neighborhood Search for
Satellite Range Scheduling Problems.” RAIRO Operations Research 49 (1): 99 – 121.

28

Makespan Minimization for a Parallel Machine Scheduling Problem with Preemption and Job Incompatibility

CIRRELT-2016-22




