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1. Introduction

It has been more than five decades since the Benders Decomposition (BD) algorithm was proposed by Benders

(1962), with the main objective of tackling problems withcomplicating variables, which, when temporarily fixed,

yield a problem significantly easier to handle. The BD method (also referred to as variable partitioning and outer lin-

earization) has become one of the most widely used exact algorithms, because it exploits the structure of the problem

and decentralizes the overall computational burden. Successful applications are found in many divers fields, including

planning and scheduling (Hooker, 2007; Canto, 2008), health care (Luong, 2015), transportation and telecommu-

nications (Costa, 2005), energy and resource management (Cai et al., 2001; Zhang and Ponnambalam, 2006), and

chemical process design (Zhu and Kuno, 2003), as illustrated in Table 1.

Table 1: Some applications of the Benders decomposition method

Reference Application Reference Application

1 Behnamian (2014) Production planning 17 Jiang et al. (2009) Distribution planning

2 Adulyasak et al. (2015) Production routing 18 Kim et al. (2015) Inventory control

3 Boland et al. (2015) Facility location 19 Laporte et al. (1994) Traveling salesman

4 Boschetti and Maniezzo (2009) Project scheduling 20 Luong (2015) Healthcare planning

5 Botton et al. (2013) Survivable network design 21 Maravelias and Grossmann (2004) Chemical process design

6 Cai et al. (2001) Water resource management 22 Moreno-Centeno and Karp (2013) Implicit hitting sets

7 Canto (2008) Maintenance scheduling 23 Oliveira et al. (2014) Investment planning

8 Codato and Fischetti (2006) Map labeling 24 Osman and Baki (2014) Transfer line balancing

9 Cordeau et al. (2006) Logistics network design 25 Pérez-Galarce et al. (2014) Spanning tree

10 Cordeau et al. (2001a) Locomotive assignment 26 Pishvaee et al. (2014) Supply chain network design

11 Cordeau et al. (2001b) Airline scheduling 27 Rubiales et al. (2013) Hydrothermal coordination

12 Corréa et al. (2007) Vehicle routing 28 Saharidis et al. (2011) Refinery system network planning

13 Côté et al. (2014) Strip packing 29 Sen et al. (2015) Segment allocation

14 Fortz and Poss (2009) Network design 30 Bloom (1983) Capacity expansion

15 Gelareh et al. (2015) Transportation 31 Wang et al. (2016) Optimal power flow

16 Jenabi et al. (2015) Power management

The BD method is based on a sequence of projection, outer linearization, and relaxation (Geoffrion, 1970a,b).

Thus, the model is first projected onto the subspace defined by the set of complicating variables. The resulting for-

mulation is then dualized, and the associated extreme rays and points respectively define the feasibility requirements

(feasibility cuts) and the projected costs (optimality cuts) of the complicating variables. Thus, an equivalent formu-

lation can be built by enumerating all the extreme points and rays. However, performing this enumeration and, then,

solving the resulting formulation is generally computationally exhausting, if not impossible. Hence, one solves the

equivalent model by applying a relaxation strategy to the feasibility and optimality cuts, yielding a Master Problem

(MP) and a subproblem, which are iteratively solved to respectively guide the search process and generate the violated

cuts.
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The BD algorithm was initially proposed for a class of mixed-integer linear programming (MILP) problems. When

the integer variables are fixed, the resulting problem is a continuous linear program (LP) for which we can use standard

duality theory to develop cuts. Many extensions have since been developed to apply the algorithm to a broader range

of problems (e.g., Geoffrion, 1972; Hooker and Ottosson, 2003). Other developments were proposed to increase the

algorithm’s efficiency on certain optimization classes (e.g., Costa et al., 2012; Crainic et al., 2014). In addition, BD

often provides a basis for the design of effective heuristics for problems that would otherwise be intractable (Côté

and Laughton, 1984; Raidl, 2015). The BD approach has thus become widely used for linear, nonlinear, integer,

stochastic, multi-stage, bilevel, and other optimization problems, as illustrated in Table 2.

Table 2: Examples of optimization problems handled via Benders method

Reference Model Reference Model

1 Adulyasak et al. (2015) Multi-period stochastic problem 16 Jenabi et al. (2015) Piecewise linear mixed-integer problem

2 Behnamian (2014) Multi-objective MILP 17 Kim et al. (2015) Multi-stage stochastic program

3 Cai et al. (2001) Multi-objective nonconvex nonlinear problem 18 Laporte et al. (1994) Probabilistic integer formulation

5 Cordeau et al. (2001b) Pure 0–1 formulation 19 Li (2013) Large-scale nonconvex MINLP

6 Corréa et al. (2007) Binary problem with logical expressions 20 Moreno-Centeno and Karp (2013) Problem with constraints unknown in advance

7 Gabrel et al. (1999) Step increasing cost 21 Bloom (1983) Nonlinear multi-period problem with reliability constraint

8 Côté et al. (2014) MILP with logical constraints 22 Osman and Baki (2014) Nonlinear integer formulation

9 de Camargo et al. (2011) Mixed-integer nonlinear program (MINLP) 23 Pérez-Galarce et al. (2014) Minmax regret problem

10 Emami et al. (2016) Robust optimization problem 24 Pishvaee et al. (2014) Multi-objective possibilistic programming model

11 Fontaine and Minner (2014) Bilevel problem with bilinear constraints 25 Raidl et al. (2014) Integer, bilevel, capacitated problem

12 Fortz and Poss (2009) Multi-layer capacitated network problem 27 Rubiales et al. (2013) Quadratic MILP master problem and nonlinear subproblem

13 Gendron et al. (2014) Binary problem with nonlinear constraints 28 Sahinidis and Grossmann (1991) MINLP and nonconvex problems

14 Grothey et al. (1999) Convex nonlinear problem 29 Harjunkoski and Grossmann (2001) Multi-stage problem with logical and big-M constraints

15 O’Kelly et al. (2014) MINLP with concave objective function and staircase constraint matrix structure

Figure 1 depicts the increasing interest in the BD algorithm over the years. Despite this level of interest, there has

been no comprehensive survey of the method in terms of its numerical and theoretical challenges and opportunities.

The now out-of-date survey by Costa (2005) reviews only applications to fixed-charge network design problems. The

main goal of this paper therefore is to contribute to filling this gap by reviewing the current state-of-the-art, focusing

on the main ideas for accelerating the method, discussing the main variants and extensions aimed to handle more

general problems involving, e.g., nonlinear/integer/constraint programming subproblems, and identifying trends and

promising research directions.

Many different enhancement strategies were proposed to address the shortcomings of the BD method and acceler-

ate it. This effort contributed significantly to the success of the method. We propose a taxonomy of the enhancement

and acceleration strategies based on the main components of the algorithm: the decomposition strategy, the strate-

gies to handle the MP and subproblem, and the strategies to generate solutions and cuts. The taxonomy provides the

framework to classify and synthesize the literature and to identify relations among strategies and between these and

the BD method.

The remainder of this article is organized as follows. Section 2 presents the classical BD algorithm, the associ-

ated model selection criteria, and its relationship to other decomposition methods. Section 3 presents the proposed

2
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Figure 1: Publication–year distribution of BD research according to https://scholar.google.ca/.

taxonomy, used to survey the acceleration strategies in Sections 4 to 7. Section 8 presents Benders-type heuristics,

and Section 9 describes extensions of the classical algorithm. Finally, Section 10 provides concluding remarks and

describes promising research directions.

2. The Benders Decomposition Method

We present in this section the classical version of the Benders algorithm (Benders, 1962). We review its extensions

to broader range of optimization problems in Section 9.

2.1. The classical version

We consider an MILP of the form

Minimize f T y + cT x (1)

subject to Ay = b (2)

By + Dx = d (3)

x ≥ 0 (4)

y ≥ 0 and integer, (5)

with complicating variables y ∈ <n1 , which must take positive integer values and satisfy the constraint set Ay = b,

where A ∈ <m1×n1 is a known matrix and b ∈ <m1 is a given vector. The continuous variables x ∈ <n2 , together with

the y variables, must satisfy the linking constraint set By + Dx = d, with B ∈ <m2×n1 , D ∈ <m2×n2 , and d ∈ <m2 . The

objective function minimizes the total cost with the cost vectors f ∈ <n1 and c ∈ <n2 .

3
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Model (1–5) can be re-expressed as

min
ȳ∈Y
{ f T ȳ + min

x≥0
{cT x : Dx = d − Bȳ}, } (6)

where Y = {y|Ay = b, y ≥ 0 and integer}. The inner minimization is a continuous linear problem that can be dualized

by means of dual variables π associated with the constraint set Dx = d − Bȳ:

max
π∈<m2

{πT (d − Bȳ) : πT D ≤ c} (7)

Based on duality theory, the primal and dual formulations can be interchanged to extract the following equivalent

formulation:

min
ȳ∈Y
{ f T ȳ + max

π∈<m2
{πT (d − Bȳ) : πT D ≤ c}} (8)

The feasible space of the inner maximization, i.e., F = {π|πT D ≤ c}, is independent of the choice of ȳ. Thus, if F

is not empty, the inner problem can be either unbounded or feasible for any arbitrary choice of ȳ. In the former case,

there is a direction of unboundedness rq, q ∈ Q for which rT
q (d − Bȳ) > 0; this must be avoided because it indicates

the infeasiblity of the ȳ solution. We add a cut

rT
q (d − Bȳ) ≤ 0 ∀q ∈ Q (9)

to the problem to restrict movement in this direction In the latter case, the solution of the inner maximization is one

of the extreme points πe, e ∈ E. If we add all the cuts of the form (9) to the outer minimization problem, the value of

the inner problem will be one of its extreme points. Consequently, problem (8) can be reformulated as:

min
ȳ∈Y

f T ȳ + max
e∈E
{πT

e (d − Bȳ)} (10)

subject to rT
q (d − Bȳ) ≤ 0 ∀q ∈ Q (11)

This problem can easily be linearized via a continuous variable η ∈ <1 to give the following equivalent formulation

to problem (1–5), which we refer to as the Benders Master Problem (MP):

min
y,η

f T y + η (12)

subject to Ay = b (13)

η ≥ πT
e (d − By) ∀e ∈ E (14)

0 ≥ rT
q (d − By) ∀q ∈ Q (15)

y ≥ 0 and integer (16)

Constraints (14) and (15) are referred to as optimality and feasibility cuts, respectively. The complete enumeration

of these cuts is generally not practical. Therefore, Benders (1962) proposed a relaxation of the feasibility and opti-

mality cuts and an iterative approach. Thus, the BD algorithm repeatedly solves the MP, which includes only a subset

4
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of constraints (14) and (15), to obtain a trial value for the y variables, i.e., ȳ. It then solves subproblem (7) with ȳ. If

the subproblem is feasible and bounded, a cut of type (14) is produced. If the subproblem is unbounded, a cut of type

(15) is produced. If the cuts are violated by the current solution, they are inserted into the current MP and the process

repeats.

Figure 2 illustrates the BD algorithm. After deriving the initial MP and subproblem, the algorithm alternates

between them (starting with the MP) until an optimal solution is found. To confirm the convergence, the optimality

gap can be calculated at each iteration. The objective function of the MP gives a valid lower bound on the optimal

cost because it is a relaxation of the equivalent Benders reformulation. On the other hand, combining the ȳ solution

with the objective value of the subproblem, which is equivalent to fixing ȳ in the original formulation, yields a valid

upper bound on the optimal cost.

Benders

Decomposition

Master problem

Dual subproblem

Information

(solutions)

Feedback

(cuts)

Figure 2: Schematic representation of Benders decomposition method.

2.2. Model selection for Benders decomposition

A given problem can usually be modeled with different but equivalent formulations. However, from a compu-

tational point of view, the various formulations may not be equivalent. Geoffrion and Graves (1974) observed that

the formulation has a direct impact on the performance of the BD. Magnanti and Wong (1981) demonstrated that a

formulation with a stronger LP relaxation will have better performance. This is because of the tighter root node and

the smaller number of fractional variables and also because the generated cuts are provably stronger. Sahinidis and

Grossmann (1991) proved that the BD method applied to a mixed integer nonlinear programming (NLP) formulation

with a zero NLP relaxation gap requires only the cut corresponding to the optimal solution to converge. Cordeau

et al. (2006) studied a stochastic logistic network design problem. They found that when the original formulation was

strengthened with a set of valid inequalities (VIs), the performance of the BD method was considerably improved.

These observations confirm the importance of tight formulations in the context of the BD method. However,

tighter formulations are often obtained by adding additional constraints. This may result in a more time-consuming

subproblem, which may also exhibit a higher degree of degeneracy. Therefore, there must be a trade-off between the

reduction in the number of iterations and the additional difficulty of the subproblem.

5
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2.3. Relationship to other decomposition methods

The BD method is closely related to other decomposition methods for LP, such as Dantzig–Wolfe and Lagrangian

optimization (see Lim (2010) for details). In particular, solving an LP by Dantzig–Wolfe decomposition is equivalent

to applying the BD approach to its dual. The relationship is clear since Dantzig–Wolfe is particularly suitable for

problems with complicating constraints, and the dual of these constraints will be the complicating variables in the BD

method. Note that the subproblems are also equivalent in the two methods. The BD method is also equivalent to a

cutting-plane method applied to the Lagrangian dual.

In integer programming, the situation is more complex, and there is no simple relationship among the decom-

position methods. In contrast to Lagrangian relaxation and Dantzig–Wolfe decomposition, the BD method directly

converges to an optimal solution to the MILP rather than to a relaxation of the problem; therefore, there is no need to

embed it in a branch-and-bound framework. However, the classical BD approach cannot handle integrality require-

ments in the subproblems; variants have been proposed (see Section 9).

Finally, there are close relationships between Benders cuts and various classical VIs (Magnanti et al., 1986).

For instance, Costa et al. (2009) demonstrated that cutset inequalities are essentially Benders feasibility cuts, while

Benders feasibility cuts are not, in general, metric inequalities and require additional lifting procedures for conversion

into metric inequalities. Therefore, the classical BD method has several numerical and theoretical limitations, for

which various enhancement and acceleration strategies have been proposed.

3. Taxonomy of the Enhancement Strategies

A straightforward application of the classical BD algorithm may require excessive computing time and memory

(Magnanti and Wong, 1981; Naoum-Sawaya and Elhedhli, 2013). Its main drawbacks include: time-consuming

iterations; poor feasibility and optimality cuts; ineffective initial iterations; zigzagging behavior of the primal solutions

and slow convergence at the end of the algorithm (i.e., a tailing-off effect); and upper bounds that remain unchanged

in successive iterations because equivalent solutions exist.

Much research was dedicated to exploring ways to improve the convergence of the algorithm by reducing the

number of iterations and the time required for each iteration. The former goal is aimed for by improving the quality of

both the generated solutions and the cuts, and the latter by improving the solution procedure used to optimize the MP

and subproblem in each iteration. The decomposition strategy that defines the initial MP and subproblem is another

fundamental building block of the algorithm with significant consequences for its efficiency, as it determines both the

difficulty of the problems and the quality of the solutions. We define therefore a four-dimension taxonomy, illustrated

in Figure 3, that captures all these factors.

The decomposition strategy specifies how the problem is partitioned to obtain the initial MP and subproblem. In

a classical decomposition all the linking constraints and noncomplicating variables are projected out. In a modified

6
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Solution Procedure

Cut Generation

Decomposition Strategy

Solution Generation

regular MP
improved MP

alternative MP
heuristics

hybrid

S/S

S/A

A/S

A/A

C/C
C/I

I/C
I/I

classical

modified

Figure 3: Components of taxonomy.

decomposition these constraints and variables are partially projected to maintain an approximation of the projected

terms in the MP.

The solution procedure concerns the algorithms used for the MP and subproblem. The standard techniques are

the simplex method and branch-and-bound. They are treated as black-box solvers, and no attempt is made to adapt

them to the characteristics of the problem or the convergence requirements of the BD algorithm. Advanced strategies

exploit the structure of the MP and subproblem or the search requirements of the BD algorithm. For example, these

strategies may aim to control the size of the problems or relax the requirement that they are solved to optimality at

every iteration. We write “S/A” to indicate that standard techniques are used for the MP and advanced techniques are

used for the subproblem. Similarly, we define A/A, A/S, and S/S.

The solution generation concerns the method used to set trial values for the complicating variables. The classical

strategy is to solve the MP without modification (referred to as regular MP). Heuristics, an alternative MP, or an

improved MP can be used to generate solutions more quickly or to find better solutions. Hybrid strategies can also

be defined, e.g., one can use the regular MP to get an initial value for the master variables and then use heuristics to

improve it.

The cut generation concerns the strategy used to generate optimality and feasibility cuts. Classically, this is done

by solving the regular subproblem obtained from the decomposition. Other strategies reformulate the subproblem or

solve auxiliary subproblems. The “C” and “I” symbols represent the classical and the improved strategies, respec-

tively. For example, “C/I” indicates that the classical strategy is used to generate optimality cuts and the improved

strategies are used to generate feasibility cuts. Sections 4 to 7 survey the strategies of each component of the taxonomy.

7
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4. Decomposition Strategies

Recent studies have presented various modified decomposition strategies. Crainic et al. (2016, 2014) emphasized

that the BD method causes the MP to lose all the information associated with the noncomplicating variables. This

results in instability, erratic progression of the bounds, and a large number of iterations. Moreover, the problem

structure associated with the linking constraints (3) is lost, and thus many classical VIs are not applicable. The authors

proposed Partial Benders Decomposition strategies that add to the master explicit information from the scenario

subproblems, by retaining or creating scenarios, or both. They obtained significant improvements in terms of number

of generated cuts and computational time.

The nonstandard decomposition strategy of Gendron et al. (2014) is another interesting example of a modified de-

composition. After decomposing the problem, the authors obtained a subproblem with integer variables and nonlinear

constraints. To improve the convergence of the algorithm, the authors retained the projected variables in the MP but

relaxed the integrality requirement. They also included in the MP a linear approximation of the nonlinear constraints.

They observed a significant improvement in performance, although the difficulty of the MP was noticeably increased.

As indicated by the results mentioned above, further research into decomposition strategies is worthwhile, as

modified decomposition strategies may significantly strengthen the relaxed MP. Such approaches are not only com-

plementary to adding VIs, discussed in Section 6.2, but may also provide the opportunity to derive a wider range of,

possibly stronger, VIs.

5. Solution Procedure

The iterative solution of the MP and subproblem is a major computational bottleneck. In particular, the MP, an

MILP formulation, is often lacking special structure, and is continually growing in size becoming more and more

difficult to solve. Classically, the MP is solved to optimality via branch-and-bound, while the subproblem is handled

with the simplex method. In this section, we survey the various alternatives that have been proposed. These strategies

exploit the structure of the MP and subproblem or are designed to improve the convergence speed. Figure 4 lists the

strategies that we discuss.

5.1. MP level

It has often been reported that more than 90% of the total execution BD time is spent on solving the MP (Mag-

nanti and Wong, 1981; Zarandi, 2010). The strategies proposed to partially alleviate this computational bottleneck,

discussed in the next two subsections, either a) manage the size of the problem or b) solve it more efficiently.

5.1.1. Size management

In any optimal solution to the MP, the number of active constraints never exceeds the number of decision vari-

ables (Minoux, 1986). Thus, many of the generated cuts do not contribute to the convergence of the algorithm and

8
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Advanced solution procedures

MP level

Solution procedure Size management

ε-optimality

Heuristics

Constraint programming

Column generation

Single search tree

Cut removal

Cut selection

Subproblem level

Approximation

Column generation

Specialized methods

Re-optimization techniques

Parallelism

Figure 4: Advanced solution procedures.

merely slow it down (extra handling effort and memory limitations). Therefore, cut deletion or clean-up strategies are

important, especially when multiple cuts are inserted into the MP at each iteration.

There is no reliable way to identify the useless cuts, so the clean-up strategies are heuristic (Ruszczyński, 2003).

They usually inspect the slack values associated with each cut, a cut with a relatively high slack value over some

predetermined number of iterations being a good candidate for removal. One can avoid the regeneration of eliminated

cuts (and prevent the possible cycling of the algorithm) by keeping them in a pool and reinserting them into the MP

whenever they are violated by the current solution. Cuts should be removed infrequently because constraint removal

has a disturbing impact on off-the-shelf optimization solvers, especially when re-optimization techniques are used for

faster solution of the MP; see Geoffrion (1972) and Pacqueau et al. (2012) for implementation details.

Sometimes, multiple cuts are available for insertion but not all of them are worth adding. It is actually important to

add cuts cautiously to avoid an explosion in the size of the MP. Holmberg (1990) defined cut improvement as follows:

an optimality cut provides cut improvement if it is new and may be active in an optimal solution. Rei et al. (2009) used

this definition when selecting solutions in order to generate cuts. They stated that a solution yields cut improvement

if its value in the current MP is strictly smaller than the best known upper bound. Yang and Lee (2012) selected

tighter (feasibility) constraints from a set of available cuts by measuring their distance from different interior points.

After choosing a first cut from the pool, they added other cuts for which the “difference measure” from the first cut

was greater than a user-defined threshold. This yielded considerable savings in computational time and number of

iterations.

In summary, one can control the size of the MP by removing unnecessary cuts or avoiding the insertion of an

available cut. However, these strategies are not often used. One reason is that simultaneously inserting many cuts into

the MP reduces the number of iterations, and this often compensates for the increase in the difficulty of addressing

the problem. Another reason is that these techniques are heuristic, so they may remove necessary cuts or add cuts that

prove unhelpful. There is a need for further research in this area.

9
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5.1.2. Algorithm

It is not necessary to solve the MP to optimality at every iteration in order to achieve global convergence. Some

researchers have focused on quickly finding suboptimal solutions. Others have taken advantage of the structure of the

MP to solve it more efficiently.

Geoffrion and Graves (1974) were the first to address the MP computational difficulties. They observed that it

is not necessary to solve the MP to optimality at every iteration to produce valid cuts. In fact, there is no incentive

to do so at the beginning of the algorithm because the relaxation is weak. They solved the MP to ε-optimality at

each iteration, with ε decreasing as the algorithm proceeds to ensure global convergence. Lin and Üster (2014)

terminated the algorithm whenever the MP could not produce feasible solutions in the presence of an ε-optimality

constraint, indicating that the upper bound lies within ε% of optimality. Kewcharoenwong and Üster (2014) obtained

an encouraging speedup with this approach in the context of fixed-charge relay network design in telecommunications.

An alternative is to solve the MP via (meta-)heuristics, which not only reduces the time but also allows the

generation of multiple cuts per iteration, yielding faster improvement of the lower bound (Raidl, 2015). This strategy

may lead, however, to worse bounds and a lack of control, which could prevent the generation of necessary cuts. For

an MILP, the bounds may be worse than those of the LP relaxation of the original problem (Holmberg, 1994). Thus,

the MP must be solved exactly to ensure convergence, but fewer iterations are usually needed (Poojari and Beasley,

2009).

Constraint Programming (CP) is another possible approach. In a workforce scheduling application, Benoist et al.

(2002) showed that CP can be a better choice than mixed integer programming (MIP) solvers, because of its greater

ability to handle special constraints. Similarly, Corréa et al. (2007) considered the simultaneous scheduling and

routing of automated guided vehicles, using CP to solve the scheduling MP and an MIP solver to handle the routing

subproblem. They observed improvements of several orders of magnitude when the MP was solved by CP.

A few researchers have applied Column Generation (CG) to the MP to handle certain structures more effectively,

aiming for tighter bounds at the root node of the branch-and-bound tree. Cordeau et al. (2001b) proposed using BD

to handle linking constraints in a simultaneous aircraft routing and crew scheduling problem. They formulated an

aircraft routing MP and a crew pairing subproblem. Because of their special structure, both problems were handled by

CG (see Mercier et al., 2005, for a similar application). Restrepo et al. (2015) applied BD to solve a multi-tour activity

scheduling problem; the MP was handled by CG because of its large number of variables. The integration of CG into

the BD framework appears theoretically challenging because of the simultaneous addition of rows and columns that

are often interdependent. The discussion of this issue is beyond the scope of this article; see Muter et al. (2015) for

further information.

In the classical BD, one MP (an MILP) is solved to optimality at each iteration. Each time, a new branch-

and-bound tree is built and considerable time is likely spent revisiting candidate solutions that have been eliminated

earlier. One can instead build a single search tree and generate valid cuts for the integer (and fractional) solutions
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encountered inside the tree, attaining the same optimal solution. This strategy, often referred to as Branch-and-

Benders-cut (B&BC), yielded promising results (e.g., Fortz and Poss, 2009; Gendron et al., 2014; de Camargo et al.,

2011; Taşkın and Cevik, 2013; de Sá et al., 2013; Crainic et al., 2014; Pérez-Galarce et al., 2014). In addition to the

numerical superiority of a modern implementation in comparison with the classical one, Naoum-Sawaya and Elhedhli

(2013) showed that B&BC can make better use of the re-optimization tools of MILP solvers. Various strategies can

be used to produce the cuts. For example, one can generate cuts in all feasible nodes or only when new incumbent

solutions are found. It is necessary to establish a trade-off between cut generation and branching effort. For instance,

Botton et al. (2013) studied when to generate cuts, their results indicating that generating cuts at every node of the

search tree is inefficient because too many cuts are added and too much time is spent solving the subproblems. Better

performance was achieved by finding as many violated cuts as possible at the root node and subsequently checking

for violated Benders inequalities only at integer nodes.

We complete this section with two remarks. First, solving the MP via approximations, heuristics, or a single

search tree may not be superior to the classical cutting-plane implementation, especially in applications where solving

the MP takes significantly less time than the dual component of the algorithm. The modified approaches may then

enumerate many solutions that are usually ignored by classical implementations. This is not the case, however, for

most combinatorial optimization problems, for which the acceleration strategies we discussed are the most popular to

handle the MP. In particular, the single search tree has recently received considerable attention. This strategy leads to

interesting research perspectives regarding the cut-generation strategies, the branching rules, the node selection, and

the pruning strategies that have not been fully explored.

Second, CP has been shown to be better than MIP techniques for the MP if there are special constraints such as

“all-different” constraints, logical relations, arithmetic expressions, integer division, and expressions that index an

array of values by a decision variable. Finally, one can use alternative formulations for the MP to generate solutions

more quickly, reducing the number of iterations. This topic is addressed in Section 6.1.

5.2. Subproblem level

The subproblem can be large, inherit complex features, or decompose into an excessive number of smaller sub-

problems. Various strategies have been proposed to solve the subproblem more effectively.

The solution of the subproblem may be extremely complex because it is a large-scale LP. Zakeri et al. (2000)

showed that suboptimal solutions of the dual subproblem can be used to generate useful valid cuts. The authors

observe that these inexact cuts are computationally less expensive and produce good results. In the same situation,

commercial solvers (e.g., CPLEX) prefer the interior point approach to the simplex method. Thus, the BD method

may converge to an incorrect solution, since the cuts are not necessarily associated with extreme points of the dual

polyhedron (Yang and Lee, 2011). However, given the condition introduced by Zakeri et al. (2000) for inexact Benders

cuts, convergence can still be guaranteed.

CG is another effective approach for large-scale linear subproblems with special structure (Cordeau et al., 2001b).
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Mercier et al. (2005) showed that for large subproblems complete enumeration is impossible, but that variables can

be iteratively generated via CG. Similar applications of CG within a BD framework can be found in Cordeau et al.

(2001a), Mercier and Soumis (2007), and Papadakos (2009).

Subproblems with special structure can often be solved efficiently. One can derive a closed-form solution or apply

specialized algorithms. Fischetti et al. (2004) observed that the subproblem may reduce to a knapsack problem, which

has a closed-form solution. Similarly, Randazzo et al. (2001) obtained a series of trivial network flow subproblems

with a closed-form solution. Contreras et al. (2011) obtained a semi-assignment problem for each commodity in their

hub location application; these problems could be solved more efficiently by a specialized method compared to an LP

solver. Kouvelis and Yu (1997) derived shortest-path subproblems that were solved with Dijkstra’s algorithm.

The decomposition sometimes yields several independent subproblems. One may consider solving only a subset

of the subproblems at each iteration, especially at the beginning of the algorithm. To the best of our knowledge, there

is no such strategy for combinatorial optimization problems, but Fábián (2000) has studied a similar idea for convex

programming problems. The algorithm initially calculates rough estimates of the function values and gradients. As it

proceeds, the calculations become more accurate.

In some applications, many subproblems are similar. Considering that the algorithm updates only the objec-

tive function of the dual subproblem between two consecutive iterations, one can exploit these similarities using

re-optimization techniques: given the solution to one subproblem, the next can be optimized in just a few iterations

(see, e.g., Birge and Louveaux, 1997; Vladimirou, 1998). However, since the algorithm updates only the objective

function of the dual subproblem between one iteration and the next, further investigation of re-optimization techniques

is required.

When there are many subproblems, parallel computing techniques are often used: the subproblems are solved

in parallel on different processors. One processor, the master, usually solves the MP and coordinates the other pro-

cessors, the slaves, which solve the subproblems. The primal solution of the MP is passed to the slave processors,

and the objective function and the dual information obtained from solving the subproblems is returned to the master

processor. Experiments have shown that this strategy is effective (e.g., Ariyawansa and Hudson, 1991; Nielsen and

Zenios, 1997; Linderoth and Wright, 2003; Wolf and Koberstein, 2013; Pacqueau et al., 2012). The literature dis-

cusses some of the algorithmic challenges of this approach. For example, Linderoth and Wright (2003) implemented

asynchronous communications in which the MP is re-optimized as soon as λ% of the cuts are received. Dantzig et al.

(1991) used dynamic work-allocation: the next idle processor gets the next subproblem based on a first-in-first-out

strategy until all the subproblems are solved and the MP can be recomputed with the added cuts. Nielsen and Zenios

(1997) exploited the structural similarities of the subproblems, applying an interior point algorithm on a fine-grained

parallel machine. Vladimirou (1998) implemented a partial-cut aggregation approach to reduce the communication

overheads. Chermakani (2015) observed that when the number of subproblems is considerably larger than the number

of available processors, so that some subproblems must be solved sequentially, it may be better to aggregate some of

the subproblems.
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In summary, the simplex method is the most widely used algorithm for the subproblem. However, when the sub-

problem has special structure, specialized algorithms are a better option. In either case, when the decomposition yields

several independent subproblems, parallelization is the method of choice. There has been limited investigation of ap-

proximation and heuristic methods. Yet, when the subproblem is a large-scale LP that cannot be further decomposed

and has no special structure, heuristics may yield considerable speed-up.

6. Solution Generation

The quality of the solutions for the set of complicating variables directly determines the number of iterations,

as they are used to generate cuts and bounds. These solutions are traditionally found by exactly or approximately 

solving the regular MP. Three approaches have been proposed to improve the quality of the solutions or generate 

them more quickly: (1) using alternative formulations, (2) improving the MP formulation, and (3) using heuristics 

to independently generate solutions or to improve those already found. Figure 5 lists the techniques that we discuss. 

Note that, the strategies are not mutually exclusive, and hybrid approaches may work well. A complete presentation 

of the hybrid strategies is beyond the scope of this article, however, since the appropriate combination of strategies is 

problem-dependent.

Solution generation

Alternative MP

Cross decomposition

Two-phase approach

Stabilized formulation

Heuristics

Warm start

Intensification/diversification

Feasibility restoration

Upper bounding

Improved MP

Valid inequalities

Multi-cut reformulation

Figure 5: Strategies to generate solutions for the set of complicating variables.

6.1. Alternative formulation

Altering the MP, albeit temporarily, provides the means to address two main drawbacks in addressing it: (1) slow

generation of solutions that may be poor-quality and (2) instability. The two-phase approach of McDaniel and Devine

(1977) and the cross decomposition of Van Roy (1983) address the first drawback. The former uses an approximation

of the MP to generate solutions more quickly, while the latter uses an alternative MP to generate potentially better

solutions.

McDaniel and Devine (1977) showed that valid Benders cuts can be obtained from the solutions to the LP relax-

ation of the MP. They applied the BD algorithm in two phases. In the first phase, the linear relaxation of the MILP MP

is used to quickly generate solutions and tighten the relaxed MP, and in the second phase the integrality requirements

are reintroduced and the solution process continues. The cross-decomposition algorithm (Van Roy, 1983) exploits
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the structure of both the primal and dual problems, combining the advantages of Lagrangian relaxation and BD. It

alternates between two steps: (i) for a given y, the Benders subproblem (7) is solved to get the dual multipliers π, and

(ii) for a given π, the Lagrangian subproblem is solved to produce a new y. After this alternation is terminated, the so-

lutions of both the Benders and Lagrangian subproblems are used to generate new cuts for the Benders or Lagrangian

MP. Again, convergence to optimality can only be ensured by periodically solving the Benders MP. However, doing

this less often accelerates the solution process.

Instability is another widely recognized drawback of the regular MP (Birge and Louveaux, 1997; Zaourar and

Malick, 2014), as it can yield excessively slow convergence. Two reasons are evoked for this phenomenon, the large

initial steps and the excessive oscillation that occurs as the algorithm approaches the optimal solution (Rubiales et al.,

2013). Several studies aimed to mitigate this undesirable behavior by adding constraints to the MP or changing the

objective function. Regularized decomposition, trust-region, and level decomposition strategies have been used to

obtain a stabilized MP formulation.

Regularized decomposition was introduced by Ruszczyński (1986) and extended by Ruszczyński and Świȩtanowski

(1997). A quadratic term is added to the MP objective function to keep the solutions close to the current reference

point, which is updated whenever certain conditions are satisfied. Computational results indicate that the method is

efficient although it solves a quadratic problem rather than a linear one, since it decreases the number of expensive

iterations (Ruszczyński and Świȩtanowski, 1997). The trust-region method can be thought of as a hypercube around

a reference solution at iteration k, denoted yk. The next solution must stay within this “trusted region.” This is usually

achieved by adding the constraint ||y − yk ||∞ ≤ ∆ to the MP; the reference point yk and the trust-region bound ∆ will

be updated during the algorithm (see Linderoth and Wright, 2003, for an implementation, computational results, and

a proof of convergence). Level decomposition was developed by Lemaréchal et al. (1995) for nonsmooth convex

optimization and adapted to stochastic programming by Fábián and Szőke (2007). Its goal is to dampen the zigzag-

ging behavior of the BD method with respect to the master solutions. This is achieved by solving a modified MP

that minimizes the Euclidean distance of its solution y from the previous solution yk (initialized to y0), while ensuring

that the approximate value of the next solution is not greater than a convex combination of the current best lower and

upper bounds. A favorable comparison of this method with the standard BD method, regularized decomposition, and

the trust-region approach was carried out by Zverovich et al. (2012).

The above stabilization techniques may not be directly applicable to combinatorial optimization contexts. Santoso

et al. (2005) demonstrated that a trust region with the `2- or `∞-distance either yields a quadratic MILP or is not

meaningful for a 0–1 MILP MP. Thus, they used a trust region that bounds the Hamming distance between the current

MP solution and the previous one. However, since convergence cannot be ensured in the presence of this constraint,

they used it only in the early iterations. Oliveira et al. (2014) observed an acceleration of up to 46% with the approach

of Santoso et al. (2005). van Ackooij et al. (2015) instead stabilized the BD method via a proximal term (a trust

region in the `1 norm) or a level constraint rather than adding quadratic terms to the objective function. In continuous

problems the quadratic proximal term provides second-order information to the MP, but its impact in the combinatorial
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case tends to be insignificant. The authors showed the potential of stabilization techniques, particularly for large and

difficult instances. Zaourar and Malick (2014) studied quadratic stabilization. This approach, common in the context

of constraint decomposition methods, could drastically reduce the number of cuts, especially feasibility cuts. The

computational time may not decrease, however, due to complexity of the method.

In summary, the two-phase approach has become one of the most popular acceleration strategies for problems with

time-consuming integer MPs (see e.g., Angulo et al., 2014; Rei et al., 2009; Papadakos, 2008; Cordeau et al., 2006;

Costa, 2005; de Sá et al., 2013; Sen et al., 2015). Algorithms based on the single-search-tree strategy often use this

approach to tighten the root node and reduce the size of the tree (see e.g., Botton et al., 2013). Cross-decomposition

has received much less attention, although a recent study by Mitra et al. (2016) has demonstrated that it can be superior

to the BD method when the underlying LP relaxation is weak. Stabilization techniques significantly reduce the number

of iterations, but the cost of each iteration may increase because of the additional complexities that they introduce in

the MP. This has usually prevented the use of stabilization techniques in combinatorial contexts.

Inexact methods offer a simple and efficient stabilization tool that may lead to a considerable time reduction. The

success of these methods highlights the potential of heuristics, local branching in particular, for solving the MP or

more thoroughly exploring the neighborhood of the current solution to partially dampen the oscillations of the primal

solutions.

Finally, as the instability of the classical BD method, especially in the early iterations, is mainly the result of a

weak MP, strategies that strengthen the relaxation can mitigate the chaotic behavior. These strategies are the subject

of the following subsection.

6.2. Improving the master formulation

After the projection and relaxation steps, the MP has no information on the subproblems and provides a weak ap-

proximation of the original feasible region. Therefore, we can expect erratic progression of the bounds and ineffective

initial iterations. We can partially overcome these drawbacks by modifying the decomposition (see Section 4). The

strategies discussed in this section will further improve the convergence rate (see e.g., Crainic et al., 2016, 2014).

One way to strengthen the MP is to add VIs. Naoum-Sawaya and Elhedhli (2010) observed that this can signifi-

cantly reduce the solution time and the number of generated cuts (feasibility cuts in particular). As a result, a wider

range of instances can be solved. Saharidis et al. (2011) applied the BD method to a refinery system, adding two

groups of VIs to the initial MP. The total time reduction ranged from 26% to 76%. Tang et al. (2013) used VIs to

improve the initial lower bound by 21.39% to 208.95%. In addition, the number of instances solved increased by 30%.

Adulyasak et al. (2015) studied a production routing problem and added lower-bound lifting inequalities to improve

the initial lower bounds and solutions. These cuts provide information about the part of the original objective function

that has been removed. The authors observed a significant reduction in the time, the optimality gap and the number

of explored nodes. For other uses of VI see Taşkın and Cevik (2013), Kewcharoenwong and Üster (2014), Pishvaee

et al. (2014), Jenabi et al. (2015), Emami et al. (2016), and Jeihoonian et al. (2016).
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Feasibility cuts are undesirable because they do not improve the lower bound. In some applications, one can

avoid unboundedness of the dual subproblem by including a set of VIs that exclude the infeasible solutions (see,

e.g., Geoffrion and Graves, 1974; Birge and Louveaux, 1997; Contreras et al., 2011; de Sá et al., 2013). This avoids

the burden of deriving the feasibility cuts. It can also reduce the cost of solving the MP, since the addition of both

optimality and feasibility cuts makes it more difficult to solve (Wu et al., 2003).

Once we fix the complicating variables, it may be possible to make the decisions in the remaining problem in-

dependently. Thus, multiple smaller subproblems can be solved separately. The classic BD method inserts a single

cut into the MP per iteration by aggregating the dual information gathered from all the subproblems (Van Slyke and

Wets, 1969). An alternative approach is to add a cut for each subproblem. This strategy, often referred to as multi-cut

reformulation, generally outperforms the single-cut approach: it strengthens the MP more quickly and prevents the

loss of information in the aggregation step (see, e.g., Contreras et al., 2011; Tang et al., 2013; Pishvaee et al., 2014;

Sen et al., 2015; Jenabi et al., 2015). The size of the MP grows more rapidly, however, and the trade-off between the

number of iterations and the computational time is problem-dependent. Birge and Louveaux (1997) gave the rule of

thumb that the multi-cut is generally preferable when the number of subproblems is not much larger than the size of

the dimension space of the master variables. Trukhanov et al. (2010) explored partial cut aggregation, in which the

subproblems are divided into |D| clusters and a cut is added for each cluster. They concluded that the best performance

is attained for 1 < |D| < |S |, where |S | is the number of subproblems. They did not offer a specific strategy for the

clustering. Brandes (2011) showed that clustering methods, in particular k-means and hierarchical clustering, can

reduce the number of major iterations.

In summary, it is essential to strengthen the relaxed MP, and VIs are a powerful tool for this. Multi-cut reformu-

lation are useful when the subproblem can be further decomposed into smaller problems. Using both strategies will

often be more efficient. Finally, heuristics can be used to quickly tighten the MP by generating a set of initial cuts or

multiple cuts per iteration. We discuss these strategies in the following subsection.

6.3. Heuristics

Numerous modifications may be needed to develop an efficient and competitive BD method (O’Kelly et al., 2014).

Many researchers therefore apply heuristic procedures to generate solutions or, as a subordinate method, improve

previously generated ones (Gelareh et al., 2015; Kewcharoenwong and Üster, 2014; Oliveira et al., 2014; Botton

et al., 2013; Taşkın and Cevik, 2013).

Heuristics are widely used as a warm-start strategy to generate an initial set of tight cuts to strengthen the relaxed

MP. (Obviously, the selected heuristic should be appropriate for the problem at hand Contreras et al., 2011). Lin and

Üster (2014) observed that the initial selection of cuts is important in the context of wireless network design. They

proposed a simple heuristic to generate feasible solutions and a set of good initial cuts. Easwaran and Üster (2009)

used a tabu search as a warm-start meta-heuristic for a supply-chain network design problem; the convergence rate and

the size of the instances solved were considerably increased. A different warm-start approach is to generate particular
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solutions. Randazzo et al. (2001) applied a shortest-path algorithm to obtain a special feasible solution to their

local-access uncapacitated network design problem. Papadakos (2008) showed that convergence can be significantly

improved when the algorithm starts from an initial point that lies in the interior of the MP solution domain rather than

the initial MP solution itself.

Heuristics are also used to explore the neighborhood of the current MP solution as an intensification/diversification

strategy. Rei et al. (2009) use a local branching heuristic to simultaneously improve the lower and upper bounds.

They apply a limited number of local branching steps to either determine that the neighborhood contains no feasible

solutions to the original problem or provide a pool of high-quality and diverse solutions. When the neighborhood is

infeasible, they exclude the infeasible region by adding combinatorial cuts, which are a better alternative to classical

feasibility cuts. When a pool of solutions is found, they are used to generate multiple optimality cuts. These cuts

reduce the number of major iterations and cause the lower bound to increase more quickly. This strategy has also been

applied to the closed-loop supply chain problem (Jeihoonian et al., 2016) and the sustainable supply chain network

design problem (Pishvaee et al., 2014). Costa et al. (2012) gave general guidelines for the application of heuristics

within the two-phase approach of McDaniel and Devine (1977). The goal is to quickly generate extra cuts associated

with the heuristic feasible or infeasible solutions to reduce the need for integer iterations. The authors suggested using

simple heuristics after each regular iteration of the BD method or whenever the incumbent solution is updated. The

gains should compensate for the additional time spent on the heuristics.

Heuristics can be used to alleviate undesirable properties of the MP solutions. Wu et al. (2003) avoided the gener-

ation of feasibility cuts because they made the solution of the MP more expensive. It is possible in their application to

acquire additional supply capacity at arbitrarily high prices, but convergence may be slow because of the side effects

of big-M coefficients. The authors applied a heuristic to restore the feasibility of the solutions. The heuristic shifts

excess demand from an infeasible subproblem to another source (i.e., to a different subproblem) so that a feasible

solution can be found quickly. Emami et al. (2016) used a heuristic to extract feasible solutions from infeasible MP

solutions, considerably improving convergence.

The upper bounds obtained from heuristics are often better than those obtained by the BD method itself, especially

in the early stages of the algorithm. Roussel et al. (2004) successfully accelerated the BD method by applying tabu

search to the original formulation to improve the upper bound. Santoso et al. (2005) stated that when the algorithm

approaches an optimal solution, the various incumbent solutions differ in variables that have a small impact on the

objective function, and so the upper bound changes little. They found that a simple fix-and-optimize heuristic can yield

a considerable acceleration. Improving the upper bound will also impact other parts of the algorithm. For instance,

Contreras et al. (2011) observed that their heuristic not only improved overall convergence but also found better upper

bounds that help with the reduction testing procedures. Pérez-Galarce et al. (2014) examined the interaction between

the incumbent solution and the branching efforts. To improve the performance of their B&BC algorithm, the authors

used a heuristic to enhance the incumbent solution.

In summary, heuristics are an important component of acceleration strategies. Heuristics, even simple ones, can
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generate high-quality initial solutions and cuts, repair infeasible solutions, improve the quality of the MP solutions,

reduce the computational cost of the MP and subproblem, and generate multiple cuts per iteration. Moreover, the BD

method can be used to design effective heuristics (Section 8).

7. Cut generation

The number of iterations is closely related to the strength of the cuts, i.e., the values selected for the dual variables.

Researchers have explored ways to select or strengthen the traditional feasibility and optimality cuts or to generate

additional valid cuts.

Magnanti and Simpson (1978) and Magnanti and Wong (1981) were the first to consider the degeneracy of the

subproblems, when the dual subproblem has multiple optimal solutions that do not yield cuts of equal strength. Hence,

to find the strongest cuts, the solution of the dual subproblem must be judiciously chosen at each iteration. Magnanti

and Wong (1981) selected a dual solution that dominates other possible cuts in terms of Pareto-optimality. A Pareto-

optimal solution produces the maximum value at a core point ŷ, which is required to be in the interior of the convex

hull of the subregion defined by the MP variables. After solving the regular dual subproblem (7), the authors solve an

auxiliary subproblem of the form (17) to find the Pareto-optimal optimality cut.

max
π∈<m2

{πT (d − Bŷ) : πT D ≤ c, πT (d − Bŷ) = Q(ȳ)}, (17)

where Q(ȳ) indicates the optimal cost of the regular subproblem for the current MP solution ȳ. Although this approach

has proven effective in practice (e.g., Mercier et al., 2005), it must solve the secondary problem (17), which may be

numerically instable and time-consuming. Additionally, it may be difficult to find a core point. This difficulty can

be overcome by using approximate core points (Santoso et al., 2005), arbitrarily fixing components of the core-point

vector (Mercier et al., 2005), or finding alternative points for a given problem structure (Papadakos, 2008), although

these methods do not guarantee the generation of Pareto-optimal cuts.

Papadakos (2008) proposed an algorithmic modification to circumvent the computational difficulties of Magnanti

and Wong (1981)’s approach. The author showed that if a new core point is utilized at each iteration, Pareto-optimal

cuts can be obtained from an independent formulation of the Magnanti–Wong cut generation procedure. This formula-

tion removes the equality constraint in (17) that implies the dependency on the solution of the regular subproblem (7).

The author showed that any convex combination of a valid initial core point and the MP solution gives an alternative

Magnanti–Wong core point. de Sá et al. (2013) then showed that when the MP solution is rendered infeasible by the

primal subproblem, a clever choice of the convex-combination weights can yield significant speed-ups. They chose

the weights in such a way that the convex combination of the current MP solution with the previous Magnanti–Wong

point results in a feasible subproblem.

Fortz and Poss (2009) and Naoum-Sawaya and Elhedhli (2013) generated Pareto-optimal cuts from the points

obtained by an analytic-center cutting plane method. In other words, the extracted analytic centers are used as core
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points. Note that the dual subproblem is equivalent to that of Papadakos (2008), although this is not directly men-

tioned. The procedure has great potential for accelerating the classical BD algorithm in the context of capacitated

facility location and multi-commodity capacitated fixed charge network design problems. However, its effectiveness

depends on the quality of the core points and the efficiency of the re-optimization techniques. Moreover, similarly to

the methodology of Magnanti and Wong (1981) and Papadakos (2008), they produce classical feasibility cuts based

on the random selection of an extreme ray to cut-off the infeasibility.

Gelareh et al. (2015) generated analytic center points at every integer node of their B&BC algorithm to deal

with degeneracy. They used analytic centers and their convex combination with the current MP solution to generate

multiple cuts. The authors also presented a box method to deal with degeneracy. A constraint is included in the

auxiliary subproblem to bound the dual objective function, while the dual solution must be at least κ units distant from

the actual optimal dual. The cuts produced are inexact, but the method performed well.

Sherali and Lunday (2013) developed the maximal nondominated cut generation scheme by formulating the cut

selection as a multi-objective optimization problem. They showed that a small perturbation in the right-hand side

of the primal subproblem is enough to give a maximal nondominated optimality cut, avoiding the need to solve the

secondary subproblem as in Magnanti and Wong (1981) and Papadakos (2008). Given a goal-programming weight

µ > 0, the dual subproblem is

max
π∈<m2

{πT (d − Bȳ) + µπT (d − Bŷ) : πT D ≤ c} (18)

Oliveira et al. (2014) considered the definition of the weight µ. The authors observed that the solutions obtained in

the early iterations gave poor descriptions of the project cost, which is what the cuts attempt to approximate. They

iteratively adjusted µ to favor solutions that focus on improving the original objective value πT (d − Bȳ) rather than

(18). To ensure convergence, the sequence {µ(k)}k=1,...,∞ must satisfy
∑

k=1,...,∞ µ
(k) → ∞ and µ(k) → 0 as k → ∞. The

authors obtained results that compared favorably with those of Sherali and Lunday (2013) and Magnanti and Wong

(1981).

Better feasibility cuts have also been investigated. Codato and Fischetti (2006) considered a binary problem where

the BD method generates feasibility cuts exclusively. The authors observed that these cuts are weak because of the big-

M constraints, and showed that stronger cuts, referred to as combinatorial Benders cuts, can be obtained by searching

for minimal infeasible subsystems for the MP solutions. Experiments on two classes of mixed-integer problems

indicated significant improvements in the bounds for the LP relaxation of the MP. Note that combinatorial cuts are

not in general stronger than the classical feasibility cuts. Yang and Lee (2012) observed that the slow convergence of

the BD algorithm is due to the selection of weak feasibility cuts. They extended the dominance rule of Magnanti and

Wong (1981) in order to extract tighter feasibility cuts. However, this involves solving an auxiliary bilinear problem,

which can be computationally expensive.

Fischetti et al. (2010) used an idea from Fukuda et al. (1997): finding the most-violated optimality cut is equivalent

to finding an optimal vertex of a polyhedron with unbounded rays. Fischetti et al. (2010) thus reformulated the
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subproblem as a feasibility problem where the optimality and feasibility cuts are derived by searching for minimal

infeasible subsystems:

max
π∈<m2 ,π0∈<

1
{πT (d − Bȳ) − π0η̄ : πT D ≤ π0c, wTπ + w0π0 = 1}, (19)

where η̄ is the current value of η, and w is a vector of normalization coefficients. The generated cut takes the form

π̄T (d−By) ≤ π̄0η. This approach simultaneously generates optimality and feasibility cuts without solving an auxiliary

subproblem. It compared favorably with the classical cut selection scheme.

Some algorithms iteratively generate multiple cuts to obtain specific desirable characteristics. Saharidis et al.

(2010) considered low-density cuts, i.e., cuts that include only a few MP variables. The ability of such cuts to

strengthen the relaxed MP tends to be limited. To improve these cuts, the authors developed a covering cut bun-

dle cut-generation procedure. At each iteration, it produces a set of low-density BD cuts that cover α% of the MP

variables. The authors observed that adding several low-density cuts is better than adding a single high-density cut

corresponding to the sum of the low-density cuts because it ensures a level of diversification in the cuts. Saharidis

and Ierapetritou (2013) observed that it can be computationally less expensive to cover all the MP variables. Their

strategy, referred to as maximum density cut generation, generates a cut that involves all the MP decision variables

that are not covered in the BD cut. The authors observed that this significantly decreases the number of iterations

and the time requirement for two different scheduling problems. Saharidis and Ierapetritou (2010) considered a case

where obtaining optimality cuts using the classical BD method is hard. The bounds progress slowly because numerous

feasibility cuts are generated before an initial feasible solution yielding an optimality cut is found. Whenever a feasi-

bility cut is generated, they apply a maximal feasible subsystem to produce an optimality cut. This cut is produced by

relaxing a minimum number of constraints in order to obtain a feasible subproblem. The authors observed significant

improvements in convergence. The weakness of this strategy is that the reduction in the number of iterations may not

always compensate for the additional time required to solve the auxiliary MILP subproblem.

In summary, the classical cut-generation scheme can be inefficient, particularly when the subproblems are degen-

erate or infeasible. Almost every application of the BD that yields degenerate subproblems uses one of the strategies

we have discussed to generate Pareto-optimal cuts. However, generating Pareto-optimal cuts may not yield a net

computational advantage, since the reduction in the number of iterations might not compensate for the increase in

the number of subproblems at each iteration (Mercier and Soumis, 2007). Strategies such as maximal nondominated

cut generation may be more efficient since they eliminate the need to solve the auxiliary subproblem. Regarding the

feasibility cuts, the strategies based on nondominated cuts have focused on optimality cuts; feasibility cuts are found

based on a random selection of the extreme rays. Only the strategy that generates combinatorial cuts for subproblems

with big-M constraints has proven its worth in practice. Moreover, feasibility and optimality cuts are usually treated

separately. To the best of our knowledge, only Fischetti et al. (2010) have developed a unified framework for both

types of cuts. Clearly, further research is necessary.
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8. Benders-type Heuristics

Because of time and memory limitations, it may not be possible to prove the convergence of the BD method.

Moreover, in many practical applications, decision-makers do not need a provably optimal solution, a good feasible

solution being deemed sufficient. Such a solution is often obtained somewhat early in the solution process.

From a heuristic point of view, the BD method is an attractive methodology because it can take advantage of

special structures and provides a rich framework for the design of efficient search mechanisms (Côté and Laughton,

1984; Raidl, 2015). The method also overcomes many drawbacks of heuristics such as the inability to verify the

solution quality and the difficulty to reduce the search space by using dual information (Easwaran and Üster, 2009;

Boschetti and Maniezzo, 2009). These factors have promoted the development of algorithms that we refer to as

Benders-type heuristics. We now discuss some of these.

Applying Lagrangian relaxation to the Benders cuts has been a popular approach, especially when the MP without

cuts has a special structure (Minoux, 1984; Paula and Maculan, 1988). Côté and Laughton (1984) applied Lagrangian

relaxation to the feasibility and optimality cuts so that the remaining constraint sets have a special structure and

specialized algorithms can be applied. Aardal and Larsson (1990) proposed a heuristic for a multi-item dynamic

production planning problem. They created structured subproblems and MPs, priced out the BD cuts using Lagrangian

multipliers in order to maintain the problem structure, and used a subgradient procedure to update the Lagrangian

multipliers. The algorithm attained an average deviation of 2.34% from the optimum. Holmberg (1994) studied

different approximations for the Benders MP, concluding that its Lagrangian dual cannot yield better bounds than the

Lagrangian dual of the original problem even if all the feasibility and optimality cuts are present in the MP.

An alternative to the above approaches is to first apply Lagrangian relaxation and then use the BD method to op-

timize the Lagrangian dual subproblem. Pinheiro and Oliveira (2013) tackled problems with complicating constraints

that are challenging for the BD method. They first applied Lagrangian relaxation to these constraints and then used

the BD method to optimize the problem at each iteration of the dual Lagrangian algorithm. Wang et al. (2016) applied

a similar methodology to solve a corrective risk-based security-constrained optimal power flow problem. The results

of both studies point to the ability of the approach to handle large-scale, complex problems. Further research in this

area would thus be worthwhile.

One challenge in large-scale problems is the need to solve a sequence of difficult integer MPs. Many researchers

have explored the use of meta-heuristics for the MPs. Poojari and Beasley (2009) used a genetic algorithm combined

with a feasibility pump. This enabled the authors to add multiple cuts per iteration, which yielded larger increases in

the lower bounds. Although the MP was never solved to optimality, good results were obtained. Jiang et al. (2009)

used a similar hybridization, based on tabu search, for multi-product distribution network design. A genetic-BD

hybrid algorithm for vehicle routing and scheduling (Lai et al., 2012) and the capacitance plant location problem (Lai

et al., 2010) has greatly reduced the computational time in comparison with the classical BD method. Boschetti and

Maniezzo (2009) solved both the MP and the subproblem heuristically; their algorithm was competitive with state-of-
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the-art meta-heuristics. Note that these strategies do not provide a valid lower bound, and thus, to assess the solution

quality, the MP must be solved to optimality or approximated from below.

Proximity Benders is a decomposition heuristic proposed by Boland et al. (2015). The authors observed that the

BD method rarely improves the incumbent solution, and finding good solutions may require considerable computing

time. The authors used a proximity heuristic to more frequently improve the upper bound obtained from the sequence

of MP solutions. Computational experiments demonstrated the potential of the method. Kudela and Popela (2015)

proposed a genetic algorithm where the BD method is used to take advantage of the block structure. The authors

reported favorable results in comparison with the genetic algorithm without the decomposition. Behnamian (2014)

proposed a Benders-based variable neighborhood search algorithm for a multi-objective scheduling problem. The goal

was to accelerate the assessment of the estimated improvement of each neighborhood. The new heuristic outperformed

a variable neighborhood search, a tabu search, and a hybrid of these two methods, particularly on larger instances.

Another approach solves the LP relaxation of the MP and uses round-off heuristics to find an integer solution.

Pacqueau et al. (2012) use the BD method to solve the linear relaxation and then fix some of the variables to their

upper/lower bounds. Their algorithm iterates until an integer solution is obtained. They solved problems with up to 10

million integer variables in less than 27 minutes with an average accuracy of 0.2%, while CPLEX could handle only

instances with fewer than 500000 integer variables. This highlights the potential of efficient Benders-type heuristics

for problems with computationally intractable MPs, particularly those with tight linear relaxations.

In summary, the BD method enables heuristics to take advantage of special structures and use dual information.

Many Benders-type heuristics either solve the MP heuristically or use approximate MP formulations that do not

provide global convergence. Benders-type heuristics can handle a wider range of structures than the BD method.

However, these algorithms cannot find a provably optimal solution. We discuss extensions of the BD algorithm that

can exactly solve a wider range of problems in Section 9.

9. Extensions of the Classical Benders Decomposition Method

The classical BD algorithm was proposed for certain classes of MILPs for which the integer variables were consid-

ered to be complicating, and standard duality theory could be applied to the subproblem to develop cuts. Extensions

of the method have allowed it to address a broader range of optimization problems, including integer subproblems

(e.g., Carøe and Tind, 1998), nonlinear functions (e.g., Cai et al., 2001; Geoffrion, 1972), logical expressions (e.g.,

Eremin and Wallace, 2001), multi-stage programming (e.g., Lorenz and Wolf, 2015), and stochastic optimization

(e.g., Van Slyke and Wets, 1969). When applied to stochastic problems the BD method is commonly referred to as

L-shaped decomposition. It enables such problems to be decomposed by the realization of the uncertain parameters.

Many algorithms for these important and challenging problems rely heavily on its premises (Ruszczyński, 2003). We

have already discussed the literature on this variant, which is equivalent to the classical BD method. In this section,

we discuss the extensions to problems with discrete subproblems, logical expressions, and nonlinear terms as well as
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multi-stage programming.

9.1. Discrete subproblems

When some of the projected variables are required to be integer, standard duality theory cannot be applied to

derive the classical Benders cuts. A different theoretical framework or modifications to the generation scheme are

needed to handle integer subproblems effectively.

When the complicating variables are required to take 0–1 values, one can use lower-bounding functions (LBF)

instead of the regular optimality cuts (Laporte and Louveaux, 1993). These constraints enforce a change to the current

solution or the acceptance of its associated cost. They usually take the form

η ≥ (Q(ȳ) − L)

∑
a∈A1

ya −
∑
a∈A0

ya − |A1|

 + Q(ȳ), (20)

where Q(ȳ) is the cost of the subproblem for the given solution ȳ, A1 and A0 are respectively the variables with values

of 1 and 0 in ȳ, and L is a lower bound on Q(y) over y. The BD method with LBF cuts (20) is also applicable

to problems where the subproblem can be evaluated with a closed-form analytical formula. Given the enumerative

nature of (20), it is usually complemented with other VIs to improve the lower bound. A common strategy is based

on solving the linear relaxation of the subproblem to generate regular optimality cuts (Cordeau et al., 2001b; Mercier

and Soumis, 2007; Papadakos, 2008). Moreover, the optimality cut (20) depends on the exact solution of Q(ȳ) and

gives no useful information on the other y solutions. These issues are partly addressed by Angulo et al. (2014).

A similar variant of the classical BD method, often referred to as combinatorial Benders decomposition, likewise

does not use the dual information to generate cuts. This variant can handle problems where the MP is a 0–1 integer

program and the subproblem is a feasibility problem (i.e., a problem with no objective function). It excludes the

current MP solution from further consideration via combinatorial cuts, which usually take the form∑
a∈A:ȳa=1

(1 − ya) +
∑

a∈A:ȳa=0

ya ≥ 1. (21)

Constraints of the form (21) are frequently used in the BD method as feasibility cuts. They are often strengthened

according to the structure of the application, e.g., nonlinear power design in green wireless local networks (Gendron

et al., 2014), lock scheduling (Verstichel et al., 2015), strip packing (Côté et al., 2014), and radiation therapy (Taşkın

and Cevik, 2013).

Carøe and Tind (1998) used general duality theory to reformulate the subproblems, using VIs based on dual

price functions to produce the BD cuts. They showed how such functions can be obtained when the subproblem is

solved via standard techniques such as branch-and-bound or cutting planes. Sherali and Fraticelli (2002) considered

applications with 0–1 mixed integer subproblems. They showed that the classical BD method is applicable if a convex

hull representation of the constrained region is available. They employed the reformulation–linearization technique

and lift-and-project cuts as a sequential convexification procedure for the subproblems. The cuts generated by these
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two methods were functions of the MP variables and were globally valid, which could lead to a finite convergent

BD algorithm. Sen and Higle (2005) applied disjunctive programming to produce a convex characterization for the

discrete subproblems. They showed that VIs generated for a given MP solution and a particular subproblem can be

used to obtain VIs for any other solution or subproblem. This result can be used to define the cut-generation procedure

in an overall BD approach. This approach was extended by Sen and Sherali (2006), who showed how branch-and-cut

algorithms can be used for the subproblems.

We conclude with a remark on solving the integer subproblems. Heuristics have proven their worth in accelerat-

ing the BD method, particularly when the subproblem reduces to a feasibility-checking program or generates more

feasibility cuts than optimality cuts (Osman and Baki, 2014). Heuristics can rapidly detect infeasibility and avoid the

exact solution of difficult subproblems (e.g., Luong, 2015) or find approximate optimality cuts quickly (e.g., Raidl

et al., 2014). In the latter case additional refinement is required, since the cuts may eliminate optimal solutions. On

the other hand, CP is widely used to handle feasibility subproblems with special constraints because of its ability to

handle those constraints and because it identifies infeasibility more quickly than traditional MIP-based approaches

can (see e.g., Jain and Grossmann, 2001; Maravelias and Grossmann, 2004).

9.2. Logic-based Benders decomposition

There is a growing interest in optimization models that include logic relations. These models can usually be

transformed into regular optimization models, but the extra variables and big-M constraints often yield a weak formu-

lation. Furthermore, one cannot always obtain a continuous linear subproblem; it may contain some integer variables

and nonlinear functions. In these cases, standard linear duality cannot be used to develop classical BD cuts.

Hooker and Ottosson (2003) and Hooker (2011) introduced an extension known as logic-based Benders decompo-

sition (LBBD). The LBBD method is similar to the classical BD method. It decomposes a given problem into an MP

and one or many subproblems, and it uses constraint-generation techniques to gradually reduce the solution space of

the relaxed MP. However, each subproblem is an “inference dual” problem that finds the tightest bound on the MP’s

cost function implied by its current solution. This bound is then used to generate cuts that are passed back to the MP.

If the MP solution satisfies all the bounds produced by the subproblems, convergence has been achieved; otherwise,

the process continues.

A major advantage of the LBBD method is that the subproblem needs not take a specific form: it can be an

MILP (Jain and Grossmann, 2001), a CP (Hooker, 2005), an NLP (Wheatley et al., 2015), or a feasibility-checking

problem (Harjunkoski and Grossmann, 2002). However, the LBBD method does not have a standard template for the

production of valid cuts. Instead, they must be tailored to the problem at hand, typically based on knowledge of its

structure. For some problems simple cuts exist (Hooker, 2007), but one must balance their effectiveness with the ease

of extraction (Zarandi, 2010). The LBBD method outperforms state-of-the-art MIP and CP solvers, often by several

orders of magnitude (e.g., Jain and Grossmann, 2001). It has been applied to a range of problems, including planning

and scheduling (e.g., Hooker, 2007; Benoist et al., 2002), facility location/fleet management (Zarandi, 2010), radia-
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tion therapy (Luong, 2015), transportation network design (Peterson and Trick, 2009), and the minimal dispatching

problem of automated guided vehicles (Corréa et al., 2007).

9.3. Generalized Benders decomposition

Many optimization problems involve nonlinear functions and constraints. If the problem is easily linearized or the

nonlinearity occurs only in the domain of the complicating variables, it can be solved via the classical BD method

(Fontaine and Minner, 2014; Osman and Baki, 2014; Cai et al., 2001). Otherwise, an extended BD method is neces-

sary.

Geoffrion (1972) proposed Generalized Benders Decomposition (GBD). It can solve nonlinear problems for which

the subproblem is a convex program, because dual multipliers satisfying strong duality conditions can be calculated

for such problems (Bazaraa et al., 2013). It is also particularity appealing for nonconvex nonlinear problems that can

be convexified after fixing a subset of variables (Costa, 2005).

Sahinidis and Grossmann (1991) showed that the GBD method may not lead to a global or even local optimum

for MINLP problems. Specifically, when the objective function and some of the constraints are nonconvex or when

nonlinear equations are present, the subproblem may not have a unique local optimum and the MP may cut off the

global optimum. Rigorous global optimization approaches can be used if the continuous terms have a special structure

(e.g., bilinear, linear fractional, concave separable). The basic idea is to use convex envelopes (or underestimators)

to formulate lower-bounding convex MINLPs. These are then integrated with global optimization techniques for

continuous variables, which usually take the form of spatial branch-and-bound methods (see Grossmann, 2002, for

further details). Similarly, Grothey et al. (1999) observed that a simplistic application of the GBD algorithm to a

convex nonlinear problem may converge to a nonstationary point. They showed that the convergence failure results

from the way in which the infeasible subproblems are handled, and they proposed a feasibility restoration procedure.

9.4. Nested Benders decomposition

The Nested Benders Decomposition (NBD) method is based on the idea of applying the BD method to a problem

more than once. It is particularly appropriate for multi-stage (stochastic) problems (Birge, 1985) in which each pair

of adjacent stages can be considered “separately". The NBD views the scenario tree as a set of nested two-stage

problems and applies the BD method recursively. Every problem associated with an inner node in the tree is both MP

to its children and a subproblem of its parent. It is necessary to choose the sequencing protocols: after solving the

problems at a given stage, one can either push primal information down toward the leaf nodes or pass dual information

up toward the root node. This issue and some acceleration strategies are addressed by Wolf (2014).

The NBD method can also be applied to deterministic single-stage problems, particularly when one wishes to

simplify the MP by reducing the number of integer variables. For example, Naoum-Sawaya and Elhedhli (2010)

applied the BD method to obtain a binary MP and a mixed integer subproblem. They then applied the BD method to

the subproblem to obtain an integer MP and a linear subproblem.
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10. Conclusions and Future Research

We have presented a state-of-the-art survey of the BD method. We have discussed the classical algorithm, the

impact of the problem formulation on its convergence, and the relationship to other decomposition methods. We

have developed a taxonomy to classify the literature on acceleration strategies, based on the main components of

the algorithm, which provided rich guidelines to analyze various enhancements, identifying shortcomings, trends

and potential research directions. We have also discussed the use of the BD to develop efficient (meta-)heuristics,

described the limitations of the classical algorithm, and presented extensions enabling its application to a broader

range of problems.

The BD method was originally proposed for MILPs with continuous subproblems, and it has since been extended

to handle a wider range of problems such as nonlinear, integer, multi-stage, and constraint programming. Four main

classes of acceleration strategies have been developed to enhance the classical algorithm: modifying the decomposi-

tion, solving the MP and subproblem more effectively, generating stronger cuts, and extracting better solutions. The

effectiveness of these strategies is problem-dependent, and a combination of them usually gives the best results. The

BD method has also been used to develop efficient heuristics for complex problems, particularly those that numerically

or structurally are out of reach of the method.

Research into the BD method is not yet complete as there are still many challenges and open questions.

Generally speaking, the BD method has been suitable for problems in which temporarily fixing the complicating

variables makes the remaining problem significantly easier to handle by, e.g., becoming suitable for specialized algo-

rithms or offering the opportunity to transform a nonconvex problem into a convex one. The BD method appeared

particularly appropriate for problems with a “few" complicating (normally 0-1) variables and so many continuous

variables that solving the problem as a whole is inefficient. There are many examples of such problems in stochastic

programming. The range of problem settings addressed is also expanding, however. Thus, many problems suffer from

have weak linear relaxations and numerical instability as a result of big–M constraints and the binary variables used to

turn them on and off. The BD method can handle such problems by moving the big–M constraints to the subproblems

and using specialized cuts to represent them. The BD algorithm has also been applied to bilevel optimization problems

that cannot be transformed via the Karush–Kuhn–Tucker optimality conditions into single-level problems (Saharidis

and Ierapetritou, 2009). Moreover, there are interesting optimization problems for which some of the constraints are

not known in advance and must be generated iteratively. In other cases the subproblem does not have an amenable

formulation but can be obtained via a closed-form analytical formula. We are aware of only one survey article focus-

ing on the applications of the BD method, and it restricted its scope to fixed-charged network design problems Costa

(2005). There is certainly a need for a comprehensive synthesis of the various applications of the BD algorithm.

The acceleration strategies are all problem-dependent, so they are all part of the BD toolbox and their intercon-

nections are important. A better understanding of these interconnections could have a considerable impact on the

convergence rate. There is also a need for comprehensive research into the acceleration methodologies to better un-
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derstand their limitations and implications. This is certainty true for more recent strategies, e.g., decomposition and

cut generation schemes.

Strategies that tighten the MP usually add inequalities only once, before the initial iterations. Given the encour-

aging results thus obtained, it would be interesting to explore the use of more advanced cutting-plane methods to

further tighten the MP at each iteration. The proper sequencing of the VIs and the classical BD cuts would be of great

importance.

Tightening the subproblem is another effective acceleration strategy, since stronger cuts will be generated. We are

aware of only one relevant study, Bodur et al. (2014) that iteratively generate Gomory mixed-integer cuts to tighten the

subproblem. We encourage further research in this area. We note that one can solve the linear relaxation of the original

problem with a cutting-plane method, adding VIs that involve the continuous variables. After the decomposition, these

VIs will be moved to the subproblem, and this can yield a pronounced improvement in the quality of the Benders

cuts. Moreover, one can use the partial decomposition to iteratively generate VIs for the subproblems, provided the

subproblem retained in the MP gives VIs for the projected subproblems as well.

In terms of generating solutions for the set of complicating variables, we are not aware of any study showing how

to obtain better cuts via a careful selection from the multiple optimal solutions of the MP or showing how to modify

the MP to generate solutions with specific characteristics, e.g., geometrically centered solutions. These two ideas have

been successfully applied in the context of Dantzig–Wolfe decomposition, e.g., Holloway (1973) and Nemhauser and

Widhelm (1971).

Sometimes the subproblem further divides into several independent subproblems that can be optimized concur-

rently. The literature on parallel algorithms for combinatorial optimization problems indicates that the parallel variants

of the BD algorithm are still in their infancy. The current model is the master–slave paradigm, which is not the most

efficient strategy (Crainic, 2017, 2015). Executing heuristics in the inner loop of the BD method or hybridizing the

algorithm with other methods can yield tremendous improvements in the convergence rate. These approaches have

been developed in a sequential framework, although they can be run almost independently of the main BD algorithm.

Therefore, the development of new parallel algorithms, particularly in cooperative frameworks, would be worthwhile.

The BD decomposition often yields subproblems with identical dual polyhedra. In this situation, the solution

of any subproblem gives valid cuts for the other subproblems. To the best of our knowledge, this information has

not yet been used in an acceleration strategy. It should be interesting to develop a strategy in which only some of

the subproblems are solved at each iteration and their solutions are used to generate cuts for other subproblems.

Clearly, the main challenges are the selection of the set of representative subproblems and the demonstration of the

convergence of the algorithm.

There has been limited research into stabilization techniques for the BD method in the context of combinatorial

optimization. All the approaches surveyed were based on binary complicating variables, and state-of-the-art strategies

for combinatorial problems, attempt to stabilize the MP only at the beginning of the algorithm. There is thus a need

for more effective techniques in more general settings. One can take advantage of stabilization strategies developed
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for continuous problems by first solving the linear relaxation of the MP. Although this idea has not yet been explored,

it may prove effective.

There are many BD extensions and researchers explore algorithmic enhancements for the BD extensions. We plan

to survey these enhancements in a future article.
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Muter, İ., Birbil, Ş. İ., Bülbül, K., 2015. Benders decomposition and column-and-row generation for solving large-scale linear programs with

column-dependent-rows. Optimization Online, Available at http://www.optimization-online.org/DB_FILE/2015/11/5184.pdf.

Naoum-Sawaya, J., Elhedhli, S., 2010. A nested Benders decomposition approach for telecommunication network planning. Naval Research

Logistics (NRL) 57 (6), 519–539.

Naoum-Sawaya, J., Elhedhli, S., 2013. An interior-point Benders based branch-and-cut algorithm for mixed integer programs. Annals of Operations

Research 210 (1), 33–55.

Nemhauser, G. L., Widhelm, W. B., 1971. A modified linear program for columnar methods in mathematical programming. Operations Research

19 (4), 1051–1060.

Nielsen, S. S., Zenios, S. A., 1997. Scalable parallel Benders decomposition for stochastic linear programming. Parallel Computing 23 (8), 1069–

1088.

O’Kelly, M. E., Luna, H. P. L., Camargo, R. S., Miranda, G., 2014. Hub location problems with price sensitive demands. Networks and Spatial

Economics 15 (4), 917–945.

Oliveira, F., Grossmann, I. E., Hamacher, S., 2014. Accelerating Benders stochastic decomposition for the optimization under uncertainty of the

petroleum product supply chain. Computers & Operations Research 49, 47–58.

Osman, H., Baki, M., 2014. Balancing transfer lines using Benders decomposition and ant colony optimisation techniques. International Journal of

Production Research 52 (5), 1334–1350.

Pacqueau, R., Francois, S., Le Nguyen, H., 2012. A fast and accurate algorithm for stochastic integer programming, appllied to stochastic shift

scheduling. Publication G-2012-29, Groupe d’études et de recherche en analyse des décisions (GERAD), Université de Montréal, Montréal,

QC, Canada.

Papadakos, N., 2008. Practical enhancements to the magnanti–wong method. Operations Research Letters 36 (4), 444–449.

Papadakos, N., 2009. Integrated airline scheduling. Computers & Operations Research 36 (1), 176–195.

Paula, J., Maculan, N., 1988. A p-median location algorithm based on the convex lagrangean relaxation of the Benders master problem. In:

Presented at 13th International Symposium on Mathematical Programming. Tokyo, Japan.

Pérez-Galarce, F., Álvarez-Miranda, E., Candia-Véjar, A., Toth, P., 2014. On exact solutions for the minmax regret spanning tree problem. Com-

puters & Operations Research 47, 114–122.

Peterson, B., Trick, M. A., 2009. A Benders’ approach to a transportation network design problem. In: Proceedings of the 6th International

Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR ’09.

32

The Benders Decomposition Algorithm: A Literature Review

CIRRELT-2016-30



Springer-Verlag, Berlin, Heidelberg, pp. 326–327.

Pinheiro, P. R., Oliveira, P. R., 2013. A hybrid approach of bundle and Benders applied large mixed linear integer problem. Journal of Applied

Mathematics 2013, Article ID 678783, 11 pages.

Pishvaee, M., Razmi, J., Torabi, S., 2014. An accelerated Benders decomposition algorithm for sustainable supply chain network design under

uncertainty: A case study of medical needle and syringe supply chain. Transportation Research Part E: Logistics and Transportation Review 67,

14–38.

Poojari, C. A., Beasley, J. E., 2009. Improving Benders decomposition using a genetic algorithm. European Journal of Operational Research

199 (1), 89–97.

Raidl, G. R., 2015. Decomposition based hybrid metaheuristics. European Journal of Operational Research 244 (1), 66–76.

Raidl, G. R., Baumhauer, T., Hu, B., 2014. Speeding up logic-based Benders’ decomposition by a metaheuristic for a bi-level capacitated vehi-

cle routing problem. In: Blesa, M. J., Blum, C., Voß, S. (Eds.), 9th International Workshop on Hybrid Metaheuristics. HM 2014. Springer

International Publishing, Hamburg, Germany, pp. 183–197.

Randazzo, C. D., Luna, H. P. L., Mahey, P., 2001. Benders decomposition for local access network design with two technologies. Discrete Mathe-

matics and Theoretical Computer Science 4 (2), 235–246.

Rei, W., Cordeau, J.-F., Gendreau, M., Soriano, P., 2009. Accelerating Benders decomposition by local branching. INFORMS Journal on Comput-

ing 21 (2), 333–345.

Restrepo, M. I., Gendron, B., Rousseau, L.-M., 2015. Combining Benders decomposition and column generation for multi-activity tour scheduling.

Publication CIRRELT-2015-57, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

Roussel, S., Ferland, J. A., Pradenas, L., 2004. Improving benders decomposition to solve the tree-bucking problem, working paper.

URL http://www.iro.umontreal.ca/ ferland/Tutorial/Forestry/Tree_Bucking.pdf

Rubiales, A., Lotito, P., Parente, L., 2013. Stabilization of the generalized Benders decomposition applied to short-term hydrothermal coordination

problem. IEEE Latin America Transactions 11 (5), 1212–1224.
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Taşkın, Z. C., Cevik, M., 2013. Combinatorial Benders cuts for decomposing IMRT fluence maps using rectangular apertures. Computers &

Operations Research 40 (9), 2178–2186.

Trukhanov, S., Ntaimo, L., Schaefer, A., 2010. Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. European

Journal of Operational Research 206 (2), 395–406.

van Ackooij, W., Frangioni, A., de Oliveira, W., 2015. Inexact stabilized Benders’ decomposition approaches to chance-constrained problems with

finite support. Applied Mathematics and Computation 270, 193–215.

Van Roy, T. J., 1983. Cross decomposition for mixed integer programming. Mathematical programming 25 (1), 46–63.

Van Slyke, R. M., Wets, R., 1969. L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on

Applied Mathematics 17 (4), 638–663.

Verstichel, J., Kinable, J., De Causmaecker, P., Berghe, G. V., 2015. A combinatorial Benders decomposition for the lock scheduling problem.

Computers & Operations Research 54, 117–128.

Vladimirou, H., 1998. Computational assessment of distributed decomposition methods for stochastic linear programs. European Journal of Oper-

ational Research 108 (3), 653–670.

Wang, Q., McCalley, J. D., Zheng, T., Litvinov, E., 2016. Solving corrective risk-based security-constrained optimal power flow with Lagrangian

relaxation and Benders decomposition. International Journal of Electrical Power & Energy Systems 75, 255–264.

Wheatley, D., Gzara, F., Jewkes, E., 2015. Logic-based Benders decomposition for an inventory-location problem with service constraints. Omega

55, 10–23.

Wolf, C., 2014. Advanced acceleration techniques for nested Benders decomposition in stochastic programming. Ph.D. thesis, Universität Pader-

born.

Wolf, C., Koberstein, A., 2013. Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method. European Journal

of Operational Research 230 (1), 143–156.

Wu, P., Hartman, J. C., Wilson, G. R., 2003. A demand-shifting feasibility algorithm for Benders decomposition. European Journal of Operational

Research 148 (3), 570–583.

Yang, Y., Lee, J. M., May 2011. Acceleration of Benders decomposition for mixed integer linear programming. In: 4th International Symposium

on Advanced Control of Industrial Processes (ADCONIP). pp. 222–227.

Yang, Y., Lee, J. M., 2012. A tighter cut generation strategy for acceleration of Benders decomposition. Computers & Chemical Engineering 44,

84–93.

Zakeri, G., Philpott, A. B., Ryan, D. M., 2000. Inexact cuts in Benders decomposition. SIAM Journal on Optimization 10 (3), 643–657.

Zaourar, S., Malick, J., 2014. Quadratic stabilization of Benders decomposition, working paper.

Zarandi, M. M. F., 2010. Using decomposition to solve facility location/fleet management problems. Ph.D. thesis, University of Toronto.

Zhang, J. L., Ponnambalam, K., 2006. Hydro energy management optimization in a deregulated electricity market. Optimization and Engineering

7 (1), 47–61.

Zhu, Y., Kuno, T., 2003. Global optimization of nonconvex MINLP by a hybrid branch-and-bound and revised general Benders decomposition

34

The Benders Decomposition Algorithm: A Literature Review

CIRRELT-2016-30



approach. Industrial & Engineering Chemistry Research 42 (3), 528–539.

Zverovich, V., Fábián, C. I., Ellison, E. F., Mitra, G., 2012. A computational study of a solver system for processing two-stage stochastic LPs with

enhanced Benders decomposition. Mathematical Programming Computation 4 (3), 211–238.

35

The Benders Decomposition Algorithm: A Literature Review

CIRRELT-2016-30


	CIRRELT-2016-30-abstract.pdf
	Bibliothèque et Archives Canada, 2016

	CIRRELT-2016-30-abstract.pdf
	Bibliothèque et Archives Canada, 2016




