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Abstract. This paper considers an extension of the vehicle routing problem with time windows, 

where the arrival of two vehicles at different customer locations must be synchronized. That is, one 

vehicle has to deliver some product to a customer, like a home theater system, while the crew on 

another vehicle must install it. This type of problem is often encountered in practice and is very 

challenging due to the interdependency among the vehicle routes, but has received little attention 

in the literature. A constraint programming-based adaptive large neighborhood search is proposed 

to solve this problem. The search abilities of the large neighborhood search and the constraint 

propagation abilities of constraint programming are combined to efficiently determine the feasibility 

of any proposed modification to the current solution. Numerical results are reported on instances 

derived from benchmark instances for the vehicle routing problem with time windows with up to 

200 customers. 
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1 Introduction
The Vehicle Routing Problem with Multiple Synchronization constraints (VRPMS)
can be used to model many real-world applications, like home care delivery, aircraft
fleet assignment, vehicle routing and scheduling, and forest operations, as reported
in Rousseau et al. (2013). Here, we consider a distribution problem where the crew
in a delivery vehicle cannot unload or install goods at a customer location without
another vehicle or another crew with the required capabilities. That is, the routes of
two different types of vehicles must be synchronized at a certain number of customer
locations. A dynamic version of this problem for pickup vehicles (i.e., items are col-
lected at customer locations rather than being delivered) is addressed in Rousseau
et al. (2013). Due to the dynamic nature of the problem, new customer requests are
inserted one by one in the current routes, as they occur. Constraint programming,
a computational paradigm based on constraint propagation, is used to determine
if an insertion is feasible or not. Since only one customer is considered at a time,
this approach proved to be viable. Surprisingly and to the best of our knowledge,
no solution approach, neither exact nor heuristic, has been proposed for the static
version of the problem where all customers are known in advance. This a priori
knowledge is required in the case of delivery applications, because the vehicles are
loaded before they depart from the depot. The goal of this paper is thus to provide a
contribution in this regard. The solution approach will exploit both Adaptive Large
Neighborhood Search (ALNS) and Constraint Programming (CP).

Apart from the paper of Rousseau et al. (2013), only a few papers in the liter-
ature are somewhat related to our work. Ioachim et al. (1999) propose a column
generation approach for an aircraft fleet assignment and routing problem where a
number of flight subsets during the weekdays must depart at the same time. The
master problem is a set partitioning problem with synchronization constraints, while
the subproblem is a shortest path problem with time windows and linear costs on
the time variables. An extension of this work for a periodic airline fleet assignment
with time windows is also reported in Bélanger et al. (2006).

Bredström and Rönnqvist (2008) propose a mixed integer programming (MIP)
model for a vehicle routing and scheduling problem with temporal precedence and
synchronization constraints. The authors solve the problem through an optimization-
based heuristic. Schmid et al. (2010) report a MIP for the delivery of concrete to
construction sites from several plants by a fleet of heterogeneous vehicles. Two
hybrid approaches are introduced to solve the problem by combining an exact algo-
rithm with a variable neighborhood search (VNS). El Hachemi et al. (2011) consider
an application in the forest industry where trucks and log-loaders must be synchro-
nized. A decomposition approach is presented to solve a weekly problem in two
phases. The first phase determines the assignment of forest areas to woodmills.
Then, the daily routing and scheduling for the transportation of logs is done with
either a constraint-based local search alone or a hybrid method consisting of CP
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coupled with the constraint-based local search. Other types of synchronization re-
quirements are also found in urban mass transit systems where drivers must change
buses at relief points (Freling et al. 2003, Haase et al. 2001) or in public transit
rail systems where passengers must transfer several times to reach their destination
(Wong et al. 2008).

Li et al. (2005) report an integer programming model for a manpower alloca-
tion problem with time windows and job-teaming constraints. To perform a job,
the required workers must show up together at the job location before it can be
executed. Furthermore, nobody can leave before the job is completed. The authors
propose two construction heuristics embedded within a simulated annealing frame-
work. They provide comparisons with optimal solutions produced by a commercial
solver and lower bounds obtained with a network flow model on their own set of
test instances. Dohn et al. (2009) also solve the problem with a branch-and-price
algorithm where branching on the time variables automatically imposes synchroniza-
tion. A related problem is addressed in Rasmussen et al. (2012) where a MIP model
is developed to schedule home care staff with different synchronization requirements.

The interested reader will find in Drexl (2012) a comprehensive survey on syn-
chronization, with a particular emphasis on vehicle routing applications. In this
survey, different types of synchronization requirements are presented (spatial, tem-
poral, etc.), as well as different applications (dial-a-ride, school bus routing, truck-
and-trailer, etc.), but nothing quite similar to our problem.

The remainder of this paper is organized as follows. Our problem is first intro-
duced in section 2. A description of the solution methodology is provided in sections
3 and 4. A few refinements to this methodology are proposed in section 5. Then,
numerical results are reported in section 6. Finally, concluding remarks are made
in section 7.

2 Problem definition and formulation
Our problem can be seen as an extension of the Vehicle Routing Problem with Time
Windows (VRPTW) with the addition of synchronization requirements. In a stan-
dard VRPTW, the routes are independent, in the sense that a modification to a
given route has no impact on the other routes. This is not the case for the VRPMS
because the routes are interdependent due to the synchronization requirements at
certain customer locations.

Let us assume that two different types of vehicles are available, called regular
(delivery) and special vehicles. The regular vehicles deliver goods to customers and
have limited capacity. The special vehicles do not deliver goods but rather provide
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a service related to the goods delivered by the regular vehicles. The set of customers
is divided into two subsets: regular customers visited only by regular vehicles, and
special customers visited by both a regular and a special vehicle. A regular customer
is represented by a single vertex in the transportation network, while a special cus-
tomer is represented by two vertices, one for the delivery by the regular vehicle and
another for the service provided by the special vehicle.

A regular vertex has a demand and a time window, while a special vertex has
only a time window, which is defined relative to the delivery time of the regular
vehicle. More precisely, if t is the delivery time at the regular vertex of a special
customer, then the service of the special vertex must begin within the time window
[t− δ, t+ γ], where δ and γ are parameters. Different synchronization requirements
can be represented with different values of δ and γ. For example, if the service of
the special vehicle cannot start before the delivery, then the time window’s lower
bound of the special vertex is set to t (i.e., δ = 0); if the service of the special vehicle
cannot start before the end of the delivery, then the time window’s lower bound of
the special vertex is set to t plus the service time of the regular vehicle (i.e., δ is set
to minus the service time of the regular vehicle), etc.

The problem then consists in constructing routes for the two types of vehicles
such that:

1. Each route begins and ends at a single depot;

2. Each regular customer is served in the route of exactly one regular vehicle;

3. Each special customer is served in the route of exactly one regular vehicle and
one special vehicle;

4. The total demand on the route of a regular vehicle cannot exceed its capacity;

5. A regular vehicle must start its delivery at a regular or special customer within
the time window of the corresponding regular vertex;

6. A special vehicle must start its service at a special customer within the time
window of the corresponding special vertex, which is defined relative to the
delivery time of the regular vehicle at the regular vertex;

7. A regular (special) vehicle is allowed to wait up to the lower bound of the time
window of the regular (special) vertex if it arrives earlier.

The objective is to minimize the total distance traveled by all vehicles (regular
and special).

In the following, a small example is given before providing a more formal CP-
based formulation of our problem.
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2.1 Example

We consider a small example where the load and time window constraints of the
regular vehicles are relaxed. We have two regular vehicles {vr1, vr2}, one special ve-
hicle {vs1}, a single depot 0 and 5 customers {1, 2, 3, 4, 5}, two of which are special
customers, namely {1, 2}. In the underlying network, vertex 0 is the depot, vertices
1 to 5 correspond to regular vertices, while vertices 6 and 7 correspond to the special
vertices of customers 1 and 2. Therefore, the vertex pairs (1,6) and (2,7) require
synchronization. In Figure 1, each pair is aggregated into a single grey circle. With-
out loss of generality, we assume that the service or dwell time is equal to 1 and
δ = γ = 0 for every special vertex.

In the solution shown, solid arcs are used to represent the routes of regular ve-
hicles and dashed arcs for the route of the special vehicle. Each arc is labeled with
its travel time and each vertex i is labeled with the vehicle’s arrival time ti. The
return time of each vehicle to the depot, denoted t0, is also indicated on the last arc
of the corresponding route. The routing plan is the following:

vr1 : 0, 5, 1, 0
vr2 : 0, 2, 3, 4, 0
vs1 : 0, 7, 6, 0
t1 = 8, t2 = 3, t3 = 8, t4 = 12, t5 = 4, t6 = 8.

Figure 1: VRPMS example
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To better understand the synchronization requirements, we follow the route of
regular vehicle vr1. Its route starts with regular customer 5 where the delivery begins
at t5 = 4. After spending 1 time unit to serve the customer, it takes 3 more time
units to arrive at special customer 1 where a special vehicle is also needed. The
special vehicle arrives at the same time t1 = t6 = 8. Thus, vehicle vr1 is perfectly
synchronized with the special vehicle vs1. Then, vehicle vr1 departs from special cus-
tomer 1 at time 9 for the depot. Finally, it arrives at the depot at time 13. Note
that the special vehicle vs1 is already synchronized with the regular vehicle vr2 at
special customer 2 at time t2 = t7 = 3.

2.2 Model

In this section, a CP-based formulation of the problem is proposed. This formula-
tion is at the core of the reconstruction operator of our ALNS (see Section 3). Some
familiarity with constraint programming is assumed, otherwise the reader is referred
to Rousseau et al. (2013).

Let G = (N,A) be a complete and directed graph with vertex set N = Vr ∪Vs ∪
V +
r ∪ V +

s ∪ V −r ∪ V −s , where Vr and Vs are the sets of regular and special vertices,
respectively, with Vr ∪ Vs = V . We recall that one vertex is associated with each
regular customer and two vertices with each special customer, namely a regular
vertex in Vr and a special vertex in Vs. Also, V +

r and V −r contain multiple copies
of the depot, one for the start and end of the route of each regular vehicle. That
is, |V +

r | and |V −r | are both equal to the number of regular vehicles. Similarly, V +
s

and V −s contain multiple copies of the depot for the start and end of the route of
each special vehicle. Again, |V +

s | and |V −s | are both equal to the number of special
vehicles. We also define V +

r ∪V +
s = V + and V −r ∪V −s = V −. Finally, with each arc

(i, j) ∈ A is associated a non-negative distance dij and travel time tij . The notation
for the CP model is summarized below.

Sets and parameters:
dij : Distance between vertices i and j, i, j ∈ N, i 6= j;
tij : Travel time between vertices i and j, i, j ∈ N, i 6= j;
qi: Demand of vertex i ∈ Vr;
di: Service or dwell time at vertex i ∈ V ;
ai: Lower bound of the time window at regular vertex i ∈ Vr;
bi: Upper bound of the time window at regular vertex i ∈ Vr;
δi: Decrement to derive the lower bound of the time window at special vertex i ∈ Vs;
γi: Increment to derive the upper bound of the time window at special vertex i ∈ Vs;
ri: Regular vertex associated with special vertex i ∈ Vs;
Vr: Set of regular vertices;
Vs: Set of special vertices;
V : set of regular and special vertices;
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Kr: Set of regular vehicles;
Ks: Set of special vehicles;
K: Set of regular and special vehicles;
Q: Capacity of each regular vehicle k ∈ Kr.

Note that dij and tij are fixed to∞ when arc (i, j) connects two copies of the depot
(except when the two copies stand for the start and end of the same vehicle route,
in which case dij = 0; these arcs are used when there are empty vehicle routes in
the solution). Also, the demand and the service or dwell time at each copy of the
depot are set to 0

Variables:
si: Successor of vertex i ∈ V ∪ V +;
ki: Vehicle visiting vertex i ∈ N ;
ti: Start time of service at vertex i ∈ N ;
li: Vehicle load after serving vertex i ∈ Vr ∪ V +

r ∪ V −r .

Constraints:

General constraints:

AllDifferent(si:i∈V ∪V +) (1)
NoSubTour(si:i∈V ∪V +) (2)
i ∈ Vr ∪ V +

r ⇒ si ∈ Vr ∪ V −r (3)
i ∈ Vs ∪ V +

s ⇒ si ∈ Vs ∪ V −s (4)
i ∈ Vr ∪ V +

r ∪ V −r ⇒ ki ∈ Kr (5)
i ∈ Vs ∪ V +

s ∪ V −s ⇒ ki ∈ Ks (6)
si = j ⇒ kj = ki, i ∈ V ∪ V + (7)

Capacity constraints:

li = 0, i ∈ V −r (8)
li ≤ Q, i ∈ Vr ∪ V +

r (9)
si = j ⇒ lj = li − qj , i ∈ Vr ∪ V +

r (10)

Time window and synchronization constraints:

ti = 0, i ∈ V + (11)
ai ≤ ti ≤ bi, i ∈ Vr (12)
tri − δi ≤ ti ≤ tri + γi, i ∈ Vs (13)
si = j ⇒ ti ≤ tj − tij − di, i ∈ V ∪ V + (14)
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Objective function:

min
∑

i∈V ∪V +

di,si (15)

In a solution, each vertex must have exactly one predecessor and one successor.
The nature of variables si is such that any vertex i can only have one successor, but
we must also ensure that it has only one predecessor. To do so, it must be forbidden
for two different vertices to have the same successor, which corresponds to Con-
straint (1) called AllDifferent. Constraint (2) prohibits subtours, see the detailed
description in Pesant et al. (1998). Constraints (3)-(6) define variables si and ki for
regular and special vertices. Constraint (7) states that a vertex and its successor
must be served by the same vehicle. Constraints (8)-(10) impose load and capacity
restrictions. Without loss of generality, vehicles are assumed to start their routes at
the depot at time 0 through constraint (11). Constraint (12) imposes time window
constraints on regular vertices. The synchronization requirements between regular
and special vehicles at special vertices is stated in Constraint (13). Constraint (14)
imposes the coherence of each route schedule. Finally, the objective function (15)
minimizes the total distance traveled by all vehicles.

3 ALNS
ALNS extends the large neighborhood search framework of Shaw (1998), a problem-
solving approach which can also be related to the ruin-and-recreate principle of
Schrimpf et al. (2000). The basic idea is to search for a better solution at each
iteration by destroying a part of the current solution and by reconstructing it in
a different way. When solving VRPs, a new solution is obtained by first remov-
ing a number of vertices and then by reinserting these vertices into the solution.
Typically, a number of different operators are available and the adaptive extension
chooses an operator in a randomized, but informed, way at each iteration. That is,
the selection probability of an operator is derived from its associated weight, which
is adjusted during the search depending on the operator’s previous successes and
failures.

A noteworthy feature of our ALNS is the use of CP to reinsert the removed
customers. Thus, a systematic exploration of feasible ways to reinsert the vertices
is performed.

The ALNS algorithm can be described as follows.

1. Generate an initial solution s

2. s∗ ← s
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3. While a stopping criterion is not met do:

3.1 Adaptively select a destruction operator and apply it to s
3.2 Reinsert customers with CP
3.3 If a new solution s′ 6= s is returned by CP then

s← s′

If s′ is better than s∗ then s∗ ← s′

4. Return best solution s∗

The main components of this algorithm will be detailed in the following. Then,
further refinements to this basic ALNS scheme will be reported.

3.1 Initial Solution

The routes of the delivery vehicles are first created by inserting regular vertices using
the well-know I1 insertion heuristic of Solomon (1987), originally developed for the
VRPTW. Then, the time windows for the special vertices are defined through the
delivery times in the regular routes. Solomon’s insertion heuristic is reapplied on
the special vertices to create routes for the special vehicles. At this point a complete
solution is obtained.

3.2 Adaptive operator selection

A destruction operator removes a number of vertices from the current solution at
each iteration of the ALNS. Since more than one destruction operator is typically
available, the adaptive mechanism is aimed at choosing the destruction operator in
a way that accounts for its previous outcomes. A weight is associated with each
operator for this purpose. Let us assume that we have h operators, each with a
weight wj , j = 1, ..., h. The removal operator i is then selected with probability

wi∑h
j=1wj

, i = 1, ..., h.

That is, the probability of selecting a given operator increases with its weight.
Starting with a unit weight for each operator, the weights are updated after a
number of consecutive iterations called a segment. The weight of operator i at the
start of a given segment sg is based on the one used in the previous segment sg− 1
and is computed as follows:

wsgi = γ · wsg−1
i + (1− γ) · π

sg−1
i

nsg−1
i

,

where nsg−1
i is the number of times operator i was used in segment sg − 1, γ is a

value between 0 and 1 and πsg−1
i is the score of operator i at the end of segment
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sg − 1. Parameter γ controls the inertia in the weight update equation. When γ
is close to 1, the history prevails and the weights do not change much. Conversely,
when γ is close to 0, the update is driven by the most recent score.

The score, which is reset to zero at the beginning of each segment, is incremented
when operator i is used at a given iteration t to produce a new solution. More
precisely, the new score at iteration t+ 1 becomes

πt+1
i = πti +

{
σ1 if a new best solution has been produced,
σ2 if the solution produced is better than the current solution,

where σ1 and σ2 are parameters. Based on preliminary experiments, the number
of iterations in a segment was set to 50 in our implementation, while γ, σ1 and σ2
were set to 0.5, 2 and 1, respectively.

3.3 Destruction operators

A total of 10 destruction operators were considered in this study, but only two were
kept at the end, called Route removal and Historical node-pair removal, after the
results of a sensitivity analysis experiment reported in Section 6. The reader is re-
ferred to Pisinger and Ropke (2007) and Shaw (1998) for a description of the eight
previously reported operators that were excluded from the final implementation,
namely Cluster removal, Random removal, Worst removal, Historical route-pair re-
moval, Distance-oriented related removal and Time-oriented related removal. In the
following, we describe Route removal, Historical node-pair removal, Synchro Vertex
removal and Synchro Route removal, because they were specifically designed for our
problem (although the last two were excluded from the final implementation). They
are all based on a parameter which is the number of vertices to be removed. To
simplify the description, this parameter is always denoted NV , but it is clear that
a different parameter value can be associated with each operator.

3.3.1 Route removal

This operator removes vertices in the same route(s). First, a route is randomly
selected and all its vertices are removed. If NV is not reached yet, all remaining
vertices are sorted according to their distance to a randomly chosen vertex among
the previously removed ones. Then, one of the closest vertices is selected, using a
randomization factor rD. More precisely, the vertex in position brD ∗ ListSizec in
the sorted list is selected, where ListSize is the number of vertices in the list, r is a
random number between 0 and 1, andD is a parameter (set to 3 in our experiments).
The selected vertex, as well as the other vertices in the same route, are then removed.
This procedure is repeated until NV vertices are removed. The randomization
factor provides a form of diversification but, more importantly, when one of the two
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vertices of a special customer is randomly selected, the closest vertex is necessarily
the other vertex from the pair (at distance 0). Thus, without randomization, the
operator would behave like the Synchro Route removal operator (see below). In the
computational results, Route removal proved to be the best performing operator.

3.3.2 Historical node-pair removal

This operator removes vertices based on historical information. That is, a score
g(i, j) (initially set to infinity) is assigned to each arc (i,j). This score corresponds
to the objective value of the best solution found up to now in which vertices i
and j are visited consecutively. Then, for each vertex i, we consider the value
gi,succi + gpredi,i, where succi and predi are the predecessor and successor of vertex
i in the current solution, respectively. The NV vertices with the largest values are
then removed.

3.3.3 Synchro Vertex removal

First, dNV/2e special vertices are randomly selected and removed with their cor-
responding regular vertices. If the number of special vertices is less than dNV/2e,
then the remaining vertices are randomly chosen among the regular ones. Given
that a special vertex must be synchronized with a regular vertex, the idea is that
better insertion places are more likely to be found in the following reinsertion phase
if both vertices are removed together. Unfortunately, this operator did not provide
good results and was not kept in the final implementation.

3.3.4 Synchro Route removal

This operator focuses on the routes of special vehicles. First, a route is randomly
selected among all the routes served by special vehicles. Then, the route is emptied
by removing all its (special) vertices along with their corresponding regular vertices.
This is repeated until NV vertices are removed. Like Synchro Vertex removal, this
operator did not perform well and was not kept at the end.

The following section is devoted to the reinsertion of the removed vertices.

4 CP-based reinsertion
Here, a partially destroyed solution is reconstructed using CP, as initially proposed
in Pesant and Gendreau (1996, 1999) and Rousseau et al. (2002), using the model
presented in section 2.2. CP has proven useful for many routing variants, like the
Traveling Salesman Problem (TSP), the TSP with time windows, as well as the
VRP and VRPTW. The addition of synchronization constraints make our problem
even more suitable for a CP-based approach, see Rousseau, et al. (2013). For exam-
ple, the insertion of a special vertex in the route of a special vehicle causes a delay
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not only to the special vertices that are visited later along this route, but also to
the regular vertices which are associated with these special vertices. That is, the
schedule of regular vehicles is also modified. The constraint propagation capabilities
of CP can thus be fully exploited here.

In the reconstruction phase, only a subset of vertices needs to reinserted in
the solution, which restricts the domain of feasible values for each variable. For
example, if vertex i is part of the partial solution (it has not been removed), then
the value of the successor variable si in the model of section 2.2 can only be chosen
among the current successor in the partial solution or one of the removed vertices.
Once the domain of each variable is appropriately set, CP then implicitly considers
all feasible ways to reinsert the removed vertices in the solution. However, due
to the propagation and pruning abilities of CP, the number of possibilities can be
drastically reduced using appropriate variable and value selection heuristics to guide
the reinsertion. In our implementation, we instantiate first the more constrained
variables with their less constraining value. Here, a variable si associated with a
removed vertex has a smaller number of possible successors, and is more constrained,
if it is associated with a vertex far from the other vertices. The value of the selected
variable is then set to the closest vertex in the current partial solution. This approach
proved to be slightly better than the autosearch feature of the ILOG CP Optimizer.

5 Further refinements
To improve the performance of our ALNS, additional refinements have been intro-
duced. They are described in the following.

5.1 Constrained objective function

Since CP looks for the optimal reinsertion of the removed vertices at each iteration
of ALNS, very long run times are to be expected. To alleviate this problem, the
minimization of the objective function is taken off from the CP model and introduced
as a constraint, to produce a pure constraint satisfaction problem:

NewObj < α× CurrObj (16)

where CurrObj and NewObj are the values of the current and new solutions, respec-
tively, and parameter α has a positive value which must be less than or equal to 1.
The choice of α is very important. If too small, CP might run for a long time for
nothing because there is no feasible solution. If too large, CP will return a solution
just a bit better than the current solution. After preliminary experiments, α was
finally set to (1− 0.02/(nbIterλ + 1.1)) with λ = 0.45. This formula depends on the
iteration number nbIter, because larger improvements are expected to be found at
the start. As the search progresses, smaller improvements are looked for.
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5.2 Solution acceptance

It is known that the search process of ALNS can be enhanced by allowing worse
solutions to be accepted, see Pisinger and Ropke (2007). Similarly, we force CP
to look for a worse solution with some probability Prob. This probability increases
with the number of consecutive CP failures (a failure occurs when CP cannot find
a feasible and improved reinsertion of the removed vertices). The formula is the
following, where p is a parameter:

Prob = (nbFail/(nbFail + 1))p

In practice, the following constraint replaces constraint (16) with probability
Prob (where w and r are parameters):

CurrObj < NewObj < CurrObj × (1 + nbFailw

r
) (17)

It should be noted that CP searches for increasingly worse solutions as the num-
ber of consecutive failures nbFail increases. If a solution is returned, NbFail is reset
to 0. In our experiments, p = 4, w = 1.5 and r = 1, 000.

5.3 Variable neighborhood size

To help intensify the search, the number of vertices to be removed NV is increased
by 1 each time the reinsertion through CP fails. Conversely, NV is decreased by
one each time the reinsertion succeeds. However, the NV value must stay within
the bounds of the interval [MinNV ,MaxNV ], which is set to [16, 26] for the 25- and
50-customer instances, [13, 23] for the 100-customer instances, and [8, 18] for the
200-customer instances in the computational experiments. The initial value of NV
is randomly selected within the appropriate interval.

5.4 CP search time

Experimentally, we found that our ALNS is more efficient when CP is stopped after
a given time limit CPlimitT ime (i.e., if CP has not returned a solution after that
amount of time, it is unlikely that it will find one if it is run longer). This approach
leads to much shorter run times and also produces better solutions because ALNS
can explore a larger fraction of the search space. CPlimitT ime is allowed to vary in
the interval [MinCPlimit,MaxCPlimit], which is set to [1s, 6s] in our experiments.
The time limit is initially equal toMinCPlimit and is incremented by one when CP
fails to find a solution and the current value is not MaxCPlimit. It is decremented
by one when CP returns a solution and the current value is not MinCPlimit.

6 Computational experiments
This section first describes our test instances followed by a sensitivity analysis ex-
periment on the destruction operators. Then, numerical results are reported.
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6.1 Test instances

Given that the static version of our VRPMS is addressed for the first time, we gen-
erated test instances with n = 25, 50, 100 and 200 customers from the VRPTW
instances of Solomon (1987) and Homberger and Gehring (1999). In these Euclidean
instances, the travel time is the same as the distance. There are also different classes
of instances. The customers are randomly located in the instances of type R, clus-
tered in the instances of type C, and both randomly located and clustered in the
instances of type RC. Furthermore, instances of type 1 have a short scheduling hori-
zon, while those of type 2 have a long one. Overall, there are six different classes of
instances: R1, R2, C1, C2, RC1 and RC2. A variable number of instances is found
in each class, for a total of 56 instances for each size.

Some additional parameters are required to transform the original VRPTW in-
stances into VRPMS instances: Sp, which is the percentage of special customers; δi
and γi which are used to define the time window of each special vertex i ∈ Vs.

Test instances were created from the VRPTW instances by setting parameter
Sp to 5%, 25% and 50%. More precisely, the number of special customers is equal
to dSp×ne. Then, the first customer is a special customer and the following special
customers are chosen using a constant interval defined by 1/Sp. For example, if
n = 100 and Sp = 5%, then 1/Sp = 20 and the five special customers are 1, 21, 41,
61, and 81.

The VRPTW instances are designed in such a way that the instances of larger
size are obtained by adding customers to the instances of smaller size. For example,
the instances of size 50 are obtained by adding 25 customers to the instances of size
25. For a given Sp value, the same applies to the special customers in the VRPMS
instances. That is, all special customers in the instances of size 25 are also found
in the corresponding instances of size 50. With regard to synchronization, δi and γi
were set to 0 and 10, respectively, for each special vertex i ∈ Vs (as in Rousseau et
al. (2013)).

6.2 Sensitivity analysis

A sensitivity analysis experiment was performed to select a good combination of
operators among the 10 available destruction operators. For this purpose, we used
the 100-customer instances with 25 special customers. Let us denote LB the average
solution value obtained with the original ALNS implementation with h = 10 opera-
tors. Then, at each iteration, ALNS is run h times with h−1 operators by removing
each operator in turn. The best among the h runs is then compared with LB. If
the average solution value is better than LB, the missing operator is detrimental
because an improvement is observed without it. Consequently, this operator is put
apart and the procedure is repeated with the h − 1 remaining operators with LB
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reset to the improved average solution value. Otherwise, when the average solution
value of the best among the h runs is worse than LB, each missing operator degrades
solution quality and the procedure is stopped. In our case, the procedure ran until
all operators were dismissed except Route removal and Historical node-pair removal.

An incremental approach was then considered. First, ALNS was run 10 times
with a single destruction operator each time. The best operator proved to be Route
removal and this operator was kept. Then, ALNS was run 9 times by adding a
different operator to Route removal. At this point, Historical node-pair removal
with Route removal proved to be the best pair and the average solution value was
also better than the one obtained with Route removal alone. Thus, Historical node-
pair removal was kept. The next step showed that the addition of a third operator
always led to a degradation in solution quality. Thus, we stopped again with Route
removal and Historical node-pair removal.

6.3 Numerical results

For the computational experiments, our algorithm was run on a 3.07GHz Xeon(R)
X5675 and was stopped after 20,000 iterations. The abbreviations used in Table 1
are the following:

• Size: Number of customers

• Class: Class identifier

• nbSyn: Number of special customers

• InObj: Total distance traveled by the regular and special vehicles in the initial
solution

• InRgObj: Total distance traveled by the regular vehicles in the initial solution

• InSpObj: Total distance traveled by the special vehicles in the initial solution

• FnObj: Total distance traveled by the regular and special vehicles in the final
solution

• FnRgObj: Total distance traveled by the regular vehicles in the final solution

• FnSpObj: Total distance traveled by the special vehicles in the final solution

• InNbRgV: Number of regular vehicles used in the initial solution

• InNbSpV: Number of special vehicles used in the initial solution

• FnNbRgV: Number of regular vehicles used in the final solution

• FnNbSpV: Number of special vehicles used in the final solution
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• RunTime: Computation time in seconds

• LitBestObj: Objective value (total distance) of the best known VRPTW so-
lution in the literature

• LitBestnbVeh: Number of vehicles of the best known VRPTW solution in the
literature

The numerical results reported in Table 1 correspond to averages taken over all
instances in a given class. For example, each value under LitBestObj corresponds
to the average of the best objective value (distance) reported in the literature over
all VRPTW instances in a given class. It is a lower bound for the corresponding
value under FnRgObj, which is the average of the best objective value (distance)
produced by our ALNS on the VRPMS instances when considering only the routes of
the regular vehicles. In the last column of the table, the gap in percentage between
these two values is calculated as:

Gap% = 100× ((FnRgObj − LitBestObj)/FnRgObj)

Due to the synchronization constraints, the total distance traveled by the regular
vehicles in our solutions is obviously greater than the total distance in the corre-
sponding VRPTW solutions. Admittedly, the gap between the two values is larger
than we expected for instances with only a few special customers. On the other
hand, the gap does not increase that much with a larger number of special cus-
tomers (in a few cases, it even decreases). For example, if we consider the instances
of size 50 in class R1, the gap with 3 special customers is 8.19%, but it only increases
to 10.67% and 12.94% with 13 and 25 special customers, respectively. That is, only
a few special customers with synchronization requirements is enough to break the
structure of the VRPTW solutions. However, additional special customers are then
easily accommodated. The percentage of improvement over the initial solution also
indicates that the ALNS performs well, although its performance degrades when the
problem size increases. This is indicated by the decrease in the percentage of im-
provement over the initial solution and the increase in the gap with the best known
VRPTW solution. This trend is easily explained because the number of customers
removed from the current solution at each iteration gets smaller as the problem
size increases (see section 5.3), due to the combinatorial explosion in the number of
possible reinsertions. Still, this is the first time that CP is used to solve VRPMS
instances of that size. It should be noted that Rousseau et al. (2013) address the
dynamic version of VRPMS, so that CP handles only a few customers at a time
(i.e., customers who have already been visited or those who have not called yet for
service are not part of the current solution).
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7 Conclusion
In this work, a VRPTW variant incorporating synchronization constraints between
two different types of vehicles was addressed. The ALNS framework was coupled
with CP to solve the problem. Under this hybrid scheme, CP was used to recon-
struct partially destroyed solutions. Numerical results on instances derived from
standard VRPTW benchmark instances empirically demonstrated the optimization
capability of the proposed algorithm. New developments could look at ways to in-
crease the efficiency of CP through finer adjustments within the ALNS framework
(e.g., adaptive CP time limit). We also want to get closer to the real-world by con-
sidering the integration of time-dependent travel times that would account for rush
hours, for example.
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