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Abstract. Online resource allocation problems are difficult because the operator must make 

irrevocable decisions rapidly and with limited (or nonexistent) information on future requests. We 

propose a mathematical-programming-based framework that takes into account all the available 

forecasts and the limited computational time. We combine Benders decomposition, which allows 

us to measure the expected future impact of each decision, and Dantzig-Wolfe decomposition, 

which can tackle a wide range of combinatorial problems. We illustrate the modeling process and 

demonstrate the efficiency of this framework on real data sets for two applications: appointment 

booking and scheduling in a radiotherapy center, and task assignment and routing in a 

warehouse. 
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1 Introduction
In resource allocation problems, the operator decides how to allocate requests to resources in
order to maximize the profit or improve the service quality of an organization. These prob-
lems are challenging because the operator must quickly and continuously make irrevocable
allocations without full knowledge of future requests. However, with the spread of informa-
tion systems, there is now much historical data available to support online decisions. Many
operators would benefit from decision support systems that use forecasts and optimization
to guide allocation decisions.

Online resource allocation problems have been widely studied in the past 15 years and
arise in domains such as:
• Search-engine advertisements. A search-engine operator allocates in an online

fashion an advertisement to each new keyword search; it is displayed in the users’
web navigator window. The goal is to maximize across all the keywords the expected
advertisement revenue without exceeding the limited budget of each advertiser.

• Revenue management. Companies such as airlines that sell a limited quantity
of goods match each new purchase to a selling price. They seek to maximize their
expected revenue by choosing their selling prices dynamically without full knowledge
of the demand.

• Appointment booking. Healthcare organizations such as clinics set up daily ap-
pointments with medical personnel and/or resources. The operator must find a com-
promise between efficiency and waiting-time targets that are based on patient priority.

• Vehicle routing. In a given time horizon, a fleet of vehicles must serve customers
that are either known in advance or revealed dynamically. New customers must be
added to the scheduled routes in real time.

• Task assignment. New tasks are generally assigned to workers according to their
priority. The quality of the schedule must be continously reoptimized over a given
horizon to ensure efficiency.

In an ideal (deterministic) world, the operator seeks a sequence of decisions leading to an
optimal solution. However, in a realistic (stochastic) environment, not even feasibility can
be ensured, because the operator makes irrevocable decisions without full knowledge of the
future requests. The operator instead tries to minimize the expected deviation from the
optimal solution based on the forecasts, which may be dynamically updated during the
planning horizon.

The state-of-the-art methods for online resource allocation problems fail to evaluate the
expected impact of allocation decisions. If the probability distribution of the requests is
known at the beginning of the process and remains unchanged, approximate dynamic pro-
gramming (Powell 2007) can be used to compute an offline policy. Online optimization (Buch-
binder 2008) provides efficient algorithms with a proof of competitiveness, but it does not
take advantage of available forecasts. Finally, online stochastic (OS) optimization (Van Hen-
tenryck and Bent 2009) is a broad and practical paradigm, but it does not provide general
mathematical tools to approximate the impact of allocation decisions.
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In this paper, we extend the general framework of OS algorithms to provide such tools.
We use Benders (Benders 1962) and Dantzig–Wolfe (Dantzig and Wolfe 1960) decomposi-
tions to solve OS resource allocation problems. The advantages of this new framework are
threefold.

1. Benders subproblems are used to estimate the feasibility and optimality of the final
solution. These estimations are handled through a given primal-ratio in the spirit of
chance constraints, thus accommodating the operator’s level of risk aversion.

2. Benders subproblems also allow us to infer the future load on the resources. A dual
variable associated with each resource gives an approximation of the future cost of one
resource unit.

3. Large-scale problems can be solved, because the combinatorial explosion and the com-
plex constraints are managed through Dantzig–Wolfe decomposition.

We illustrate the use of this general framework on two specific applications that are repre-
sentative of the complexity of online resource allocation problems. The first is an appoint-
ment booking and scheduling problem in a cancer treatment facility. Patients with varying
priorities must be allocated consecutive treatment sessions on linear accelerators (linacs).
The algorithm minimizes the patients’ waiting time and schedules the necessary treatment-
preparation steps. The second application concerns task assignment and routing decisions
in a warehouse, where there is a queue of prioritized tasks that arrive continuously. When
a worker finishes the current route, the operator must assign a new one. The algorithm
must ensure the feasibility and efficiency of the assigned route while taking into account the
priority ordering of the tasks.

The rest of the paper is organized as follows. Section 2 reviews existing techniques for
online resource allocation problems. Section 3 formally defines the problem, and Section 4
details the algorithm. Section 5 discusses the appointment booking and scheduling appli-
cation, while Section 6 presents the task assignment and routing application. Sections 5
and 6 both provide computational results for simulated and real data. Section 7 provides
concluding remarks.

2 Literature review
Three main strategies have been proposed for online resource allocation problems: computing
an offline policy, following a simple online policy, or reoptimizing the system for each request.

Markov decision processes (Puterman 2014) can be used to compute an offline policy.
The problem is decomposed into two different sets (states and actions) and two functions
(transition and reward). A state describes the value of the resources, and an action represents
an available decision. The transition function indicates the probability of reaching one state
from another with an action, and the reward function gives the reward for applying an
action from a given state. An offline policy is then computed for each state. Approximate
dynamic programming (Powell 2007) proposes ways to deal with the curse of dimensionality
created by the exponential growth of the size of the state space. This technique has been
successfully applied to financial optimization (Bäuerle and Rieder 2011), booking (Patrick
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et al. 2008), and routing (Novoa and Storer 2009) problems. However, the main advantage of
this technique is also its main drawback: it concentrates all the computation at the beginning
of the process, and then the operator has to follow the policy. This approach works only
with a distribution known a priori; otherwise the transition function must be updated at
each stage, thus negating the effort invested in the initial computation.

Online algorithms aim to solve dynamic problems rapidly without any knowledge of
future requests. They ensure the quality of the final solution via a competitive ratio, which
measures the gap between the optimal and worst-case solutions. Karp et al. (1990) solve the
online matching problem. Mehta et al. (2007) introduce the Adwords problem and propose
a (1 − 1

e
)-competitive algorithm. Buchbinder (2008) proposes a primal-dual algorithm for

a wide range of problems such as set covering, routing, and resource allocation problems.
Feldman et al. (2009), Karande et al. (2011), Manshadi et al. (2012), and Jaillet and Lu
(2014) introduce probabilistic knowledge. They compute offline strategies based on a prior
distribution to help the online algorithm. Feldman et al. (2010) and Jaillet and Lu (2012) go
further by reoptimizing their policy with the information available after one stage. However,
these authors all consider the matching problem, which is a special polynomial case of the
resource allocation problem. Legrain and Jaillet (2013) present a reoptimized primal-dual
algorithm for the search-engine advertisement problem (i.e., the Adwords problem). Ciocan
and Farias (2012) propose an OS algorithm for bipartite resource allocation problems. They
compute an offline policy based on a prior distribution and reoptimize it at each time step.
The policy estimates how to distribute each type of request among the different feasible
allocations. There must be high volumes of each type of request in order for the algorithm
to converge to the expected distribution. These authors do not provide a competitiveness
proof for complex resource allocation problems, and they do not present generic techniques
for using available forecasts of future requests.

OS algorithms reoptimize the problem for each new request using up-to-date forecasts.
Classical techniques such as stochastic programming (Birge and Louveaux 2011) are not
well suited to online optimization because they are too time-consuming; see Powell and Roy
(2004). Van Hentenryck and Bent (2009) provide a general framework for OS problems and
give three algorithms: expectation, consensus, and regret. These algorithms are all based
on procedures that solve the offline version of the problem. The regret algorithm is the
most advanced. In this algorithm, there are three steps to perform for each new request.
First, build sample scenarios of future requests, then solve each scenario once with an offline
procedure, and finally make a heuristic decision based on the solutions found. Our OS
algorithm is based on this procedure. We propose a mathematical programming scheme
for resource allocation problems to analyze the solution of each scenario and make the best
decision for each request.

3 Problem formulation
We now give a formal description and formulation of the online resource allocation problem.
A total of T requests arrive one at a time during a time horizon H. The operator must
allocate the jth request so as to minimize the objective function. There is a set R of
consumable resources, and resource r has br units available.
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3.1 Offline formulation
We describe each allocation via a resource consumption pattern as in a Dantzig–Wolfe de-
composition: each allocation pattern i ∈ Sj with cost cij for the jth request consumes an
amount Aijr of resource r. When the set Sj is large, the allocation patterns are generated
during the solution process via column generation (Desaulniers et al. 2005). Complex and
operational constraints (e.g., time constraints for the scheduling) are hidden in the patterns,
giving a simple offline formulation for the resource allocation problem. Note that these
constraints do not induce an integrality gap, thus strengthening the linear relaxation.

min
T∑

j=1

∑
i∈Sj

cijxij (1)

subject to
∑
i∈Sj

xij = 1, ∀j = 1 . . . T (2)

T∑
j=1

∑
i∈Sj

Aijrxij ≤ br ∀r ∈ R (3)

xij ∈ {0, 1} ∀j = 1 . . . T,∀i ∈ Sj (4)

The variable xij is 1 if the jth request is matched to allocation pattern i, and 0 otherwise.
The objective (1) minimizes the total cost of the allocations. Constraints (2) ensure that
each request is matched to one allocation pattern. Constraints (3) manage the resource
consumption. We now extend the offline formulation to the OS problem.

3.2 Online stochastic formulation
In a dynamic environment, the resource allocation problem becomes a multistage problem.
One way to handle the allocation decision for the jth request is via a two-stage program
with fixed recourse. Classical stochastic tools use a scenario-based optimization to solve this
program. The number of requests T and the nature of each request are not known in advance
and must be determined for each scenario. If the horizon H is known and sufficient historical
data is available to build a probability distribution, which can be empirical, scenarios of
future requests can be sampled through this probability distribution.

Let the sample set Ωj be the set of possible scenarios of future requests. Each scenario ω
has a probability pω and a total number of requests T ω. The variable yω

il with cost cω
il is

1 if the lth request of scenario ω is matched to allocation pattern i, and 0 otherwise. The
following stochastic formulation chooses the allocation of the jth request.

min
∑
i∈Sj

cijxij+
∑

ω∈Ωj

pω
T ω∑
l=1

∑
i∈Sω

l

cω
ily

ω
il (5)
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subject to ∑
i∈Sj

xij = 1 (6)
∑
i∈Sl

yω
il = 1, ∀ω ∈ Ωj,∀l = 1 . . . T ω (7)

∑
i∈Sj

Aijrxij +
T ω∑
l=1

∑
i∈Sl

Ailry
ω
il ≤ br, ∀ω ∈ Ωj,∀r ∈ R (8)

xij ∈ {0, 1}, ∀i ∈ Sj (9)
yω

il ∈ {0, 1}, ∀ω ∈ Ωj,∀l = 1 . . . T ω,∀i ∈ Sl (10)

The objective (5) minimizes the allocation cost of the jth request plus the expected cost
of future allocations. Constraints (6) and (7) ensure that each (current or future) request is
matched to one allocation pattern. Constraints (8) continue to manage the global resource
consumption for each scenario. Constraints (9) and (10) define xij and yω

il as binary variables.
This formulation leads to a huge model, which is difficult to solve in an online time-limited
environment.

4 Methodology
In an online environment, an operator has generally at maximum few seconds to take the
best possible decision: the computing speed of an online algorithm is thus a key-feature to
get a realistic procedure. We propose a general, fast, and efficient L-shaped-based algorithm
to rapidly solve the allocation problem for the jth request. Our procedure minimizes the
total expected cost of future allocations in order to make the best decision for the current
allocation. It first computes an expected descent direction using the value of the dual vari-
ables associated with the resource constraints (8). When this descent direction is imprecise
for some resource constraints, we restrict the search space by generating probabilistic cuts
for these constraints.

We first introduce the classical L-shaped procedure (Slyke and Wets 1969) for the online
resource allocation problem. It applies Benders decomposition (Benders 1962) to transfer
all the stochastic components (parts of the objective (5) and constraints (7), (8), and (10))
into an integer subproblem for each scenario ω.

Q(xij, ω) = min
T ω∑
l=1

∑
i∈Sω

l

cω
ily

ω
il (11)

subject to ∑
i∈Sl

yω
il = 1, ∀l = 1 . . . T ω (αω

l ) (12)

T ω∑
l=1

∑
i∈Sl

Ailry
ω
il ≤ br −

∑
i∈Sj

Aijrxij, ∀r ∈ R (βω
r ) (13)

yω
il ∈ {0, 1}, ∀l = 1 . . . T ω,∀i ∈ Sl (14)
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The dual variables αω
l and βω

r (in parentheses) are associated with constraints (12)
and (13). The integer subproblem calculates the recourse function Q(xij, ω) for a solution
xij and a scenario ω. We solve the linear relaxation of the subproblem because a two-stage
recourse problem with integer subproblems is much more difficult and time-consuming (gen-
erally more than the few seconds allowed in an online environement). The solution of each
relaxed subproblem gives the load on the resources: the dual variables βω

r give the expected
future cost of one unit of resource r.

The relaxed subproblem feeds the following master problem for each scenario ω with an
optimality cut (17), which approximates the recourse function Q(xij, ω):

min
∑
i∈Sj

cijxij+
∑

ω∈Ωj

pωθω (15)

subject to ∑
i∈Sj

xij = 1 (16)

θω ≥
∑
r∈R

βω
r (br −

∑
i∈Sj

Aijrxij) +
T ω∑
l=1

αω
l , ∀ω ∈ Ωj (17)

xij ∈ {0, 1}, ∀i ∈ Sj (18)

The L-shaped procedure iteratively solves the master problem and the relaxed subprob-
lems, which add new cuts to the master. The procedure stops when the relaxed subproblems
have already been solved for the current solution of the master problem (i.e., the relaxed
subproblems will not generate new optimality cuts).

In a dynamic environment, the L-shaped procedure remains too slow, as it needs several
iterations before converging and slows down when combined with column generation. We
therefore propose a much faster one-iteration L-shaped procedure.

4.1 One-iteration L-shaped procedure
If just one iteration is performed, the optimality cuts (17) can be transferred without the
constant parts in the objective (19), which is now decomposed into two parts: the real
cost cij of allocation pattern i and the average cost ∑ω∈Ωj

pω(∑r∈R β
ω
r Aijr) implied by the

resource utilization of this allocation. In this case, the master problem is equivalent to
the following stochastic matching problem that minimizes the total expected cost of the
allocation patterns:

min
∑
i∈Sj

[cij−
∑

ω∈Ωj

pω(
∑
r∈R

βω
r Aijr)] xij (19)

subject to∑
i∈Sj

xij = 1 (20)

xij ∈ {0, 1}, ∀i ∈ Sj (21)
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It is challenging to change an iterative method to a one-iteration procedure. The classical
L-shaped procedure computes an initial solution of the master problem without considering
any cuts and thus any stochastic information; it will iteratively refine this solution by adding
new cuts. The one-iteration approach waits for optimality cuts to make a better decision
based on insight into forthcoming requests. We consequently set an initial solution xij = 0
that allows us to delay the allocation decision of the jth request, as in Van Hentenryck and
Bent (2009).

Furthermore, the optimality cuts (17), which are generated by the relaxed subproblems
for the solution xij, are the best approximation of the recourse function Q(xij, ω) at the
point xij. However, they undervalue Q(xij, ω) for all the other points. Since they are
computed only once, the solution xij is disadvantaged in the stochastic matching problem.
Initializing xij = 0 gives fair optimality cuts for all the nonzero solutions.

The relaxed subproblems must now deal with this initialization. This leads to two trans-
formations: each scenario must include the jth request (index l = 0 in the scenario of future
requests), and we add the constraint ∑i∈Sj

yω
ij = 1 − xij = 1 (this constraint adds only a

constant part to the objective (19)). In each scenario, the relaxed subproblem makes now
the best allocation decision for the jth request.

To summarize, the one-iteration L-shaped procedure is a descent algorithm where the
direction is equal to cij −

∑
ω∈Ωj

pω(∑r∈R β
ω
r Aijr). In a stochastic world, this direction

indicates the region of the search space where we expect to find a better solution than
the current one, xij = 0. However, for some constraints we may not have enough dual
information to guide the algorithm to an optimal solution. We use primal information on
these constraints to remove decisions from the search space via feasibility cuts.

4.2 Probabilistic feasibility cuts
Usually, feasibility and optimality of the current decision xij are checked for each relaxed
subproblem at each iteration of the classical L-shaped procedure. In our case, since each
relaxed subproblem is solved once, feasibility and optimality are not fully checked. Instead,
the algorithm retrieves primal information from the solution of the relaxed subproblems, as
dual variables provide only a direction for each constraint. Indeed, different decisions may
need to be taken by the algorithm on each resource constraint: a binary decision on whether
the resources are consumed by a request or not, a positive quantity on how much of the
resource should be consumed, and/or no information (dual variable equal to zero). While
the first one is easy to deal with, the last two is challenging. The dual variable provides a
direction but no information on the size of the step (i.e. consumption level) (see application
1 for illustration). The last case where there is no information about the direction arises
when a resource includes precedence constraints on the resquests (see application 2). When
the relaxed subproblems are solved with the decision xij = 0, the precedence constraint is
inactivated leading to a dual variable equal to zero. Additional information is needed by the
algorithm in the later cases.

Let D be the set of resources for which the corresponding constraint does not provide
enough dual information to the stochastic matching problem. When solving the relaxed
subproblems, we store the optimal solution yω

il, which gives the optimal load on the resources.
We assume that the optimal load of any resource in D remains close to optimal for any
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feasible decision xij. We add the feasibility cuts ∑i∈Sj
Aijrxij ≤ br −

∑T ω

l=1
∑

i∈Sl
Ailry

ω
il to

the stochastic matching problem for each scenario ω and for each resource r in D. The jth
request, which corresponds to the index l = 0 in each scenario, is not taken into account in
the optimal load because the variables xij determine the allocation of this request.

min
∑
i∈Sj

[cij−
∑

ω∈Ωj

pω(
∑
r∈R

βω
r Aijr)] xij (22)

subject to ∑
i∈Sj

xij = 1 (23)

∑
i∈Sj

Aijrxij ≤ br −
T ω∑
l=1

∑
i∈Sl

Ailry
ω
il, ∀r ∈ D,∀ω ∈ Ωj (24)

xij ∈ {0, 1}, ∀i ∈ Sj (25)

We transform the feasibility cuts (24) in the spirit of chance constraints to allow flex-
ibility: since these cuts are approximations, they may lead to an allocation decision that
is overly conservative. The goal is now to respect these cuts according to a certain confi-
dence level η, which we call the primal-ratio. These cuts now become PΩj

[∑i∈Sj
Aijrxij ≤

br−
∑T ω

l=1
∑

i∈Sl
Ailry

ω
il] ≥ η. Since the sample set Ωj is finite and the relaxed subproblems are

solved prior to the master problem, let Ωr
j be a subset of scenarios for resource r such that∑

ω∈Ωr
j
pω ≥ η. This subset is problem-related, easy to find, and computed in preprocessing

of the master problem, as we will show when we discuss our applications.

min
∑
i∈Sj

[cij−
∑

ω∈Ωj

pω(
∑
r∈R

βω
r Aijr)]xij (26)

subject to ∑
i∈Sj

xij = 1 (27)

∑
i∈Sj

Aijrxij ≤ br −
T ω∑
l=1

∑
i∈Sl

Ailry
ω
il, ∀r ∈ D,∀ω ∈ Ωr

j (28)

xij ∈ {0, 1}, ∀i ∈ Sj (29)

This restricted stochastic matching problem takes into account the dynamic parts of
the problem: the dual variables βω measure the expected cost of the resource utilization
and, depending on the primal-ratio, constraints (28) forbid allocation decisions that might
lead at the end of the horizon to infeasible or non-optimal final solutions. The primal-ratio
should thus be as small as possible to avoid the removal of optimal decisions from the search
space. To conclude, the relaxed subproblems feed the master problem with primal and
dual information, then the master problem preprocesses this information, and can finally be
solved as a restricted matching problem with column generation if needed (i.e. Sj cannot be
explicitly enumerated).
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4.3 Global online stochastic algorithm
Figure 1 presents the OS algorithm. This algorithm communicates with all the other parts
of the system through an information system: it retrieves the state of the system before any
decision and subsequently relays its decision to the rest of the system.

For each new request, the algorithm first finds feasible allocation patterns and then
makes the best feasible decision. For some requests, the algorithm can save time by making
decisions with an online policy instead of reoptimizing. Determining when this situation
occurs is problem-dependent.

We simulate the other parts of the system in the two applications to evaluate our results
in a realistic environment.

Start New request ?

Filter allocation patterns

Re-optimize ?

Generate future scenarios

Solve the relaxed 
subproblems

Generate columns
Add new 

columns ?

Update pattern costs
Add probabilistic feasibility cuts

Solve the restricted stochastic 
matching problem

Relay the decision to IS

Get system state from IS

Increment time

YES

YES

NO

YES

NO

Apply online policyNO

Exceed horizon ? End

NO

YES

Initialize xij = 0

Information System (IS)

Figure 1: Flow chart of global online stochastic algorithm.
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5 Application I: Appointment booking and scheduling
problem

The online appointment booking problem (Gupta and Denton 2008) involves finding the
best appointment for each new patient as he/she arrives. The main challenge is to main-
tain just enough free slots for high-priority patients that may arrive in the future. Online
radiotherapy appointment booking is a relatively recent application. When patients arrive
in a cancer treatment facility, they must undergo a series of examinations before receiving
treatment on a linac, which irradiates the malignant tumor to kill the infected cells. After
the first consultation, the patients undergo a scan to locate the tumor, and then the cancer
treatment is prepared by the dosimetrists. The dosimetry primarily involves planning the
shape, intensity, and direction of the beams of the linac. These steps form the pretreatment
phase.

The total waiting time is measured as the number of days between the first consultation
and the beginning of the treatment. The management must report detailed statistics to
the state authorities on a regular basis. Furthermore, the center treats palliative (i.e., high
priority) patients to relieve their pain and curative (i.e., low priority) patients to maximize
their chances of recovery. The operator should balance resources between these two types of
patients while respecting, as far as possible, the waiting-time targets.

Two classical block scheduling heuristics have been proposed for online appointment
booking problems (Petrovic et al. 2006): “just in time” (JIT) and “as soon as possible”
(ASAP). The first schedules patients on their due dates, and the second schedules them on
their release dates. Petrovic et al. (2006) combine the two heuristics: JIT for the high-priority
patients and ASAP for the others. Klassen and Rohleder (2004) propose general heuristics
for outpatient clinics. They compare different rules such as “First-call, first-appointment”
and “Low variance clients at the beginning of the schedule.” They show that the latter
rule is the best for several objectives, such as the client waiting time. Patrick et al. (2008)
propose a general approximate dynamic program for outpatient clinics. Sauré et al. (2012)
have successfully applied this technique to a radiotherapy center. Legrain et al. (2014) solve
the booking problem with an online clairvoyant algorithm.

However, none of these methods can deal with the appointment booking and scheduling
problem. This is because if the pretreatment planning is not completed on time, the treat-
ment may be postponed, and this may cause the cancellation of the linac appointment. The
management aims to reduce pretreatment processing times and to avoid unnecessary linac
cancellations.

We apply the OS algorithm presented in Figure 1 to the booking and scheduling of
a radiotherapy center in Quebec, Canada. In Quebec, patients with cancer can wait a
considerable time for treatment. The Quebec authorities have defined a target maximum
delay of 28 days. However, the Quebec College of Physicians advises more specific targets.
Palliative patients should start treatment less than three days after admission, whereas
curative patients can wait 14 or 28 days depending on the type of cancer. Two tasks must
be performed by two different dosimetrists before treatment can begin: the first is the
preparation of the treatment and the second is its verification. Other minor tasks must be
performed to complete the pretreatment; they are modeled through a set of fixed delays. The
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scheduling of the pretreatment can thus be viewed as a hybrid flow-shop with recirculation
(Ruiz and Vázquez-Rodŕıguez 2010).

This work has been realized in collaboration with the Centre Intégré de Cancérologie
de Laval (CICL). We have published an extended abstract (Legrain et al. 2015) on this
application.

5.1 Online stochastic formulation
We now present a stochastic optimization model for the appointment booking and scheduling
problem. The planning of the dosimetry and the linac appointments are represented by
columns. On the arrival of patient j, the model infers the average cost of linac plans for a
finite set Ωj of future patient (Pω) scenarios ω of probability pω. Each future patient set also
contains the current patient j. Let H be the index set of the working days over the planning
horizon, B the index set of Mondays, andM the set of available linacs. Let Sj be the index
set of feasible linac appointment patterns for patient j, am

ijk the description of pattern i ∈ Sj

(= 1 if the patient is treated on linac m on day k, and 0 otherwise), bij the day of the first
treatment session in pattern i ∈ Sj, and cij the cost of pattern i ∈ Sj. This cost is a nonlinear
combination of waiting times and deadline-violation penalties. The parameter ril represents
the end of the pretreatment for patient l in dosimetry planning pattern i ∈ SD. Let Fm

k

be the number of available slots on linac m on day k, Oday the maximum daily number of
overtime slots on linac m, Oweek the maximum weekly number of overtime slots on linac m,
and co the cost of an overtime slot. The variable xij is 1 if linac appointment pattern i ∈ Sj

is allocated to new patient j and 0 otherwise; yω
il is 1 if linac appointment pattern i ∈ Sl is

chosen for patient l in scenario ω ∈ Ωj and 0 otherwise; and vω
i is 1 if dosimetry planning

pattern i ∈ SD is chosen for all patients of scenario ω ∈ Ωj and 0 otherwise. Finally, zmk is
the number of overtime slots on linac m on day k.

min
∑
i∈Sj

cijxij +
∑

ω∈Ωj

pω[
∑

l∈Pω

∑
i∈Sl

cily
ω
il +

∑
k∈H

∑
m∈M

cozω
mk] (30)
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subject to∑
i∈Sj

xij +
∑
i∈Sj

yω
ij = 1 (31)

∑
i∈Sl

yω
il = 1, ∀ω ∈ Ωj,∀l ∈ Pω\{j}

(32)∑
i∈SD

vω
i = 1, ∀ω ∈ Ωj

(33)∑
i∈Sj

bijxij +
∑
i∈Sl

bijy
ω
ij −

∑
i∈SD

rijv
ω
i ≥ 0, ∀ω ∈ Ωj

(34)∑
i∈Sl

bily
ω
il −

∑
i∈SD

rilv
ω
i ≥ 0, ∀ω ∈ Ωj,∀l ∈ Pω\{j}

(35)∑
i∈Sj

am
ijkxij +

∑
l∈Pω

∑
i∈Sl

am
ilky

ω
il ≤ Fm

k + zω
mk, ∀m ∈M,∀k ∈ H,∀ω ∈ Ωj

(36)
1Pp(j)

∑
i∈Sj

am
ijkxij +

∑
l∈Pω

p

∑
i∈Sl

am
ilky

ω
il ≥ zω

mk, ∀m ∈M,∀k ∈ H,∀ω ∈ Ωj

(37)
b+4∑
k=b

zω
mk ≤ Oweek, ∀m ∈M, ∀b ∈ B,∀ω ∈ Ωj

(38)
zω

mk ≤ Oday, ∀m ∈M,∀k ∈ H,∀ω ∈ Ωj

(39)
xij ∈ {0, 1}, ∀i ∈ Sj

(40)
yω

il ∈ {0, 1}, ∀l ∈ Pω,∀i ∈ Sl,∀ω ∈ Ωj

(41)
vω

i ∈ {0, 1}, ∀i ∈ SD,∀ω ∈ Ωj

(42)
zω

mk ≥ 0, ∀m ∈M,∀k ∈ H,∀ω ∈ Ωj

(43)

Constraints (31) and (32) ensure respectively that patient j and all future patients are
scheduled on linacs. Constraints (33) choose a dosimetry schedule for each scenario ω. The
columns xij, y

ω
il representing patient appointments on linacs are all inserted once at the

beginning because the sets Sj and Sl are small. However, the columns vω
i are generated

during the solution process because the set SD is large. A genetic algorithm, presented in
Appendix 8.1, is used for the column generation procedure. Constraints (34) and (35) are
precedence constraints: they ensure respectively that patient j and all future patients have
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completed their pretreatment in time for their first linac treatment. Constraints (36) verify
that the capacity (including the overtime) of each linac is not exceeded. Constraints (37)
ensure that only palliative patients are scheduled in overtime slots (Pω

p is a subset of Pω

containing the palliative patients). Constraints (38) and (39) bound the weekly and daily
overtime on each linac. Constraints (40), (41), (42), and (43) are domain constraints. Finally,
the objective (30) is divided into two parts: the cost of the plan for patient j and the average
future cost of the linac plans.

5.2 Integer subproblems
The OS formulation is transformed as shown in the methodology presented in Section 4.
The integer subproblems solve the booking and scheduling problem for a solution xij and
for each scenario ω.

Q(xij, ω) = min
∑

l∈Pω

∑
i∈Sl

cily
ω
il +

∑
k∈H

∑
m∈M

cozω
mk (44)

subject to
∑
i∈Sj

yω
ij = 1−

∑
i∈Sj

xij (45)
∑
i∈Sl

yω
il = 1, ∀l ∈ Pω\{j} (46)

∑
i∈SD

vω
i = 1, (47)

∑
i∈Sl

bijy
ω
ij −

∑
i∈SD

rijv
ω
i ≥ −

∑
i∈Sj

bijxij, (48)
∑
i∈Sl

bily
ω
il −

∑
i∈SD

rilv
ω
i ≥ 0, ∀ω ∈ Ωj, ∀l ∈ Pω\{j} (49)

∑
l∈Pω

∑
i∈Sl

am
ilky

ω
il ≤ Fm

k + zω
mk −

∑
i∈Sj

am
ijkxij, ∀m ∈M,∀k ∈ H (50)

∑
l∈Pω

p

∑
i∈Sl

am
ilky

ω
il ≥ zω

mk − 1Pp(j)
∑
i∈Sj

am
ijkxij, ∀m ∈M,∀k ∈ H (51)

b+4∑
k=b

zω
mk ≤ Oweek, ∀m ∈M,∀b ∈ B (52)

zω
mk ≤ Oday, ∀m ∈M,∀k ∈ H (53)
yω

il ∈ [0, 1], ∀l ∈ Pω,∀i ∈ Sl (54)
vω

i ∈ [0, 1], ∀i ∈ SD (55)
zω

mk ≥ 0, ∀m ∈M,∀k ∈ H (56)

5.3 Probabilistic feasibility cuts
Constraint (48) can be infeasible if new patient j is scheduled too early on the linacs. Let
D be the singleton formed by this constraint. For each scenario ω, if vω is the solution
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of the relaxed subproblems, we add the feasibility cuts ∑i∈Sj
bijxij ≥

∑
i∈SD rijv

ω
i . The

sum ∑
i∈SD rijv

ω
i = rω

j is now a constant and represents the earliest starting time for a
linac appointment for patient j in scenario ω. Furthermore, if ∑i∈Sj

bijxij ≥ rω0
j holds

for a scenario ω0, ∑i∈Sj
bijxij ≥ rω

j will also hold for any scenario ω such that rω
j ≤ rω0

j .
Consequently, adding just one constraint suffices to represent all the constraints associated
with each scenario.

For a primal-ratio η, we thus choose the scenario ω0 = arg minω∈Ωj
{rω

j

∣∣∣∣ |{ω1 ∈ Ωj|rω1
j ≤

rω
j }| ≥ η |Ωj|} (where | . | indicates cardinality). If∑i∈Sj

bijxij ≥ rω0
j holds, PΩj

{∑i∈Sj
bijxij ≥

rω
j } ≥ η. The subset Ω0

j is thus equal to the singleton {ω0} for the only constraint in D.

5.4 Restricted stochastic matching problem
Let δω, βω

mk, and γω
mk be the dual variables associated respectively with the constraints (48),

(50), and (51). The stochastic dual cost associated with pattern i of patient j is defined to
be ∑ω∈Ωj

pω[δωbij +∑
m∈M

∑
k∈H(βω

mk + 1Pp(j)γω
mk)am

ijk]. Therefore, the restricted stochastic
matching problem is

Z∗ = min
∑
i∈Sj

{cij −
∑

ω∈Ωj

pω[δωbij+
∑

m∈M

∑
k∈H

(βω
mk + 1Pp(j)γω

mk)am
ijk]}xij

subject to
∑
i∈Sj

xij = 1
∑
i∈Sj

bijxij ≥ rω
j , ∀ω ∈ Ω0

j

xij ∈ {0, 1}, ∀i ∈ Sj

The appointment patterns for the linacs in set Sj are all feasible and thus respect con-
straints (36)–(39) for patient j. The restricted stochastic matching problem determines
which feasible pattern i, with a starting time greater than rω0

j , has the minimum expected
cost Z∗.

5.5 Global online stochastic algorithm
Figure 2 illustrates the steps of the OS algorithm for this application. The information system
must communicate the states of the linacs and the dosimetrists. The simulator generates
new requests based on a probability distribution and schedules daily pending dosimetry
tasks using a constraint program, presented in Appendix 8.2. This program also checks the
feasibility of an allocation pattern during the filtering.

The online algorithm uses an online policy to book palliative patients. Since they have a
high priority, the ASAP heuristic gives good results and avoids the need to solve the relaxed
subproblems.
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Figure 2: Flow chart of global CICL online stochastic algorithm.

5.6 Experiments
All the experiments were run over 8 threads on a computer with an Intel(R) Core(TM)
i7-3770 CPU @ 3.40 GHz and 32 GB of memory. We used CPLEX and CP OPTIMIZER
12.6.

We first study the behavior of the algorithm and then present results for a real data set.
The scenarios used for the online algorithms were drawn from the empirical distribution of
the CICL. A large proportion (70%) of the curative patients are known in advance because
they have already undergone surgery and/or chemotherapy in the center.

5.6.1 Sensitivity analysis

There are two linacs with 29 slots plus 3 overtime slots and 4 dosimetrists. Three statistics
computed over 30 runs are used to analyze the algorithm presented in Figure 2:

• First appointment canceled: the number of patients for which the first treatment
session is canceled because the pretreatment is late. This corresponds to the number
of violated precedence constraints (34).
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• Overdue: the number of patients for which the waiting-time target has not been met.

• Objective: the sum over all patients of deadline violations and waiting-time penalties.

The primal-ratio η can take into account the risk aversion of the operator in relation to
the precedence constraints. Figure 3 shows the evolution of the three statistics as a function
of the primal-ratio.

Figure 3: Analysis of the value of the primal-ratio.

The left axis gives the average value of the objective, and the right axis counts the average
number of patients in each of the groups. As the primal-ratio increases, the objective value
grows. Indeed, the more careful the operator, the later the patients will be given their first
linac appointment. When the primal-ratio is high, the algorithm tends to delay curative
patients to avoid canceling treatment sessions because of pretreatment delays. The objective
function is also high because waiting time and deadline violations are penalized. In contrast,
when the primal-ratio is low, the objective function is also low because the patients have
short waiting times; however, some linac appointments will be canceled. Since this situation
must be avoided, we set the primal-ratio to η = 0.2.

5.6.2 Results

We evaluate the approach on a large real instance from the CICL with 1529 patients over
248 working days. The center operates with 4 dosimetrists and 4 linacs. Table 1 com-
pares three algorithms according to various criteria: 1) the number of violated precedence
constraints (34) (i.e., first appointment canceled), 2) the number of targets not met (i.e.,
overdue), 3) the average waiting time, and 4) the number of overtime slots used. The CICL
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algorithm is the greedy procedure that is currently used at the facility. The online clairvoy-
ant algorithm is the the procedure presented in (Legrain et al. 2014). These two algorithms,
unlike the third, do not take into account the dosimetry planning and assume a fixed delay.
Finally, the OS algorithm follows the procedure presented in Figure 2 and uses 8 scenarios
(because the computer can run 8 threads simultaneously).

Table 1: Comparison of algorithms on a real instance.
Appointment Target not met Average waiting time Overtime

Algorithm canceled >3 days >14 days >28 days 3 days 14 days 28 days slots
CICL 230 373 (25) 104 0 3.45 12.58 12.63 111
Online Clairvoyant 107 335 (25) 67 (1) 0 3.27 12.23 14.77 19
Online Stochastic 1 326 (24) 119 (5) 0 3.23 14.04 18.43 8

Table 1 shows that the OS algorithm outperforms the two other procedures. It has just
one canceled appointment whereas the CICL procedure has 230 cancellations and the online
clairvoyant has 107. Furthermore, the number of targets not met remains stable. The OS
algorithm delays the curative patients to increase the likelihood that the pretreatment will
be completed on time. The curative patients do not do as well on criteria 2) and 3), but the
palliative patients do better on these criteria. Finally, the computational time for the OS
algorithm is an average of 20 seconds per patient.

6 Application II: Task assignment and routing problem
The task assignment and routing problem arises in the management of warehouse opera-
tions (Gu et al. 2007). Orders arrive in the warehouse and are treated by the manager or
the warehouse management system (WMS), which splits or groups them into pick-up tasks.
Additional tasks, such as put-away, counting, and replenishing must also be performed. A
route is composed of a starting location, various intermediate stops, and a final destination.
Whenever a worker completes a task, the WMS must dynamically choose the next task for
that worker.

In general, the tasks are given priorities, and the highest-priority tasks should be com-
pleted first. However, a few low-priority tasks may be interleaved to avoid unnecessary
deadheads (i.e., trips without any goods). For example, a transition task may be inserted
between the final destination of the previous task and the starting location of the next,
resulting in more efficient routes.

The offline task assignment problem has been widely studied (Ernst et al. 2004). Coromi-
nas et al. (2006) propose a heuristic to assign tasks in the service industry once the shift
schedule has been fixed. Bard and Wan (2006) develop a tabu search procedure for a similar
problem. Their system has been tested on real data from a U.S. Postal Service mail pro-
cessing and distribution center. Boyer et al. (2014) propose a grammar-based approach to
include the task assignment problem at the shift scheduling level.

However, few studies investigate the online task assignment problem. For a warehouse,
Rubrico et al. (2011) reschedule the current routes each time a new task arrives. They develop
VRP heuristics to compute new routes as well as heuristics to adapt the current routes.
These heuristics give good results when there is a balanced mix of static and dynamic tasks.
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However, they are pure online algorithms: no stochastic information about future tasks is
considered.

In this application, which has been realized in collaboration with JDA Software, we
investigate the task assignment and routing problem in an OS fashion. The challenge in
deciding the next task for each worker lies in finding a balance between minimizing deadheads
and performing urgent tasks quickly enough. We choose to explicitly maximize the sum of
the priorities of the completed tasks over the horizon, while the deadheads will be implicitly
minimized through the generation of patterns.

6.1 Online stochastic formulation
In this application, the requests normally represent the tasks. However, an assignment
becomes effective only when the employee has completed his/her previous nonpreemptive
task. To avoid unnecessary computation, we can postpone the allocation until an employee
is available. We define the requests as a sequence of employees that have completed an
assignment (an employee will normally appear several times in this sequence). Consequently,
there is a set T of waiting tasks, which might not be empty at the beginning of the horizon.

We present a stochastic optimization model for this task assignment and routing problem.
When the jth request arrives, i.e., employee r ∈ R has finished an assignment, the WMS
assigns a new task to this employee, and thus it dynamically builds a global set of efficient
routes for all the workers. The model infers the average cost of completing the current
routes for a finite set Ωj of future task scenarios. Since solving a stochastic vehicle routing
problem is computationally demanding, the algorithm solves this problem once for all the
employees and stores their future assignments. When the jth request arrives, the algorithm
either retrieves a stored assignment or solves the OS problem if the previously computed
assignment has already been performed.

The scenario ω ∈ Ωj, with probability pω, represents the set T ω of future tasks, which
contains the set T (common to all the scenarios) of waiting tasks. Variable xir is 1 if waiting
task i ∈ T with priority ci is allocated to employee r, and 0 otherwise. Each new task
must form the beginning of a future route p ∈ Sr. This route is described by a pattern for
employee r: parameter airp (birp) is 1 if task i is on route p (starts route p), and 0 otherwise.
The variable yω

i is 1 if task i ∈ T ω is completed in scenario ω, and 0 otherwise; vω
rp is 1 if

route p is allocated to employee r, and 0 otherwise.

max
∑
i∈T

∑
r∈R

cixir+
∑

ω∈Ωj

pω[
∑

i∈T ω

ciy
ω
i ] (57)
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subject to∑
r∈R

xir + yω
i ≤ 1, ∀i ∈ T , ∀ω ∈ Ωj (58)∑

p∈Sr

vω
rp ≤ 1, ∀r ∈ R, ∀ω ∈ Ωj (59)

∑
r∈R

∑
p∈Sω

r

airpv
ω
rp ≥ yω

i , ∀i ∈ T ω, ∀ω ∈ Ωj (60)
∑

p∈Sω
r

bω
irpv

ω
rp ≥ xir, ∀r ∈ R, ∀i ∈ T , ∀ω ∈ Ωj (61)

xir ∈ {0, 1}, ∀r ∈ R, ∀i ∈ T (62)
yω

i , v
ω
rp ∈ {0, 1}, ∀r ∈ R, ∀i ∈ T ω, ∀ω ∈ Ωj, ∀p ∈ Sω

r (63)

The objective (57) maximizes the sum of the priorities of the current and expected as-
signments. Constraints (58) verify that a potential next task, that must be in the set T
of waiting tasks, is completed at most once in each scenario. Constraints (59) ensure that
at most one route is assigned to each worker. The columns vω

rp are generated during the
solution process because the sets Sr are large (see Appendix 8.1 for the column generation
procedure). Constraints (60) link each route to the included tasks. Constraints (61) ensure
that the next assignment of each employee starts a feasible route. Finally, Constraints (62)
and (63) define xir, yω

i , and vω
rp as binary variables.

6.2 Integer subproblems
The OS formulation is transformed as shown in the methodology presented in Section 4.
The integer subproblems solve a VRP for a solution xir and for each scenario ω.

Q(xir, ω) = max
∑

i∈T ω

ciy
ω
i (64)

subject to

yω
i ≤ 1−

∑
r∈R

xir, ∀i ∈ T (65)∑
p∈Sr

vω
rp ≤ 1, ∀r ∈ R (66)

∑
r∈R

∑
p∈Sω

r

airpv
ω
rp ≥ yω

i , ∀i ∈ T ω (67)
∑

p∈Sω
r

bω
irpv

ω
rp ≥ xir, ∀r ∈ R, ∀i ∈ T (68)

yω
i , v

ω
rp ∈ {0, 1}, ∀r ∈ R, ∀i ∈ T ω, ∀p ∈ Sω

r (69)

6.3 Probabilistic feasibility cuts
Let D be the subset of constraints (68). The dual variables associated with these constraints
are null if xir = 0, i.e., task i is not allocated to employee r. If vω

rp is the solution of
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the subproblem, we add the feasibility cut ∑p∈Sω
r
bω

irpv
ω
rp ≥ xir in the following restricted

stochastic matching problem for each task i, each employee r, and each scenario ω. Since
the variables xij are binary, we transform these cuts to d∑p∈Sω

r
bω

irpv
ω
rpe ≥ xir. Finally, these

constraints prevent the assignment of a task that is not at the beginning of an active route
(i.e., vω

rp > 0) in each solution of the relaxed subproblem associated with scenario ω ∈ Ωj.
For a primal-ratio η, let Tr be the set of the feasible next tasks that are at the beginning

of at least η|Ωj| active routes of employee r. If the subset Tr is empty, we instead define
Tr = {i ∈ arg maxi0∈T (|{ω ∈ Ωj|

∑
p∈Sω

r
bω

i0rpv
ω
rp > 0}|)}, which is the set of tasks that occur

the most often at the beginning of an active route. The subset Ωir
j is thus equal to the

singleton {ωir|
∑

p∈Sω
r
bωir

irp > 0, if i ∈ Tr,
∑

p∈Sω
r
bωir

irp = 0, otherwise} for each employee r and
each task i.

6.4 Restricted stochastic matching problem
Let βω

i and δω
i be the dual variables associated respectively with constraints (65) and (68).

The stochastic priority associated with task i for worker r is defined to be ∑ω∈Ωj
pω[βω

i +δω
i ].

Therefore, the restricted stochastic matching problem is

Z∗ = max
∑
r∈R

∑
i∈Fr

(ci −
∑

ω∈Ωj

pω[βω
i + δω

i ])xir (70)

subject to ∑
r∈R

xir ≤ 1, ∀i ∈ T (71)∑
i∈T

xir ≤ 1, ∀r ∈ R (72)

xir ≤ d
∑

p∈Sω
r

bω
irpv

ω
rpe, ∀r ∈ R, ∀i ∈ T , ∀ω ∈ Ωir

j (73)

xir ∈ {0, 1}, ∀r ∈ R, ∀i ∈ T (74)

Constraints (71) and (72) are added because this matching problem is solved once for
all the employees. We explicitly maximize the total expected priority Z∗, which does not
depend on the employee: the dual variables measure the expected reward of performing a
task. We implicitly minimize the deadheads through the probabilistic feasibility cuts (73):
based on the primal solution vω

rp, these constraints forbid certain next assignments for each
employee.

6.5 Global online stochastic algorithm
Figure 4 illustrates the steps of the OS algorithm for this application. The information
system must communicate the states of the employees and the tasks waiting in the queue.
The simulator generates new requests based on the employee availability and updates the
employee locations in the warehouse as well as the queue.

For each new request, the algorithm either assigns the stored next task to an employee if
the previous reoptimization has already computed this assignment or reoptimizes the whole
routing problem.
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Figure 4: Flow chart of global JDA online stochastic algorithm.

6.6 Experiments
The planning horizon is 2 hours, and the workers start and finish at the rest area. All the
experiments were run over 8 threads on a server with an Intel(R) Xeon(R) E5530 CPU @
2.40 GHz and 24 GB of memory. We use CPLEX 12.5.0 and set the CPU time to two hours
because of the planning horizon.

We built instances based on real data sets from one of JDA Software’s clients. The
scenarios were based on a random task selection from the client database. The queue contains
half of the total tasks at the beginning of the horizon, as in Rubrico et al. (2011).

6.6.1 Sensitivity analysis

We report the results of a sensitivity analysis based on an instance with 150 tasks and 6
employees. We generate 10 scenarios, and the primal-ratio η controls the quality of the
solution. Figure 5 shows the evolution of the average objective (computed over 30 runs) as
a function of the primal-ratio.
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Figure 5: Analysis of the value of the primal-ratio.

As the primal-ratio grows, the objective value increases until η = 0.5 and then it starts
to level off. This indicates that the primal solutions of the relaxed subproblems give more
and more information about the efficiency of the routes. To avoid unnecessary primal noise,
we set the primal-ratio to η = 0.5 for the results below.

6.6.2 Results

We compare the OS algorithm to a greedy heuristic similar to that used in the WMS of JDA
Software. The JDA procedure chooses the maximum priority task in the same zone as the
employee. Our algorithm uses five scenarios or all the available computational time (i.e., two
hours).

Preliminary tests show that the OS algorithm performs poorly (i.e., worse than the JDA
procedure) without the probabilistic feasibility cuts. Indeed, the one-iteration L-shaped
procedure takes into account only the expected reward of a task and thus allocates the tasks
with the highest expected priorities to the employees. Deadheads are implicitly minimized
in the relaxed subproblems but not in the stochastic matching problem when the feasibility
cuts are absent.

The instances used for the comparison contain from 13 to 26 employees and, in average,
35 tasks per employee. Figure 6 plots for each instance the improvement of the objective as a
function of the increase in the number of completed tasks. The improvements are measured
as relative gains of the OS algorithm against the JDA procedure. The OS algorithm clearly
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Figure 6: Gain of the OS algorithm on real instances.

outperforms the JDA algorithm, as, in average, it increases of 35% the number of completed
tasks and raises of 20% the objective function. The observed improvements correspond to
tremendous productivity gains for a WMS.

7 Conclusion
In this paper, we have proposed a mathematical-programming-based framework for general
OS resource allocation problems. We model the problem as a resource allocation problem
via Dantzig–Wolfe decomposition and then as a two-stage program with fixed recourse us-
ing classical stochastic optimization tools. Finally, we apply Benders decomposition. We
build a one-iteration L-shaped procedure to quickly obtain dual information about the fu-
ture resource load. We compute the linear relaxation of an integer subproblem (an offline
resource allocation problem) for each scenario to infer this load. When we have insufficient
information for a resource (e.g., the dual variables associated with the resource are null), we
add probabilistic feasibility cuts based on primal solutions to the master problem to remove
infeasible and nonoptimal decisions.

For each new request, the online algorithm either applies an online policy or reoptimizes
the resource allocation problem. At each reoptimization, we solve a restricted stochastic
matching problem (i.e., the master problem) to allocate the new request according to the
stochastic information about the future resource load and about expected infeasible and
nonoptimal decisions. Two applications have illustrated the modeling process and demon-
strated the efficiency of the proposed framework on real data sets. The OS algorithm out-
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performs existing procedures for both applications.
We believe that many online decision problems could be solved by our algorithm. The

main challenge is to model the problem as a resource allocation problem via a Dantzig–Wolfe
decomposition. One can then apply the steps of the framework.

8 Appendices
This section presents the specialized algorithms for generating the columns and checking the
feasibility of a given allocation pattern.

8.1 Specialized algorithms for column generation procedure
The appointment and booking problem needs a specialized column generation procedure,
while the task assignment and routing problem is a classical VRP in its offline version.

The network for the latter problem can easily be described. The tasks are nodes with
a serving time and a cost (i.e., the priority). The travel time between tasks is represented
by free arcs. The last routes must finish before the end of the horizon. The difficulty of
this problem lies in the size of the network, which is complete. The OS algorithm solves
only a linear relaxation of this problem for each scenario. The problem is decomposed using
column generation (Desaulniers et al. 2005). The master problem is solved using a linear
programming solver, and the subproblems, which are just resource-constrained shortest path
problems in the complete network, are solved via dynamic programming.

The columns vω
i of the appointment and booking problem are generated during the so-

lution process using a genetic algorithm inspired by Bertel and Billaut (2004).

Algorithm 1 Genetic Algorithm
Population: list of chromosomes: P := [ ]
Initialization: add N/4 chromosomes built with dispatching rules and fill the rest with
random chromosomes
while solving time < T AND not enough different chromosomes with a negative reduced
cost do

for all chromosomes c in population P do
Cyclic Crossover: with probability pc, cross c with a random different chromosome
Mutation: with probability pm, randomly swap two positions of c
Intensification: with probability pl, make a small local search with insertions on c

end for
Add all new chromosomes to P
Selection: keep the best N chromosomes

end while

The dosimetry scheduling problem has two tasks and a time window per job. These time
windows correspond to fixed delays: they ensure that all the other pretreatment tasks are
performed. The two tasks are the preparation and the verification of the treatment by a
dosimetrist. Since the OS formulation follows a Dantzig–Wolfe scheme (Gélinas and Soumis
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2005), this flow-shop problem minimizes the weighted completion time (due to the dual
variables linked to constraints (34) and (35)). Algorithm 1 thus tries to build in time T a
population P of N chromosomes with a negative reduced cost. A chromosome is a sequence
of tasks and represents a dosimetry plan. A task occurs twice in a chromosome: the first
appearance corresponds to the preparation of the dosimetry, and the second corresponds to
the verification. A plan is made from a chromosome by simply scheduling each task in the
chromosome as early as possible. The cyclic crossover is also presented in Bertel and Billaut
(2004). Finally, the intensification phase aims to improve some of the chromosomes: it tests
several insertions to see if they decrease the reduced cost.

8.2 Specialized algorithms for checking allocation pattern feasi-
bility

The feasibility of a pattern allocation (i.e., the next task to perform) is easily checked for the
task assignment and routing problem: the algorithm checks that the employee has time to
return to the rest area after performing an assignment. However, for the appointment and
booking problem, the algorithm must solve a flow-shop problem to determine the feasibility
of the dosimetry plan induced by an allocation pattern (i.e., a linac appointment).

The genetic algorithm quickly computes several columns, but it is impossible to know if a
dosimetry plan is infeasible or optimal. To check the feasibility of an allocation pattern and
to schedule the daily tasks at the dosimetry, we introduce a constraint program. It can check
feasibility and find better solutions, but it takes more computational time. Let Nd be the
number of dosimetrists and Pk be the set of patients waiting for dosimetry on day k (they
correspond to jobs in this flow-shop problem). The variables Cj represent the completion time
of the dosimetry for job j. The activities are interval variables in constraint programming.
They are defined by four linked variables: the beginning, the end, the length, and the
presence of an interval. The variables tij, tdj , and tdij are thus activities, and for job j they
represent, respectively, the ith dosimetry task, the only dosimetry task performed by the dth
dosimetrist, and the ith dosimetry task performed by the dth dosimetrist. Some activities are
of course optional and have length zero; the compulsory tasks are the activities tij. Finally,
we aim to minimize over all the patients the square of the tardiness, (max(0, Cj − bj))2, and
the weighted completion time, wjCj. The tardiness is more important because the dosimetry
plan must be feasible. However, the weighted completion time should break any ties.

min
∑

j∈Pk

[(max(0, Cj − bj))2 + wjCj] (75)
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subject to

alternative(tij, d = 1 . . . Nd, t
d
ij), ∀i = 1 . . . T,∀j ∈ Pk (76)

sequential machine(tdij, i = 1 . . . T, j ∈ Pk), ∀d = 1 . . . Nd (77)
alternative(tdj , i = 1 . . . T, tdij), ∀d = 1 . . . Nd,∀j ∈ Pk (78)

tij.end ≤ t(i+1)j.begin, ∀i = 1 . . . T − 1,∀j ∈ Pk (79)
Cj ≥ tT j.end, ∀j ∈ Pk (80)
tij, t

d
j , t

d
ij ∈ Ij, ∀j ∈ Pk (81)

Cj ∈ Days, ∀j ∈ Pk (82)

The alternative global constraints (76) ensure that only one dosimetrist performs the ith
task for job j. The sequential resource constraints (77) ensure that each dosimetrist executes
one task at a time. The global constraints (78) ensure that a dosimetrist completes at most
one task for job j. Constraints (79) simply ensure that the tasks of a job are performed in
the right sequence. Constraints (80) compute the completion time of each job j. Finally,
constraints (81) and (82) describe the domains of the variables, where the set Days represents
the days of the planning horizon and the set Ij defines the discretized domain for each job
(the possible ready and due dates are the bounds of the set).
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