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consistent performance efficiency of the proposed scenario clustering decomposition approach.  
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1. Introduction

Reverse supply chain (RSC) network design refers to the decisions in
terms of locations and capacities of facilities associated with the collection
and recovery of end-of-life products in addition to the allocation of physical
flows among these facilities and secondary markets. Designing RSC networks
for durable products (e.g., large household appliances) that are distinguished
by their modular structure and their long life cycle is a complex problem. It
is explained by the fact that such category of products can be dissembled into
several components, namely modules and parts along with a bulk of damaged
yet recyclable components referred to as residues. Depending on the category
and quality status of each component in the reverse bill of materials (BOM),
a particular recovery process would be desired to reclaim the economic value
residing in a specific component. For example, remanufacturing is a typical
option for a used module in a good condition. Nonetheless, a poor quality
(damaged) module is considered as residues that can be recycled to separate
the precious raw materials from mixed scrap. Observing the variation in
market demands of brand-new durable products, a similar tendency can be
expected in generating end-of-life durable goods. In this regard, a dynamic
perspective should be considered to accommodate such fluctuations in the
RSC planning over a planning horizon. To date, a few contributions have
addressed this concern [1–3]. Considering an application-oriented approach,
Salema et al. [2] proposed a graph-based scheme to design a dynamic recovery
network to capture the fluctuations in the rate of returns in a deterministic
setting. In another attempt, Alumur et al. [3] developed a mixed-integer
programming (MIP) formulation to model a RSC network design in a multi-
period setting while considering the reverse BOM. The proposed model was
also analyzed for a real-life industrial case.

An inherent characteristic of the recovery systems is the uncertainty in
quality/quantity of returns. Needless to say, a successful designing of RSC
networks requires the inclusion of such critical factors into the decision mak-
ing problem. Most studies in the literature have utilized two-stage stochastic
programming approaches to explicitly deal with uncertainty in static (single-
period) settings [4–7]. The overview of the current literature indicates that
most of the previous research in the context of designing RSCs under un-
certainty is limited to single-period settings. In such studies, the common
sources of uncertainty entail quality/quantity of returns, demands, and eco-
nomical parameters such as shipping costs. For instance, Fonseca et al. [8]
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provided a two-stage stochastic programming model for designing a RSC
network under uncertainty in transportation costs. The dynamic nature of
the product returns combined with the uncertainty in the quantity of returns
lead to a natural extension of the static RSC network design into a dynamic
setting under uncertainty which consequently calls for multi-stage stochas-
tic programming [9] as a suitable approach to be adopted. In a multi-stage
stochastic program, modeling the uncertain parameter, e.g., quantity of re-
turns, as a scenario tree allows the adjustment of the decisions while more
information on the uncertain parameter is available to the decision maker. In
this line of research, Cardoso et al. [10] proposed a multi-stage mixed-integer
programming (MS-MIP) model to maximize the expected net present value
of designing a close-loop supply chain network over a planning horizon under
uncertainty in demand. In a similar vein, more recently, Zeballos et al. [11]
used a scenario tree approach for discretization of stochastic demand and
quantity of returns over the planning horizon. The resulting MS-MIP model
was solved by a commercial software. As it can be observed, the number
of studies in the context of designing a dynamic recovery network while ac-
counting uncertainty is limited. To fill the existing void of research, on the
modeling side, the first contribution of this study is to address the problem
of designing a RSC in a multi-period setting considering the reverse BOM
of durable products. In the underlying problem of interest, the quantity of
returns is stochastic and non-stationary during the planning horizon. It is
worth noting that a push market is assumed for the recovered modules, parts,
and materials, which is a realistic assumption in many industries. Hence, the
demand for the recovered items is considered as a deterministic yet dynamic
parameter. Through modeling the uncertain factor as a scenario tree, the
problem is modeled as a MS-MIP in which one seeks to maximize the ex-
pected profit. The non-homogeneity characteristic of the components of a
durable good is also incorporated in the design decisions through defining a
finite number of quality levels. To the best of our knowledge, none of the
aforementioned studies in dynamic RSC planning have addressed the impact
of the quality status of components on the choice of the recovery option while
accounting uncertainty in the quantity of returns.

One complicating aspect of MS-MIP models is their computational in-
tractability, particularly due to the exponential growth in the number of
decision variables over the stages of the scenario tree of the stochastic pa-
rameter(s). Scenario clustering decomposition schemes have been shown to
successfully solve large-scale multi-stage stochastic programming problems
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[12–15]. The prime idea of scenario clustering decomposition is to divide
the scenario tree into a set of scenario clusters such that they share some
ancestor nodes. In most studies in the context of dynamic recovery network
design, the size of test instances is quite small allowing the plain use of MIP
solvers. Therefore, as the second contribution, on the methodological side, a
heuristic inspired by a scenario clustering decomposition scheme [14, 15] is
provided to solve the resulting large-scale MS-MIP problem. This algorithm
revolves around decomposing the scenario tree into smaller sub-trees. The
MS-MIP model would consequently be broken down into smaller sub-models
corresponding to each sub-tree. Afterwards, the scenario cluster sub-models
are coordinated by Lagrangean penalty terms in the objective function and
a progressive hedging-based scheme [16] is applied for updating Lagrangean
multipliers [17]. It is noteworthy to state that each scenario cluster sub-
model per se is a hard to solve problem. Hence, as the third contribution,
a Benders decomposition-based (BD) solution algorithm [18] is developed to
tackle each scenario cluster sub-model, which is enhanced with a Pareto-
optimal cuts selection strategy [19].

The remainder of this article is organized as follows. In the next sec-
tion, the description of the problem investigated in this article is provided
and its formulation is introduced. Section 3 elaborates the details of the
solution methodology including the scenario clustering decomposition and
Benders decomposition schemes. Computational experiments on a case of
large household appliances, i.e., washing machines, is presented in Section 4.
Finally, Section 5 concludes this paper.

2. Problem statement

2.1. Problem description

Considering a dynamic RSC network design context, as shown in Fig-
ure 1, in each period in the planning horizon, used products that are of
non-homogeneous quality status are acquired in collection zones and then
shipped to disassembly centers. The returns are then graded into multi-
ple quality levels in disassembly centers. As noted in the preceding section,
depending on the quality level of the component in the reverse BOM of a
durable product, it can be sent to a particular facility for the recovery pro-
cess. Hence, high quality modules are sent to remanufacturing centers and
high quality parts are used for part harvesting to make them “like-new”
components. These components are then offered at a lower price compared
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to the brand-new components at their corresponding marketplaces. For in-
stance, in a washing machine, its motor and washing tube are categorized,
respectively, as modules and parts. The high quality level motor is profitable
for remanufacturing while a poor quality washing tube is sent to the bulk
recycling center. Damaged components are also shipped to bulk recycling
facilities to recycle precious raw materials. The unprocessed raw materials
are then purchased by a third-party logistics provider. More precisely, it is
assumed that there exists an infinite demand for recyclable raw materials in
markets. It is also assumed that the waste of residues is safely disposed of
in bulk recycling facilities at zero cost, as it is a sunk cost.

Disassembly 

centers

Remanufacturing 

centers

Modules 

markets

Modules

Residues

Materials

Return stream

Spare parts 

markets

Collection zones

Parts

Bulk recycling 

centers
3PL

Figure 1: The reverse supply chain network

In a deterministic setting, the design decisions in each period revolve
around the location of each facility including disassembly, remanufacturing,
and bulk recycling centers to be installed in the RSC network. It should
be noted that a dynamic RSC design provides the flexibility to adjust the
number and the location of facilities as the quantity of returns evolves over
time. More precisely, depending on the quantity of returns over the planning
horizon, either some of the existing facilities are closed (in case of a reduced
return stream) or new facilities are opened (in case of an increasing return
stream). Furthermore, the planning decisions include the physical flows and
inventory levels at each facility. The objective function is to maximize the
profit over the planning horizon. The original equipment manufacturer gains
revenues from remanufacturing when the remanufactured modules are sold
in the secondary markets; from reusable parts when they are sold to spare
parts markets; from bulk recycling when the unprocessed raw materials are
purchased by the third-party logistics provider. The total cost comprises
the fixed costs of the installation of facilities along with inventory holding,
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processing, and transportation costs in the RSC network. Furthermore, the
following assumptions are made regarding the problem setting.

• Demands of remanufactured modules and reusable parts are determin-
istic yet dynamic over the planning horizon;

• The return stream is categorized with respect to a finite set of quality
levels;

• The unit collection, disassembly, and remanufacturing costs are quality
status-dependent;

• Capacities of facilities are not subject to change within time periods.

2.2. Modeling uncertain returns

In the problem of interest, it is assumed that the quantity of returns is
uncertain and dynamic; hence, it evolves as a discrete time stochastic pro-
cess over the planning horizon. As noted earlier, the dynamic and uncertain
nature of returns quantities require the adjustment of the design decisions
during the planning horizon. To this end, the planning horizon is discretized
into a finite set of time periods such that the decisions are implemented at
the end of each time period. Considering the multi-period setting together
with uncertainty, the stochastic quantity of returns parameter can be inter-
preted as a scenario tree in which each stage indicates the realization of the
uncertain parameter. It is assumed that each stage corresponds to a single
time period. In a given stage, each node represents a distinguishable state
of random return concerning the available information up to this stage. In
the underlying problem, each node is directly connected to two other nodes
while moving away from the root node. In other words, each node in the
scenario tree has only one sibling except the root node. Besides, a return
quantity scenario is defined as the full path from the root node, i.e., the
current state of world, to a leaf node at the last stage of the scenario tree.
Figure 2 illustrates a scenario tree with four stages.

2.3. Problem formulation

Given the RSC network design problem described in Section 2.1 and the
scenario tree representing the uncertain quantity of returns, in this section,
the latter problem is formulated as a MS-MIP model. In this model, the
location of facilities depends on the quantity of returns, hence this decision
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Figure 2: Scenario tree for the random quantity of returns

is defined for each possible realization of the stochastic parameter in each
period, represented by a node in each stage of the scenario tree. In a similar
fashion, the quantity of acquisition, disassembly quantity, the flow between
the disassembly and recovery facilities, shipped quantities of recovered items,
as well as the inventory levels of recovered items at different facilities also
depend on the return quantity, thus are defined for each node. Further-
more, in any given period in the planning horizon (represented as a stage
in the scenario tree), the decision maker cannot foresee future outcomes of
the return quantity; therefore, location and flow decisions must satisfy the
non-anticipativity condition (NAC). The latter indicates that such decisions
in a given period (stage) are identical for scenarios with a common ances-
tor node in that period. For instance, in Figure 2, scenarios 1 and 2 share
node 2 in stage 2; therefore, the location and flow decisions must be identical
for both scenarios at this stage and consequently are defined exclusively for
the ancestor node 2. On the other hand, since inventory decisions are state
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variables that depend on the main design/flow decisions, the NAC would
automatically apply. The problem notation is provided in Appendix A. The
compact formulation of the MS-MIP model corresponding to the dynamic
RSC network design problem under investigation can be stated as follows.
It should be noted that the NAC is implicitly taken into consideration while
using a compact formulation of a multi-stage stochastic problem. On the
contrary, the latter condition must be explicitly stated in a split-variable or
clustered formulation.

Total revenue

∑
n∈Tree

pr(n)

{∑
t∈T

∑
a∈A

∑
o∈O

∑
p∈P

PspQSaopt(n) +
∑
t∈T

∑
d∈D

∑
w∈W

∑
l∈L

PwlQWdwlt(n)

+
∑
t∈T

∑
b∈B

∑
r∈R

PerBRbrt(n)

}
(1)

Total cost
Fixed cost

∑
n∈Tree

pr(n)

{∑
t∈T

∑
a∈A

faaY Aat(n) +
∑
t∈T

∑
d∈D

fddY Ddt(n)

+
∑
t∈T

∑
b∈B

fbbY Bbt(n)

}
(2)

Processing cost

∑
n∈Tree

pr(n)

{∑
t∈T

∑
c∈C

∑
a∈A

∑
q∈Q

caaqQAcaqt(n) +
∑
t∈T

∑
a∈A

∑
d∈D

∑
l∈L

cddlQDadlt(n)

∑
t∈T

∑
a∈A

∑
b∈B

cbbQBabt(n)

}
(3)

Inventory holding cost
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∑
n∈Tree

pr(n)

{∑
t∈T

∑
a∈A

∑
p∈P

hppIPapt(n) +
∑
t∈T

∑
a∈A

∑
l∈L

hllILalt(n)

+
∑
t∈T

∑
a∈A

hbIBat(n) +
∑
t∈T

∑
d∈D

∑
l∈L

hllIDdlt(n)

}
(4)

Transportation cost

∑
n∈Tree

pr(n)

{∑
t∈T

∑
c∈C

∑
a∈A

∑
q∈Q

tacaQAcaqt(n)
∑
t∈T

∑
a∈A

∑
o∈O

∑
p∈P

tsaopQSaopt(n)

+
∑
t∈T

∑
a∈A

∑
d∈D

∑
l∈L

tdadlQDadlt(n) +
∑
t∈T

∑
a∈A

∑
b∈B

tbQBabt(n)

+
∑
t∈T

∑
d∈D

∑
w∈W

∑
l∈L

twdwlQWdwlt(n)

}
(5)

Supply constraints∑
a∈A

QAcaqt(n) = ψcqt(n) c ∈ C, q ∈ Q, t ∈ T, n ∈ Tree (6)

Flow balance constraints

IPapt(n) = IPap(t−1)(m) +
∑
c∈C

∑
q∈Q

γpqQAcaqt(n)−
∑
o∈O

QSaopt(n) a ∈ A,

p ∈ P, t ∈ T, n ∈ Tree,m = a(n) (7)

ILalt(n) = ILal(t−1)(m) +
∑
c∈C

∑
q∈Q

δlqQAcat(n)−
∑
d∈D

QDadlt(n) a ∈ A,

l ∈ L, t ∈ T, n ∈ Tree,m = a(n) (8)

IBat(n) = IBa(t−1)(m) +
∑
c∈C

∑
q∈Q

βqQAcaqt(n)−
∑
b∈B

QBabt(n) a ∈ A, t ∈ T,

n ∈ Tree,m = a(n) (9)

IDdlt(n) = IDdl(t−1)(m) +
∑
a∈A

QDadlt(n)−
∑
w∈W

QWdwlt(n) d ∈ D,

l ∈ L, t ∈ T, n ∈ Tree,m = a(n) (10)∑
a∈A

ηrQBabt(n) = BRbrt(n) b ∈ B, r ∈ R, t ∈ T, n ∈ Tree (11)
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Demand constraints∑
a∈A

QSaopt(n) = dsopt o ∈ O, p ∈ P, t ∈ T, n ∈ Tree (12)∑
d∈D

QWdwlt(n) = dwwlt w ∈W, l ∈ L, t ∈ T, n ∈ Tree (13)

Capacity constraints of facilities∑
c∈C

∑
q∈Q

QAcaqt(n) ≤ caaaY Aat(n) a ∈ A, t ∈ T, n ∈ Tree (14)

∑
a∈A

QDazlt(n) ≤ caddlY Ddt(n) d ∈ D, l ∈ L, t ∈ T, n ∈ Tree (15)∑
a∈A

QBabt(n) ≤ cabbY Bbt(n) b ∈ B, t ∈ T, n ∈ Tree (16)

In model (1)-(16), the objective function accounts for maximizing the ex-
pected profit. Constraint (6) ensures the acquisition of the return stream for
each node and each time period. Constraints (7)-(10) are inventory balance
restrictions, respectively, for parts, modules, and residues at disassembly
centers in addition to remanufacturing facilities. Flow balance restriction
in each bulk recycling center is imposed by Constraints (11). Constraints
(12)-(13) ensure the demand satisfaction of parts and remanufactured mod-
ules at their corresponding marketplaces in each time period. Constraints
(14)-(16) impose capacity restriction on disassembly, remanufacturing, and
bulk recycling centers.

3. Solution methodology

Solving the MS-MIP model (1)-(16) by a commercial solver for real-size
instances is a challenge. This is due to the existence of the three sets of bi-
nary variables that increase exponentially in number as the number of stages
in the planning horizon is increased. As noted earlier, the computational
complexity has motivated the authors to propose a heuristic scenario cluster-
ing decomposition (HSCD) algorithm. This algorithm comprises two major
steps: (1) Scenario cluster decomposition (SCD) and (2) Scenario cluster co-
ordination (SCC). In the SCD step, first, the scenario tree is partitioned into
a set of scenario cluster sub-trees. Then, for each sub-tree, the corresponding
MS-MIP model is represented in a compact formulation. Furthermore, the
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NACs corresponding to common nodes in the original scenario tree are intro-
duced in the objective function of each scenario cluster sub-model. Finally,
in the SCC step, the aforementioned sub-models are coordinated into an im-
plementable solution by means of a Lagrangian Progressive Hedging-based
algorithm. The details of the aforementioned steps are provided as follows.

3.1. Step 1: SCD

3.1.1. Decomposing the scenario tree

Definition 1. Given that nδ and S represent, respectively, the set of
nodes that belong to stage δ and the set of scenario clusters, according to
[14, 15], a break stage δ∗ is defined as a stage in the scenario tree such that
the following equation holds: |S| = |nδ∗+1|.

In Figure 3, if the second stage is chosen as the break stage, i.e., δ∗ = 2,
four scenario clusters (|S| = 4) are obtained such that each shares node 1.
Furthermore, the first and the second scenario cluster sub-trees share node
2 and the other two share node 3 in the original scenario tree (see Figure 3).

Let introduce N s as the set of nodes that belong to scenario cluster s,
∆ = {1, 2, .., δ∗}, N1 as the set of nodes corresponding to the stages in ∆,
N2 = N\N1, N s

1 = N1∩N s, N s
2 = N2∩N s. Moreover, let ζω be the likelihood

of scenario ω, Ωs be the set of scenarios in scenario cluster sub-tree s, and
ζs(n) =

∑
ω∈Ωs

ζω.

3.1.2. Formulating scenario cluster sub-models

Following the scenario tree decomposition, the MS-MIP model is formu-
lated for each sub-tree in a compact representation. The NACs for any node
in N2 are implicitly considered by formulating each scenario cluster sub-
tree in a compact representation. However, these constraints are required to
explicitly be taken into account for every node in N1. The purpose of intro-
ducing the NACs is to coordinate and link |S| scenario cluster sub-models
into an implementable solution. Let Xs

t (n) be the vector of flow and loca-
tion variables in the MS-MIP (1)-(16). Let P be the vector of unit prices
of selling brand-new and recovered components at the marketplaces. Let F
and C be, respectively, the vector of fixed costs of opening facilities in the re-
verse network and the vector of procurement, processing, inventory carrying,
and transportation costs. Moreover, let ηn be scenario cluster sub-trees that
share node n, sηn = min{s|∀s ∈ ηn}, sηn = max{s|∀s ∈ ηn}. The NACs can
therefore be stated as follows.
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Xs
t (n)−Xs+1

t (n) ≤ 0 ∀s = sηn , ..., (sηn)− 1, t ∈ ∆, n ∈ N1 (17)

X
sηn
t (n)−Xsηn

t (n) ≤ 0 t ∈ ∆, n ∈ N1 (18)

For instance, in the sub-trees shown in Figure 3, the NACs for the location
of disassembly centers, i.e., Y Aat(n), is expressed as follows.

Y A1
a2(2)− Y A2

a2(2) ≤ 0 ∀a ∈ A
Y A2

a2(2)− Y A1
a2(2) ≤ 0 ∀a ∈ A

Y A3
a2(3)− Y A4

a2(3) ≤ 0 ∀a ∈ A
Y A4

a2(3)− Y A3
a2(3) ≤ 0 ∀a ∈ A

By dualizing the NACs and using a Lagrangean multiplier vector, i.e.,
µst(n), the MS-MIP model (1)-(16) can be reformulated as the following multi-
stage scenario cluster Lagrangean decomposition (MSCLD) problem. [14,
15].
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ZMSCLD(µ, s) = max

|S|∑
s=1

∑
n∈Ns

1

∑
t∈∆

ζs(n){PXs
t (n)− FXs

t (n)− CXs
t (n)}

+

|S|∑
s=1

∑
n∈Ns

2

∑
t/∈∆

pr(n){PXs
t (n)− FXs

t (n)− CXs
t (n)}

(s̄ηn )−1∑
s=sηn

∑
n∈N1

∑
t∈∆

µst (n){Xs+1
t (n)−Xs

t (n)}

+
∑
n∈N1

∑
t∈∆

µ
s̄ηn
t (n){Xsηn

t (n)−X s̄ηn
t (n)}

s.t. (6)− (16) ∀t ∈ ∆, n ∈ {N1, N2} (19)

As it can be seen, (19) is a relaxation of MS-MIP (1)-(16) for all µst(n) ≥
0; ∀s ∈ S, n ∈ N s

1 , and t ∈ ∆. Thus, the value of its objective function,
ZMSCLD(µ, s), is an upper bound on the optimal solution of the original
MS-MIP model.

Definition 2. The dual problem (Lagrangean dual) of the original MS-
MIP model with respect to NACs (17)-(18), for a given break stage δ∗, can
be represented as

ZMSCLD = minµ≥0ZMSCLD(µ, s) (20)

The Lagrangean dual problem (20) is solved by an iterative sub-gradient-
based scheme to identify an upper bound on the original MS-MIP model
(1)-(16). It should be stated that model (19) can further be decomposed
into |S| subproblems in accordance with each scenario cluster sub-tree. Its
objective function can also be attained through summing up each individual
sub-model objective function as follows.

ZMSCLD(µ, s) =

|S|∑
s=1

ZsMSCLD(µ) (21)

3.2. Step 2: SCC

3.2.1. Lagrangean progressive hedging-based algorithm (LPHA)

In order to update Lagrangean multipliers, a Lagrangean progressive
hedging-based scheme is considered as presented in Escudero et al. [14, 17].
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The progressive hedging algorithm was firstly introduced in the seminal work
of Rockafellar and Wets [16] for solving multi-stage stochastic linear program-
ming models.

Definition 3. The classical sub-gradient vector gt(n) in which n ∈
N s

1 , t ∈ ∆ can be defined as follows [14].

gt(n) =



X
sηn
t (n)−X s̄ηn

t (n)

X
(sηn )+1

t (n)−Xsηn
t (n)

.

.

.

X
s̄ηn
t (n)−X((s̄ηn )−1)

t (n)


In LPHA scheme, apart from the classical sub-gradient vector, a new

modified vector is defined.
Definition 4. Denoted by gt(n), a non-necessary feasible pseudo sub-

gradient vector can be represented as follows.

gt(n) =



X t(n)−X s̄ηn
t (n)

X t(n)−Xsηn
t (n)

.

.

.

X t(n)−X((s̄ηn )−1)
t (n)


where X t(n) =

∑
s∈ηn ζ

s(n)Xs(n) such that, n ∈ N s
1 and t ∈ ∆. In

fact, X t(n) indicates an approximate expected value over the set of scenario
cluster sub-trees that share node n. Denoting by ZMSCLD a lower bound on
(19), the details of LPHA method are summarized in Algorithm 1.

The termination conditions require that either the sub-gradient vector
gkt (n) is less than a threshold, i.e., 0.01, or the value of ZMSCLD is not im-
proved in a sequence of consecutive iterations, i.e., 5 iterations.

Each iteration of LPHA calls for the solutions of |S| independent sub-
models. In the context of the dynamic RSC network design investigated in
this study, each sub-model is itself a large-scale optimization problem which
cannot be solved by the plain use of MIP engines, e.g., CPLEX. Therefore, a
Benders decomposition-based algorithm tailored to the particular structure
of each scenario cluster sub-model is proposed in the next section. This
algorithm is nested within the LPHA algorithm to solve the |S| scenario
cluster sub-models.
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Algorithm 1 - LPHA

Step 0 : Initialization µst (n) ← 0 ∀s ∈ S, n ∈ N s
1 , t ∈ ∆, ᾱ ← 1, Iteration

counter k ← 1
Solve |S| scenario cluster sub-models (19) independently
Compute the initial value of ZMSCLD(µ, s)
while termination conditions are not satisfied do
Step 1 : Calculate gkt (n) and ḡkt (n) ∀n ∈ N s

1 , t ∈ ∆
Step 2 : Update Lagrangean multipliers

µk+1
t (n)← max{0, µkt (n) + ᾱ.

(ZMSCLD(µk,s)−ZMSCLD)

‖ḡkt (n)‖2
.ḡkt(n)}

Step 3 : Solve |S| scenario cluster sub-models with µk+1 and update
ZMSCLD(µk+1, s)
Step 4 : k ← k + 1
end while

3.2.2. Benders decomposition-based algorithm

The hallmark of Benders decomposition is to exploit the decomposable
structure present in the formulation of the MIP model. In other words, in
a MIP model, integer/binary variables are seen as complicating variables
such that when fixing them, the MIP model reduces to smaller subproblems
(PSP), which can be solved individually to generate cutting planes for the
master problem (MP). The PSP and MP are then solved sequentially and
iteratively until a termination criterion is satisfied. As the classical Ben-
ders decomposition turns out to converge slowly in the underlying problem
due to the degeneracy of PSP, a cut selection strategy based on the work
of Papadakos [19] is proposed to expedite the convergence of the solution
process.

3.2.2.1 Benders reformulation

Given a particular scenario cluster sub-tree s = (sηn)+1, ..., sηn in (21) and a

vector of feasible location decisions, i.e., Y s = {Y Asat(n), Y Ds
dt(n), Y Bs

bt(n)},
the PSP can be formulated as follows.
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ZsMSCLD(µ) = max
∑
n∈Ns

1

∑
t∈∆

ζs(n)

{∑
a∈A

∑
o∈O

∑
p∈P

PspQS
s
aopt(n) +

∑
d∈D

∑
w∈W

∑
l∈L

PwlQW
s
dwlt(n)

+
∑
b∈B

∑
r∈R

PerBR
s
brt(n)−

∑
c∈C

∑
a∈A

∑
q∈Q

caaqQA
s
caqt(n) +

∑
a∈A

∑
d∈D

∑
l∈L

cddlQD
s
adlt(n)

−
∑
a∈A

∑
b∈B

cbbQB
s
abt(n)−

∑
a∈A

∑
p∈P

hppIP
s
apt(n)−

∑
a∈A

∑
l∈L

hllIL
s
alt(n)−

∑
a∈A

hbIBs
at(n)

−
∑
d∈D

∑
l∈L

hllID
s
dlt(n)−

∑
c∈C

∑
a∈A

∑
q∈Q

tacaQA
s
caqt(n)−

∑
a∈A

∑
o∈O

∑
p∈P

tsaopQS
s
aopt(n)

−
∑
a∈A

∑
d∈D

∑
l∈L

tdadlQD
s
adlt(n)−

∑
a∈A

∑
b∈B

tbQBs
abt(n)−

∑
d∈D

∑
w∈W

∑
l∈L

twdwlQW
s
dwlt(n)

+
∑
n∈Ns

2

∑
t/∈∆

pr(n)

{∑
a∈A

∑
o∈O

∑
p∈P

PspQS
s
aopt(n)−

∑
d∈D

∑
w∈W

∑
l∈L

PwlQW
s
dwlt(n)

−
∑
b∈B

∑
r∈R

PerBR
s
brt(n)−

∑
c∈C

∑
a∈A

∑
q∈Q

caaqQA
s
caqt(n) +

∑
a∈A

∑
d∈D

∑
l∈L

cddlQD
s
adlt(n)

−
∑
a∈A

∑
b∈B

cbbQB
s
abt(n)−

∑
a∈A

∑
p∈P

hppIP
s
apt(n)−

∑
a∈A

∑
l∈L

hllIL
s
alt(n)−

∑
a∈A

hbIBs
at(n)

−
∑
z∈Z

∑
l∈L

hllID
s
dlt(n)−

∑
c∈C

∑
a∈A

∑
q∈Q

tacaQA
s
caqt(n)−

∑
a∈A

∑
o∈O

∑
p∈P

tsaopQS
s
aopt(n)

−
∑
a∈A

∑
d∈D

∑
l∈L

tdadlQD
s
adlt(n)−

∑
a∈A

∑
b∈B

tbQBs
abt(n)−

∑
d∈D

∑
w∈W

∑
l∈L

twdwlQW
s
dwlt(n)

}

+
∑
n∈N1

∑
t∈∆

{∑
a∈A

∑
o∈O

∑
p∈P

(µ1,s−1
aopt (n)− µ1,s

aopt(n))QSsaopt(n)

+
∑
d∈D

∑
w∈W

∑
l∈L

(µ2,s−1
dwlt (n)− µ2,s

dwlt(n))QW s
dwlt(n) +

∑
b∈B

∑
r∈R

(µ3,s−1
brt (n)− µ3,s

brt(n))BRsbrt(n)

+
∑
c∈C

∑
a∈A

∑
q∈Q

(µ4,s−1
caqt (n)− µ4,s

caqt(n))QAscaqt(n) +
∑
a∈A

∑
d∈D

∑
l∈L

(µ5,s−1
adlt (n)− µ5,s

adlt(n))QDs
adlt(n)

+
∑
a∈A

∑
b∈B

(µ6,s−1
abt (n)− µ6,s

abt(n))QBs
abt(n)

}
(22)

s.t. (6)− (13) ∀t ∈ ∆\{1}, n ∈ N s
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∑
c∈C

∑
q∈Q

QAscaqt(n) ≤ caaaY A
s
at(n) a ∈ A, t ∈ ∆, n ∈ N s (23)

∑
a∈A

QDs
azlt(n) ≤ caddlY D

s
dt(n) d ∈ D, l ∈ L, t ∈ ∆, n ∈ N s (24)∑

a∈A
QBs

abt(n) ≤ cabbY B
s
bt(n) b ∈ B, t ∈ ∆, n ∈ N s (25)

where µ1,s,..., µ6,s denote the set of Lagrangean multipliers for scenario
cluster sub-tree s. Note that for sub-tree s = sηn , the terms of the objective
function (22) that correspond to Lagrangean multipliers are written as the

following compact representation:
∑

n∈N1

∑
t∈∆{µ

sηn
t (n)− µsηnt (n)}Xsηn

t (n).
Let υ1,s,..., υ11,s be the set of dual variables corresponding to constraints

(6)-(13) and (23)-(25) in which υ9,s, υ10,s, and υ11,s are non-negative. The
dual subproblem (DSP) can be formulated as follows .

Zsυ(Y s) = min
∑
c∈C

∑
q∈Q

∑
t∈∆

∑
n∈Ns

ψcqt(n)υ1,s
cqt(n) +

∑
o∈O

∑
p∈P

∑
t∈∆

∑
n∈Ns

dsoptυ
7,s
opt(n)

+
∑
w∈W

∑
l∈L

∑
t∈∆

∑
n∈Ns

dwwltυ
8,s
wlt(n) +

∑
a∈A

∑
t∈∆

∑
n∈Ns

caaaY A
s
at(n)υ9,s

at (n)

+
∑
d∈D

∑
l∈L

∑
t∈∆

∑
n∈Ns

caddlY D
s
dt(n)υ10,s

dl (n)

+
∑
b∈B

∑
t∈∆

∑
n∈Ns

cabbY B
s
bt(n)υ11,s

bt (n) (26)

s.t. (υ1,s,υ2,s, ....,υ11,s) ∈ Λs (27)

where Λs denotes the polyhedron defined by the constraints of the DSP for
a particular scenario cluster sub-tree s. Let θs be a surrogate variable that
is an upper bound on (22). Furthermore, let ρ(.) entails all terms in the
objective function of DSP (26) independent of the location variables. The
master problem (MP) can be stated as follows.

max θs −
∑
n∈Ns

1

∑
t∈∆

ζs(n)

{∑
a∈A

faaY A
s
at(n) +

∑
d∈D

fddY D
s
dt(n) +

∑
b∈B

fbbY B
s
bt(n)

}
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−
∑
n∈Ns

2

∑
t/∈∆

pr(n)

{∑
a∈A

faaY A
s
at(n) +

∑
d∈D

fddY D
s
dt(n) +

∑
b∈B

fbbY B
s
bt(n)

}

+
∑
n∈N1

∑
t∈∆

{∑
a∈A

(µ7,s−1
at (n)− µ7,s

at (n))Y Asat(n) +
∑
d∈D

(µ8,s−1
dt (n)− µ8,s

dt (n))Y Ds
dt(n)

+
∑
b∈B

(µ9,s−1
bt (n)− µ9,s

bt (n))Y Bs
bt(n)

}
(28)

s.t. θs ≤ ρ(υ̂(m,s)T ) +
∑
a∈A

∑
t∈∆

∑
n∈Ns

caaaY A
s
at(n)υ̂9,s

at (n)

+
∑
d∈D

∑
l∈L

∑
t∈∆

∑
n∈Ns

caddlY D
s
dt(n)υ̂10,s

dl (n) +
∑
b∈B

∑
t∈∆

∑
n∈Ns

cabbY B
s
bt(n)υ̂11,s

bt (n)

(29)

0 ≤ ρ(κ̂(m,s)T ) +
∑
a∈A

∑
t∈∆

∑
n∈Ns

caaaY A
s
at(n)κ̂9,s

at (n)

+
∑
d∈D

∑
l∈L

∑
t∈∆

∑
n∈Ns

caddlY D
s
dt(n)κ̂10,s

dl (n) +
∑
b∈B

∑
t∈∆

∑
n∈Ns

cabbY B
s
bt(n)κ̂11,s

bt (n)

(30)

Y Asat(n), Y Ds
dt(n), Y Bs

bt(n) ∈ {0, 1} ∀a ∈ A, d ∈ D, b ∈ B, t ∈ ∆, n ∈ N s

(31)

where κs denotes extreme rays of Λs when the DSP is unbounded for a given
location solution and scenario cluster sub-tree s. As for sub-tree s = sηn , the
fourth term of (28) is written as follows.

∑
n∈N1

∑
t∈∆

{∑
a∈A

(µ
7,sηn
at (n)− µ7,sηn

at (n))Y A
sηn
at (n) +

∑
d∈D

(µ
8,sηn

dt (n)− µ8,sηn

dt (n))Y D
sηn

dt (n)

+
∑
b∈B

(µ
9,sηn

bt (n)− µ9,sηn

bt (n))Y B
sηn

bt (n)

}

At each iteration of the Benders decomposition algorithm, if the DSP
is bounded, an optimality cut (29) is generated given a vector of optimal
dual solutions. Otherwise, a feasibility cut (30) is introduced to the MP to
eliminate values of location decisions for which the PSP is infeasible.
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3.2.2.2 Pareto-optimal cuts

The degeneracy of the PSP implies that there exist multiple optimal solutions
for the DSP such that each of these leads to a distinct optimality cut. An
efficient implementation of Benders decomposition algorithm requires a cut
selection scheme to choose the deepest cut among the various optimality
cuts which can be generated by arbitrarily taking optimal dual solutions.
Papadakos [19] proposed a dual selection strategy to expedite the Benders
algorithm. In the context of the underlying problem, let Γ indicates the
polyhedron defined as Γ = {Y : (31) holds}.

Definition 5. A core point is defined as any point Y 0 in the relative
interior of the convex hull of Γ, i.e., Y 0 ∈ ri(Γc). Γc and ri(.) indicate the
convex hull and the relative interior of Γ, respectively.

Definition 6. An optimality cut (29) associated with (υ1,s
1 ,υ7,s

1 ,υ8,s
1 ,υ9,s

1

,υ10,s
1 ,υ11,s

1 ) ∈ Λs dominates the one that corresponds to (υ1,s
2 ,υ7,s

2 ,υ8,s
2 ,υ9,s

2

,υ10,s
2 ,υ11,s

2 ) ∈ Λs if and only if

ρ(υ̂
(m,s)T

1 ) +
∑
a∈A

∑
t∈∆

∑
n∈Ns

caaaY A
s
at(n)υ̂9,s

1at(n)

+
∑
d∈D

∑
l∈L

∑
t∈∆

∑
n∈Ns

caddlY D
s
dt(n)υ̂10,s

1dl (n) +
∑
b∈B

∑
t∈∆

∑
n∈Ns

cabbY B
s
bt(n)υ̂11,s

1bt (n)

≤ ρ(υ̂
(m,s)T

2 ) +
∑
a∈A

∑
t∈∆

∑
n∈Ns

caaaY A
s
at(n)υ̂9,s

2at(n)

+
∑
d∈D

∑
l∈L

∑
t∈∆

∑
n∈Ns

caddlY D
s
dt(n)υ̂10,s

2dl (n) +
∑
b∈B

∑
t∈∆

∑
n∈Ns

cabbY B
s
bt(n)υ̂11,s

2bt (n)

for all Y with a strict inequality for at least one extreme point. A Pareto-
optimal cut by definition is an optimality cut that is not dominated by any
other cut. It can be obtained through using the optimal solution of the
following auxiliary DSP.

Zsυ(Y 0) = min
∑
c∈C

∑
q∈Q

∑
t∈∆

∑
n∈Ns

ψcqt(n)υ1,s
cqt(n) +

∑
o∈O

∑
p∈P

∑
t∈∆

∑
n∈Ns

dsoptυ
7,s
opt(n)

+
∑
w∈W

∑
l∈L

∑
t∈∆

∑
n∈Ns

dwwltυ
8,s
wlt(n) +

∑
a∈A

∑
t∈∆

∑
n∈Ns

caatY A
0
at(n)υ9,s

at (n)

+
∑
d∈D

∑
l∈L

∑
t∈∆

∑
n∈Ns

caddlY D
0
dt(n)υ10,s

dl (n) +
∑
b∈B

∑
t∈∆

∑
n∈Ns

cabbY B
0
bt(n)υ11,s

bt (n)

s.t. (υ1,s,υ2,s, ....,υ11,s) ∈ Λs (32)
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In this modified Benders decomposition algorithm, one starts with an initial
core point, i.e., Y 0 = {0.5}, to build a Part-optimal cut to be added to
the MP. In the subsequent iterations, when the solution to the MP yields a
feasible PSP, the auxiliary DSP (32) is solved, using a new core point that
is the convex combination of the MP solution and the previous value of the
core point, to generate a non-dominated cut. To this end, a non-negative
parameter, i.e., λ, is considered as the weight of the core point Y 0 in the
convex combination to update the value of the core point throughout the
solution process. The value of this parameter is assigned to be 0.5 [6, 20]. The
description of the proposed Benders decomposition-based method is outlined
in Algorithm 2.

Algorithm 2 - Benders decomposition-based algorithm

UB←∞, LB← −∞, Y 0 = {0.5}, λ← 0.5
while (UB − LB)/UB ≤ ε do
Solve auxiliary-DRSP (32)
Add Pareto-optimal cut (29) to the MP
Solve the MP
Update UB
Solve the DSP
if the DSP is unbounded then

Add the feasibility cut (30) to the MP
Y 0 ← λY 0 + ξ

else
Add the optimality cut (29) to the MP
Update LB, if necessary
Y 0 ← λY 0 + (1− λ)Y

end if
end while
Solve the PSP

4. Numerical example

In this section, the performance of applying the solution scheme on the
proposed model is investigated with respect to a set of test problems. To this
end, first, the specific settings of the concerned case example is provided. The
example is a typical large household appliance, i.e., a washing machine, that
follows the settings of a case study presented in [21]. It should be noted
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that the parameter settings of the proposed MS-MIP model are carefully es-
timated vis-à-vis recent market data and current CLSC/RSC network design
literature ([3, 4]). Then, it is followed by the computational results section.
In this study, all algorithms are implemented in C++ programming language
using Concert Technology with IBM-ILOG CPLEX 12.60 on an Intel Quad
Core 3.40 GHz with 8 GB RAM. Moreover, the default settings of CPLEX
are employed to solve the DSP and the MP in the Benders decomposition
algorithm.

4.1. Experimental design

The BOM of the washing machines is described in Table 1. More specif-
ically, each washing machine consists of ten parts (e.g., balance) and two
modules (e.g., motor). All used machines acquired in collection points are of
two quality levels, i.e., high and poor.

Table 1: Components of the case example

Description Value

Parts

washing tube:1 (3.5 kg), cover:1 (2.5 kg), balance:1 (2.5 kg),
frame:1 (11.5 kg), condenser:1 (0.5 kg), hose:1 (1 kg),

small electric parts:1 (1 kg), electric wire:1 (1 kg),
transformer:1 (1 kg), PCB:1 (0.5 kg)

Modules motor:1 (5 kg), clutch:1 (4 kg)

The uncertain parameter, i.e., the quantity of returns, is normally dis-
tributed with a mean of 400 and a variance equal to 20% of the mean for
high quality returns. As for the poor quality ones, the mean is considered
to be 600 while the variance is equal to 20% of the mean. These normal
distributions are then approximated by a 2-point discrete distribution (high
and low ratio) through using the Gaussian quadrature method [22]. The
time horizon is divided into three equal time periods such that each of them
spans five years. Consequently, the time horizon is clustered into four stages
(stage zero is the present time). Moreover, the scenario tree of the stochastic
quantity of returns entails fifteen nodes and eight scenarios.

In Appendix B, as depicted in Tables B1 - B5, a summary of other pa-
rameters used in the case example is provided. Besides, shipping costs are
selected from Uniform(4, 7) for the used washing machines, Uniform(1, 4)
for each type of components, and Uniform(0.1, 0.5) for bulk of residues.
Capacities of facilities are randomly generated aligned with the stochastic
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quantity of returns and the BOM. For example, the capacity of disassembly
centers are chosen between Uniform(2 × MeanCaa, 3 × MeanCaa) where
MeanCaa = |C| × (400 + 600)/|A|. Moreover, the fixed cost of installing a
facility is proportional to its capacity, so that a facility with high capacity
level requires a greater investment.

In order to carry out the experiments, four main classes within each five
test instances are considered as shown in Table 2. The detailed information
on the size of the classes including the number of constraints, continuous
variables, and binary variables are shown in Table 3. It is worth noting that
the largest class of test instances (C4) reasonably reflects real-size RSCs in
the context of durable products.

Table 2: Test problem classes

Class C A D B O W

1 40 5 5 2 20 20
2 50 10 10 5 25 25
3 60 10 10 5 30 30
4 70 15 15 7 35 35

Table 3: Size of test problems

Class # Constraint # Continuous variable # Binary variable

1 5992 28014 168
2 8680 68390 350
3 9800 80290 350
4 12432 140434 518

4.2. Computational results

On each of the twenty test instances, the proposed decomposition scheme,
i.e., HSCD, is applied to find an upper bound within the stopping criteria, i.e.,
either the sub-gradient vector is less than 1% or the current value of the upper
bound is not improved in 5 iterations. The second stage is chosen as the break
stage leading to four scenario cluster sub-models. As for the resolution of
each scenario cluster sub-model, the Benders decomposition-based algorithm
described in the preceding section is employed with the stopping criteria of
either 1% optimality gap or 3600 seconds time limitation. Alternatively, for
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the sake of comparison, considering the first stage as the break stage, each
test instance is also solved using the Benders decomposition-based algorithm
where the termination condition is either a time limit of 24 hours or an
optimality gap of 1% for each of the resulting two scenario clusters. It should
be noted that by decomposing the scenario tree in the first stage, two sub-
models are obtained such that each of them can be independently solved.
The optimal solution of each sub-model individually yields a sub-optimal
solution to the optimal solution of the MS-MIP model. Note that it is not
required to impose any NAC in the first stage of the tree as it corresponds
to time period zero where the initial inventory levels are zero.

Table 4 presents the results obtained by HSCD and Benders decompo-
sition algorithm algorithms for all twenty test instances. For the former
approach, columns “Time” and “#Iteration” indicate the total CPU time in
seconds and the number of iterations, respectively. The fourth column shows
the best upper bound on the MS-MIP model identified through applying
HSCD. As for the latter approach, column “Time” indicates the amount of
time required to solve the MS-MIP model (1)-(16) within 1% of optimality
gap while column “Profit” gives the value of the objective function within
the dedicated time limit and the optimality gap. Moreover, column “gp(%)”
denotes the relative difference between upper and lower bounds reported
by Benders decomposition algorithm within 24 hours running. It should be
stated that the runtime of BD approach is considered as the maximum of the
solution times of the two scenario cluster sub-models in each test instance.
The last column, “Gap(%), expresses the relative difference in percentage
between the solutions obtained by the two approaches.

The results show that the performance of the HSCD scheme is quite
promising in the sense that it provides an upper bound on the objective
function of the MS-MIP model in significantly less amount of time compared
to the BD approach, i.e, 2 hours over all test instances. Given the low gap
values in the last column (0.58% on average), even though the solutions are
not necessarily feasible, they are quite close to those provided by the BD
approach. More precisely, the average solution time of HSCD in solving the
test instances of C1, C2, and C3 is, respectively, 4 minutes, 1.7 hours, and
1.9 hours. It increases to 4.5 hours for the last class of test problems. Fur-
thermore, the infeasibility rate of the dualized NACs in the HSCD algorithm
is on average 1% or less for each class of test problems.

On other hand, except the test instances of the first class, the second
instance of C2, and the fourth instance of C3, the BD algorithm is unable
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Table 4: Comparison of HSCD and BD algorithms

Class HSCD BD Gap(%)

Time (sec) # Iteration ZMSCLD(µ, s) Time (sec) gp(%) Profit

C1

132 10 7,662,040 110 ≤ 1 7,650,870 0.14
183 9 6,412,000 120 ≤ 1 6,351,610 0.94
319 10 7,600,490 1371 ≤ 1 7,596,140 0.06
160 8 7,564,320 182 ≤ 1 7,443,070 1.60
422 10 6,881,080 2019 ≤ 1 6,864,140 0.25

C2

5695 12 7,201,340 ≥ 24hr 1.15 7,106,850 1.31
2231 10 6,622,640 54701 ≤ 1 6,611,560 0.17
8391 15 6,568,970 ≥ 24hr 1.10 6,558,930 0.15
7729 13 6,296,800 ≥ 24hr 1.40 6,280,200 0.26
7100 15 7,095,570 ≥ 24hr 1.12 6,978,190 1.65

C3

4190 13 9,854,950 ≥ 24hr 1.50 9,684,640 1.73
9113 16 9,617,400 ≥ 24hr 1.14 9,562470 0.57
5445 13 9,577,230 ≥ 24hr 1.10 9,568740 0.09
7184 14 9,643,130 61971 ≤ 1 9,626,300 0.17
7081 14 9,481,810 ≥ 24hr 1.20 9,378,090 1.10

C4

13593 19 8,676,980 ≥ 24hr 1.98 8,631,030 0.53
16050 21 9,434,940 ≥ 24hr 1.63 9,431,570 0.04
17171 23 8,612,290 ≥ 24hr 1.20 8,611,640 0.01
19265 25 9,874,380 ≥ 24hr 1.53 9,839,310 0.35
14622 19 8,617,780 ≥ 24hr 1.11 8,578,770 0.46

Average 7304 15 - - - - 0.58

to obtain the optimal solution of the concerned test instances within the
dedicated time limit and the optimality gap. Particularly, once the results of
C1 for which the optimal solutions are given by the decomposition method are
concerned, HSCD provides the upper bounds close to the optimal solution,
i.e., 0.58% on average. As for other instances, high quality feasible solutions
are reported by BD after the 24 hours time limit. More specifically, the
optimality gap of the algorithm reported is less on 1.8% on average for such
instances. In the targeted instances, HSCD also provides an upper bound
close to the feasible solution identified by Benders decomposition as shown
in the last column of Table 4.
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5. Concluding remarks

In this study, a reverse supply chain network problem in a multi-period
setting was addressed for taking back and recovery of used products that are
of heterogeneous quality states. The concerned problem arises in the context
of durable products which typically are composed of many components. As
the inherent uncertainty in quantity of returns is assumed to evolve as a
discrete time stochastic process during the planning horizon, a scenario tree
was generated to model the uncertain parameter. The resulting multi-stage
decision making problem was modeled as a MS-MIP model to address the
decisions on the location of facilities and the quantity of flows in the reverse
supply chain network.

In order to solve the proposed model for realistic sizes, a heuristic sce-
nario clustering decomposition was proposed which mainly decomposes the
scenario tree into a set of cluster of scenarios. The scenario clusters were
independently solved by the Benders decomposition-based algorithm and co-
ordinated in an implementable solution thorough a Lagrangean Progressive
hedging-based scheme. The proposed solution scheme provided good upper
bounds on the objective function of the original stochastic model in a reason-
able amount of running time. It can be noticed not only by the closeness of
the upper bounds to the solutions reported by the Benders decomposition-
based algorithm, but also by the fact that the infeasibility rate of the dualized
NACs is small for each class of test problems.

Given the multi-period setting, the underlying problem can be extended
through accounting uncertainty in quality status of the return stream and
demands. Another promising venue of research is to address the willingness
of durable goods holders to return their used units by means of financial
incentives.
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Appendix A.

Nomenclature

Sets

A Set of disassembly centers

a(n) Immediate predecessor of node n in the scenario tree

B Set of bulk recycling centers

C Set of collection zones

D Set of remanufacturing centers

L Set of modules

n,m Nodes of the scenario tree

O Set of secondary markets for spare parts

P Set of parts

R Set of raw materials
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T Set of time periods

Tree Scenario tree

W Set of secondary markets for modules

Parameters

βq The mass of residues in the returned product with quality level q shipped
to bulk recycling centers from disassembly centers

δlq The number of remanufacturable module l in the returned product with
quality level q shipped to remanufacturing centers from disassembly centers

ηr The ratio of recyclable material r

γpq The number of reusable part p in the returned product with quality level q
shipped to secondary markets from disassembly centers

ψcqt(n) Quantity of returns with quality level q in collection zone c in period t at
node n of the scenario tree

caaq Processing cost per unit of the returned product with quality level q at
disassembly center a

caaa Capacity of disassembly center a

caddl Capacity of remanufacturing center d for module l

cddl Remanufacturing cost per unit of module l at remanufacturing center d

dsopt Demand for part p at spare market o in period t

dwwlt Demand for module l at secondary market w in period t

faa Fixed cost of opening disassembly center a

fbb Fixed cost of opening bulk recycling center b

fdd Fixed cost of opening remanufacturing center d

hb Unit holding cost of residues in disassembly centers

hll Unit holding cost of module l in disassembly centers/remanufacturing cen-
ters

hpp Unit holding cost of part p in disassembly centers

Per Unit price of selling recyclable raw materials to the third-party provider

pr(n) Probability of node n of the scenario tree

Psp Unit price of part p at spare parts markets

Pwl Unit price of module l at module markets

A Decomposition Algorithm for Dynamic Reverse Supply Chain Network Design Under Uncertainty

CIRRELT-2016-55 27



taca Shipping cost per unit of the returned product from collection zone c to
disassembly center a

tbab Shipping cost per kg of residues from disassembly center a to bulk recycling
center b

tdadl Shipping cost per unit of module l from disassembly center a to remanu-
facturing center d

tsaop Shipping cost per unit of part p from disassembly center a to spare market
o

twdwl Shipping cost per unit of module l from remanufacturing center d to sec-
ondary market w

Binary decision variables

Y Aat(n) A binary variable which is equal to one if disassembly center a is opened
in period t at node n of the scenario tree and zero otherwise

Y Bbt(n) A binary variable which is equal to one if bulk recycling center b is opened
in period t at node n of the scenario tree and zero otherwise

Y Ddht(n) A binary variable which is equal to one if remanufacturing center z is
opened in period t at node n of the scenario tree and zero otherwise

Non-negative decision variables

BRbrt(n) The quantity of recyclable material r purchased by the third-party
provider from bulk recycling center b in period t at node n of the scenario
tree

IBat(n) Inventory level of residues in disassembly center a by the end of period t
at node n of the scenario tree

IDdlt(n) Inventory level of module l in remanufacturing center d by the end of
period t at node n of the scenario tree

ILalt(n) Inventory level of module l in disassembly center a by the end of period
t at node n of the scenario tree

IPapt(n) Inventory level of part p in disassembly center a by the end of period t
at node n of the scenario tree

QAcaqt(n) The quantity of returns with quality level q shipped from collection
zone c to disassembly center a in period t at node n of the scenario tree

QBabt(n) The quantity of residues shipped from disassembly center a to bulk
recycling center b in period t at node n of the scenario tree
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QSaopt(n) The number of part p shipped from disassembly center a to spare parts
market o in period t at node n of the scenario tree

QWdwlt(n) The number of module l shipped from remanufacturing center d to
secondary market w in period t at node n of the scenario tree

QDadlt(n) The number of module l shipped from disassembly center a to reman-
ufacturing center d in period t at node n of the scenario tree

Appendix B.

Tables B1 to B5 present a summary of parameter settings of the proposed
MS-MIP model

Table B1: Parameter settings for modules

Description Value
Motor Clutch

Pwl 150 75
hll 3 3

Table B2: Parameter settings for raw materials

Description Value
Plastic Steel Copper

per 1.5 1 6
ηr 0.3 0.3 0.3
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Table B3: Parameter settings for parts

Type of part Value
Psp hpp

Washing tube 40 1.5
Cover 10 1.5

Balance 50 1.5
Frame 10 1.5

Condenser 30 1.5
Transformer 30 1.5
Small electric 10 1.5

Hose 40 1.5
Electric wire 40 1.5
PCB board 70 1.5

Table B4: Quality level-dependent parameter settings

Parameter
Quality levels

High Poor

δlq 1, 1 0, 1

γpq
1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1 0, 0, 0, 0, 1

βq 3 30
caaq 1 2

Table B5: Other parameter settings

Description Value Description Value

cbb 2 hb 1
dsopt {200, 201, ..., 400} dwwlt {200, 201, ..., 400}
faa Uniform(400000, 600000) fdd Uniform(700000, 900000)
fbb Uniform(200000, 400000) cddl 3
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