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Abstract. This paper studies the snow plow routing problem, which is a modified version of 

the min-max problem with k-vehicles for arc routing on a mixed graph with hierarchy. Each 

arc or edge is given a priority and instead of minimizing the overall finishing time, we 

minimize the latest finishing time for each priority class. We consider turn restrictions, route 

balancing, and variable vehicle speeds in a real large-scale network. To solve the problem, 

we present a graph transformation from a directed rural postman problem with turn penalties 

(DRPP-TP) to an asymmetric traveling salesman problem (ATSP). We then make the 

following modifications to the adaptive large-neighborhood search (ALNS) metaheuristics 

to better handle the constraints: development of new neighborhood operators, several 

applications of the same destruction operators before repair of the solution, and a dynamic 

arcgrouping procedure when arcs are removed or inserted. We tested our methodology on 

three real networks with from 1626 to 2146 street segments and 613 to 723 intersections. 

The results show that our approach can improve the solution, and the grouping procedure 

is helpful. The results also show that some operators perform better than others; the network 

topology seems to explain these variations.  
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1 Introduction

Northern countries experience significant snowfall during the winter season, and consid-

erable effort is needed to keep roads passable. For example, the Ministère des Transports

du Québec spent more than CAD 260M to maintain 30,552 km of roadways during the

winter of 2011–2012 [31]. For the city of Montreal in Quebec, Canada, the costs of winter

maintenance were evaluated at CAD 164.1M for 11,560 km of roadway in 2014 [33]. In

this paper we investigate the optimization of real instances of the snow plow routing

problem (SPRP). In practice, this problem is often handled by sending vehicles to service

predefined sectors of the city. Usually the drivers choose the order in which to clear

the streets. Both the definition of the sectors and the drivers’ choices may be far from

optimal.

The objective of the problem is to complete the operations as soon as possible given

the limited number of vehicles available. Therefore, it is related mathematically to the

min-max K-rural postman problem (MM K-RPP). Some streets must be serviced before

others. To ensure this, the objective should consider the finishing time of each priority

class. We assign weights to the various ending times according to the local authority’s

requirements. Moreover, we consider a mixed network since most of the streets must be

serviced in both directions, whereas a few back alleys are serviced in just one direction.

Turn restrictions must be considered since when a snow plow crosses an intersection or

turns left, it must be careful not to leave a windrow across the intersection. For this

reason and to reduce risk, some U-turns are prohibited. However, it is considered good

practice to finish plowing one street before starting another. Therefore, the penalties

can be reduced or removed when the vehicles travel straight ahead to stay on a street

with the same name. Finally, we consider heterogeneous vehicles because some are better
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suited to certain street types. The speed of the vehicles depends on the vehicle type and

the street type. To the best of our knowledge, this version of the problem has never

been studied except by Quirion-Blais et al. [24]. We will present a graph transformation

and an improved algorithm using grouping mechanisms that better handles the k-vehicle

min-max objective and the constraints. In summary, the constraints that we consider are:

route balancing, prohibited turns and turn penalties, street hierarchy, and heterogeneous

vehicle speeds. We assess the efficiency of the different neighborhood exchange operators

using three case studies based on different real road networks.

The rest of the article is organized as follows. Section 2 reviews related work, and Sec-

tion 3 introduces a mathematical formulation for the SPRP. Section 4 discusses the data

processing and Section 5 presents the metaheuristic. Section 6 presents the results, and

Section 7 provides concluding remarks.

2 Related Work

We first present problems that are directly related to snow plowing and then discuss other

relevant problems. Most of these problems have been reviewed recently by Corberán et al.

[11] and Benavent et al. [3]. We do not discuss the problem of salt spreading because

it is generally considered on an undirected graph where both sides of the street can be

serviced at once, so it differs from the SPRP on a mixed graph.

We use the following definitions: an edge is a link between two nodes in a graph, and it

can be traversed in either direction. An arc is a directed street segment with a starting

and an ending node. Deadheading occurs when a snow plow travels along a street without

servicing it.
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2.1 The Snow Plow Routing Problem

Perrier et al. [21] and Campbell et al. [9] have provided thorough literature reviews of the

SPRP. The problem has attracted increasing attention in recent years, but there are only

a few mathematical formulations. The formulations vary substantially, depending on the

constraints that are considered. The following articles are the most relevant to this work.

Golbaharan [14] considers service of the required edges, a restricted number of vehicles,

and time windows. Razmara [25] considers heterogeneous vehicles and periodic coverage

of the network. Perrier et al. [20] consider hierarchical classes with upgrading possibilities,

street–vehicle dependency, and different deadhead and service speeds. Finally, Salazar-

Aguilar et al. [28] use mixed integer programming (MIP) for the case where several

vehicles must be synchronized to service multiple lanes on a given road.

2.2 Problems Related to the Objective and the Constraints

Considered

The objective of the SPRP is to minimize the total duration of the operations, from the

moment when the vehicles leave the depot to the latest finishing time of each priority

class. Moreover, the routes should be balanced. There are two related problems in the

literature. The priorities, also known as hierarchies, are often handled via a lexicographic

objective where various weights are given to the finishing time of each priority class ac-

cording to the importance defined by the clients. In our study, these weights will be

determined by the local authorities.

The other related problem is the k-vehicle min-max problem where the objective is to

minimize the longest route among a set of k vehicles. Benavent et al. [2] develop an inte-

ger linear programming (ILP) formulation and implement a branch-and-cut algorithm to

Solving the Large-Scale Min-Max K-Rural Postman Problem for Snow Plowing

CIRRELT-2016-56 3



solve the windy version of the problem. Benavent et al. [4] present a metaheuristic that

can handle instances with up to 50 nodes and 184 edges for 5 vehicles. A tabu search

algorithm for the routing of security guards was developed by Willemse and Joubert [34].

They apply their methodology to a real instance with 68 nodes and 126 arcs (74 required)

and to benchmark instances with up to 140 vertices and 190 required edges.

Forbidden turns and turn penalties must be considered because turning left, doing a U-

turn, or even continuing straight ahead may leave a snow windrow in the intersection.

Early attempts to consider turn penalties used heuristic methods [6, 27]. In 1999, the

directed rural postman problem with turn penalties (DRPP-TP) was explicitly defined

by Benavent and Soler [5]. It was also studied by Corbéran et al. [10] in the context of

mixed graphs. In 2004 Bautista and Pereira [1] showed that when the restricted turns are

numerous, they should be considered during the construction phase. Later, Soler et al.

[30] and Bräysy et al. [7] studied the mixed general routing problem with turn penal-

ties (MGRP-TP). Lacomme et al. [16, 17] adapted Dijkstra’s algorithm to compute the

shortest paths between all pairs of edges. They used the resulting distance matrix with

a memetic algorithm to solve the capacitated arc routing problem with turn penalties

(CARP-TP).

Some streets must be serviced before others. The heuristics developed by Perrier et al.

[20] tackle this constraint with the possibility of promotion. Other researchers handle the

constraint within the Chinese postman problem (CPP) [13, 8, 29, 15].

For the DRPP-TP, a graph transformation described in [5] allows us to change the prob-

lem to an asymmetric traveling salesman problem (ATSP). Using the procedure by Noon

and Bean [19], we can also transform the mixed rural postman problem with turn penal-

ties (MRPP-TP) into an ATSP. Laporte [18] states that this last transformation can
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introduce considerable degeneracy. However, no major impacts on heuristic methodolo-

gies have been reported in the literature.

This article focuses on large instances, for which various heuristics and metaheuristics

have been developed [23]. Among these, the ALNS performs a local search among differ-

ent neighborhoods to handle more complex problems [26, 22]. This metaheuristic seems

to be particularly successful for large problems with various real-world constraints.

The SPRP on real road networks combines various problems studied in the literature.

The goal of this article is to develop new approaches within a unified network to deal

with all the constraints in the context of large real-world networks.

3 Mathematical Formulation

We now present a MIP formulation for the snow plow problem. The problem is defined

on a mixed graph G = (V,A) where V is the set of vertices and A is the set of directed

arcs including the set of edges. We introduce a set of artificial arcs A(end) 6⊂ A to allow

the vehicles to exit the network. Similarly, a0 6∈ A is an arc connected to the depot that

allows the vehicles to enter the network. The deadheading time for the arcs in A(end)

and for a0 is set to 0.

We also require the following subsets of A. A+(S) is the set of arcs leaving the set of arcs

S, excluding the artificial arcs from A(end). A−(S) is the set of arcs entering the set of

arcs S excluding a0. For simplicity we write A+(i) (A−(i)) instead of A+({i}) (A−({i}))

for the set of arcs leaving (entering) a set including only arc i. Apr is the subset of A

that contains the required arcs (edges) of priority p. The arcs and edges of A1
r must be

serviced first, followed by the arcs of A2
r, and so on until all the priorities in the set P of

priorities are covered. An artificial priority p0 is introduced to define the initial time.
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A binary variable xkpij = 1 if arc i is serviced immediately prior to the traversal or service

of j in the route of vehicle k ∈ K during priority class p ∈ P . If more than one passage is

required on a given street, then we introdude an arc for each passage required. ykpij is an

integer variable representing the number of deadheading passages on arc i immediately

prior to the traversal or service of arc j by vehicle k during priority p. zp represents

the latest finishing time of all vehicles in priority class p. In the objective function the

finishing times are weighted by Mp to assign different levels of importance to the various

priority classes. We introduce a set of variables tkp to represent the finishing time of

priority class p for vehicle k.

Finally, skpij and dkpij are respectively the time required to service and to deadhead arc i

immediately prior to arc j by vehicle k during priority class p. These times depend on

arc j because the turning penalty is included in the time.

Minimize
∑
p∈P

(zpMp) (1)

s.t. zp ≥ tkp k ∈ K, p ∈ P

(2)

tkp − tk,p−1 =

∑
i∈A

∑
j∈A+(i)

(xkpij s
kp
ij + ykpij d

kp
ij ) k ∈ K, p ∈ P

(3)

tkp0 = 0 k ∈ K

(4)

∑
p?∈{1,...,p}

∑
i∈A−(j)

(xkp
?

ij + ykp
?

ij ) ≥
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∑
p?∈{1,...,p}

∑
m∈A+(j)

(xkp
?

jm + ykp
?

jm ) p ∈ {1, ..., |P − 1|},

j ∈ A ∪ E ∪ a0 ∪ A+(end) ∪ E−(end), k ∈ K

(5)

∑
p∈P

∑
i∈A+(j)

(xkpij + ykpij ) =

∑
p∈P

∑
mk∈A+(j)

(xkpjm + ykpjm) j ∈ A ∪ a0 ∪ A−(end), k ∈ K

(6)

∑
k∈K

∑
j∈A+(i)

xkpij = 1 i ∈ Apr, p ∈ P

(7)

∑
p∈P

∑
j∈A+(a0)

xkpa0,j = 1 k ∈ K

(8)

∑
i∈A

∑
j∈A−(end)

xkpij = 1 k ∈ K, p ∈ P

(9)

∑
i∈A−(S)

∑
j∈A+(i)

(
xkpij + ykpij

)
≥

∑
m∈S∩Ar∪A−(S)

∑
l∈A−(i)

xkpml k ∈ K, p ∈ P, ∀S ⊂ A

(10)

xkpij = {0, 1} i ∈ A ∪ a0 ∪ A(end), k ∈ K, p ∈ P

(11)

ykpij ≥ 0, integer i ∈ A ∪ a0 ∪ A(end), k ∈ K, p ∈ P

(12)
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tkp ≥ 0 k ∈ K, p ∈ P

(13)

zp ≥ 0 p ∈ P

(14)

The objective function (1) together with inequalities (2) minimizes the weighted sum of

the latest finishing times of all vehicles for all priority classes p. Doing so also allows

to balance the workload among the vehicles since we need to transfer as many arcs as

possible from the latest finishing vehicle to the others. Constraints (3) ensure that the

time spent in priority class p is equal to the time difference between the finishing time of

class p and the finishing time of class p− 1. Constraints (4) set the initial time to 0. The

flow conservation constraints (5) and (6) ensure that each vehicle entering arc j is coming

from a connected arc i and leaving through another connected arc m. Constraints (5)

and (6) ensure that the vehicles do not return to a higher priority class once they have

started a lower class. Specifically, constraints (5) ensure that, for a given priority class

p that is not the lowest, the total number of times a vehicle enters an arc at class p or

higher must be greater than or equal to the number of times it leaves for the same class.

Constraints (6) ensure that for all the priority classes, the number of times a vehicle

enters an arc is equal to the number of times it leaves. Constraints (7) ensure that all

the required arcs are serviced during the corresponding priority class. Constraints (8)

and (9) ensure that each vehicle starts at the depot and exits the network when its route is

completed. Constraints (10) ensure the connectivity of each tour. Finally, (11), (12), (13),

and (14) ensure that x and y are binary and that z and t are non-negative.
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4 Graph Transformation

This section details the steps that transform the data from geographical information

system (GIS) format to a network.

4.1 Data Processing and Graph Transformation

The primary data are obtained from free-access GIS repositories in the form of an undi-

rected graph, as shown in Figure 1. Some secondary data are obtained from the local au-

thority. These data, including the attributes and projected coordinates, are then fetched

directly from the GIS file for further processing.

(a) The rural part has long stretches of
road.

(b) The urban part has a grid pattern.

Figure 1: Q1: The network has different topologies.

The graph is transformed from a DRPP-TP to an ATSP based on a transformation

Solving the Large-Scale Min-Max K-Rural Postman Problem for Snow Plowing

CIRRELT-2016-56 9



described in [5]. This transformation was chosen because it can prohibit some turns

instead of penalizing them, and it can handle both arcs and edges. Moreover, the shortest

paths given the turn penalties can be computed in the transformed graph. Therefore,

during the improvement phase the algorithm does not have to order the traversed arcs

between the serviced arcs.

The transformation has two steps. The first step splits the nodes and adds arcs for every

possible turn. The weights of the added arcs correspond to the turn penalties. The types

of turns are determined by the angle of the arc leaving the node, and the values used for

the penalties are proportional to those in [12] for block design, as shown in Table 1.

Situation Leaving Angle Penalty
Right-turns 20◦ < θ < 160◦ 0
Left-turns 200◦ < θ < 340◦ 2
U-turns −20◦ < θ < 20◦ 12
Straight ahead, street changes 160◦ < θ < 200◦ 1
Straight ahead, street crossings 160◦ < θ < 200◦ 0

Table 1: Left turns and U-turns receive a higher penalty

The second step transforms the required arcs and edges to nodes to obtain an ATSP,

as shown in Figure 2. This is carried out as follows:

1. Each required arc is transformed into a node-arc, and each required edge is trans-

formed into a node-edge pair, one for each direction. A node is added to represent

the depot. The depot d, the arc x1 and the edge x2 in Figure 2 (a) are respec-

tively transformed into the nodes d, x1, x2→ and x2← of Figure 2 (b). "→" and "←"

represent the two directions of the edge x2.

2. Arcs with the dual weights 0 and −M , whereM is a large number, are inserted into

the graph between the node-edge corresponding to opposite directions of the same

edge. The weight −M is used when designing individual routes, and the weight 0
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is used in the evaluation of the objective function.

3. A vehicle leaving a node-edge should be considered to leave from the opposite edge.

Therefore, arcs are added from all the node-edges to all the other node-arcs/node-

edges, and the distance used as a weight is calculated from the opposite node-edge.

4. Other arcs are added to fully connect the graph. The weights of these arcs corre-

spond to the length of the shortest path going from the end of the arc to the end

of the arc/edge in the expanded graph.

d

1 2

3 4x1

x2

required arc

(a) Expanded graph

d

x1

x2→

x2←

dd,2 d2,d
d4,d

dd,3

d1,3
d4,1 −M

−M

dd,1

d1,d

d4,2

d2,3

required node

(b) ATSP graph

Figure 2: Arcs are transformed into a single node, and edges are transformed into pairs
of nodes.

We computed the distances between the arcs and edges using Dijkstra’s algorithm. We

kept traces so that we could rebuild the tours. Indeed, the solution of the ATSP in the

transformed graph gives the order of passage of the required arcs or edges in the original

graph. For example, if the solution to the ATSP in Figure 2b) is d→ x2→ → x2← → x1,

then in the original graph the vehicle should travel from the depot, service arc x2→

from left to right, and then service x1. The second arc x2← is ignored since it is the

counterpart of the edge. The shortest path calculated via Dijkstra’s algorithm is used
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between the required arcs. Therefore, the complete solution in the original graph is

d→ 1→ 2→ 1→ 2→ 4.

5 Improved Adaptive Large-Neighborhood Search

This section describes our algorithm for the SPRP. Figure 3 outlines the general scheme

followed by the ALNS, which is performed once for each priority class. It builds an initial

solution using three simple construction heuristics and then improves it to obtain a good

partial solution for each class. At the end, the priorities are merged to create a complete

route for each vehicle. A further improvement step is then performed on the global solu-

tion to take into account the relative importance given by the weights of each class.

The improvement steps are based on the ALNS metaheuristic introduced by Ropke and

Pisinger [26] where different neighborhoods, called operators, are applied iteratively. A

dynamic adaptation of the weights given to each operator increases the chances of se-

lecting operators that perform well. This feature is particularly well suited for situations

with varying network topologies.

Construction Step Improvement Step

Heuristic 2

Heuristic 1

Heuristic 3

Choose
best

solution Compare
Solution

Current
Solution

Ending
criteria
met?

Choose
destruction
operator

Apply
destruction
operator

Choose
construction
operator

Apply
construction
operator

Calculate
objective
fucntion

No

Final
solution

Yes

Figure 3: ALNS: An initial solution is built and improved.
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5.1 Initial Solution

The algorithm starts by building a feasible solution that is characterized by a set of routes,

one per vehicle, with strictly enforced hierarchy constraints. The multi-start (MS) scheme

used builds three solutions using simple heuristics and keeps the best one for further pro-

cessing. All the heuristics use the required nodes and the starting nodes as input. Since

an initial solution is found for each priority class, the required nodes correspond to the

nodes of the current class. The starting node is the depot for the first class and the last

node of the previous class subsequently. The distance between the last node visited and

the depot is assumed to be 0 since the vehicles do not need to return to the depot. We

now discuss the three heuristics in detail.

The first heuristic is a route-first, cluster-second approach. The first step uses the Lin-

Kernighan heuristic (LKH) to build a giant tour servicing all the nodes. The segmentation

of this tour is done using a split methodology [32] with a makespan objective. A version

of the split procedure minimizing the makespan subject to a limited fleet provides an up-

per bound [16]. With this bound, the problem can readily be solved with a commercial

optimizer using the formulation in Appendix A.

The second heuristic is a cluster-first, route-second approach. We select a number of clus-

ter seeds corresponding to the number of vehicles, and they should be evenly distributed

on the network. We chose the seeds based on input from an expert in winter maintenance.

We then assign the arcs to their nearest seed. We apply a repair function to ensure that

each pair of nodes corresponding to an edge is assigned to the same cluster. Finally, we

apply the LKH algorithm to each cluster to obtain a route.

The third heuristic is based on the fact that LKH can build good routes quickly. It is

again used to build a giant tour. The tour is split where the duration of the deadhead ex-
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ceeds 3% of the total duration. Then all the short segments are inserted into the vehicles

using a standard best insertion.

5.2 Adaptive Large-Neighborhood Search Improvement Phase

The main steps of the improvement phase are outlined in Figure 3. The algorithm cycles

through the selection and application of destruction and repair operators until the ending

criterion is met. At every iteration the solution is evaluated using the objective function.

We now describe the main features of the algorithm.

5.2.1 Acceptance and Ending Criterion

The acceptance of new solutions is based on a simulated annealing pattern [26]. Therefore,

improving solutions are always accepted, and inferior solutions can also be accepted since

they may help escape local minima.

The probability of accepting a new solution is given by α = e−(f(s′)−f(s))/T , where s′ is the

incumbent solution, s is the current solution, and T is the temperature. At each iteration,

T is updated by multiplying its value by a cooling rate c = 0.9999. The initial temperature

is given by Tinit = −ω ∗ f(sinit)
ln(αinit)

, where αinit = 0.1 is the probability of accepting a

solution that worsens the initial solution by at most ω = 0.05. The improvement phase is

run for 7000 iterations, which provides a good compromise between computational time

and solution quality.

5.2.2 Choosing an Operator

The selection mechanism described here applies to both the destruction and construction

operators. It is based on a random selection biased by the weights µω, where ω corre-

sponds to the operator. At the beginning of the improvement step, all the µω are equal
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to 1. As the algorithm proceeds, a system of points increases the chances of choosing

operators that perform well. Every time an operator improves the incumbent solution,

improves the best solution, or worsens the solution, it is awarded five points, ten points,

or one point respectively. The points are added to the corresponding µω, and the prob-

ability of choosing ω is µω∑
µω

. These probabilities are updated every 150 iterations and

reinitialized every 2000 iterations.

5.2.3 Destruction Operators

The operators are divided into two groups: the destruction operators remove nodes from

the solution and the construction operators repair the solution. Instead of developing

stand-alone operators, we describe different attributes that can be combined to create

the operators. The attributes are grouped into five classes as shown in Appendix B.

Using this procedure, we design 22 destruction operators. We perform tests to select the

best.

Number of nodes to be removed

The first class determines a maximum number of nodes to be removed. We select a

random number between one and nmax_ω and update nmax_ω at each iteration ω via

nmax_ω = nmax_init ∗ (1−%progess)φ, where nmax_init is the initial maximum number of

nodes (set to 150) and φ is a shortening parameter (set to 0.5).

Number of applications

The second class of attributes concerns the number of times the operator is applied

before we repair the solution. We introduced this class of attributes because the min-

max objective tends to equalize all the finishing times of the routes. Therefore, it is

better to remove a few nodes from each route rather than removing many nodes from a
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single route. We select the number of applications via a random mechanism with values

between 1 and a maximum number set equal to twice the number of vehicles. After 4000

iterations without improvement, we reduce the maximum number to half the number of

vehicles until another improvement is achieved. To determine the number of nodes to be

removed per application, we divide the maximum total number of nodes to be removed

per iteration obtained at the previous step by the number of applications of the operator.

Selection of the route

We use four choices for this group of attributes: a) the worst cost, b) the longest route,

c) the most empty route, or d) a random route. The first two allow us to perform local

search, and the other two are more likely to broaden the solution.

Option a) seeks the route containing the node that incurs the highest cost in the objective

function. To do this, the nodes are removed iteratively, the objective function is evaluated,

and the values obtained are listed in ascending order. We use the following function to

determine which value to select from the list: nb_of_insertions ∗ RandomPworst where

Pworst = 0.02. This prevents the metaheuristic from looping over the same solutions.

Option b) finds the route with the longest duration given the turn penalties and the

time spent in the lower priority classes, but without considering the weights Mp of the

objective function.

Selection of the first node

This group of components selects the first node to be removed from the route. We use four

choices: a) worst cost, b) random node, c) no selection, and d) isolated nodes. Option a)

seeks the node that incurs the highest cost. Option b) selects a random node. Option c)

makes no selection: this option is used specifically in the case of the split methodology for

grouping. Option d) tries to find isolated nodes. The idea is to catch remote nodes that
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could be transferred to another route. To do this, the distances between the subsequent

nodes in the routes are sorted by descending order. Then we inspect the sequence between

the first largest distance and the second in the list to determine if the number of nodes is

lower than a maximum number of nodes to be removed (fixed by the user). If it is not,

we inspect the sequence between the first largest distance and the third in the list. We

continue until a sequence respecting the maximum number of nodes is found.

Grouping methodology

This class of attributes is introduced because we are dealing with real cases of arc routing

problems. Therefore, we wish to remove groups of arcs. This allows us to combine arc

sequences that should be serviced by a single vehicle. It also allows us to retain the order of

passage of the current solution. We use six options: a) until objective function decreases,

b) minimize the distance between the end and the start of the removed sequence, c)

continuous sequence, d) split, e) random, and f) no grouping.

Option a) is based on the observation that removing one node in the middle of a sequence

often does not result in an improvement in the objective function. Instead, we select

nodes before and after the first selected node until the objective function decreases or the

maximum number of nodes to be removed is attained. Figure 4 shows an example of a

routing in the original graph; the arcs are represented by nodes in the transformed graph.

The first selected node corresponds to arc n2. However, removing n2 will not result in

a decrease in the objective function since the vehicle must traverse n2 after n1 to reach

n3. The algorithm then tries to remove n1 as well. However, the value of the objective

function stays the same since the vehicle has to traverse n1 and n2 to reach n3. Finally,

when n3 is removed, a new routing is possible through n4, which reduces the value of the

objective function.
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Legend

Arc served
Arc traversed
Arc not traversed

Figure 4: It is often necessary to remove a group of arcs from a given route to improve
the solution.

Option b) tries to extract good sequences by minimizing the distance between the end

and the start of the removed sequence. To do this, we inspect all the combinations of

nodes before and after the first selected node and with respect to the maximum number

of nodes. We remove the sequence that provides the minimum distance between the end
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and the beginning of the sequence. In Figure 4, if n2 is removed, the distance between

the end of the sequence (end of n2) and its start (start of n2) includes a penalty for a

U-turn and the time to traverse n2. If n1 and n3 are also removed a smaller distance can

be found between the end of the sequence removed (end of n3) and its start (start of n1)

where there is a right turn and the length of n4.

Option c) selects a continuous sequence of arcs. Starting from the selected nodes, the

algorithm finds the node that is directly after. If the distance between the current node

and the added node is 0, then it is added to the group. This is done before and after

the initial node until we achieve a distance greater than 0 or the maximum number of

nodes to be removed. In Figure 5 the first node selected corresponds to arc n1. Then the

algorithm examines the following arc n2. If there is no turn penalty between the arcs, n2

is added to the removed group. If there is a penalty, then n2 is rejected.

... ...n1 n2

Figure 5: Two arcs forming a continuous sequence.

Option d) is based on the split process. We calculate the average length of all the routes

in the solution. This is used as an upper bound to remove all the longer links from the

auxiliary graph. Then the shortest sequence obtained from the split is removed from the

tour.

Option e) selects a random number of nodes, and option f) allows no grouping, so only

one arc is selected.

In our first version of the ALNS, we built an exhaustive list of operators to test the

different features. We describe the features of each operator in Table 6 of Appendix B.

When a choice has been made for all the features, the operator is applied and the nodes
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are removed. When the nodes are removed, they are grouped by priority class so that

each group can be inserted into the same class. We also apply a repair function to ensure

that the node pairs corresponding to edges are kept together.

5.2.4 Construction Operators

The construction operators were also designed based on their main components, the

grouping methodology and the insertion position, as shown in Table 7 of Appendix C.

We obtained four construction operators by combining the components.

Grouping methodology

The first grouping option is to retain the sequences of nodes defined by the destruction

operators. The second option is to use the LKH as follows. The nodes are first sorted

by priority. Assuming that the distance between the beginning of the route and the first

node and that between the end and the last node are 0, we use LKH to build a giant

tour visiting all the nodes in the insertion list for each priority class. Then we cut the

route at every place where the duration between two nodes is greater than 3% of the total

duration of the route. These node sequences are sent to the next step of the construction

operator.

Insertion position

The second class of features is the selection of the insertion position. We used two

standard insertion heuristics: best insertion and k-regret, where k = 3. To prohibit the

promotion of the arcs, a group of nodes must be inserted into the priority class to which

it belongs.
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6 Case Study and Results

We now present three case studies based on real data.

6.1 Case Studies

The first case study (Q1) is a small city in Northern Quebec, Canada. It has been

described in [9, 24], and Figure 1 shows a representation of the road network. It is

composed of 1609 single street segments, 17 back alley streets, and 613 intersections.

The topology of the network varies depending on the area. Rural areas have long street

segments with a predominance of three-way intersections. Urban and residential areas

have a grid pattern with short street segments, four-way intersections, and a few one-way

alleys.

The network is serviced by two graders, three front-end loaders, and two ten-wheel trucks;

Table 2 gives their speeds. Initially, each vehicle had a predefined sector and the drivers

decided the order in which to plow the streets. Some of the vehicles can either plow or

grit, but we do not consider gritting. We assume that all the vehicles should be assigned

similar route durations.

Table 2: Vehicle speeds (in km/h)

Grader Front-end loader Ten-wheel truck
Priority 1 20 25 35
Priority 2 20 25 35
Priority 3 25 25 50
Deadhead 25 25 50

The second case study (Q2), illustrated in Figure 6, is a small city in Northeastern Quebec

and the third (Q3), illustrated in Figure 7, is a sector of a major city in the province of

Quebec. Table 3 gives the total road length for each priority class and the number of road
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segments. Q2 has just a few roads of priority 3 and almost no grid pattern. Q3 has no

roads of priority 3 and an extensive grid pattern. Table 4 summarizes the topologies of

the networks. Two graders, four front-end loaders, and one ten-wheel truck are available

for Q2, and four graders and two front-end loaders are available for Q3. The road classes

and the number of trucks for Q2 and Q3 were estimated based on the data from Q1.

Figure 6: Q2: This network has many three-way intersections.

Table 3: Longer lengths with a smaller number of road segments result in a smaller
density

Length (in km) Number of road segments Number of
Case Prio 1 Prio 2 Prio 3 Total Prio 1 Prio 2 Prio 3 Total Intersections
Q1 52.46 130.28 163.91 527.14 357 873 148 1626 613
Q2 55.59 202.60 41.89 360.95 515 1208 72 1971 687
Q3 89.16 93.54 0 254.41 894 844 0 2146 723

6.2 Results

The metaheuristic was coded in Visual Basic .NET (VB.NET). We performed two series of

tests for the destruction and construction operators. The first series tested the individual

operators, and we used the results obtained to group the operators for the second series
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Figure 7: Q3: This network has an urban layout characterized by a compact grid pattern.

Table 4: The networks show great diversity in their topology

Case Prio 1 Prio 2 Prio 3
Q1 Sparse, close to grid

network
High-density network,
partial grid pattern

Sparse network, long
roads, predominance
of 3-way intersections

Q2 Sparse network with
predominance of 3-
way intersections

High density with pre-
dominance of 3-way
intersections

Few roads, some long

Q3 Sparse grid network High-density grid net-
work

Not applicable

of tests. We did not compare our results to any benchmarks since we could not find

any with similar constraints and objective. Unless otherwise specified, we set all the

parameters to the values given in Section 5. For Q1, the weights of the objective function

are: M1 = 150,M2 = 100,M3 = 100, and Mdeadhead = 1. These weights were chosen so

that the finishing time of each priority class has about the same weight in the objective

and the deadhead time has a smaller impact. We limited the total number of iterations

to 7000 to obtain good results in a reasonable time. Because there is a random process
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in the metaheuristic, we carried out 10 replications for each test.

We set the maximum number of nodes to be removed to 130 for Q2 and 170 for Q3, and

we set the simulated annealing parameters to ω = 0.075, αinit = 0.1, and c = 0.999 for

Q2 and ω = 0.075, αinit = 0.05, and c = 0.999 for Q3. We chose these values based

on empirical tests. The length of the streets and the proportion of each priority class is

different, so we adjusted the weights to maintain a similar order of importance for each

part of the objective function: M1 = 220,M2 = 65,M3 = 55, and Mdeadhead = 1 for Q2

and M1 = 150,M2 = 70,M3 = 70, and Mdeadhead = 1 for Q3.

6.2.1 Testing the Destruction Operators

In the first series of tests, we assessed the performance of the destruction operators by

using them one at a time while using all the construction operators. Figure 8 shows the

finishing times for each priority class and the final value of the objective. Some operators

seem to perform better for certain classes. For example, operator D22 gives good results

for the third class. However, it is clearly not the best for the finishing time of the first

class. This could be due to the different topologies of the network for each class. Since

the importance of the finishing time of each class is user-dependent, there is no obvious

choice for the operators. However, the variable bias in the selection of the operators in

the ALNS helps to favor good operators.

Figure 8 also shows that the operators can be grouped based on the selection of the

first node and the grouping methodology. The second series of tests was based on these

groups. Table 5 shows the grouping of the operators.

We applied the second series of tests to all three case studies. To consider interactions

between the operators, we removed a group of operators at a time. Figure 9 shows the
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Figure 8: The finishing times show that some operators perform better on a single priority
class.

Table 5: Grouping of operators based on their features

Random seq Loop Decreasing obj Cont Seq Isolated Arcs Split
Random tour D1 D2 D3 D4 D13 D22
Most empty D5 D6 D7 D8 D15 D21
Longest D9 D10 D11 D12 D14 D20
Worst cost D16 D18 D17 D19 X X

finishing times and the value of the objective for each group removed.

Removing groups of operators is beneficial in some cases. We think that this is due to
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the topology of the network. The ranges between the highest and the lowest medians in

the plots indicate that the regular networks (Q3 and class 1 of Q1) provide more stable

results and all the operators can be used. In contrast, the ranges are larger when the

network has an irregular topology (class 1 of Q2 and the objective of Q1). Therefore,

it is important to select the strategy carefully when the network is irregular. Since the

adaptive mechanism tends to choose better operators, the ALNS metaheuristic seems to

be appropriate for this situation.

The plots showing the objective value in Figure 9 indicate that some groups of operators

improve the solution when they are removed. This suggests that the selection mechanism

of the ALNS could be improved to reduce the impact of these operators.

On the same plots, it can be seen that removing more than one group can improve the

solution. Therefore, we explored removing combinations of poorly performing groups of

operators. We found that removing too many operators does not lead to worthwhile

improvements.

Is the grouping methodology helpful? To explore this, we tried removing just one node.

However, not all the groups of operators can be limited to a single node. The relevant

groups are: random tour selection (D1, D2, D3, D4, D13, D22), most empty tour (D5,

D6, D7, D8, D15, D21), longest tour (D9, D10, D11, D12, D14, D20), and worst cost

(D16, D17, D18, D19). Figure 10 gives the results with and without grouping. The

grouping methodology generally improves the results.

6.2.2 Testing the Construction Operators

We similarly assessed the performance of the construction operators while using all the

destruction operators. Figure 11 shows the application of the construction operators one
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Figure 9: A large finishing time or objective value indicates that the removal of the group
of operators has had a negative impact.
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Figure 10: The grouping methodology improves the solution in all cases.
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at a time for all three case studies. The grouping of the construction operators is not as

obvious as it is for the destruction operators. However, plots (b), (c), (f), (i), and (l) seem

to show that C1 can be grouped with C2 and C3 with C4. The first group corresponds

to the cases where the sequences removed from the destruction step are kept unchanged,

and the second group corresponds to the case where the groups are modified in the

construction phase. We performed a series of tests with combinations of construction

operators. Two combinations were based on the insertion technique (best insertion or k-

regret) and two were based on the grouping methodology of the construction step (keep

the groups from the destruction step or create new groups).

For the insertion combinations, Figure 12 shows that there is no significant difference

between the strategies when we use both grouping methodologies. However, for Q2,

it appears better to choose one or the other instead of using both. The construction

combinations seem to give an improvement in all cases, but it is not always significant. It

is especially good for Q3. However, the calculation for the insertion is three times longer

when the groups are rearranged.

Finally, the transformation of the network allows us to use a powerful heuristic de-

signed for the ATSP. This creates good individual routes for the vehicles. The challenge

of the SPRP lies in the fact that several vehicles must be coordinated. The grouping

methodologies retain the good sequences produced by LKH instead of transferring single

arcs at a time.

7 Conclusion

We have presented a graph transformation from a DRPP-TP to an ATSP to tackle

the SPRP. The transformation of the graph allowed us to take into account the turn
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Figure 11: Operators C3 and C4, which modify the groups from the destruction step,
seem to provide earlier finishing times.
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Figure 12: For Q2, the algorithm seems to perform significantly better when selecting a
single group.
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penalties without slowing down the search phase with back-and-forth movements in the

metaheuristic. We use a modified version of the ALNS metaheuristic to solve the prob-

lem. We chose the ALNS framework because it takes advantage of various neighborhoods

to handle the different topologies that are often found in real networks. We developed

new neighborhood operators to better handle the constraints. The grouping methodology

is especially promising since it helps to retain good sequences and decreases the number

of insertion requests. Finally, we apply a destruction operator several times before we

repair the solution. This procedure handles the min-max objectives with several vehicles

and the route balancing constraint.

We tested our methodology on three real networks. The tests showed that the metaheuris-

tic was successful. Some operators performed better on some networks; this is probably

due to the network topology. However, we cannot yet determine which operators per-

form better on a given topology. It would be interesting to explore this by applying the

metaheuristic to many network topologies. Also, it appears that even within a network

the topology can vary. It would be interesting to develop a way to choose the operators

based on the local network topology. We used the same weights for the different priority

classes. However, in the case presented, the different classes have different topologies.

It would therefore be interesting to investigate the performance of the algorithm with

modified weights.
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Appendix A Formulation for the split problem with

makespan objective

Minimize U (15)

s.t. U ≥ dijxij i ∈ V, j ∈ V (16)

∑
i∈V

∑
j∈V

xij = |K| i ∈ V, j ∈ V (17)

∑
i∈V

xij =
∑
m∈V

xjm j ∈ V (18)

∑
j∈V

xdj = 1 (19)

∑
i∈V

xie = 1 (20)

xij = {0, 1} i ∈ V, j ∈ V (21)

This formulation seeks to find the shortest path traversing the auxiliary graph. An

example of such graph is presented in Figure 13. The variables xij indicate if the arc going

from node i to node j is traversed. The constants dij correspond to the distance between

the nodes i and j. The objective (15) together with constraints (16) seek to minimize the

1 2 3 4

Figure 13: Example of an auxiliary graph.

longest arc traversed in the graph. Constraints (17) insure that the maximum number

of vehicles |K| is respected. Constraints (18) insure continuity in the graph. Constraints
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(19) and (20) allow to come in and go out of the graph.
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Appendix C Description of Features of Construction

Operators

Table 7: As for the destruction operators, the construction operators share the same
features but they follow different arrangements.

Name of
operator

Grouping methodology Insertion position

C1 Removed sequences Best insertion

C2 Removed sequences k-regret

C3 LKH Best insertion

C4 LKH k-regret
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