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Abstract. In this paper we study an integrated lot sizing problem with distribution and 

delivery time windows in which the producer has the choice to locate distribution centers 

from where products are stored and shipped to customers. Based on a real case study, we 

describe, model, and solve this rich integrated lot sizing problem. In this integrated 

optimization application, we consider a multi-plant, multi-product and multi-period lot sizing 

problem. The goal is to minimize fixed and variable production costs, inventory, and 

distribution costs while satisfying demands within a promised delivery time window. Our 

work contributes to the integrated optimization literature by simultaneously addressing 

production, inventory, and distribution problems, and to the production economics literature 

by comparing and assessing the performance of sequential and integrated solution 

techniques. We develop an exact method and several heuristics, based on separately 

solving each part of the problem, as well as a general integrated matheuristic. Our results 

and analysis not only compare solution costs but also highlight the value of an integrated 

approach. 

Keywords. Physical internet, dynamic lot-sizing, integrated supply chain planning, 

production, inventory, distribution, optimization. 

Acknowledgements. This project was partly funded by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under grant 2014-05764. This support 

is greatly acknowledged. 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Leandro.Coelho@cirrelt.ca  

Dépôt légal – Bibliothèque et Archives nationales du Québec 
          Bibliothèque et Archives Canada, 2016 

© Darvish, Coelho and CIRRELT, 2016 



1 Introduction

The ultimate goal of any production system is to fulfill the demands of its customers

quickly and efficiently. Increasing competition has forced companies to seek solutions

that not only save costs and improve the efficiency but also provide faster and more

flexible services to customers. Companies have realized that dramatic improvements are

to occur by exploiting integrated production systems. Integration and coordination of

supply chain decisions such as production lot sizing, distribution, and inventory decisions

yield competitive and economic advantage [15]. In this new integrated paradigm, various

functions of a company are simultaneously taken into consideration and jointly optimized.

Historically, a hierarchical approach has been used to decompose a difficult problem into

smaller and easier to solve cases, treating each one separately from the others. Recently,

partial integration of supply chain functions has been proved beneficial [2, 9, 36]. In

the hierarchical production planning approach, the solution obtained from one level is

passed and imposed to the next one in the hierarchy of decisions, often resulting in sub-

optimal solutions [40]. Management typically done in silos results in each department

of a company making its own decisions, regardless of what other departments are doing,

and even without considering the global strategy. Accordingly, most research on supply

chain integration and case studies confirm the positive effect of integration on business

performance [1, 2, 10].

One of the most important and challenging issues in production planning is to determine

production quantities and their timing, known as the lot sizing problem (LSP) [22]. In

production LSP, one of the earliest efforts in simultaneous optimization [41], production

and inventory costs are minimized. Recently, integrated lot sizing optimization problems

have attracted both industrial and academic interest mainly due to their vast applicability

in solving real-world problems, and advantageous cost effective implications compared to

hierarchical planning processes [42]. Integrated LSP aims at determining the production

quantities and timing, inventory quantities and their locations, shipment quantities and

delivery schedule, in order to minimize the total costs and fulfill customers’ demands.
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Starting from the seminal paper of Wagner and Whitin [41], literature on the LSP has

developed at a rapid pace, and numerous studies on the variants of the LSP are reported

in the literature [7]. Axsäter [5] provides a comprehensive review on LSPs; Jans and

Degraeve [19] give an overview of modeling deterministic single-level dynamic LSPs, and

Robinson et al. [32] review the multi-item capacitated dynamic demand coordinated LSPs.

The abundant LSP literature asserts that the complexity of lot sizing models is directly

related to the considered features [18, 22]. So far, different variants of the LSP have been

integrated with inventory, distribution, and routing decisions. Following this trend, the

problem studied in this paper combines LSP with four distinct features: direct shipment,

delivery time windows, facility location decisions, and a leasing period for distribution

centers (DCs). In what follows we briefly review the relevant LSP literature. A list of

these papers with their characteristics is presented in Table 1.

The transportation decision in integrated LSPs is considered as either direct shipment

(full-truck loads) or vehicle routes (milk runs). A survey of formulations and solution

algorithms for the combination of the LSP and the vehicle routing problem, known as the

production routing problem, is presented in Adulyasak et al. [2]. In this paper, however,

we consider direct shipment due to the increasing growth in the number of firms outsourc-

ing the transportation function to third party logistics service providers [4]. Dhaenens-

Flipo and Finke [13] consider a real-case consisting of multiple facilities, products, periods

and stages. While successful in solving small instances, their branch-and-bound approach

could not prove optimality for larger ones. The capacitated LSP in a multi-product,

multi-plant, multi-period LSP is solved using a Lagrangian-based heuristic in Sambasivan

and Yahya [35] and with a GRASP heuristic in Nascimento et al. [30]; in both papers,

only the inter-plant transfers are considered as opposed to the direct shipments between

plants and DCs, and between DCs and customers that we address here. An uncapacitated

two-level LSP is solved by dynamic programming (DP) in Melo and Wolsey [27]. The

same authors formulate the problem and its special cases as a mixed integer program

(MIP) and solve it using a hybrid heuristic, providing good solutions in reasonable time
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for medium size instances [28]. Steinrücke [39] studies the multi-stage production-shipping

and distribution-scheduling problem in an aluminum industry by means of a relax-and-fix

decomposition method. Hwang et al. [17] model a deterministic two-stage capacitated

LSP with discrete time horizon as a minimum network flow problem and identify the pro-

duction and transportation quantities in a two-stage plant-retailer supply chain. Finally,

Solyalı et al. [37] present polynomial-time algorithms for capacitated and uncapacitated

two-level LSP with backlogging.

Due to its significant research and practical potential, much attention is devoted toward

time windows in the LSP. Generally, they appear as either at the production or at the

delivery side [3]. We consider a delivery time window meaning that the demand must be

satisfied within the specified time slot. However, products can be produced earlier and

be stored prior to the delivery time, whereas under the presence of a production time

window, nothing can be produced prior to the demand realization [6] . In Lee et al. [24],

a polynomial-time DP algorithm is proposed to solve the dynamic uncapacitated LSP

with demand time windows, with no shortage but with and without backlogging. The

LSP with time windows studied in Merzifonluoğlu and Geunes [29] differs from that of

Lee et al. [24] as the demand could be accepted or rejected within the customer specified

time windows. The goal is to maximize the net profit by increasing the accepted orders

while decreasing the LSP related costs. They solve the uncapacitated problem by DP and

with a dual-based heuristic. Wolsey [43] formulates LSPs with production and delivery

time windows, but only solves the delivery time window case, employing DP algorithms

and linear programming relaxation. Another paper that generalizes the classical dynamic

capacitated LSP by adding delivery and/or production time windows is that of Hwang

et al. [16]. Employing a polynomial-time DP algorithm, they solve a single plant, single

product, multi-period capacitated LSP. Akbalik and Penz [3] compare just-in-time and

time windows policies for a two level LSP with storage availability at both the plant and

the customer levels. Their study shows the potential cost benefits of the time window

approach compared to the just-in-time one.
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The integration of LSP with time windows and direct shipment distribution is also in-

vestigated in some papers. Motivated by third-party logistics and real-life applications,

Jaruphongsa et al. [21] extend the work of Lee et al. [24] to a two-echelon dynamic lot siz-

ing model with demand time windows, early shipment penalties, and capacity constraints.

Later, they solve the same problem but add the late shipping penalties, solving it by DP

[20].

Traditionally, determining the facility locations and their capacities involve strategic deci-

sions, and all other decisions such as production quantities, inventories and transportation

follow on. In modern days that customers always impose tighter delivery time windows,

keeping a high service level and managing inventory require simultaneous production and

dynamic facility location planning. This problem is so prevalent that flexible network inte-

gration is identified as one of the important recent trends in logistics [38]. Considering the

trade-offs among conflicting costs such as fixed (rental or ownership), inventory holding,

and transportation as well as proximity to the customer zones, network design needs to be

reviewed periodically due to changing demand patterns. This mainly addresses decisions

related to the facilities that should be selected and the customers that should be served

from these facilities [26]. Again, as separate problems, they have been vastly studied, but

the integration of location decisions with LSPs has not been extensively studied. Next,

we outline the recent facility location literature which considers production setup costs.

Keskin and Üster [23] model a production/distribution problem consisting of retailers,

DCs and potential capacitated suppliers. The results support significant advantages of

the integrated approach. Nezhad et al. [31] define an uncapacitated multi-product pro-

duction/distribution facility location problem in which the known demands of customers

need to be met from a set of potential plants while the total of direct shipment, produc-

tion, and setup costs are minimized. They propose two Lagrangian-based heuristics, and

solve small size instances to optimality. Liang et al. [25] present a column generation

and decomposition method for the integrated capacitated production planning and facil-

ity location problem with backlogging. We classify their work as the integrated LSP and
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facility location problem since they introduce a set of binary facility location variables. In-

spired by a real-case problem, Darvish et al. [12] investigate a rich integrated capacitated

LSP for a single-product, multi-plant, and multi-period problem. They incorporate direct

shipment, time windows and facility location decisions. A branch-and-bound approach is

used to solve the problem, assessing the trade-offs between costs and fast deliveries; the

results show the competitive advantage of the integrated approach both in terms of total

costs and service level.

This paper extends the work of Darvish et al. [12] in two distinguishing ways. First,

we consider multiple products, each potentially incurring different production, holding,

and transportation costs; second, we assume that some DCs are rented in each period,

and this decision imposes that the DC must remain open for a fixed number of periods.

The problem we investigate here is also motivated by our observations from an industrial

partner. The company is facing a steady but gradual increase in demand which requires

expanding the operations, and has invested abundant capital on its production and storage

facilities. Production capacities currently exceed the demand of the company yet with the

demand growth rate, capacity constraints seem to be fated. Currently, the production

manager makes decisions on the production quantities and scheduling, which are later

dispatched by the transportation manager. At this point, the company is interested in

how to conduct production planning to save on costs while still maintaining a high service

level.

In this paper we describe, model, and solve a multi-product, multi-plant, multi-period,

three-level production, inventory, and distribution problem. To the best of our knowledge,

this integrated problem with the possibility of choosing among different DCs for a fixed

number of periods has not yet been studied in the literature. We first solve the problem

exactly. Then, we propose three heuristics and a lower bound procedure. Two of our

heuristics are sequential non-integrated decision making processes; one of them mimics

the current situation of the company, and the other is used as a benchmark; both are

used to assess whether the integrated decision making approach we propose is valuable.
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This third heuristic is a hybrid adaptive large neighborhood search (ALNS) in which

subproblems are solved exactly. In summary, the main contributions of this paper are as

follows. First, we develop a mathematical model for the integrated production, inventory

and distribution decisions which also includes the facility location decision and delivery

times windows. Second, we present exact and heuristic methods to solve the integrated

problem. Finally, we demonstrate the value of the integrated approach by comparing its

costs with those obtained from traditional hierarchical decision making approach, and

we evaluate the quality and performance of our heuristic solutions by comparing them

against the solutions obtained from the exact approach.

The remainder of this paper is organized as follows. In Section 2 we formally describe and

model the problem at hand. This is followed by a description of the techniques used to

solve it sequentially in Section 3, in which we describe all three heuristic approaches. Our

proposed integrated ALNS is explained in Section 4. We present the results of extensive

computational experiments in Section 5, followed by our conclusions in Section 6.

2 Problem description and mathematical formulation

We now formally describe the integration of dynamic lot sizing, facility location, inventory

management, and distribution with delivery time windows. We consider a set of plants

available over a finite time horizon producing multiple products; setting up the production

facilities incur a setup cost plus a variable cost proportional to the quantity produced.

Each plant owns a warehouse where the products are stored and an inventory holding

cost is due. The products are sent to DCs from each plant, to be shipped to the final

customers. There is a set of potential DCs from which some are selected to be open, when

a fixed cost is due and the DC remains open for a given duration of time, charging an

inventory holding cost per product per period. These products are then shipped to the

customers scattered geographically to satisfy their demand. There is a maximum allowed

lateness for the delivery of products to customers, meaning that the demand must be met
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within the pre-specified delivery time window. A logistic service provider is in charge of all

shipments from plants to DCs as well as from DCs to final customers. The transportation

cost associated with the shipping is proportional to the distance, quantity, and type of

products delivered.

Formally, the problem is defined on a graph G = (N ,A) where N = {1, . . . , n} is the node

set and A = {(i, j) : i, j ∈ N , i 6= j} is the arc set. The node set N is partitioned into

a plant set Np, a DC set Nd, and a customer set Nc, such that N = Np ∪ Nd ∪ Nc. Let

P be a set containing P products, and T be the set of discrete periods of the planning

horizon of length T . The inventory holding cost of product p at node i ∈ Np ∪ Nd is

denoted hpi, the unit shipping cost of product p from the plant i to the DC j is cpij,

and the unit shipping cost of product p from the DC j to the customer k is c′pjk. Let

also fi be the fixed opening cost for DC i, after which it will remain open for the next g

periods, spi be the fixed setup cost per period for product p in plant i, vpi be the variable

production cost of product p at plant i, and dtpi be the demand of customer i for product

p in period t. The demand occurring in period t can be fulfilled up to period t + r, as

r represents the delivery time window. For ease of representation, let D be the total

demand for all products from all customers in all periods, i.e., D =
∑
t∈T

∑
p∈P

∑
i∈Nc

dtpi. In

order to simultaneously minimize the sum of the production, inventory and distribution

costs in such a way that all demands are met within the promised delivery time window,

one needs to determine:

• the product(s) and quantities to be produced in each plant in each period,

• the DCs to be selected in each period,

• the quantity of products sent from plants to DCs in each period,

• the period in which demand of any customer is satisfied,

• the quantity of products sent from DCs to customers in each period.
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We formulate the problem with the following binary variables. Let θtpi be equal to one

if product p is produced at plant i in period t, and zero otherwise; λti be equal to one if

and only if DC i is chosen in period t to be used for g consecutive periods, and ωt
i be

equal to one to indicate whether DC i is open in period t. Integer variables to represent

quantities produced and shipped are defined as follows. Let αtt′
pij be the quantity of product

p delivered from DC i to customer j in period t to satisfy the demand of period t′, with

t ≥ t′, ρtpi represent the quantity of product p produced at plant i in period t, βt
pij represent

the quantity of product p delivered from plant i to DC j in period t, κtpi as the amount

of product p held in inventory at DC i at the end of period t, and µt
pi the amount of

product p held in inventory at plant i in the beginning of period t. The problem is then

formulated as follows:

min
∑
p∈P

∑
i∈Np

∑
t∈T

vpiρ
t
pi +

∑
p∈P

∑
i∈Np

∑
t∈T

spiθ
t
pi +

∑
p∈P

∑
i∈Nd

∑
t∈T

hpiκ
t
pi +

∑
p∈P

∑
i∈Np

∑
t∈T

hpiµ
t
pi+

∑
i∈Nd

∑
t∈T

fiλ
t
i +

∑
p∈P

∑
i∈Np

∑
j∈Nd

∑
t∈T

cpijβ
t
pij +

∑
p∈P

∑
i∈Nd

∑
j∈Nc

∑
t∈T

∑
t′∈T

c′pijα
tt′
pij

(1)

subject to:

ρtpi ≤ θtpiD i ∈ Np, t ∈ T , p ∈ P (2)

µtpi = µt−1pi + ρtpi −
∑
j∈Nd

βtpij p ∈ P, i ∈ Np, t ∈ T \ {1} (3)

µ1pi = ρ1pi −
∑
j∈Nd

β1pij p ∈ P, i ∈ Np (4)

κtpi = κt−1pi +
∑
j∈Np

βtpji −
∑
j∈Nc

t∑
t′=t−r

αtt′
pij p ∈ P, i ∈ Nd, t ∈ T \ {1}(5)

κ1pi =
∑
j∈Np

β1pji −
∑
j∈Nc

α11
pij p ∈ P i ∈ Nd (6)

∑
p∈P

κtpi ≤ ωt
iD i ∈ Nd t ∈ T (7)
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∑
p∈P

κtpi ≤ ωt+1
i D i ∈ Nd t ∈ T \ {T} (8)

t∑
t′=t−g+1

t′≥1

λt
′
i ≥ ωt

i i ∈ Nd t ∈ T (9)

t′=t+g−1, t′≤T∑
t′=t

ωt′
i ≥ λtimin(g, T − t) i ∈ Nd t ∈ T (10)

t′=t+g−1, t′≤T∑
t′=t

λt
′
i ≤ 1 i ∈ Nd t ∈ T (11)

∑
i∈Nd

s∑
t=1

t∑
t′=1

αtt′
pij ≤

s∑
t=1

dtpj p ∈ P j ∈ Nc s ∈ T (12)

αtt′
pij = 0 p ∈ P i ∈ Nd j ∈ Nc t ∈ T t′ ∈ {0, ..., t− r} ∪ {t, ..., T} (13)∑

i∈Nd

s+r∑
t=1,t<T

s∑
t′=1

αtt′
pij ≥

s∑
t=1

dtpj p ∈ P j ∈ Nc s ∈ T (14)

∑
p∈P

∑
j∈Nc

t∑
t′=1

αtt′
pij ≤ Dωt

i i ∈ Nd t ∈ T (15)

∑
i∈Nd

∑
t∈T

αtt′
pij = dt

′
pj p ∈ P j ∈ Nc t′ ∈ T (16)

ωt
i , θ

t
pi, λ

t
i ∈ {0, 1} (17)

ρtt
′

pij , κ
t
pi, α

tt′
ijp, β

t
ijp ∈ Z∗. (18)

The objective function (1) minimizes the total cost consisting of the production setup and

variable costs, inventory holding costs and transportation from plants to DCs and from the

DCs to final customers. Constraints (2) guarantee that only products set up for production are

produced. Constraints (3) and (4) ensure the inventory conservation at each plant. Similarly,

constraints (5) and (6) are applied to DCs. Constraints (7) and (8) guarantee that the remaining

inventory at the DC is transferred to the next period only if it is open. Constraints (9)–(11)

ensure that once a DC is selected, it will be open for the next g consecutive periods. Constraints

(12) and (13) guarantee that no demand is satisfied in advance, while constraints (14) impose r

periods as the maximum allowed lateness for fulfilling the demand. Thus, the total demand up

to period t must be delivered by period t + r. No delivery to customers can take place from a

closed DC as ensured by constraints (15). Constraints (16) make sure that every single demand
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is delivered to the customers. Finally, constraints (17) and (18) define the domain and nature

of the variables.

3 Sequential heuristics and lower bound

In this section we propose three sequential heuristic algorithms to solve the problem. These

algorithms work by making decisions in steps, in a non-integrated fashion. Their motivation is

twofold. First, we want to mimic production systems managed in silos, in which one department

makes decisions irrespective of the others. Second, we want to assess how a sequential algorithm

performs compared to the integrated approach proposed in this paper. These comparisons are

presented in Section 5. In what follows, we present in Section 3.1 a Top-down heuristic, for the

cases in which production is the most important part of the process and has priority in determin-

ing how the system works, followed by inventory allocation in DCs and finally by distribution.

In Section 3.2 we describe a Bottom-up heuristic, simulating the alternative scenario in which

distribution has priority, followed by DC allocation, and lastly by production. Finally, in Section

3.3 we describe an Equal power heuristic, in which all three departments would have similar but

independent power; we explain how this heuristic yields a lower bound on the optimal cost.

3.1 Top-down heuristic

In the Top-down heuristic, production managers have the most power and can therefore deter-

mine how the rest of the system works. This is done by taking all constraints of the problem

into account, but optimizing it only for the production costs. Once production managers have

decided what to do, their decision is fixed, and inventory allocation decisions are made, namely

when and which DCs to open. Note that because the previous production decisions were made

considering all constraints of the problem, feasibility is ensured. This is done by solving the

same problem with a new set of fixed decisions (related to production), and optimizing only

DC-related costs. Once this part is determined, all these decisions are fixed and no longer

change. Finally, all production and DC variables are known, and one must optimize the remain-

ing variables of the problem, namely all distribution to final customers. By putting together
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all three levels of decisions, one can obtain the overall solution and easily compute the cost of

the solution yielded by the Top-down heuristic. A pseudocode of this heuristic is presented in

Algorithm 1.

Algorithm 1 Top-down heuristic

1: Consider all constraints of the problem formulation from Section 2.
2: Build an objective function with production variables θtpi and ρtpi.
3: Optimize the problem, obtain optimal values for θtpi and ρtpi.
4: Fix θtpi and ρtpi to their obtained values.
5: Add DC-related variables λti to the objective function.
6: Optimize the problem, obtain optimal values λti and ωt

i .
7: Fix variables λti and ωt

i to their obtained values.
8: Add all variables to the objective function, as it is defined in Section 2.
9: Optimize the problem, obtain optimal values for all variables.

10: Return the objective function value.

3.2 Bottom-up heuristic

In the Bottom-up heuristic, we suppose that the distribution managers have the most power and

can therefore determine how the rest of the system works. This is done by taking all constraints of

the problem into account, but optimizing it only for the distribution variables. Once distribution

managers have decided what to do, their decision is fixed, and inventory allocation decisions are

made, namely when and which DCs to open. Again, because the previous decisions were made

considering all constraints of the problem, feasibility is guaranteed. We now solve the same

problem with a new set of fixed decisions (related to distribution), and optimize only DC-

related costs. When this part is determined, all these decisions are fixed and no longer change.

Finally, once DCs have been selected, and all distribution and DC variables are known, we must

optimize the remaining variables of the problem. By putting together all three levels of decisions,

one can obtain the overall solution and easily compute the cost of the solution yielded by the

Bottom-up heuristic. A pseudocode of this heuristic is presented in Algorithm 2.
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Algorithm 2 Bottom-up heuristic

1: Consider all constraints of the problem formulation from Section 2.
2: Build an objective function with distribution variables αtt′

pij.

3: Optimize the problem, obtain optimal values for αtt′
pij.

4: Fix αtt′
pij to their obtained values.

5: Add DC-related variables λti to the objective function.
6: Optimize the problem, obtain optimal values of λti and ωt

i .
7: Fix variables λti and ωt

i to their obtained values.
8: Add all variables to the objective function, as it is defined in Section 2.
9: Optimize the problem, obtain optimal values for all variables.

10: Return the objective function value.

3.3 Equal power heuristic

In the Equal power heuristic, we assume that all three decision levels have equal power, and that

decisions are made in parallel: each department optimizes its own decisions, and all information

is shared with the others at the same time. This will likely yield an infeasible solution, since

each part is optimized individually and decisions are not made in sequence. However, the sum

of the costs of all three levels indicates the optimal decision for each level, when the costs of

the other levels are not considered. Having all three put together, if these three decision levels

yield a feasible solution, it is obviously the optimal. Moreover, if the solution is not optimal,

the sum of these costs constitutes a valid lower bound on the costs of the problem. Algorithm

3 describes the pseudocode for this heuristic.

4 Integrated solution algorithm

Most variants of LSPs are known to be hard to solve and therefore, over the past years, several

techniques are proposed for their resolution [19]. Although the uncapcitated LSP is known to

be easier to solve, the multi-plant version is NP-complete [34]. Our problem is reducible to

the multi-plant uncapacitated LSP and the joint-replenishment problem, an extension of the

uncapacitated fixed charge network flow [27] and known to be NP-hard [11]. While small-size

instances of our problem can be solved to optimality in reasonable time using exact methods,

we propose a matheuristic for solving large instances. Our ALNS-based algorithm uses a com-
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Algorithm 3 Equal power heuristic

1: Consider all constraints of the problem formulation from Section 2.
2: Build an objective function with distribution variables αtt′

pij.

3: Optimize the problem, obtain optimal values for αtt′
pij, and optimal solution zc.

4: Build an objective function with DC-related variables λti, β
t
pij, and κtpi.

5: Optimize the problem, obtain optimal values for λti, ω
t
i , β

t
pij, and κtpi, and optimal

solution zd.
6: Build an objective function with plant-related variables θtpi, ρ

t
pi, and µt

pi.
7: Optimize the problem, obtain optimal values for θtpi, ρ

t
pi, and µt

pi, and optimal solution
zp.

8: if the combination of all three decisions is feasible then
9: Return optimal solution and its cost z∗ = zp + zd + zc.

10: else
11: Return lower bound value z = zp + zd + zc.
12: end if

bination of a heuristic and an exact method, employed iteratively to find good solutions. The

ALNS introduced by Ropke and Pisinger [33] has shown outstanding results in solving various

supply chain management problems. This method is not only flexible but also very efficient as

it explores large complex neighborhoods and avoids local optima. Hence, this type of algorithm

is highly suitable for the problem at hand due to its generality and flexibility. Our proposed

heuristic has three main levels. At the first one, we develop an ALNS heuristic in order to

decide whether a plant or a DC should be open, and to determine which products have to be

produced. Once these decisions are fixed, all the other remaining decisions on deliveries from

open plants to open DCs, and from open DCs to the customers, as well as the inventory level

held at plants and open DCs are computed exactly and optimally by solving an integer linear

programming sub-problem, which is done efficiently by exploiting its structure via a minimum

cost network flow (MCNF) algorithm. The MCNF finds a feasible flow with minimum cost on a

graph in which a cost is associated to each arc [14]. Finally, if needed and to avoid local optimum

solutions, we improve the obtained solution to move toward the global optimal by solving the

model presented in Section 2 exactly for a very short period of time. We explain the details of

each level next.

We start with generating a feasible initial solution by making all plants and DCs available in

every period. This feasible initial solution is quickly improved by closing as many facilities as
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possible, but maintaining feasibility, while costs are not yet of concern. Once the initial solution

s and its corresponding cost z(s) are obtained, we improve the solution by applying the iterative

heuristic.

At each iteration, one operator from the list described in Section 4.1 is selected according to a

roulette-wheel mechanism. A weight is associated to their previous performances modulating

their chances of being selected. The weight matrix which has initial value of one is then updated

at every ϕ iterations. Operators are given a score based on their performances, initially set

to zero, and the better the operator performs, the higher score it accumulates. A simulated

annealing-based acceptance rule is considered here. The current solution s is accepted over the

incumbent solution s′ with the probability of e
(
z(s′)− z(s)

H
)
, whereH is the current temperature.

The temperature is decreased every iteration by α. Once the temperature reaches the final

temperature, Hfinal, it is reset to the initial temperature, Hstart. The stopping criteria for

our algorithm is met when either the maximum number of iterations itermax or the maximum

allotted time is reached, if an optimal solution is obtained, or if the solution has not changed for

the last itermax
2 iterations. As long as the best cost z(sbest) is changing, the search starts at every

ϕ iterations from the best solution. If no improvement is made for more than 2ϕ iterations,

once the temperature has decreased to less than the final temperature, we use the best known

solution as an input to the model of Section 2 and solve it for 20 seconds; if this model yields

an optimal solution, the algorithm stops as the global optimum has been found; if it improves

the solution, this improvement is passed to the ALNS framework and the procedure continues.

4.1 List of operators

At each iteration, one of the following heuristic operators are selected. The operators work for

any type of facility, be it plants or DCs. Each operator is repeated a number of times, drawn

from a semi-triangular distribution, with the highest probability toward small numbers. The

operators are as follows:

• Random: this operator selects one plant, product and period (or DC and period), and

flips its current decision; if the facility is closed it becomes open, and vice-versa.
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• Based on shipping costs: first, for each product, shipping costs from closed plants to open

DCs are compared, and the lowest one is identified. The corresponding product is then

assigned to be produced at that plant in that period. Similarly, the highest shipping cost

induces a product to have its production stopped at a given plant and period.

• Based on unit costs: among all currently open plants we identify the one producing at the

highest unit cost; this plant and product allocation are closed; for DCs, we close the one

with the lowest unit inventory cost.

• Based on demand: among all closed plants, we open those that could fulfill the prod-

ucts with the highest demand per period. Similarly, we identify the plant satisfying the

minimum demand in a certain period, and close it.

• Based on delivery quantity to DCs: we identify the plant delivering the least (most), as

well as the DC receiving the least (most) per period. Facilities with the least usage are

closed; for those with the largest usage, a random DC is opened in the same period, and

production for the same plant is set up for all products in the following period.

• Based on inventory level: we identify the plant with the maximum inventory, and ensure it

is open in that period. If it was already open, we open it also in the next period. Besides,

we close the DC with the lowest inventory level during its open g periods.

• Based on production quantity: we identify for which product, in which plant, and in which

period, the maximum (minimum) production occurs; we unassign the production of that

product for the plant with the smallest production in that period, and assign the plant

and the product with the maximum production in its next period. We also identify the

period with the highest production, and open an extra random DC.

• Based on delivery quantity to customers: we identify all DCs and periods with deliveries

lower than a percentage of the total demand and close a random DC for that period (and

for the next g periods). For plants, we select a random one and close it in the previously

identified period.
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4.2 Parameter settings and the pseudocode

We have tested different combinations of parameters and tuned them mostly by trial and error.

The initial temperature Hstart is set to (r+1)×100, 000. This initial temperature is cooled down

until it reaches the final temperature Hfinal = 0.01. The cooling rate, α, also depends on the

delivery time window and ranges from 0.9986 (r = 5) to 0.9988 (r = 0). In our implementation,

iteration count is one of our stopping criterion, and it is satisfied once 3,000,000 iterations are

performed. We set ϕ to 1,000 iterations and update the scores with σ1 = 10, σ2 = 4, and σ3 = 3.

The pseudocode for the proposed algorithm is presented in Algorithm 4.

5 Computational Experiments

We now describe the details related to the computational experiments used to evaluate our

algorithms. All computations are conducted on Intel Core i7 processors running at 3.4 GHz

with up to 64 GB of RAM installed, with the Ubuntu Linux operating system. A single thread

was used for up to one hour. The algorithms are coded in C++ and we use IBM Concert

Technology and CPLEX 12.6.3 as the MIP solver. Section 5.1 describes how the instances

are generated, detailed computational results are provided in Section 5.2, and sensitivity and

managerial analysis are provided in Section 5.3.

5.1 Generation of the instances

We have generated a large data set by varying the number of products, periods, plants, DCs, and

customers. Our test bed is generated as shown in Table 2, for a total of 11 setting combinations

and five random instances per combination. The number of plants and DCs are determined by

the number of periods: if T = 5, then Nd = 8 and Np = 5, if T = 10, then Nd = 15 and Np = 10,

and finally if T = 50, then Nd = 25 and Np = 15. For each instance we assume a delivery time

window r = 0, 1, 2, and 5 periods. Thus, we solve 220 instances in total.
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Algorithm 4 Proposed hybrid matheuristic

1: Initialize weights to 1, scores to 0, H ← Hstart.
2: s← sbest ← initial solution.
3: while stopping criteria are not met do
4: s′ ← s
5: Select an operator and apply it to s′

6: Solve the remaining flow problem, obtain solution z(s′)
7: if z(s′) < z(s) then
8: if z(s′) < z(sbest) then
9: sbest ← s′

10: update the score for the operator used with σ1
11: else
12: update the score for the operator used with σ2
13: end if
14: else
15: if s′ is accepted by the simulated annealing criterion then
16: update the scores for the operator used with σ3
17: s← s′

18: end if
19: end if
20: H ← α×H
21: if iterations is a multiple of ϕ then
22: update weights and reset scores of all operators
23: if no improvement found in last 2ϕ iterations then
24: if H < Hfinal then
25: H ← Hstart

26: if no improvement found for z(s′) then
27: Input sbest into the IP and solve it for 20 seconds
28: end if
29: end if
30: else
31: s← sbest
32: end if
33: end if
34: end while
35: Return sbest
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Table 2: Input parameter values

Name Parameter Values
Products P 1, 5, 10
Periods T 5, 10, 50
Plants Np 5, 10, 15
DCs Nd 8, 15, 25
Customers Nc 20, 50, 100, 200
Delivery time window r 0, 1, 2, 5
DC active period g T

5

Demand dtpk [0, 2]
Plant setup cost spi [10, 15]
Plant variable cost vpi [1, 10]
Fixed DC opening cost fj [100, 150]
Inventory holding cost hpj [1, 4]
Shipping cost (plants-DC) cpij [10, 100]
Shipping cost (DC-customers) c′pjk [10, 1000]

5.2 Results of the computational experiments

We now present the results of extensive computational experiments carried out to evaluate the

performance of all algorithms, and to draw meaningful conclusions for the problem at hand. We

first describe the results of the experiments with the mathematical model proposed in Section

2. This is followed by the comparison of the performance of all three sequential algorithms

proposed in Section 3, and our integrated hybrid matheuristic from Section 4 with that of the

other algorithms.

Average computational results using the branch-and-bound algorithm are presented in Table 3.

For each instance size we report the average of the gaps (G) with respect to the lower bound

(calculated as 100×(
(Upper Bound− Lower Bound)

Upper Bound
), the number of cases solved to optimality

(O), and the average running time (T ) in seconds for each pre-specified time window r. As can

be seen in Table 3, only very small instances could be solved to optimality, mostly those with

fewer than five products or periods. The parameter controlling the number of periods seems to

have a strong effect on the performance of the exact method. Indeed, it has a huge effect on

the size of the problem as measured by the number of variables and constraints. Moreover, the
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length of the delivery time window also affects the number of instances solved to optimality, the

average gap and the running time.

Table 3: Results from exact algorithm

Instances r = 0 r = 1 r = 2 r = 5

P -T -Nc-Nd-Np G(%)(O) T (s) G(%)(O) T (s) G(%)(O) T (s) G(%)(O) T (s)

1-5-20-8-5 0.00(5) 2 0.00(5) 2 0.00(5) 1 0.00(5) 0
1-10-100-15-10 2.33(1) 3,113 16.74(0) 3,606 20.61(0) 3,603 21.60(0) 3,603
1-10-50-15-10 0.00(5) 610 9.83(0) 3,616 15.32(0) 3,606 14.09(0) 3,601
1-50-100-25-15 23.46(0) 3,640 45.80(0) 3,626 53.45(0) 3,624 70.33(0) 3,634
5-5-20-8-5 0.00(5) 342 0.13(4) 1,321 0.79(3) 1,703 0.00(5) 197
5-10-100-15-10 12.64(0) 3,612 22.11(0) 3,601 24.76(0) 3,601 28.12(0) 3,601
5-10-50-15-10 10.36(0) 3,610 18.32(0) 3,602 18.62(0) 3,602 20.41(0) 3,602
10-5-20-8-5 2.04(0) 3,602 3.52(0) 3,604 4.07(0) 3,604 0.00(5) 1,275
10-10-100-15-10 12.74(0) 3,602 21.10(0) 3,602 25.24(0) 3,610 25.58(0) 3,601
10-10-50-15-10 6.70(0) 3,605 17.57(0) 3,603 22.85(0) 3,602 17.16(0) 3,611

Average 7.03(0.32) 2,574 15.51(0.18) 3,018 18.57(0.16) 3,056 28.72(0.30) 3,610

To evaluate the performance of our sequential hybrid heuristics and gain insight into managerial

decisions related to the problem at hand, we present their results in Tables 4–7, one table

per value of the delivery time window r. In these tables we first present the results from the

Equal power heuristic compared to the lower bound from the exact algorithm, where the first

two columns of each table indicate the gaps and the processing time. The improvements with

respect to the solution obtained from the exact algorithm by the Top-down, Bottom-up and

ALNS heuristics are presented in the subsequent columns.

5.3 Sensitivity analysis and managerial insights

We now perform sensitivity analysis to derive important managerial insights. From Table 3

we observe that the more flexible the delivery time windows become, the harder to solve the

problem gets. Also, as the number of products, periods, and customers increase, the problem

becomes harder to be solved to optimality. Small instances with P = 1, T = 5, and Nc = 20

are easily solved to optimality, however instances with only one product but T > 5 could not be

solved to optimality under the presence of the delivery time windows.
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Table 4: Heuristics results for r = 0

Instances Equal power1 Top-down2 Bottom-up2 ALNS2

P -T -Nc-Nd-Np I (%) T(s) I (%) T(s) I (%) T(s) I (%) T(s)
1-5-20-8-5 −35.64 1 −10.03 0 −315.27 0 0.00 1
1-10-100-15-10 −65.27 9 −47.86 3 −155.53 2 0.10 3,606
1-10-50-15-10 −62.38 4 −33.05 2 −238.78 2 0.00 2,048
1-50-100-25-15 −60.98 471 −169.26 558 −98.68 245 8.14 3,602
5-5-20-8-5 −54.57 1 −18.42 1 −107.79 0 0.00 1,150
5-10-100-15-10 −53.78 116 −134.78 34 −32.34 13 −1.25 3,602
5-10-50-15-10 −59.04 267 −83.03 12 −62.34 5 −0.74 3,604
10-5-20-8-5 −52.33 3 −33.09 1 −48.09 1 −0.16 3,462
10-10-100-15-10 −47.67 905 −192.67 53 −16.52 38 −3.69 3,605
10-10-50-15-10 −55.67 738 −135.40 51 −25.93 21 −0.66 3,610

Average −54.73 252 −85.76 72 −110.13 33 0.27 3,382
1 Improvement over the lower bound; 2 Improvement over the upper bound

Table 5: Heuristics results for r = 1

Instances Equal power1 Top-down2 Bottom-up2 ALNS2

P -T -Nc-Nd-Np I (%) T(s) I (%) T(s) I (%) T(s) I (%) T(s)
1-5-20-8-5 −41.38 0 −19.34 0 −423.38 0 0.00 3
1-10-100-15-10 −58.69 69 −69.06 17 −184.87 1 2.21 3,608
1-10-50-15-10 −57.62 19 −48.79 8 −291.73 3 0.71 3,474
1-50-100-25-15 −53.48 2,037 −194.29 1,391 −117.97 313 27.03 3,601
5-5-20-8-5 −51.99 3 −39.73 2 −149.61 0 0.00 2,627
5-10-100-15-10 −45.88 1,322 −178.31 1,012 −49.76 16 2.75 3,419
5-10-50-15-10 −51.59 1,191 −124.92 289 −87.15 6 4.10 3,604
10-5-20-8-5 −46.35 19 −56.30 3 −86.45 2 0.08 3,608
10-10-100-15-10 −39.18 1,408 −240.47 1,292 −39.79 38 1.58 3,601
10-10-50-15-10 −46.25 1,298 −169.62 1,054 −39.78 25 3.27 3,604

Average −49.24 737 −114.08 507 −147.05 40 5.95 3,559
1 Improvement over the lower bound; 2 Improvement over the upper bound
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Table 6: Heuristics results for r = 2

Instances Equal power1 Top-down2 Bottom-up2 ALNS2

P -T -Nc-Nd-Np I (%) T(s) I (%) T(s) I (%) T(s) I (%) T(s)
1-5-20-8-5 −45.20 1 −20.41 0 −459.31 0 0.00 4
1-10-100-15-10 −56.92 118 −88.23 20 −179.76 3 2.87 3,608
1-10-50-15-10 −57.01 30 −63.64 9 −267.67 2 0.57 3,371
1-50-100-25-15 −45.89 2,195 −241.74 1,549 −152.76 317 31.44 3,601
5-5-20-8-5 −50.55 3 −46.06 2 −177.29 1 0.04 3,149
5-10-100-15-10 −41.17 1,326 −203.93 1,244 −66.24 24 1.80 3,602
5-10-50-15-10 −48.32 1,243 −144.53 431 −100.53 10 4.87 3,603
10-5-20-8-5 −43.65 5 −75.38 3 −105.40 6 0.75 3,606
10-10-100-15-10 −33.53 1,427 −268.28 1,291 −38.92 66 4.74 3,601
10-10-50-15-10 −39.81 1,306 −202.70 1,034 −57.80 24 5.86 3,601

Average −46.21 765 −135.49 558 −160.57 45 7.45 3,570
1 Improvement over the lower bound; 2 Improvement over the upper bound

Table 7: Heuristics results for r = 5

Instances Equal power1 Top-down2 Bottom-up2 ALNS2

P -T -Nc-Nd-Np I (%) T(s) I (%) T(s) I (%) T(s) I (%) T(s)
1-5-20-8-5 −51.28 0 −41.46 0 −514.97 0 0.00 2
1-10-100-15-10 −53.00 23 −121.87 19 −198.35 4 4.65 3,607
1-10-50-15-10 −55.42 11 −100.72 6 −255.19 3 1.13 3,608
1-50-100-25-15 −35.55 2,635 −298.84 1,769 −203.54 412 49.66 3,601
5-5-20-8-5 −46.81 1 −76.86 0 −199.40 1 0.00 3,205
5-10-100-15-10 −34.66 1,449 −254.33 470 −88.65 30 3.47 3,601
5-10-50-15-10 −41.92 1,097 −203.82 104 −135.73 12 9.31 3,601
10-5-20-8-5 −37.90 3 −113.14 1 −126.80 1 0.00 3,605
10-10-100-15-10 −31.10 1,594 −286.26 1,151 −45.14 98 0.89 3,601
10-10-50-15-10 −35.16 1,205 −238.52 459 −80.05 43 7.14 3,601

Average −42.28 802 −173.58 398 −184.78 60 7.62 3,203
1 Improvement over the lower bound; 2 Improvement over the upper bound
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This difficulty in solving the problem when delivery time windows exist shows two interesting

aspects of the business problem. The first one is related to the potential cost saving if one is to

properly exploit the added flexibility of time windows. This is evident since all solutions without

time windows are still valid to the cases in which they are considered. However, in order to take

advantage of such flexibility, using a tailored method seems necessary as we have shown that

simply modeling the problem into a commercial solver or using any sequential method do not

yield any good solutions, and in fact their quality degrades as the size of the problem and the

added flexibility increases.

The results presented in Tables 4–7 reveal that for large instances our ALNS-based heuristic

outperforms the exact algorithm. The highest average improvement (7.45%) is obtained for

r = 5. For all the small instances that could be solved to optimality, our approach also obtains

the optimal solution. Regarding the processing time, the exact algorithm is slightly better, which

is mainly due to the fact that the iterative heuristic reaches the time limit to search the solution

area aiming to improve the solution obtained and is truncated at 3600 seconds. However, as can

be seen in Table 8, our algorithm takes on average less than 20 minutes to find its best solution,

which is often better than the ones from the exact algorithm.

Table 8: Average time for ALNS to obtain the best solution

Time window r = 0 r = 1 r = 2 r = 5 Average
Average time (S) 1,160 1,159 1,022 909 1,063

Regarding our integrated method, Tables 4–7 also show that taking an integrative approach

toward production, inventory, and distribution can lead to enormous reduction in costs. For all

time-windows, the average results obtained from the integrated approach is at least 86% better

than the hierarchical ones. It is interesting to note that on average the costs obtained by Top-

down heuristic are lower than the ones from the Bottom-up approach; however, the Bottom-up

heuristic is much faster. As presented in Tables 4–7, the Bottom-up heuristic generates better

results in less time than the Top-down when P > 1 and Nc > 20.

As expected, applying the Equal power heuristic, or the management in silos, where each de-

partment of the company is focused only on its own decisions regardless of the others, results

in not even one instance with a feasible solution. The sum of cost at plants including setup,
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variable, and inventory costs, costs at DCs including, rental fees, deliveries from plants to DCs,

and the inventory holding costs and shipment to customer costs are obtained. The calculated

cost is then compared to the lower bound obtained from the exact algorithm. On average this

infeasible cost from the Equal power heuristic is 48.11% worse than the lower bound, which

forgoes any hopes that this approach would yield a good solution.

Finally, the exact method could not obtain any solution for our large instances with P = 1,

T = 50, Nc = 200, Nd = 25 and Np = 15. We ran these large instances using both our proposed

heuristic in order to obtain valid and good solutions, and the Equal power heuristic to obtain a

lower bound. The differences between the lower bound of the Equal power and the best solutions

of the proposed ALNS algorithm are reported in Table 9. From results presented on Tables 4–7

we already know that as the instance becomes larger, the gap between the lower bound obtained

from Equal power heuristic and the lower bound from the exact algorithm decreases. The same

instance with half the number of customer (Nc = 100) has the average of 48.98% gap over

all 4 time windows. Therefore, for the larger instance with Nc = 200, one could extrapolate

and estimate an expected gap lower than 48.98%. Knowing that the average gap between our

proposed approach and the lower bound from the Equal power method is 60.71%, one could also

anticipate an approximate average gap of 11.73% between our proposed approach and a lower

bound from the exact method if it could be achieved.

Table 9: Gaps for the large instance with Nc = 200

Time-window r = 0 r = 1 r = 2 r = 5 Average
Average gap (%) 64.01 62.32 60.23 56.26 60.71

6 Conclusions

This paper investigates a variant of integrated LSP, in which multiple products are produced

over a discrete time horizon, stored and shipped to final customers. The paper contributes to

the integrated optimization literature as it combines distinct features of delivery time windows,

distribution with direct shipment, and location decisions from potential DCs to store products

for a fixed leasing period. A state of the art commercial solver is able to find optimum solutions
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for small size instances of our problem, however, it does not prove optimality in reasonable

running time for larger instances. To achieve better solutions in acceptable computation time,

we have developed an ALNS heuristic. Several instances are generated and the solutions are

compared to the optimal ones (if any) obtained by the exact method on average improving the

solutions of the exact method by on average 5.32% and up to 49.66%, generally in only third

of the running time. We have also evaluated how a typical management in silos would perform,

by deriving and implementing sequential solution methods. Our results also confirm the cost

benefits of the integrated approach toward decision making comparing to the hierarchical ones.

A Top-down method (production first and distribution last) performs on average 132.55% worse

than the integrated approach, while a Bottom-up method (distribution first, production last)

performs on average 155.95% worse than our method. Between these two methods, the Bottom-

up works better for instances with larger planning horizons and more products and customers,

while Top-down is preferred when there is only one product and fewer than 20 customers.

We have undoubtedly proved the benefits of an integrated management and solution method,

as opposed to hierarchical and/or silo management. Moreover, we have shown that for complex

and rich integrated problems such as this variant of the lot sizing observed in practice, neither

a hierarchical solution approach nor modeling and solving it by a commercial solver yield good

solutions in reasonable time. We have developed a flexible and very powerful method capable

of effectively handling all aspects of the problem in an efficient manner.
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[23] B. B. Keskin and H. Üster. Production/distribution system design with inventory consid-

erations. Naval Research Logistics, 59(2):172–195, 2012.

Sequential versus Integrated Optimization: Lot Sizing, Inventory Control and Distribution

CIRRELT-2016-60 27
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