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Abstract. The shipment of hazardous materials is necessary for most countries and many 
of these products are flammable, explosive or even radioactive. Despite high security 
standards, accidents still happen and the transportation of hazmat causes fear among the 
population who faces the risk of those accidents. Therefore, the society requests a fair 
distribution of risk by the authorities. To fairly distribute the risk, we propose a population-
based risk definition that evaluates the risk in each population center. Moreover, we propose 
different objective functions for equilibrating the risk and extend the bilevel Hazmat Transport 
Network Design Problem by considering several transportation modes. In this problem, the 
government wants to equilibrate the risk among the population centers by restricting links to 
the shipment of hazardous goods. When taking that decision, the government has to 
anticipate the carriers' reaction who want to minimize the transportation costs for their 
shipments. This bilevel problem is transformed into a single-level mixed-integer linear 
program and solved with Xpress. In the numerical results, we show that both objectives have 
a positive convex correlation and therefore a significant improvement in risk distribution can 
be achieved at the cost of just a small increase in total risk. The cities with high risk benefit 
from the risk redistribution in the beginning. However, strong equilibrations just penalize 
cities with low risk. Moreover, compared to classical approaches in the literature, we achieve 
a better risk distribution among the population without increasing the total risk. 
Keywords: Hazardous materials transportation, risk equilibration, network design. 
Acknowledgements. While working on this project, the first author was doctoral student in 
the School of Management at the Technical University of Munich. The first author also 
gratefully acknowledges a fellowship of Deutscher Akademischer Austauschdienst (DAAD), 
which helped to start this work. While working on this project the second and forth authors 
were both also Adjunct Professors in the Department of Computer Science and Operations 
Research of the Université de Montréal. Partial funding for this project has been provided by 
the Natural Sciences and Engineering Research Council of Canada (NSERC), through its 
Discovery Grant program, and the Strategic Clusters program of the Fonds de recherche du 
Québec – Nature et technologie (FRQNT). 
 
Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: TeodorGabriel.Crainic@cirrelt.ca 
Dépôt légal – Bibliothèque et Archives nationales du Québec 
                      Bibliothèque et Archives Canada, 2016 

© Fontaine, Crainic, Minner, Gendreau and CIRRELT, 2016 



1 Introduction

Hazardous material accidents can have tremendous consequences for the population. One of the worst
accidents of this kind in recent history happened in July 2013 in Lac-Mégantic, QC in Canada. A
driverless train with 72 tank cars of petroleum crude oil derailed in the city center and caused the death
of at least 42 persons. Moreover, at least 30 buildings and 115 businesses were destroyed and it took
almost 2 days to control the fire. However, the transport of hazardous materials is essential not only
for industrial countries like Canada, Germany and the United States, but also for developing countries.
The four most frequently shipped hazardous materials are - with 80% of the transported volume in
Canada - crude petroleum, gasoline, fuel oils, and non-metallic minerals (Searag et al., 2015). According
to Bureau of Transportation Statistics and U.S. Census Bureau (2015), 2,580 million tons of hazardous
materials where shipped throughout the United States in 2012. 59.4% of them where transported by
truck, 4.3% by rail, 11% by water and 24.3% by pipeline in single mode transportation. Only 1% was
shipped via intermodal transportation. In Canada, railways have a much higher relevance. In 2012,
26.1 million tons were transported by rail and 107.4 million tons by truck. A different structure of the
network in Germany, which, compared to North America, is very dense, is reflected in the share of used
transportation modes: In 2010, 56 million tons were transported by maritime transport, 48 million tons
on inland waterways, 63 million tons by rail, and 140 million tons by trucks (Statistisches Bundesamt
Wiesbaden, 2012).

Thus, the consideration of different transportation modes is essential for the risk calculation whenever
one wishes to regulate the transport of hazardous materials. The different streams of research investigate
the transportation of hazardous material either on roads (e.g., Kara and Verter, 2004) or on rail (e.g.,
Verma et al., 2011). We want to fill this gap by considering different transportation modes in the Hazmat
Transport Network Design Problem (HTNDP).

Moreover, the society requests a fair distribution of risk over the population and the government or
authority wants to achieve that by deciding if a link of the network is allowed for the transportation
of hazardous materials or not. In the literature, the risk is associated with arcs (e.g., Kara and Verter,
2004). This definition neglects the fact that the risk in a population center is influenced by all the links
in the area of the population center. This is certainly true when the network consists of different modes,
but also when for example, several roads enter or pass by a city. In these definitions either the total
risk of the network is minimized (e.g., Kara and Verter, 2004) or the maximum arc risk is minimized for
equilibration (e.g., Bianco et al., 2009). A fair distribution of risk, however, will strongly depend on the
number of arcs in a population center. Moreover, if one arc has to transport a high amount of hazardous
material, the maximum risk in the network will be defined by that arc and the distribution of all others
arcs gets unimportant with respect to the maximum risk function. Consequently, we introduce a new
population-based risk definition to evaluate the risk in population centers. For the fair distribution of
risk among the population, different equilibration functions are introduced and compared.

The proposed multi-mode multi-commodity bilevel formulation is transformed into a mixed-integer
linear program and evaluated in a numerical study to show the benefits of the concept over classical risk
definitions. We show that simply equilibrating risk will also lead to a significant increase of the total
risk in the network. Besides, all population centers may end up worse than before. We investigate the
trade-off between risk equilibration and risk minimization and show a convex correlation between these
two objectives. Therefore, with a small increase of total risk in the network, the distribution can be
much better.

The contributions of this paper are: (1) A new population-based definition of risk and equity risk
measures for hazardous material shipments, (2) an extension of the HTNDP to multi-mode shipments
and risk equilibration, (3) a comparison of different equilibration measures, (4) insights on the trade-off

Population-Based Risk Equilibration for the Multi-Mode Hazmat Transport Network Design Problem

CIRRELT-2016-63



between risk equilibration and risk minimization, (5) a comparison to existing models from the literature
(single-mode and maximum arc risk equilibration).

This paper is structured as follows: In Section 2, the problem and its notation are introduced and
the related literature is summarized. The population-based risk definition and possible risk measures
are shown in Section 3. Section 4 defines the Multi-Mode Hazmat Transport Network Design Problem
and the transformation to a mixed-integer linear program. A numerical study is presented in Section 5
before ending with the conclusion and an outlook on future research.

2 Problem Definition

The transportation network is represented by a graph G = (N,A) with a set of nodes N and a set of arcs
A. In a countrywide network, the nodes can be cities, facilities or important points in the network. In
a city network, the level of detail needs to be much higher and the nodes represent junctions and entry
and exit points of the city. Moreover, we consider different transportation modes m ∈ M . Depending
on the detail of the model, these modes are the classical modes train, road, rail, air, water and pipeline;
however, we also define different vehicle types as a transportation mode. To keep the notation simple,
we neglect the fact that in practice not every arc can be used by every transportation mode. Each arc
could further have a capacity limit for each mode. Especially pipelines have limitations on the possible
amount of shipments. We, however, stay in line with the literature and neglect the fact of capacity
restrictions.

K is the set of commodities shipped through the network. Each commodity k ∈ K is defined by
an origin ok ∈ N , a destination dk ∈ N and the transport volume φk. The transportation costs for
shipping one unit of commodity k ∈ K on arc (i, j) ∈ A with transportation mode m ∈ M are ckmij .
Each commodity can be shipped partly via different transportation modes. However, we do not allow
inter-modal transportation, as this is also not often the case in practice (e.g., Bureau of Transportation
Statistics and U.S. Census Bureau, 2015). The probability of an incident on arc (i, j) ∈ A with mode
m ∈ M is given by σkmij . Similar to the literature, it is assumed that there is no correlation between
accidents and therefore the probability distributions are independent.

To equilibrate the risk among the population, we define a set of population centers C with a popula-
tion Pc. In a global optimization setting, a population center represents a city; if the risk is equilibrated
inside a city, these population centers need to represent districts or parts of the city.

Finally, lmkcij defines the influence of an accident on arc (i, j) of commodity k using mode m on the
population c. This influence factor depends on the distance between the population center and the arc,
as well as the hazardous material type: The shorter the distance and the more dangerous the material
is, the higher is the influence factor. The literature introduces different methods for calculating the
influence of an accident on an arc: Batta and Chiu (1988) use a fixed bandwidth around the route
segment, Erkut and Verter (1998) define a danger circle and Patel and Horowitz (1994) use a Gaussian
plume model to define the impact of airborne hazmat accidents. We assume that these influence factors
are given.

The problem is modeled as a linear bilevel problem, where the leader is represented by the government
or an authority. They can decide if the mode of an arc of the network is allowed for the transportation
of hazardous materials or not and the decision is modeled by the binary decision variable ymij . For
simplification, the differentiation between specific hazardous material types is ignored. But the model
could easily be extended to include this more realistic setting. The leader decision is subject to the
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follower optimization problem: The carriers minimize their transportation costs subject to demand
satisfaction by deciding over the transportation percentage xkmij of commodity k ∈ K shipped over arc
(i, j) ∈ A on transportation mode m ∈M .

According to Erkut et al. (2007), the literature of hazardous material transport can be classified into
four categories: risk assessment, routing, combined facility location and routing, and network design.
They give a summary on all of these topics. This paper is located in the area of risk assessment and
network design, which is so far the least investigated topic in this area.

In the network design literature (e.g., Alp, 1995; Kara and Verter, 2004; Bianco et al., 2009), the risk
calculation is associated with arcs. With Pij being the accumulated affected population in the area of
arc (i, j), Erkut and Verter (1998) define the risk of an arc by

∑
k∈K σ

km
ij Pijφkx

km
ij .

This definition is used in the models and solution methods for network design problems proposed in
the literature. Kara and Verter (2004) reformulate the bilevel problem into a single-level formulation
using the Karush-Kuhn-Tucker (KKT) conditions. In Verter and Kara (2008), a path-based formulation
of the HTNDP is proposed. For each carrier, all possible paths are generated and ordered according to
the carrier priority. Bianco et al. (2009) also transform the bilevel problem into a single-level formulation
and show that these solutions might not be stable. If several follower solutions exist, the KKT conditions
use an optimistic bilevel formulation which assumes that the carriers choose the path with the lowest
risk among all shortest paths. In this case, the total risk can increase if a carrier chooses a path with
higher risk. They provide a method to evaluate the stability and present a heuristic which always finds
stable solutions. Amaldi et al. (2011) proposed a mixed-integer linear program to solve the HTNDP.
This global optimization method further guarantees finding stable solutions.

As linear bilevel problems are already NP-hard (Ben-Ayed and Blair, 1990), different heuristics were
proposed as well: Erkut and Alp (2007) present a solution method that starts with a tree structured
subset of the network and gradually adds new arcs. In contrast, Erkut and Gzara (2008) keep the bilevel
formulation and propose a heuristic algorithm to solve the problem. The objective function of the
follower problem is integrated into the objective function of the leader problem in a bi-objective bilevel
model. Recently, Bianco et al. (2016) use a game-theoretic approach for regulating the transportation of
hazardous materials via tolls. To calculate a Nash-equilibrium, they use a local search heuristic not only
to minimize the total risk, but also to equilibrate the risk on the arcs by looking at the maximum risk
on an arc. This approach is restricted to one hazmat type and the authors point out that an extension
makes the problem much harder as the Nash game is not convex anymore. Sun et al. (2015) include risk
uncertainty into the network design problem and introduce a heuristic to find a robust solution.

Besides the solution method, the evaluation of risk for specific paths was investigated as well. Alp
(1995) minimizes the sum of the risk of all used arcs and Erkut and Ingolfsson (2000) propose more
advanced objective functions like the mean-variance. In contrast to that, ReVelle et al. (1991) minimize
the exposed population on a path and Saccomanno and Chan (1985) the incident probability on a path.
Since all these measures assume independent risk probabilities, Kara et al. (2003) propose a method
to evaluate the risk on a path accurately by including conditional risk distributions. However, Erkut
and Verter (1998) show that the approximation error of the independent risk assumption is small. To
include the fact that the population might not be risk-neutral and favor a higher probability of a low-
consequences accident over a lower probability with high consequences, Abkowitz et al. (1992) introduce
the perceived risk. The exposed population is exponentiated with a risk preference. If this risk preference
is greater than 1, a risk averse population is assumed, if it is 1, the population is risk neutral and if it
is smaller than 1, the population is risk prone. Bianco et al. (2009) and Bianco et al. (2016) equilibrate
the risk over all arcs by minimizing the maximum risk on an arc. A summary of different risk measures
can also be found in Erkut and Ingolfsson (2005).

3

Population-Based Risk Equilibration for the Multi-Mode Hazmat Transport Network Design Problem

CIRRELT-2016-63



Even though equilibration is a new topic to hazmat network design, it is been studied in the area of
hazardous material routing. Gopalan et al. (1990) propose a shortest-path problem for routing trucks
that minimizes the total risk and ensures risk equity between zones by a constraint. This constraint
limits the risk deviation between these zones. However, this model ignores the fact that the carrier’s
main goal is to minimize the costs. Lindner-Dutton et al. (1991) extend this model and also include the
sequencing of trucks, to have a fair distribution in every period and not over the whole planning horizon.
Carotenuto et al. (2007) define a mixed-interger linear program to find minimal and equitable risk routes
for hazardous material shipments. This fair risk distribution is done by distributing it equally among
the arcs. The problem is solved by a modified k-shortest path algorithm.

3 Population-based Risk Definition and Evaluation

In this section, we first introduce the population-based risk definition. Then we define different possible
risk equilibration measures and give an example for the differences between the classical risk definition
and ours.

3.1 Risk Definition

In contrast to the classical network design definition of risk on arcs, we define the risk for each population
center c ∈ C. Following the classical definition, we assume that only one accident can happen at the
same time on an arc. Therefore, the accidents on the different arcs through a center are independent
and the expected risk is defined as follows:

Rc(x) := Pc
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lmkcij σkmij φkx
km
ij (1)

Thus, the risk of a population center is the sum of the transported volume in the influence area of the
center weighted with the accident risk and the potential influence factor.

As long as the overall risk in the network is minimized, this risk definition is fully equivalent to the
traditional risk definition, only the order of summation is changed. However, the differences can be huge
for equilibrating the risk by minimizing the maximum risk.

The network of Figure 1 gives an example of how the risk measures differ when we minimize the
maximum risk. We assume two OD-pairs: 10 units from 1 to 4 via road and 10 units from 1 to 4 via rail.
In this example, an optimal solution will always ship the 10 rail units via 2, as no other solution exists.
However, the road commodity has two options, shipping either via 2 or via 3. If the maximum risk on
each arc is minimized, both paths are the same from a risk perspective. Both will cause a total risk of
180 and no arc will be forbidden. The carrier will choose the cheapest path via 2 and population A will
face a total risk of 280 and population B one of zero. If the maximum population risk is minimized,
the government will close the road between 1 and 2 and the carrier will have to ship via 3. The risk for
population A would be 100 and for population B 180. In both solutions, the maximum risk on an arc
is 90 and the classical risk in the network is 280. The only difference is a fair distribution of the risk
among the population.

4
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Figure 1: Example of the Population-based Risk Definition

3.2 Risk Equilibration Measures

Erkut and Ingolfsson (2005) summarized different measures the for evaluation of risk on a path, Bianco
et al. (2009) equilibrated the risk by minimizing the maximum risk on an arc and Marsh and Schilling
(1994) reviewed different equity measures in location theory. Following these risk evaluation ideas, we
introduce several possible risk measures for the population-based risk definition of the whole network.∑

c∈C
Rc(x) Traditional/Overall risk (Trad) (2)

max
c∈C

Rc(x) Maximum risk (Max) (3)

1

|C|
∑
c∈C

∣∣∣∣∣Rc(x)− 1

|C|
∑
c′∈C

Rc′(x)

∣∣∣∣∣ Average deviation to mean (AdM) (4)

max
c∈C

∣∣∣∣∣Rc(x)− 1

|C|
∑
c′∈C

Rc′(x)

∣∣∣∣∣ Maximum deviation to mean (MdM) (5)

1

|C|(|C| − 1)

∑
c,c′∈C|c<>c′

|Rc(x)−Rc′(x)| Average deviation among all (AdA) (6)

max
c,c′∈C|c<>c′

|Rc(x)−Rc′(x)| Maximum deviation among all (MdA) (7)

The traditional risk measure (2) sums the risk of all population centers and is equivalent to the arc
definition of the risk. The maximum risk (3) minimizes the maximal risk in a population center. If each
population center is defined by one arc, this definition is equivalent to the maximum arc risk definition
by Bianco et al. (2009). The risk measures (5) - (7) are different deviation measures which are all zero
when the risk is perfectly equilibrated and the risk in every population center is the same. While the first
two calculate the average and maximum deviation to the mean, the last two give the average difference
between all population centers and the maximum difference between two population centers.
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As many of these risk measures can still lead to very high risks in some population areas, we introduce
social bounds for the risk. Let L be the set of social bounds. Then, each population center c has the
bounds blc for each l ∈ L. If the risk is higher than a bound, a penalty plc for all risk above this bound is
added to the objective value. The new risk is calculated by adding the following term to the objective
function:

+
∑
l∈L

plcPc max

0,
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lmkcij σkmij xkmij − blc

 . (8)

This gives a piecewise linear increasing objective function. Such functions are also often used to equili-
brate the user’s travel time in traffic assignment problems (Sheffi, 1985). Moreover, this idea is similar
to the idea of conditional value at risk and perceived risk with a risk-averse population. For example,
Abkowitz et al. (1992) and Erkut and Ingolfsson (2000) used a non-linear function f(x) = xα with α > 1,
to take into account that accidents with high probability and low consequences are less undesirable than
low probability-high consequence accidents.

4 Multi-Mode Hazmat Transport Network Design Problem

In this section, we first introduce the bilevel formulation for the Multi-Mode Hazmat Transport Network
Design Problem (mHTNDP) and explain how the general definition can be adapted to specific network
types. Then we transform the model into a mixed-integer linear program.

4.1 Bilevel Formulation

Besides the already introduced decision variables xkmij and ymij , let zkm be the percentage of commodity
k ∈ K shipped with mode m.

All introduced objective functions can be used in the leader problem, and all transformations shown
in this section can be applied as well. Considering the maximum risk objective function, the leader
problem can be defined as follows:

min rmax (9)

s.t. Pc
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lmkcij σkmij φkx
km
ij ≤ rmax ∀c ∈ C (10)

rmax ≥ 0 (11)

ymij ∈ {0, 1} ∀(i, j) ∈ A,m ∈M (12)

The follower problem is a multi-mode shortest path problem. The carriers decide how many percent
zkm of commodity k are shipped via transportation mode m. Equation (14) is the flow conservation
constraint and constraint (15) ensures that the full demand is divided into the different transportation
modes. Constraint (16) ensures that only arcs which are allowed by the leader can be used. In the
objective function, the carriers’ user-optimum - the overall transportation costs - is minimized.

6
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min
∑
k∈K

∑
m∈M

∑
(i,j)∈A

ckmij x
km
ij (13)

s.t.
∑

(i,j)∈A

xkmij −
∑

(j,l)∈A

xkmjl =


0, if j 6= ok, dk

−zkm, if j = ok

zkm, if j = dk

∀j ∈ N, k ∈ K,m ∈M (14)

∑
m∈M

zkm = 1 ∀k ∈ K (15)

xkmij ≤ ymij ∀(i, j) ∈ A, k ∈ K,m ∈M (16)

xkmij ≥ 0 ∀(i, j) ∈ A, k ∈ K,m ∈M (17)

zkm ≥ 0 ∀k ∈ K,m ∈M (18)

This model is a generalization of the classical HTNDP. Depending on the network and setting, several
special cases are possible: By using only one transportation mode the follower problem is equivalent to
the classical shortest path problem by Kara and Verter (2004). In an urban area setting, the only used
transportation mode is the road with several vehicle types. Other transportation modes like rail exist,
but the decision might be taken in a global network design problem and the risk of these modes can be
included as constant into the zones where it appears.

By optimizing the risk distribution in a global setting like a province or a country, the modes can
describe not only different vehicle types, but also rail, pipeline and water transport. Because of the
transport via rail, pipeline or water, a capacity restriction might become necessary. However, with a ca-
pacity restriction, the follower problem becomes a multi-commodity transportation problem. Therefore,
no longer a user-optimum but a system-optimum is calculated which is not considered in this paper.

4.2 Transformation to a Mixed-Integer Linear Program

To transform the linear bilevel problem into a non-linear mixed-integer program, we assume the partial
cooperation assumption and the follower problem can be replaced by the Karush-Kuhn-Tucker conditions
(Bard, 1998).

min rmax (19)

s.t. (20)

Pc
∑
m∈M

∑
k∈K

∑
(i,j)∈A

lmkcij σkmij φkx
km
ij ≤ rmax ∀c ∈ C (21)

∑
(i,j)∈A

xkmij −
∑

(j,l)∈A

xkmjl =


0, if j 6= ok, dk

−zkm, if j = ok

zkm, if j = dk

∀j ∈ N, k ∈ K,m ∈M (22)

∑
m∈M

zkm = 1 ∀k ∈ K (23)

xkmij ≤ ymij ∀(i, j) ∈ A, k ∈ K,m ∈M (24)

7
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∑
k∈K

∑
m∈M

∑
(i,j)∈A

ckmij x
km
ij ≤

∑
k∈K

vk +
∑
m∈M

∑
(i,j)∈A

∑
k∈K

tkmij y
m
ij (25)

ukmj − ukmi + tkmij ≤ ckmij ∀(i, j) ∈ A, k ∈ K,m ∈M (26)

ukmok − u
km
dk

+ vk ≤ 0 ∀k ∈ K,m ∈M (27)

vk ∈ R ∀k ∈ K (28)

ukmj ∈ R ∀j ∈ N, k ∈ K,m ∈M (29)

tkmij ≤ 0 ∀(i, j) ∈ A, k ∈ K,m ∈M (30)

xkmij ≥ 0 ∀(i, j) ∈ A, k ∈ K,m ∈M (31)

zkm ≥ 0 ∀k ∈ K,m ∈M (32)

rmax ≥ 0 (33)

ymij ∈ {0, 1} ∀(i, j) ∈ A,m ∈M (34)

ukmj , vk and tkmij define the dual variables of the follower constraints (14) - (16). Equation (26) is the

dual constraint of the primal variable xkij and equation (27) is the dual constraint of the primal variable

zkm.

As in (Cao and Chen, 2006), the optimality condition in (25) can be linearized by introducing the
auxiliary variables wkmij and a Big M̂ and by replacing (25) with the following terms:

∑
k∈K

∑
m∈M

∑
(i,j)∈A

ckmij x
km
ij ≤

∑
k∈K

vk +
∑
m∈M

∑
(i,j)∈A

∑
k∈K

wkmij (35)

wkmij ≤ tkmij + M̂(1− ymij ) ∀(i, j) ∈ A,m ∈M,k ∈ K (36)

wkmij ≥ tkmij ∀(i, j) ∈ A,m ∈M,k ∈ K (37)

wkmij ≥ −M̂ymij ∀(i, j) ∈ A,m ∈M,k ∈ K (38)

wkmij ≤ 0 ∀(i, j) ∈ A,m ∈M,k ∈ K (39)

5 Numerical Study

In this section, we show the computational results of the model proposed in the previous section. We
used Xpress 7.9 on an Intel Core i7 with 4 cores and 32GB RAM. In the results, we used the risk measure
abbreviations of Section 3.2.

First, we used the Sioux Falls network from the literature (Bar-Gera, 2013) to show the convergence
properties and the trade-off between risk minimization and risk equilibration. Then, we compared the
model to risk formulations from the literature: a one-mode decision model and the maximum arc risk
formulation. Finally, we applied our model to a larger US-Canada instance (Orlowski et al., 2010) to
confirm the results of the small example.

8
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5.1 Sioux Falls Instances

The Sioux Falls network consists of 24 nodes and 76 arcs. Each arc is defined by a length (in km),
however other necessary data was generated as follows: The network is divided into six population
centers. The population density of Sioux Falls is 814.4 inhabitants per square kilometer. The population
distribution is shown with the definition of the population centers in Figure 2. The influence of an arc
on a population center was set to 1 if the arc is inside the center, 0 if not. If an arc is contained in more
than one center, the influence was proportionally split into two parts (e.g., arc (11,14)).

(122.16)

(146.59)

(114.02)

(195.46)

(122.16)

(114.02)

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

Figure 2: Sioux Falls Network with Population Centers and Population Density

Two vehicle types are used with transportation costs of 1.1 per transported unit per km for the
smaller vehicle and 0.9 per km for the larger vehicle. The accident probability of the larger vehicle was
set 3% higher than the risk of the smaller one. The accident rate on an arc was generated randomly
between 9.56 × 10−9 and 1.08 × 10−7 (Erkut and Gzara, 2008) and σkmij is the product of the accident
rate, the length of the arc and the factor for the vehicle type. We assume only one commodity type.
Consequently, the risk for all shipped commodities are the same.

Four instances with different demand scenarios were generated. Nodes 1, 2, 13, 20 were defined as the
entry and exit nodes of the network. 43 commodities were shipped through the network (13 out-flows
and 30 in-flows). The demand into the city (in-flows) was set between 100 and 1,000 and out of the
city (out-flows) between 50 and 150. For each scenario the origin, the destination, and the demand were
generated randomly.

For the non-linear function with l social bounds (NLl), we used a simple penalty function, which is
defined as follows: The risk interval was divided into l − 1 equidistant segments and from each point p,
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a further penalty of p2 was added to the objective function.

In a first test, we evaluated the convergence of the model. Figure 3 shows that the lower bound
stays zero and therefore the GAP cannot be calculated. This is the case for all measures that calculate
the deviation: MdM, AdM, MdA, AdA. As mentioned in the definition of the measures, all population
centers have the same risk in an optimal equilibration: zero. Most of the improvements happen within
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Figure 3: Run Time Analysis for AdA.

the first 20 minutes and there are still some improvements within two hours. Therefore, the time limit of
the numerical study was set to 7,200 seconds. For the other objective functions and trade-off calculations,
the convergence was significantly better and the average gaps are below 1%.

We first show the effect of risk equilibration and the differences between risk equilibration and total
risk minimization and discuss possible approaches to combine them. Then, we compare the effect of
using different transportation modes in one model before discussing the difference between our model
and the equilibration idea from the literature.

5.1.1 Risk Equilibration

Table 1 shows the results for the different objective functions for demand scenario 1 and the risk of all
population centers is reported. The optimized objective function is shown in the first column. Moreover,
the optimized risk measure is highlighted in bold.

The results show that just minimizing the deviation or the maximum leads to an extreme increase
in the overall risk in the network. The results are quite obvious as an equilibrium is only possible on
a high level. It shows that, for an equal distribution of risk, almost every population center comes out
worse and the total risk increases by more than 100%. Only the non-linear function, which does not try
to equalize all populations, distributes the risk better without a dramatic risk increase. These effects
are similar for the other 3 instances as well and as the equilibration measures AdM, MdM, AdA, MdM
perform very similar and the maximum risk is only effective if there is no population center with a very
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Table 1: Risk Evalutation for Demand Scenario 1

Obj Risk measures Risk of population centers

Trad Max AdM MdM AdA MdA Pop1 Pop2 Pop3 Pop4 Pop5 Pop6

Trad 1.574 0.525 0.155 0.262 0.207 0.419 0.525 0.179 0.464 0.105 0.169 0.132
Max 2.144 0.370 0.018 0.055 0.023 0.067 0.370 0.367 0.366 0.303 0.370 0.370
AdM 2.680 0.488 0.014 0.041 0.024 0.063 0.441 0.425 0.488 0.447 0.447 0.433
MdM 2.251 0.441 0.042 0.066 0.065 0.128 0.314 0.371 0.441 0.314 0.421 0.390
AdA 3.194 0.541 0.004 0.012 0.007 0.020 0.520 0.534 0.541 0.532 0.533 0.532
MdA 2.482 0.444 0.028 0.042 0.040 0.072 0.414 0.372 0.444 0.443 0.436 0.372
NL7 1.574 0.525 0.155 0.262 0.207 0.419 0.525 0.179 0.464 0.105 0.169 0.132

high risk, we will use the AdA measure for the following analysis.

5.1.2 Trade-off between Risk Equilibration and Risk Minimization

Since the pure risk equilibration increases the total risk significantly, we analyze the trade-off between
minimizing the total risk in the network and equilibrating the risk. In the literature (e.g., Gopalan et al.,
1990; Lindner-Dutton et al., 1991), this is achieved by adding the level of equilibration as a constraint
into the model. This approach is not applicable in bilevel programming, as this constraint would be
a so-called coupling constraint (e.g., Dempe, 2002) and then the KKT-transformation is not feasible.
Therefore, we used a bi-objective function that combines the AdA equilibration measure with the overall
risk function Trad, which is weighted with α ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. As mentioned
earlier, the optimality gaps are significantly smaller in this study. The bi-objective function has over all
instances an average gap of less than 1%.

Table 2 shows the results for the 4 randomly generated demand scenarios (DS). The minimal risk
solutions are 1.574 (DS 1), 1.388 (DS 2), 1.399 (DS 3) and 1.335 (DS 4) and shown in the first line of
each scenario. One can see that the risk is better distributed among the population centers without
increasing the risk as much as in the pure equilibration measures. Also, a higher weight on the risk
minimization (Trad) leads, as expected, to a lower risk with worse equilibration.

The distribution is already much better for an increase of 5 - 15% of the total risk. However,
to distribute the risk as fairly as possible, an increase of more than 35% is necessary. Moreover, the
equilibration of the first α steps is mainly achieved by a significant reduction of the risk in the population
centers with the highest risk and a shift to low risk population centers. But especially in the last steps,
the equilibration is achieved by increasing the risk in low risk population centers without reducing the
risk in high risk population centers. For example in demand scenario 1, the risk of population center 1
drops from 0.525 to 0.381 in the first step (α = 0.5%). Population center 3 improves in the first step
from 0.464 to 0.430. Even though the equilibration improves further for α ≤ 0.5, this is mostly due to a
risk increase in population centers 2, 4, 5 and 6.

A similar effect can be seen in the other scenarios. DS2 shows a significant improvements of population
centers 1 and 3 until α = 0.4. After that the equilibration is again mostly achieved by increasing the
risk in other population centers.

Figure 4 shows the Pareto-optimal curves of the trade-off between an equilibrated network and a
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Table 2: Trade-off between Trad and AdA for 4 Demand Scenarios

DS Objective function Risk measure Risk of population centers

Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1 Trad 1.574 0.207 0.525 0.179 0.464 0.105 0.169 0.132
AdA + 0.50 Trad 1.637 0.136 0.381 0.272 0.430 0.163 0.227 0.164
AdA + 0.45 Trad 1.643 0.133 0.402 0.261 0.430 0.180 0.190 0.179
AdA + 0.40 Trad 1.643 0.133 0.402 0.261 0.430 0.180 0.190 0.179
AdA + 0.35 Trad 1.660 0.126 0.357 0.283 0.442 0.186 0.210 0.181
AdA + 0.30 Trad 1.726 0.104 0.348 0.279 0.423 0.202 0.274 0.200
AdA + 0.25 Trad 1.862 0.068 0.346 0.284 0.423 0.269 0.272 0.269
AdA + 0.20 Trad 2.024 0.031 0.329 0.328 0.406 0.321 0.320 0.320
AdA + 0.15 Trad 2.074 0.029 0.351 0.337 0.400 0.327 0.331 0.328
AdA + 0.10 Trad 2.179 0.015 0.370 0.362 0.378 0.357 0.370 0.341

2 Trad 1.388 0.177 0.393 0.175 0.448 0.164 0.134 0.074
AdA + 0.50 Trad 1.425 0.151 0.383 0.208 0.417 0.129 0.161 0.127
AdA + 0.45 Trad 1.425 0.151 0.383 0.208 0.417 0.129 0.161 0.127
AdA + 0.40 Trad 1.480 0.127 0.372 0.243 0.383 0.147 0.187 0.148
AdA + 0.35 Trad 1.480 0.127 0.372 0.243 0.383 0.147 0.187 0.148
AdA + 0.30 Trad 1.494 0.122 0.374 0.247 0.375 0.152 0.194 0.152
AdA + 0.25 Trad 1.584 0.098 0.368 0.263 0.368 0.193 0.199 0.193
AdA + 0.20 Trad 1.983 0.014 0.340 0.335 0.347 0.320 0.322 0.320
AdA + 0.15 Trad 2.063 0.002 0.343 0.343 0.346 0.344 0.342 0.345
AdA + 0.10 Trad 2.043 0.003 0.341 0.340 0.346 0.340 0.337 0.339

3 Trad 1.399 0.159 0.377 0.199 0.412 0.185 0.154 0.072
AdA + 0.50 Trad 1.447 0.125 0.358 0.250 0.370 0.145 0.189 0.136
AdA + 0.45 Trad 1.447 0.125 0.358 0.250 0.370 0.145 0.189 0.136
AdA + 0.40 Trad 1.540 0.084 0.323 0.306 0.323 0.180 0.237 0.170
AdA + 0.35 Trad 1.546 0.082 0.322 0.308 0.323 0.178 0.238 0.177
AdA + 0.30 Trad 1.546 0.082 0.322 0.308 0.323 0.178 0.238 0.177
AdA + 0.25 Trad 1.654 0.051 0.319 0.303 0.325 0.235 0.237 0.235
AdA + 0.20 Trad 1.764 0.027 0.314 0.304 0.325 0.275 0.273 0.274
AdA + 0.15 Trad 1.843 0.011 0.310 0.302 0.327 0.303 0.301 0.301
AdA + 0.10 Trad 1.875 0.007 0.322 0.308 0.318 0.307 0.309 0.310

4 Trad 1.335 0.165 0.347 0.217 0.419 0.099 0.171 0.081
AdA + 0.50 Trad 1.402 0.115 0.310 0.280 0.339 0.129 0.233 0.112
AdA + 0.45 Trad 1.432 0.100 0.301 0.306 0.312 0.125 0.258 0.131
AdA + 0.40 Trad 1.443 0.096 0.301 0.306 0.309 0.136 0.258 0.133
AdA + 0.35 Trad 1.443 0.095 0.301 0.305 0.309 0.136 0.259 0.133
AdA + 0.30 Trad 1.458 0.091 0.301 0.304 0.310 0.143 0.257 0.143
AdA + 0.25 Trad 1.641 0.042 0.301 0.304 0.310 0.237 0.255 0.234
AdA + 0.20 Trad 1.768 0.015 0.306 0.304 0.308 0.289 0.284 0.278
AdA + 0.15 Trad 1.794 0.010 0.298 0.310 0.308 0.294 0.294 0.289
AdA + 0.10 Trad 1.799 0.009 0.303 0.308 0.307 0.298 0.290 0.293
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Figure 4: Trade-off between Trad and AdA for 4 Demand Scenarios

network with a low total risk. The results indicate a convex substitution relation on the efficient frontier
between both objective functions, which is consistent with our previous findings: With a small increase
of total risk, the risk can be much better equilibrated. However, there comes a point from which on the
price of total risk in the network for further equilibration is very high.

Besides the bi-objective approach, the non-linear objective function of the previous section showed
similar effects and can be a good alternative, especially when risk is perceived differently in different
population centers.

5.1.3 Comparison to One-Mode Decision Model

In this subsection, we show the necessity of using a multi-mode decision model by comparing our model
to classical single mode models. In the multi-mode decision model the mode is part of the decision
process. Therefore, we take the mode decision of the multi-mode model and solve the hazmat network
design problem for mode 1 and 2 separately and add the results up (“sum” in Table 3). The multi-
mode result is compared with the sum of the single mode models. Moreover, the network design of
the two single mode models is used in the multi-mode model to see the reaction of the followers on
the single mode decisions (“reaction”). For all models, we used the non-linear objective function with 7
approximation points (NL7) as the non-linear function combined risk equilibration and risk minimization
in one function. The detailed results are shown in Table 3.

In scenario 2, there is no difference between the three models. In the other three scenarios, the
distribution got worse. In scenario 1, the total risk is reduced by 5%, but the equilibration is worse by
60%. Population centers 1 and 3, which are the ones with the highest risk, increase their risk. This shift
towards risk minimization is mostly caused by the reaction of the followers if they are again allowed to
change their mode. In scenario 4, the single mode models result even in a higher total risk and a worse
equilibration. This worse equilibration is due to the fact that two equilibrated modes do not need to be
equilibrated in the same way as when considering several modes.
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Table 3: Comparison of the multi-mode model with single-level decisions

DS Model Risk measure Risk of population centers

Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1 multi mode 1.696 0.119 0.357 0.286 0.413 0.147 0.284 0.209
sum 1.687 0.127 0.381 0.298 0.402 0.130 0.267 0.209

reaction 1.681 0.130 0.378 0.294 0.410 0.128 0.264 0.207
2 multi mode 1.524 0.118 0.356 0.288 0.365 0.147 0.211 0.157

sum 1.522 0.118 0.356 0.289 0.365 0.147 0.208 0.157
reaction 1.522 0.118 0.356 0.289 0.365 0.147 0.208 0.157

3 multi mode 1.538 0.089 0.326 0.293 0.329 0.208 0.239 0.142
sum 1.547 0.099 0.362 0.267 0.329 0.215 0.233 0.140

reaction 1.460 0.142 0.386 0.210 0.396 0.188 0.183 0.097
4 multi mode 1.419 0.110 0.303 0.286 0.336 0.143 0.240 0.112

sum 1.423 0.118 0.308 0.329 0.303 0.090 0.262 0.131
reaction 1.424 0.118 0.308 0.329 0.303 0.090 0.262 0.131

This shows that considering different modes in the models is important. The effect of solving the
different modes separately is dependent upon the instance and can lead to different risk distributions as
with single modes.

5.1.4 Comparison to Maximum Arc Risk Equilibration

To equilibrate risk, the literature so far proposed to minimize the maximum arc risk (Bianco et al.,
2009). In Table 4, we compare the solution of a maximum arc risk model to solutions of the Pareto
curve of the previous section for the four different demand scenarios.

Table 4: Comparison to Maximum Arc Risk Model

DS Objective Risk measure Risk of population centers

function Trad AdA Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6

1 max arc 1.890 0.217 0.591 0.211 0.534 0.210 0.209 0.135
AdA + 0.25 Trad 1.862 0.068 0.346 0.284 0.423 0.269 0.272 0.269

Trad 1.574 0.207 0.525 0.179 0.464 0.105 0.169 0.132
2 max arc 1.789 0.173 0.458 0.264 0.503 0.209 0.211 0.144

AdA + 0.25 Trad 1.584 0.098 0.368 0.263 0.368 0.193 0.199 0.193
AdA + 0.20 Trad 1.983 0.014 0.340 0.335 0.347 0.320 0.322 0.320

Trad 1.388 0.177 0.393 0.175 0.448 0.164 0.134 0.074
3 max arc 1.975 0.170 0.447 0.254 0.508 0.378 0.247 0.142

AdA + 0.10 Trad 1.875 0.007 0.322 0.308 0.318 0.307 0.309 0.310
Trad 1.399 0.159 0.377 0.199 0.412 0.185 0.154 0.072

4 max arc 1.760 0.176 0.450 0.350 0.426 0.178 0.271 0.086
AdA + 0.20 Trad 1.768 0.015 0.306 0.304 0.308 0.289 0.284 0.278

Trad 1.335 0.165 0.347 0.217 0.419 0.099 0.171 0.081

The results show for all demand scenarios that there exists a solution with a similar total risk in the
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network but a better distribution within the population centers and a solution with a similar distribution
within the population centers but significantly smaller total risk. Using maximum arc risk increased the
total risk by more than 35% without distributing the risk better. In all scenarios, every population center
has a higher risk, than the risk minimal solution. However, compared to the equilibration measures for
population centers, this does not lead to a better distribution of risk. The risk distribution remains more
or less the same as in the minimal risk solution. Therefore, a similar risk distribution is always possible
with the minimal overall risk solution.

This shows that the maximum arc formulation leads to a very unbalanced risk distribution among
the population.

5.2 US-Canada Instance

As a second instance, we used a network of the United States and Canada (Orlowski et al., 2010), which
is shown in Figure 5. The network consists of 39 nodes (cities in Canada and the United States) and
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Figure 5: United States and Canada Network

122 directed arcs. The transportation costs are given, and the length of an arc was calculated by using
the Euclidean distance between the two nodes. Each city defines one population center. The population
of each center is the population of the city and the influence factor was set to 0.5 for the origin and the
destination city of an arc. The accident rates on an arc and σkmij are generated in the same way as for
the Sioux Falls network. Two vehicle types are used, the second vehicle costs 5% more while the first
vehicle’s accident probability is 3% higher . A set of 100 commodities with randomly chosen origin and
destination pairs was generated. The demand was defined randomly between 300 and 600.

We used the AdA as equilibration measure and compared the unregulated network with the risk
minimal solution, the maximum arc risk solution and several bi-objective functions. The time limit was
set to 10 hours and the average gap was below 5% (excluding the maximum arc risk).
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The computational results in Table 5 show that the unregulated network has a very high overall risk,
a very bad distribution and some cities can have a very high risk. Using the classical approach, the
total risk and the distribution can be improved by almost 50%. The maximum risk for a population is
reduced from 9.075 to 4.146, which is more than 50%. Using the maximum arc risk formulation from the
literature, the maximum risk for a population is similar to that of the Trad risk function. However, the
total risk in the network is significantly higher and the distribution is worse. For the bi-objective function,
one can see again that a small increase in total risk leads to a significantly better distribution. 7% higher
total risk improves the distribution by 20% and the maximum risk of a population center is reduced by
over 40%. However, further risk increases only lead to small improvements in the distribution. In fact,
for the last case, even though the distribution improves, the maximum risk of a population increases to
2.744.

Table 5: Risk Comparison for the US-Canada Instance

Objective Trad AdA max Pop

free network 60.694 1.684 9.075
max arc 48.429 1.195 4.144

Trad 31.368 0.802 4.146
AdA + 0.03 Trad 33.654 0.634 2.417
AdA + 0.02 Trad 36.237 0.625 2.428

AdA + 0.015 Trad 37.750 0.613 2.417
AdA + 0.01 Trad 39.798 0.597 2.744

Moreover, we analyzed the changes within the population centers. The risk of each city for the
different risk measures are shown in Table 6. Comparing the Trad solution with the AdA + 0.03Trad
solution, we find that 8 out of 13 cities among the first third of those with the highest risk reduce their
risk by 24% on average while the risk of the cities in the last third, 12 suffer an increase of 120% on
average. Whereas in total numbers, this equals a reduction of 4.338 in the first third and an increase by
2.507.

This effect, however, changes when comparing AdA+ 0.03Trad with AdA+ 0.02Trad. Only 7 cities
in the first third reduce their risk by a total of 0.880 while the risk in 10 cities in the last third increases
by 3.121.

From AdA + 0.02Trad to AdA + 0.015Trad, the risk of 9 out of 13 cities of the first third reduces
again, while the risk of 8 out of 13 of the last third increases. However, the reduction is again only 0.778
while the increase is 3.507.

This again supports the assumption of the aggregated numbers: In the beginning, the cities with a
high risk can benefit from the risk redistribution, but too strong equilibration just penalizes cities with
a low risk.

6 Conclusions

We introduced a new population-based risk definition and extended the HTNDP to a multi-mode problem
in order to address the problem of risk equity. In the numerical study, we showed the superiority of the
new definition over the arc risk definition and the necessity to consider multiple modes in the model. We
also showed that the pure equilibration of risk increases the total risk significantly and that one has to find
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Table 6: Risk of Population Center for the US-Canada Instance

free network max arc Trad AdA + AdA + AdA + AdA +
0.03 Trad 0.02 Trad 0.015 Trad 0.01 Trad

Atlanta 0.996 0.829 0.618 0.697 0.596 0.811 0.626
Boston 0.236 0.206 0.205 0.204 0.204 0.204 0.249

Calgary 2.845 1.610 0.513 1.738 1.279 1.589 1.392
Charlotte 1.392 0.920 0.429 0.509 0.729 0.673 0.852

Chicago 7.182 3.090 1.054 2.065 1.926 2.006 1.865
Cincinnati 0.267 0.254 0.254 0.285 0.411 0.444 0.442
Cleveland 0.561 0.545 0.425 0.499 0.729 0.784 0.794

Dallas 4.037 3.187 0.932 1.143 0.992 0.885 1.664
Denver 4.115 4.144 4.146 2.086 2.428 2.221 2.123
Detroit 1.267 0.996 0.501 0.499 0.547 0.592 0.626
El Paso 1.262 0.722 0.331 0.766 0.752 0.849 1.025

Houston 1.533 1.399 0.558 0.868 1.862 1.600 1.153
Indianapolis 1.723 1.336 1.361 1.520 1.472 1.291 1.346
Kansas City 2.717 2.911 3.335 2.274 2.263 2.258 2.292

Las Vegas 0.597 0.625 0.379 0.547 0.633 0.778 0.819
Los Angeles 1.167 2.058 0.630 0.505 0.607 1.099 0.882

Memphis 2.455 2.178 1.167 0.822 0.902 0.960 1.087
Miami 0.143 0.104 0.076 0.432 0.637 0.515 0.708

Minneapolis 0.723 0.498 0.274 0.550 0.491 0.673 0.555
Montreal 0.690 1.393 0.819 0.814 0.814 0.814 1.129
Nashville 2.276 1.710 1.047 0.976 0.729 1.070 0.981

New Orleans 0.597 0.618 0.482 0.575 0.827 0.834 1.049
New York 9.075 3.798 2.414 2.417 2.425 2.417 2.021

Oklahoma City 0.094 0.096 0.152 0.216 0.205 0.172 0.264
Philadelphia 0.658 0.634 0.650 0.650 0.654 0.716 0.794

Phoenix 1.742 0.594 0.445 0.763 1.022 0.885 1.344
Pittsburgh 0.172 0.280 0.355 0.401 0.415 0.398 0.414

Portland 0.878 1.074 0.660 0.613 0.858 0.781 0.913
Sacramento 0.418 0.915 0.363 0.509 0.587 0.784 0.961

Salt Lake City 0.889 1.266 0.871 0.494 0.637 0.461 0.451
San Diego 0.455 0.117 0.189 0.275 0.452 0.217 0.766

San Francisco 0.290 0.219 0.160 0.408 0.359 0.942 0.739
Seattle 0.242 0.380 0.238 0.487 0.589 0.778 0.739

St. Louis 1.205 1.410 1.470 1.062 1.081 0.992 1.081
Tampa 0.320 0.207 0.169 0.491 0.547 0.388 0.445

Toronto 2.403 3.871 2.341 2.331 2.331 2.331 2.744
Vancouver 0.620 0.229 0.184 0.432 0.587 0.781 0.739

Washington DC 0.679 0.831 0.782 0.801 0.849 0.784 0.810
Winnipeg 1.771 1.175 0.388 0.930 0.812 0.975 0.913

17

Population-Based Risk Equilibration for the Multi-Mode Hazmat Transport Network Design Problem

CIRRELT-2016-63



a trade-off between equilibration and risk minimization. But because of the convex correlation between
these two measures, a small increase in the total risk can lead to a much better equilibration. As the
problem is still very difficult to solve, enhancements for solving it should be considered in further research.
Moreover, the differentiation between different hazardous material classes seems to be interesting. Using
different classes, could lead to even better distributions of risk.
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et les technologies.

18

Population-Based Risk Equilibration for the Multi-Mode Hazmat Transport Network Design Problem

CIRRELT-2016-63



References

M. D. Abkowitz, M. Lepofsky, and P. Cheng. Selecting criteria for designating hazardous materials
highway routes. Transportation Research Record, 1333:30–35, 1992.

E. Alp. Risk-based transportation planning practice: Overall methodology and a case example. Infor,
33(1):4, 1995.

E. Amaldi, M. Bruglieri, and B. Fortz. On the hazmat transport network design problem. In J. Pahl,
T. Reiners, and S. Voß, editors, Network Optimization Lecture Notes in Computer Science, volume
6701, pages 327–338. Springer Berlin Heidelberg, 2011.

H. Bar-Gera. Transportation network test problems, 2013. URL http://www.bgu.ac.il/~bargera/

tntp/.

J. F. Bard. Practical Bilevel Optimization: Algorithms and Applications. Springer, 1998.

R. Batta and S. S. Chiu. Optimal obnoxious paths on a network: transportation of hazardous materials.
Operations Research, 36(1):84–92, 1988.

O. Ben-Ayed and C. E. Blair. Computational difficulties of bilevel linear programming. Operations
Research, 38(3):556–560, 1990.

L. Bianco, M. Caramia, and S. Giordani. A bilevel flow model for hazmat transportation network design.
Transportation Research Part C: Emerging Technologies, 17(2):175–196, 2009.

L. Bianco, M. Caramia, S. Giordani, and V. Piccialli. A game-theoretic approach for regulating hazmat
transportation. Transportation Science, 50(2):424–438, 2016.

Bureau of Transportation Statistics and U.S. Census Bureau. Transportation-commodity flow survey.
Technical report, 2015.

D. Cao and M. Chen. Capacitated plant selection in a decentralized manufacturing environment: A
bilevel optimization approach. European Journal of Operational Research, 169(1):97–110, 2006.

P. Carotenuto, S. Giordani, and S. Ricciardelli. Finding minimum and equitable risk routes for hazmat
shipments. Computers & Operations Research, 34(5):1304–1327, 2007.

S. Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

E. Erkut and O. Alp. Designing a road network for hazardous materials shipments. Computers &
Operations Research, 34(5):1389–1405, 2007.

E. Erkut and F. Gzara. Solving the hazmat transport network design problem. Computers & Operations
Research, 35(7):2234–2247, 2008.

E. Erkut and A. Ingolfsson. Catastrophe avoidance models for hazardous materials route planning.
Transportation Science, 34(2):165–179, 2000.

E. Erkut and A. Ingolfsson. Transport risk models for hazardous materials: revisited. Operations
Research Letters, 33(1):81–89, 2005.

E. Erkut and V. Verter. Modeling of transport risk for hazardous materials. Operations research, 46(5):
625–642, 1998.

E. Erkut, S. A. Tjandra, and V. Verter. Chapter 9 hazardous materials transportation. In C. Barn-
hart and G. Laporte, editors, Transportation, volume 14 of Handbooks in Operations Research and
Management Science, pages 539 – 621. Elsevier, 2007.

19

Population-Based Risk Equilibration for the Multi-Mode Hazmat Transport Network Design Problem

CIRRELT-2016-63

http://www.bgu.ac.il/~bargera/tntp/
http://www.bgu.ac.il/~bargera/tntp/


R. Gopalan, K. S. Kolluri, R. Batta, and M. H. Karwan. Modeling equity of risk in the transportation
of hazardous materials. Operations Research, 38(6):961–973, 1990.

B. Y. Kara and V. Verter. Designing a road network for hazardous materials transportation. Trans-
portation Science, 38(2):188–196, 2004.

B. Y. Kara, E. Erkut, and V. Verter. Accurate calculation of hazardous materials transport risks.
Operations Research Letters, 31(4):285–292, 2003.

L. Lindner-Dutton, R. Batta, and M. H. Karwan. Equitable sequencing of a given set of hazardous
materials shipments. Transportation Science, 25(2):124–137, 1991.

M. T. Marsh and D. A. Schilling. Equity measurement in facility location analysis: A review and
framework. European Journal of Operational Research, 74(1):1–17, 1994.
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