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Abstract. This paper presents a general methodology that addresses the load planning 
problem for intermodal trains. We propose a general model that can deal with single- or 
double-stack railcars as well as arbitrary containers-to-cars matching rules. Moreover, we 
model center-of-gravity constraints, stacking rules and technical loading restrictions 
associated with specific container types and/or goods. We propose an integer linear 
programming (ILP) formulation, where the objective is to choose the optimal subset of 
containers and the optimal way of loading them on outbound railcars such that the resulting 
loading cost is minimized. An extensive numerical study shows that ignoring center-of-gravity 
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1 Introduction

Nowadays an essential ingredient of a competitive economy is a cost effective freight
transportation system. Intermodal transportation is an important part of this
system where different transport modes are linked in order to move freight from a
point of origin to a point of destination. Taking advantages of economies of scale,
low volume demands are firstly shipped to an intermediate point, a consolidation
terminal or hub, where traffic is sorted (classified) and grouped (consolidated).
Then, the consolidated traffic is moved between hubs by efficient transport modes.
In this paper we deal with intermodal railway transportation where containers are
consolidated and transported by train on the long-haul part of the trip. We focus
on the North American market and double-stack trains.

Intermodal transportation relies heavily on containerization, because the latter
ensures a faster and safer handling and transfer between modes and decreases
transportation costs. Intermodal containers are steel frame boxes designed to move
goods across the world using different transport modes without any re-handling of
the cargo. Since 2005, the containerized worldwide traffic has increased from 382
to 684 million of TEU (Twenty Foot Equivalent Unit) (CBRE Research, 2015).
North American ports have seen container traffic grown by an annual average of
5.3% since 1990 (International Association of Ports and HarborsA, 2015). This
growth is placing a heavy burden on the entire consolidation-based transportation
system, which must provide efficient, reliable and cost-effective services.

Terminals are major components of any intermodal transportation system and
thus they are the backbone of the entire international trade. They are special
transshipment nodes which provide equipment and space where containers are
processed, loaded, unloaded and stored to ensure a seamless transfer between
different modes. Carriers, in our case railroads, face a number of challenging
planning issues, which may be examined according to the classical categorization
with respect to the planning horizon, i.e. strategic, tactical, operational. In this
study, we focus on the load planning problem which is an operational problem
arising at intermodal railway terminals.

Given a set of containers stored in a terminal and a departing train, the objec-
tive of the load planning is to select the optimal set of containers to load and the
optimal way of loading them, using as much as possible of the available capacity.
We address this problem for double-stack trains. This is a challenging problem
because the load plan must respect a number of loading rules that depend on con-
tainer and railcar characteristics. For example, stacking rules for certain sizes of
containers and types of goods, weight capacity and center-of-gravity restrictions.
While the methodology in this paper is general, we use the North American mar-
ket as a case study because it is particularly challenging. Indeed, there are many
types of railcars and there are also more container sizes than the standard 20 feet
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(ft) and 40 ft ones.
As we detail in Section 3, with one exception, previous studies in the literature

do not address the load planning problem for double-stack trains. Moreover, they
make simplifying assumptions that may lead to load plans that violate important
loading rules and hence cannot be used in practice. For example, none of the
studies model the center-of-gravity restrictions. The objective of this paper is to
propose a general methodology that adresses the load planning problem of double-
stack trains taking into account all the different loading rules.

There is a large number of possible ways – so-called loading patterns – to load
different container types on a given railcar type. The multitude of railcar types
and the cardinality of the associated sets of loading patterns is a key issue. We
refer to this problem as container-to-car matching. In this context, we make a
number of contributions. First, we propose a general model that can deal with
single- and double-stack trains where railcars can be of different types and have
different loading rules. Second, the model accounts for loading constraints related
to different container types as well as weight and center-of-gravity restrictions.
Third, we present extensive numerical results using the North American market
as case study.

The numerical results illustrate that we can solve very large instances in rea-
sonable time using a commercial solver. They also show that failing to account
for container-to-car matching as well as center-of-gravity and stacking restrictions
may lead to an overestimation of the available train capacity and to load plans
that cannot be used in practice.

The remainder of the paper is structured as follows. In Section 2 we describe the
load planning problem in detail. Section 3 is dedicated to a literature review of the
studies on containers assignment on railcars, highlighting the main contributions
of this study. We present the ILP formulation in Section 4. Numerical results are
presented in the Section 5. We conclude in Section 6 where we discuss possible
directions for future research.

2 Double-stack train loading

The way containers can be loaded on a train depends on the characteristics of
the containers, the railcars and on the way they can be matched to each other.
Intermodal containers exist in several sizes which are standardized for facilitating
their handling (e.g. Wikipedia, 2016b). ISO standard containers which are used
worldwide are of four types: 20 ft high cube, 40 ft low and high cube, 45 ft
high cube. In this paper we focus on the North America market, where some
additional sizes are available: 45 ft, 48 ft and 53 ft (all high-cube containers). In
addition to size, there are different types of cargo-specific containers, for example,
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general purpose (so-called dry, which make up about in ninety percent of the global
container fleet), temperature controlled, open top and tank containers.

The container size, or more specifically, the location of the load bearing along
the length of the container, as well as the type of container determines how they
can be stacked. On trains, containers are stacked at the 40 ft load bearing location.
This means that 20 ft containers cannot by stacked on top of any other container
size. Moreover, it is not possible to stack any container size on top of a single 20
ft. Other container sizes can be double-stacked, for example, a 40 ft container can
be stacked on top of a 53 ft container and vice-versa.

Certain types of goods are transported in special container types or have spe-
cific loading rules associated with them. We call these technical loading restric-
tions. For the North American market we have identified six such restrictions, we
provide a few examples in the following. Tanker and dangerous containers have
restrictions with respect to the position in the stack they may occupy. Refrig-
erated containers, that do not have their own power unit, have to be loaded in
proximity of a generator, and thus, their loading depends on the railcar sequence.
An open-top container cannot be double stacked. Depending on company policies
and on country regulations, there may exist different rules.

In addition to the aforementioned physical characteristics of the containers, we
assume that there is a cost associated with a container departing or not departing
with a given train. For example, customer penalties for late arrival and storage
costs in the terminal.

Intermodal trains are composed of sequences of railcars, that are designed to
carry single or double-stacked containers. The railcars differ on attributes such as
the number of platforms (also called wells), the length of each platform and weight
loading limit. Each platform consists of two slots, the bottom and the top one,
which can accommodate up to two containers (two 20 ft only in case of bottom
slot). Figure 1 illustrates the slots of a three platforms double-stack railcar. It
is expensive to operate a train because of costs associated with locomotives, crew
and fuel (see e.g. Bouzaiene-Ayari et al., 2014). Hence, there is a cost associated
with leaving a slot on the train unused.

Figure 1: Slots on a three platforms double stacked railcar
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The matching of container and railcars depends on the characteristics of both.
We start by describing the matching with respect to container size. For the North
American market, this is covered by the so-called AAR Guide (Association Amer-
ican Railroads, 2014b), a reference document for inspectors which describes each
series of railcars and provides information on which containers sizes that can be
loaded in the bottom and top slot of each platform. We provide an example in
Table 1 where the first block of rows is an exact copy of the AAR Guide and
the following block of rows show four examples of loading that satisfy the guide.
The platform units on a given railcar are denoted by letters: front unit is A, rear
unit is B, and in-between C,D,E (from front to rear on 5-unit car). We underline
that AAR Guide reports the loading capabilities, but the guide does not show
all the possible ways to match container sizes to railcars. The loading of certain
platforms may depend on the loading of the others and thus the railcar loading
problem cannot be decomposed by platform. The example in Table 1 illustrates
such a dependency since the 53 ft containers can only be loaded in certain top
slots, if 40 ft containers are loaded in the other top slots. The set of loading pat-
terns must account for this dependency and its cardinality may therefore be large,
in particular for 5 platforms railcars (see Section 4.1 for more details).

Bottom slot Top slot

A C D E B A C D E B

AAR Guide

2− 20′ 2− 20′ 2− 20′ 2− 20′ 2− 20′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′

1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 45′ 1− 45′ 1− 45′ 1− 45′ 1− 45′

1− 48′ 1− 48′ 1− 48′ 1− 48′ 1− 48′

1− 53′(1) 1− 53′(1) 1− 53′(1)

Some examples satisfying AAR Guide

2− 20′ 2− 20′ 2− 20′ 2− 20′ 2− 20′ 1− 48′ 1− 40′ 1− 45′

1− 40′ 2− 20′ 1− 40′ 2− 20′ 1− 40′ 1− 45′ 1− 40′ 1− 53′ 1− 40′ 1− 53′

2− 20′ 1− 40′ 2− 20′ 1− 40′ 1− 40′ 1− 48′ 1− 45′ 1− 48′ 1− 45′ 1− 48′

1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′

Table 1: Example of AAR Guide railcars BN 63900 - 63909 type IBC 100 tons
(1): 53 ft containers in top slot of platforms A, D and B only when 40 ft containers are loaded
in top slot of the platforms C and E.

We refer to the several loading rules, differentiated by car type and containers
size as container to cars matching rules. The size of the container in the bottom
slot cannot exceed the length of the platform. For instance, in a 40 ft platform it
is possible to load either a 40 ft container or at most two 20 ft. The rules for the
top slot are more complex: the container sizes that can be loaded in the top slot
depend on other characteristics of the railcar. In general, the size of the container
loaded in the top slot can exceed the length of the one loaded in the bottom slot
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provided that there is enough space between the platforms. For example, while it
may be feasible to load a 53 ft container in the top slot of a platform of length 40
ft, it may not be feasible to load a 53 ft containers in the top slot on two or more
contiguous 40 ft platforms.

The matching of railcars and containers does not only depend on size but also
on weight. There are two types of restrictions with respect to the weight of the
load. First, the total weight of the containers loaded on a given platform cannot
exceed its weight holding capacity. This ensures that the total weight of containers
loaded on a given railcar does not exceed the car weight holding capacity.

The second type of restriction concerns the vertical center of gravity (we adopt
the term from the North American railroad industry but note that it is the same
as the center of mass). It is the unique point where the weighted relative position
of the distributed mass sums to zero or the point where, if a force is applied, causes
it to move in direction of force without rotation (Wikipedia, 2016a). Since there
is not restriction on the horizontal center of gravity, it is sufficient to ensure that
it does not exceed a certain height above the the top of rail, as stated by the AAR
Guide: “..the Center of Gravity (COG) for a double-stack car and the load in the
platform must be less than or equal to 98 inches at top of rail (ATR). Reference
Rule 89, Section C.2.e. in the AAR Field Manual” (Association American Rail-
roads, 2014a). We provide a detailed discussion on the modeling of the center of
gravity restrictions in Section 4.2.

In summary, we focus on the load planning problem: given a set of containers
stored in a terminal and a departing train, the objective is to select the optimal
set of containers to load and the optimal way of loading them, using as much as
possible of the available capacity. The principal metric currently used to measure
the efficiency of the train loading plan is the slot utilization, which measures the
percentage of the available slots on intermodal outbound cars that accommodate
containers in the load plan (Burriss, 2003). We note that we focus on a deter-
ministic setting, and that we do not model the different handling costs associated
with retrieving containers from the terminal. The objective is to develop a general
methodology, which can be used as a decision support tool for providing feasible
and reliable loading plans. We deal with all the loading rules and restrictions
that arise for double-stack trains, by taking into account also the multitude of
containers and railcars types that exist in the North American market.

3 Literature review

We present an overview of the studies that focus on the load planning problem.
We start by noting that Heggen et al. (2016) provide a recent classification of the
literature. For surveys with a broader scope, we refer the reader to Crainic and
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Kim (2007) and Carlo et al. (2014). Moreover, Boysen et al. (2013), presents a
comprehensive overview of the planning issues that arise specifically in railway
yards, including the load planning problem.

Most of the studies in the literature focus on the single stack load planning
problems. The first contribution was made by Feo and Gonzalez-Velarde (1995),
while later on, Powell and Carvalho (1998) dealt with the problem of balancing the
flat cars over a network from a load planning perspective. The problem for single-
stack trains is considerably simpler than for double-stack ones and the studies
mainly focus on the loading containers such that handling costs in the yard (e.g.
Ambrosino et al., 2011, Ambrosino and Siri, 2015, Corry and Kozan, 2006, 2008)
or train set-up costs (Bruns et al., 2014, Bruns and Knust, 2012) are minimized.
They deal with load planning at different degrees of detail. For example, Corry and
Kozan (2008) consider matching different container and railcar types, while Corry
and Kozan (2006) do not. Bruns and Knust (2012) extend the work by Corry
and Kozan (2008) by considering both the matching problem between containers
and railcars and the weight constraints. Heggen et al. (2016) build on this model
and integrate a number of practical loading constraints. Ambrosino et al. (2011),
and Ambrosino and Siri (2015) minimize rehandles in the yard and unproductive
movements of cranes. Finally, Bruns et al. (2014) consider several sources of
uncertainty (e.g. weights, lengths and equipment failures) in a robust optimization
approach.

The aforementioned studies focus on single-stack trains, where the main chal-
lenge is associated with optimizing yard operations rather than the train loading.
In our problem, loading double-stack trains is difficult because we consider the
matching problem between a multitude of different railcar and container types.
Moreover, we enforce the center-of-gravity restrictions and stacking rules. This is
a rather complex setting and, thus, we focus load planning problem and handling
costs are ignored.

To the best of our knowledge, Lai et al. (2008a) is the only previous study on
the double-stack load planning problem. Similarily to this study, they also ignore
handling costs. Their focus is on minimizing the aerodynamic drag of double-stack
trains that depends on the gaps between containers and the location of these gaps
along the train. They present an integer linear programming formulation for the
double-stack trains load planning problem but they make a number of simplifying
assumptions. First, they address the matching among containers and railcars types
deriving the loading patterns without considering platform dependencies. This
implies that loading rules can be defined for platforms independently (we show a
real example in Table 1 where this assumption is not valid). Second, they ignore
the case when loading may be constrained by the railcar sequence, in which case
is not possible to decompose the loading by platform (e.g., refrigerated containers
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require to be loaded in physical proximity of a generator). Third, the problem
is studied without accounting for center-of-gravity restrictions and stacking rules.
The authors also extend the model to a rolling horizon setting and show that the
loading can be improved by considering several trains at a time (Lai et al., 2008b).

4 Mathematical formulation

As we discuss at length in the previous sections, the load plan must respect dimen-
sional and weight capacity constraints as well as stacking rules. In this section, we
present an integer linear programming (ILP) formulation where we maximize the
slot utilization by minimizing the cost associated with the loading plan. The cost
is computed with respect to the used railcars and the containers left on the ground.
We describe in the following how we address the dimensional constraints through
loading patterns that define feasible matches between different sizes of containers
and railcars. We then present the center-of-gravity constraints, followed by the
full ILP formulation.

4.1 Modeling containers-to-cars matching

We model the containers-to-cars matching through loading patterns. A loading
pattern is a feasible assignment of container sizes to railcars. In the construction of
loading patterns, the containers are only characterized by their length. Corry and
Kozan (2008) and Lai et al. (2008b) also use loading patterns, the main difference
here lies in the fact that we account for dependencies between the loading of
platforms on a same railcar (see example in Table 1). This leads to an exponential
increase in the number of loading patterns as the number of platforms increases.

A specific loading pattern for a given platform is defined by a n-tuple specifying
the total number of containers of each length that can be loaded in the slots. When
a railcar consists of several platforms these tuples are concatenated from left to
right. For example, a particular pattern for a railcar comprising three platforms
is described by a 3 n-tuples. A set of loading patterns is a collection of loading
patterns complying with the loading capabilities of a specific railcar (as described
in Association American Railroads, 2014b).

Let T be the set of railcar types and H be the set of container types, defined by
the container dimensions in feet. For instance H = {20, 40, 45, 48, 53}. For each
railcar type t ∈ T , we derive a set of feasible loading patterns Kt ⊂ K, where K
is the set of all feasible loading patterns for all railcars. A loading pattern k ∈ Kt

provides the information about the number of containers of each type h ∈ H that
can be loaded on each platform of that car.
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k / h 20 40 45 48 53

1 0 0 0 0 0
2 2 0 0 0 0
3 0 1 0 0 0
4 2 1 0 0 0
5 2 0 1 0 0
6 2 0 0 1 0
7 2 0 0 0 1
8 0 2 0 0 0
9 0 1 1 0 0
10 0 1 0 1 0
11 0 1 0 0 1

Table 2: Example of Kt, where rows are the configuration k ∈ Kt and columns are
the containers types h ∈ H

We provide an example of set Kt in Table 2, where for a railcar type t covering
all the double-stack one platform railcars on which two 20 ft or one 40 ft can
be loaded in the bottom slot and any size h ∈ H can be loaded in the top slot.
There is a total of 11 loading patterns (|Kt| = 11). In this example, the first row
corresponds to an empty car and the second one to two 20 ft (loadable necessarily
in the bottom slot).

It is easy to see that the number of loading patterns increases exponentially
with the number of platforms. Some of them are however redundant. Consider
for example loading only one 40 ft container on a three platform railcar. The
three possible loading patterns representing the loading in one of the platform can
be represented by a single one (loading on any platform is possible). We remove
redundancies by defining equivalence classes, where each class is represented by
a single representative element. This leads to an important reduction of the sets
cardinality.

Table 3 reports the descriptive statistics of the number of loading patterns for
railcar types in the North American fleet, after removing redundancies. For each
number of platforms, we report the average, maximum and minimum number of
loading patterns, as well as the standard deviation, for double and single stack
railcars. While the number of loading patterns increases with the number of plat-
forms, we note that the equivalence classes still make the number reasonable. We
note that there is a large variation in the number of loading patters. For instance,
the minimum number for a 53 ft railcar is 56 and the maximum 53,130. This is due
to the fact that some railcars can only take one or two container sizes. Moreover,
there are only few railcar types with four platforms and the minimum number is
quite high because these few types can take several container dimensions (there
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are no single stack four platform railcars).

Double-Stack Railcars Single Stack Railcars

Number of platforms AVG MAX MIN STD AVG MAX MIN STD

1 24 792 12 67 6 6 6 0

3 1,704 1,771 348 277 37 80 35 8

4 5,998 7,315 4,845 1,275 - - - -

5 6,269 53,130 56 9,133 353 371 126 62

Table 3: Descriptive statistics on loading patterns for railcar types in the North
American fleet

4.2 Modeling weight restrictions and the vertical center of
gravity

The weights of containers loaded on any platform must satisfy both weight and
center of gravity (COG) constraints. The former ensures that the total weight of
the containers does not exceed the weight holding capacity of the platform, which
in turn ensures that the weight holding capacity of the railcar is not exceeded.

Based on a standard solid-body formula, it is possible to compute an ap-
proximate maximum permissible weight limit that ensures that the COG does
not exceed 98 inches above the top of the rail (Association American Railroads,
2014a). The approximation stems from the assumption that the load is uniformly
distributed in the container (an exact formula would take the actual load dis-
tribution into account). This leads to a simple formula of C = (BE + DbFb +
DtFt)/(E + Fb + Ft) where C is the COG, E is the railcar tare and B the center of
gravity of the empty railcar above top of the rail. Db and Dt center of gravity of
the bottom and top load above top of rail and Fb and Ft the weight of the bottom
and top loads respectively. Since the COG must not exceed 98 inches above the
top of the rail, we can compute the maximum weight limit Ft with respect to the
threshold as

Ft =
E(maxCOG−B) + Fb(maxCOG−Db)

(Dt −maxCOG)
. (1)

We note that if the weight in the top slot is heavier than in the bottom slot,
the COG constraint is always satisfied. We note that Ft depends on the height of
the containers Db and Dt (in bottom and top slot, respectively). Since there are
low and high cube containers, we consider four possible cases that are illustrated
in Figure 2. Finally we note that it is necessary to consider the case when two 20 ft
containers occupy the bottom slot (all 20 ft containers have the same height). We
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Figure 2: Different stacking loading patterns with respect to center of gravity
restrictions

explain how this can be done through linear constraints in the following section
where we present the ILP formulation for the load planning problem.

4.3 ILP formulation

A container i ∈ Nh, N =
⋃

h∈H Nh, is characterized by its weight gi, length li, size
type h ∈ H, cost πi and by possibly one or several good type(s) having specific
loading rules. Let Ns ⊆ N be the set of containers of good type s ∈ S, and because
not all the containers have specific technical loading restrictions

⋃
s∈S Ns ⊆ N .

A railcar j ∈ J is characterized by its weight holding capacity Gj and a cost
τj. We denote P the set of platforms of all railcars and Pj the set of platforms of
railcar j ∈ J . Each platform p is characterized by its length Lp, its weight holding
capacity Gp, and a sequence number γp, numbered from head to tail of the train.
We denote Q the set of all slots, and Qp the set of slots of a given platform p.
Moreover, let µq be a binary parameter equal to 1 if q ∈ Q is a bottom slot, 0
otherwise.

Railcars are defined by their type as presented in Section 4.1. For the sake of
notational simplicity we denote Kj the set of loading patterns for railcar j ∈ J .
Let nh

k(p) be the number of containers of type h ∈ H in each platform p in loading
pattern k ∈ K.

We have two types of decision variables. First, viq that equals one if container
i ∈ N is assigned to slot q ∈ Q and zero otherwise. Second, wjk that equals one if
railcar j ∈ J is assigned loading pattern k ∈ Kj and zero otherwise. In addition,
we need two types of auxiliary binary variables linking the assignment variables viq
to platforms p ∈ P and to railcars j ∈ J . More precisely, yip equals one if i ∈ N
is loaded on p ∈ P and xij equals one if i ∈ N is loaded on j ∈ J , 0 otherwise.

The model then becomes:

min
∑
i∈N

πi(
∑
q∈Q

(1− viq)) +
∑
j∈J

τj(
∑
k∈Kj

wjk) (2)

s.t
∑
q∈Q

viq ≤ 1 ∀i ∈ N (3)

The Load Planning Problem for Double-Stack Intermodal Trains

10 CIRRELT-2016-68



yip =
∑
q∈Qp

viq ∀i ∈ N, ∀p ∈ P (4)

xij =
∑
p∈Pj

yip ∀i ∈ N, ∀j ∈ J (5)

∑
k∈Kj

wjk = 1 ∀j ∈ J (6)

∑
k∈Kj

nh
k(p)wjk =

∑
i∈Nh

yip ∀p ∈ Pj, ∀j ∈ J, ∀h ∈ H

(7)∑
i∈N

∑
q∈Qp

µqviqli ≤ Lp ∀p ∈ P (8)

∑
i∈N

yipgi ≤ Gp ∀p ∈ P (9)∑
i∈Nlc

∑
q∈Qp

(1− µq)viqgi ≤
∑
i∈N

∑
q∈Qp

µqviqc
p
ilc

∀p ∈ P (10)

∑
i∈Nhc

∑
q∈Qp

(1− µq)viqgi ≤
∑
i∈N

∑
q∈Qp

µqviqc
p
ihc

∀p ∈ P (11)

∑
j∈J

xij ( Gj − DW ) ≥ 0 ∀i ∈ Ns1 (12)∑
j∈J

xij Fj = 0 ∀i ∈ Ns2 (13)∑
j∈J

xij ( αjUj − gi) ≥ 0 ∀i ∈ Ns3 (14)∑
q∈Q

viq ( 1− µq) = 0 ∀i ∈ Ns4 (15)

yip +
∑
q∈Qp

vi′q(1− µp) ≤ 1 ∀i ∈ Ns5 , ∀i′ ∈ N \ i, ∀p ∈ P

(16)∑
p∈P

γpyip −
∑
p∈P

γpyi′p ≤ R + (|P | −R)(1−
∑
p∈P

yi′p) ∀i, i′ ∈ Ns6 , i 6= i′ (17)

viq ∈ {0, 1} ∀i ∈ N, ∀q ∈ Q (18)

yip ∈ {0, 1} ∀i ∈ N, ∀p ∈ P (19)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ J (20)

wjk ∈ {0, 1} ∀j ∈ J, ∀k ∈ K (21)
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The objective (2) of the ILP model seeks to minimize the total cost of containers
left on the ground and of the used railcars, i.e. that are assigned at least one
container. We note that

∑
k∈Kj

wjk = 0 if railcar j is not used by the model.
This generalised cost leads to the maximization of the slot utilization on the used
railcars in case of excess capacity.

There are five sets of loading constraints that we present in the following. The
assignment constraints (3) ensure that each container i ∈ N can be assigned to at
most one slot q ∈ Q. For a given container i ∈ N ,

∑
q∈Q viq = 0 implies that the

container is not assigned to any slot and thus is left on the ground. Constraints
(5) ensure that, for a given container i ∈ N , the auxiliary variable yip equals one
if i is assigned to a slot q of platform p (q ∈ Qp), and (6) ensure that the auxiliary
variable xij equals one if i is assigned to one platform p ∈ Pj of the railcar j.

The loading pattern constraints (7) ensure that exactly one loading pattern
k ∈ Kj is assigned to each railcar j ∈ J . We can link the variables wjk to the
variables yip through constraints (8), which enforce that the number of loaded
containers of each type h ∈ H on the platform p ∈ P equals nh

k(p). Constraints (9)

ensure that the length of the container(s) loaded in the bottom slot of a platform
p ∈ P does not exceed the length of the platform.

The weight capacity constraints (10) ensure that the maximum allowable weight
limit of a platform is not exceeded by the total weights of the loaded containers.

The center-of-gravity restrictions are modelled by (11) and (12). Let Nlc and
Nhc denote the set of low cube and high cube containers, respectively. cpi1 and
cpi2 are respectively the low-cube and high-cube weight limit of the top slot for
container i ∈ N loaded in the bottom slot of platform p ∈ P , calculated using (1).
The doubling of 20 ft containers at the bottom is taken care of while calculating cpi1
and cpi2 by replacing using the sum of the weights of the two 20 ft containers. This
is a generic formulation to handle any combination of containers in the bottom
slot through linear constraints.

In addition to dimensional and weight restrictions, there are also a variety of
technical loading restrictions imposing or forbidding the loading of certain types of
containers on specific railcars or slots. For the sake of illustration, we use six types
of technical loading restrictions that have been derived for the North American
market, but note that these can be easily extended to a specific company policy
or regulations.

Constraints (13) state that containers i ∈ Ns1 ⊆ N can only be loaded on
railcars that have a certain minimum weight holding capacity DW . Containers
i ∈ Ns2 ⊆ N have restrictions (14) on which railcar in the sequence of railcars they
can loaded on. Fj is a pre-processed parameter that equals one if it is forbidden
to load containers i ∈ Ns2 on railcar j. Containers i ∈ Ns3 ⊆ N can be loaded
only on railcars with high weight capacity. For a given car j ∈ J , αj equals one if
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j can be used to load containers i ∈ Ns3 . Moreover let Uj be the maximum weight
limit of a single container i ∈ Ns3 that can be loaded on that car. Constraints (15)
ensure that a container i ∈ Ns3 is loaded on a railcar j with αj = 1, and gi does
not exceed Uj.

There are two types of stacking constraints. First, containers i ∈ Ns4 ⊆ N
cannot be loaded in the top slot (16). Second, containers i ∈ Ns5 ⊆ Ns4 ⊆ N
cannot be loaded in a top slot and cannot be double stacked (17).

Constraints (18) concern the storage of refrigerated containers that need a
source of electrical power. For each pair of containers belonging to the set Ns6

loaded into the train, the distance among the two should not exceed R consecutive
platforms on the train. Finally, expressions (19)-(22) define the domain of to the
decision variables.

5 Numerical results

We present two numerical studies. The first is designed to assess the importance
of containers-to-cars matching and center-of-gravity restrictions. The second one
is designed to assess how computational time varies with instances having different
characteristics.

Before presenting the numerical studies in more detail, we note that we have
implemented the data processing, the loading pattern generation and the solution
post processing in JAVA. All tests were run on an Intel(R) Core(TM) i5-5300U,
2.30 GHz CPU processor equipped with 24 GB RAM. The optimization model is
solved using a 32-bit version of the IBM ILOG CPLEX 12.6 solver, with a pre-
set computational time limit of 10 hours. The reported time only accounts for
the CPLEX solver CPU time, the computational time associated with the other
operations is negligible and loading patterns have been generated a priori.

5.1 Assessing the importance of containers-to-cars match-
ing and center-of-gravity restrictions

In order to isolate and measure the effect of containers-to-cars matching and center-
of-gravity restrictions we design a stylized experiment. It is based on a total of 396
instances, where we focus only on the main container and railcar characteristics,
such as length and weight. The goal is to show that the train capacity estimation
changes with respect to the instance composition. In the following, we first describe
the instance generation, and then we present the results.

In all instances we keep the train length fixed to 5, 000 ft (1.54 km). The
capacity in terms of number of slots can still vary since platforms have different
lengths. More precisely, we define four railcar scenarios: one or five platform cars

The Load Planning Problem for Double-Stack Intermodal Trains

CIRRELT-2016-68 13



with 40 or 53 ft platforms. The resulting train capacity is 250 40 ft slots or 200
53 ft slots (train length divided by platform length times two). For each railcar
scenario we choose one railcar type so that the set of loading patterns is the same
for all railcars in a given scenario.

We consider 18 different scenarios for the container sets. The number of con-
tainers in each set equals the number of slots on the train. They have different
characteristics in terms of mix of container sizes and weights. There are five dif-
ferent size mixes: 50 % 40 ft containers and 50 % 53 ft containers, 75 % 40 ft
containers and 25 % 53 ft containers and vice versa, 100% 40 ft and 100% 53
ft. The containers are assigned weights in three different ways, two deterministic
and one random. The deterministic cases represent favorable weight distributions,
i.e. when the maximum capacity can be used because there are no issues related
to the center of gravity. This is the case when either all containers have equal
weight, or half of the containers are light and half heavy. The random weights
are drawn from an uniform distribution in [8,000-62,000] lb, and [11,000-72,000]
lb (Wikipedia, 2016b), and we generate 20 instances for each size mix. We define
light and heavy to be the first and third quantile, respectively. The 18 different
container set scenarios are denoted S1–S18 and each scenario has 22 instances (20
random and 2 deterministic) so we solve in total 396 instances.

Tables 4 and 5 describe the results for instances with one and five platform
railcars, respectively. In both tables, the first two columns show the number of
loaded containers and the number of used railcars in the optimal solution. The
third column shows CPLEX solution time. Optimality gap is not reported because
all the instances are solved to optimality. Note that in case of random weights, we
report an average over the 20 instances.

The results show that the solution time is less than 200 seconds for one-platform
railcars, while it increases to a maximum of 935 seconds for five-platforms railcars.
This is due to the increased cardinality of sets of loading patterns Kj. In the case
of 40 ft one platform railcars, the maximum number of containers that can be
loaded, that is equal to the number of slots, is 250, but 53 ft containers can only
be loaded in the top slot because of the platform length. So, as long as there are
less than 125 53 ft containers in the instances (S1-S4 in Table 4), all slots can be
used under favorable weight settings (deterministic instances). In Table 4, S5 is
an example of scenario where the number of 53 ft containers exceeds the number
of top slots, and thus, also under favorable weight settings, some of the containers
cannot be loaded.

Due to loading patterns restrictions, fewer slots can be used on five-platform
railcars. Indeed, as described in Section 4.1, it is not possible to load 53 ft con-
tainers in the top slots on two or more contiguous 40 ft length platforms. This
can be seen in the results in Table 5 for S13 and S14. Regardless of the weights
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250 CONTAINERS AVAILABLE 125 ONE 40ft PLATFORM RAILCARS AVAILABLE

INSTANCE DESCRIPTION LOADED CONTAINERS USED RAILCARS SOLUTION TIME [sec]

S1 : 250 40ft containers
1) Containers same weights 250 125 17.8

2) Containers half low and half high weights 250 125 22.07
3) Containers random weights 250 125 46.3

S2: 200 40ft containers and 50 53ft containers
1) Containers same weights 250 125 14.61

2) Containers half low and half high weights 250 125 22.02
3) Containers random weights 244 122.3 51.54

S3: 150 40ft containers and 100 53ft containers
1) Containers same weights 250 125 11.21

2) Containers half low and half high weights 250 125 14.49
3) Containers random weights 238 119.5 76.0

S4: 125 40ft containers and 125 53ft containers
1) Containers same weights 250 125 10.22

2) Containers half low and half high weights 250 125 11.49
3) Containers random weights 234 117.45 200.82

S5: 100 40ft containers and 150 53ft containers
1) Containers same weights 200 100 9.28

2) Containers half low and half high weights 200 100 12.81
3) Containers random weights 200 100 35.62

200 CONTAINERS AVAILABLE 100 ONE 53ft PLATFORM RAILCARS AVAILABLE

INSTANCE DESCRIPTION LOADED CONTAINERS USED RAILCARS SOLUTION TIME [sec]

S6: 200 40ft containers
1) Containers same weights 200 100 8.10

2) Containers low and high weights 200 100 16.22
3) Containers random weights 200 100 15.63

S7: 125 40ft containers and 75 53ft containers
1) Containers same weights 200 100 9.69

2) Containers low and high weights 200 100 13.55
3) Containers random weights 200 100 23.47

S8: 75 40ft containers and 125 53ft containers
1) Containers same weights 200 100 9.45

2) Containers low and high weights 200 100 15.77
3) Containers random weights 200 100 28.07

S9: 0 40ft containers and 200 53ft containers
1) Containers same weights 200 100 9.84

2) Containers low and high weights 200 100 8.74
3) Containers random weights 200 100 27.09

Table 4: Importance of the matching problem and the center of gravity: number
of loaded containers, number of used railcars and solution time for one platform
railcars
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250 CONTAINERS AVAILABLE 25 FIVE 40ft PLATFORM RAILCARS AVAILABLE

INSTANCE DESCRIPTION LOADED CONTAINERS USED RAILCARS SOLUTION TIME [sec]

S10: 250 40ft containers
1) Containers same weights 250 25 111.69

2) Containers half low and half high weights 250 25 167.99
3) Containers random weights 250 25 178.14

S11: 200 40ft containers and 50 53ft containers
1) Containers same weights 250 25 126.59

2) Containers half low and half high weights 250 25 132.83
3) Containers random weights 233 23.75 935.88

S12: 150 40ft containers and 100 53ft containers
1) Containers same weights 250 25 119.32

2) Containers half low and half high weights 250 25 120.38
3) Containers random weights 219 23.6 764.72

S13: 125 40ft containers and 125 53ft containers
1) Containers same weights 200 25 116.75

2) Containers half low and half high weights 200 25 127.73
3) Containers random weights 200 25 331.79

S14: 100 40ft containers and 150 53ft containers
1) Containers same weights 175 25 113.67

2) Containers half low and half high weights 175 25 125.89
3) Containers random weights 175 25 329.88

200 CONTAINERS AVAILABLE 20 FIVE 53ft PLATFORM RAILCARS AVAILABLE

INSTANCE DESCRIPTION LOADED CONTAINERS USED RAILCARS SOLUTION TIME [sec]

S15: 200 40ft containers
1) Containers same weights 200 20 514.81

2) Containers low and high weights 200 20 539.24
3) Containers random weights 200 20 733.83

S16: 125 40ft containers and 75 53ft containers
1) Containers same weights 200 20 574.13

2) Containers low and high weights 200 20 636.86
3) Containers random weights 200 20 799.33

S17: 75 40ft containers and 125 53ft containers
1) Containers same weights 200 20 471.43

2) Containers low and high weights 200 20 844.02
3) Containers random weights 200 20 932.13

S18: 0 40ft containers and 200 53ft containers
1) Containers same weights 200 20 429.88

2) Containers low and high weights 200 20 513.44
3) Containers random weights 200 20 859.54

Table 5: Importance of the matching problem and the center of gravity: number
of loaded containers, number of used railcars and solution time for five-platform
railcars
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(deterministic instances), all available slots cannot be used because of the high
share of 53 ft containers. The different container weight settings clearly illustrate
that the maximum capacity of 40 ft railcars can only be reached under favorable
weight settings. In the case of random container weights when center-of-gravity
restrictions play a role, the results clearly indicate a drop in the average number of
loaded containers, even when the sizes match well. The 53 ft platform railcars are
more flexible because they can take 53 ft containers also in the bottom position.
Under all weight settings, it is possible to load all the containers. However, since
53 ft railcars are longer, there are only 200 slots compared to 250 of the 40 ft
platform railcars.

In order to load as many containers as possible, there is a trade-off between
using 53 ft versus 40 ft platforms and this trade-off depends on both the size of
the containers and their weights. For example, the 250 slots on 40 ft platforms can
only be used under the most favorable settings and, as the share of 53 ft containers
increases (in particular for the random weight setting), the actual capacity is closer
to 200 slots or even worse (S14).

This stylized numerical study shows that ignoring center-of-gravity restrictions
and the containers-to-cars matching may lead to an overestimation of the available
capacity of 40 ft railcars, and more in general, of the train.

5.2 Numerical results of computational time

In this section we present numerical results illustrating the computational time
required to solve realistic instances of varying size. We generate instances with
different characteristics by drawing railcars from the types available in the North
American fleet. Similar to the previous section, we also generate container sets
of varying size and where the containers have different characteristics. In the
following we present the instance generation in detail.

Figure 3 shows an overview of the instance generation process. We consider
three train lengths: 2,000 ft (0.6 km), 6,000 ft (1.8 km) and 10,000 ft (3 km).
We note that trains in North America may be longer than in other parts of the
world and 6,000 ft can already be considered long (Wikipedia, 2016). The length
of 10,000 ft is mainly included for the sake of comparison.

For each train length we generate 20 sequences of railcars by sampling from the
different railcar types. We use two different sampling protocols: simple random
(10 sequences) and stratified random (10 sequences). We classify railcars in the
North American fleet according to their flexibility in accommodating different
container sizes. We compute the latter for each railcar type as the average number
of loading patterns of each platform on the railcar. Figure 4 shows an histogram of
the share of railcar types having different values of the flexibility index. We note
that majority of the railcar types have a high value, which means that they can
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Figure 3: Overview of the instance generation process

load different sizes of containers in the slots. This implies that railcar sequences
generated by simple random sampling have a higher share of railcars with high
flexibility index value than the sequences generated by stratified sampling.

Figure 4: Share of North America railcar types with respect to the flexibility index

We now turn our attention to the sampling of containers. For each train length,
and for each railcar sequence, we consider four sets of containers. The size of
the sets is 1.5 times the number of slots in the railcar sequence which means
that it should be possible to achieve close to a 100% slot utilization. There are
two size mixes: one with only 20 ft and 40 ft containers and one with all sizes
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(20,40,45,48 and 53 ft). The containers are assigned a weight by drawing from
a weight distribution that is conditional on container size (same way as in the
previous section). In order to assess the influence of technical loading restrictions
(i.e. stacking problems) on the computational time, there are instances with and
without containers having such restrictions. In the case of restrictions, 5% of the
containers are randomly assigned one of technical loading restrictions defined in
Section 4.3.

In total we solve 240 instances (six railcar sequence scenarios with 10 sequences
each, and four container sets per railcar sequence). Table 6 presents the average
computational times. The slot utilization is not reported since, as expected, it is
close to 100 % for all instances.

The results show that we find an optimal solution for instances with short
trains (2,000 ft) in less than 24 seconds on average, for all scenarios. The stratified
random sampling contains a higher share of railcars with low flexibility index than
the other which results in longer computational time. The average computational
time is longer for instances having trains of 6,000 ft. Still, all instances can be
solved in less than 17 minutes on average. We note that also the very large
instances (10,000 ft), which are reported for the sake of comparison, can be solved
to optimality. The most complex setting, namely the one with containers having
all sizes and stacking restrictions, requires on average 3.5 hours. The cardinality of
the loading pattern set has an important impact on computational time. This can
clearly be seen by comparing the computational time for 20/40 ft size compared
to all container sizes.

Containers without Containers with
technical loading restrictions technical loading restrictions

Train length /
Railcar sampling protocol 20 and 40 ft All sizes 20 and 40 ft All sizes

2,000 ft
Random sampling 7.11 13.10 7.95 14.36
Stratified random sampling 11.97 21.20 12.92 24.74

6,000 ft
Random sampling 184.59 450.96 661.04 636.37
Stratified random sampling 209.15 576.12 377.63 1,077.98

10,000 ft
Random sampling 967.42 4,010.52 1,963.78 8,266.35
Stratified random sampling 1,653.16 4,217.13 2,755.56 13,254.41

Table 6: Average computational time in seconds

This numerical study shows that we can solve realistic size instances to opti-
mality in reasonable computational time, even for very long trains. In this context
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it is worth mentioning that that the train loading can be decomposed into smaller
load planning problems. Indeed, railcars are typically grouped according to inter-
mediate destinations, so-called blocks. The load planning problem can hence be
solved by block and not by train. For more details about the blocking problem we
refer to e.g. Barnhart et al. (2000), Bodin et al. (1980), Newton et al. (1998).

6 Conclusions and future research directions

In this paper we studied the load planning problem for double-stack intermodal
trains. Given a set of containers stored in a terminal and a departing train, the
objective is to select the optimal set of containers to load and the optimal way of
loading them, using the maximum of the available capacity. Previous studies in the
literature either do not address the load planning problem for double-stack trains or
make simplifying assumptions that may lead to load plans that violate important
loading rules. The problem related to double-stack trains is challenging because
the load plan must respect a number of loading rules that depend on container and
railcars characteristics such as containers-to-cars matching and center-of-gravity
restrictions.

We formulated an ILP model and made a number of contributions. First, we
proposed a general methodology that can deal with double- or single-stack railcars
with arbitrary loading patterns. The patterns account for loading dependencies
between the platforms on a given railcar. Second, we modelled center-of-gravity
restrictions, stacking rules and a number of technical loading restrictions that are
associated with certain types of containers and/or goods.

We presented two numerical studies showing, on the one hand, that we can
solve realistic size instances in reasonable time using a commercial ILP solver,
and on the other hand, that failing to account for containers-to-cars matching as
well as center-of-gravity restrictions may lead to an overestimation of the available
train capacity. The results showed that the computational time varies with the
size and characteristics of the instances. For example, it is more time consuming
to solve instances with five platform railcars and several container sizes compared
to fewer platforms and only 20 and 40 ft containers. This is due to the cardinality
of the sets of loading patterns. It is also more time consuming to solve instances
with containers having technical loading restrictions than those without.

The proposed methodology can be used in decision-aid tools for terminal man-
agers in charge of the load planning. It can also be used in a more tactical or
strategic planning setting to assess railcar fleet management decisions. We also
note that the model can be used to plan several trains ahead under perfect infor-
mation, similar to Lai et al. (2008b).

There are several possible directions for future research. The model can be ex-
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tended to consider handling costs in the yard, for example, by selecting containers
according to their location in stacks. Furthermore, several aspects of the problem
may be subject to uncertainty. For example, the availability and characteristics
of containers and railcars. Modelling this uncertainty is another topic of future
research.
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of trains in intermodal transportation. OR Spectrum, 36(3):631–668.

The Load Planning Problem for Double-Stack Intermodal Trains

CIRRELT-2016-68 21

https://www.aar.com/standards/DPLS-content title=Closed Car Loading Guide Part I
https://www.aar.com/standards/DPLS-content title=Closed Car Loading Guide Part I
https://www.aar.org/StatisticsAndPublications/Publications?title=Loading Capabilities Guide
https://www.aar.org/StatisticsAndPublications/Publications?title=Loading Capabilities Guide


Bruns, F. and Knust, S. (2012). Optimized load planning of trains in intermodal
transportation. OR Spectrum, 34(3):511–533.

Burriss, C. (2003). Eastbound statistical analysis: slot utilization and mixed cars.
In OASIS Users’ Conference, Austin, TX.

Carlo, H. J., Vis, I. F., and Roodbergen, K. J. (2014). Transport operations in
container terminals: Literature overview, trends, research directions and classi-
fication scheme. European Journal of Operational Research, 236(1):1–13.

CBRE Research (2015). 2015 North America Ports and Logistics Annual Re-
port. available at: http://www.cbre.us/research/2015-US-Reports/Pages/
2015-North-America-Ports-Logistics-Annual-Report.aspx (Accessed on
September 25, 2016).

Corry, P. and Kozan, E. (2006). An assignment model for dynamic load planning
of intermodal trains. Computers & Operations Research, 33(1):1–17.

Corry, P. and Kozan, E. (2008). Optimised loading patterns for intermodal trains.
OR Spectrum, 30(4):721–750.

Crainic, T. G. and Kim, K. H. (2007). Intermodal transportation. In Barnhart, C.
and Laporte, G., editors, Handbooks in Operations Research and Management
Science, volume 14, chapter 8, pages 467–537. Elsevier.

Feo, T. A. and Gonzalez-Velarde, J. L. (1995). The intermodal trailer assignment
problem. Transportation Science, 29(4):330–341.

Heggen, H., Braekers, K., and Caris, A. (2016). Optimizing train load planning:
Review and decision support for train planners. In International Conference on
Computational Logistics, pages 193–208. Springer.

International Association of Ports and HarborsA (2015). World Port Data
2015. available at: http://www.iaphworldports.org/statistics (Accessed
on September 20, 2016).
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