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Abstract. Stochastic programming problems (SPPs) generally lead to large-scale intractable 
programs if the number of possible outcomes for the random parameters is large and/or if the 
problem has many stages. A way to address those problems at lower computational cost is 
provided by the scenario-tree generation methods, which construct deterministic approximate 
problems from a selected finite subset of outcomes (called scenarios). When considering a general 
SPP, the number of scenarios required to keep the optimal-value error within a given range 
generally grows exponentially with the number of random parameters and stages, which may lead 
to approximate problems that are themselves intractable. To overcome this fast growth of 
complexity, there is a need to look for scenario-tree generation methods that are tailored to specific 
classes of SPPs. In this paper, we provide a theoretical basis to develop such methods by studying 
the optimal-value error in the context of a general SPP. Specifically, we derive two main results: 
an error decomposition and an error upper bound. The error decomposition shows the importance 
of taking into account the recourse functions when designing scenario trees. The error upper 
bound, which can be written as a sum of worst-case integration errors in some function sets, 
provides the cornerstone to a new approach that will consist in identifying classes of SPPs based 
on properties of their recourse functions and in designing scenario trees suitable for them. 
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1 Introduction

In many stochastic programming problems (SPPs), the uncertain parameters are modeled by ran-
dom variables that take a large number of values, possibly infinitely many if their probability
distributions are continuous. SPPs may also have a large number of stages, as in the long-term
horizon planning; see Hobbs [13] for a discussion on long-term planning in energy. Such problems
are found in various fields of application, including logistic, finance and energy; we refer to the
books of Wallace and Ziemba [37], Bertocchi et al. [3] and Kovacevic et al. [18] for an overview on
applications in stochastic programming. For a presentation on the theory, we refer to the books of
Prékopa [29], Ruszczyński and Shapiro [32] and Birge and Louveaux [5].

Such SPPs are in general highly computationally challenging to solve exactly, as shown for
example in the works of Dyer and Stougie [7] and Hanasusanto et al. [9]. A way to address them
at smaller computational cost consists in constructing a deterministic approximate problem by
discretizing the random variables to obtain a finite subset of realizations. These realizations are
called scenarios and this solution approach is known as the scenario-tree generation. The scenario-
tree generation is subject to a trade-off. One the one hand, the scenario tree must contain a number
of scenarios small enough so that the deterministic approximate problem can be solved efficiently
by optimization tools. One the other hand, this number must be large enough to provide accurate
estimates of the optimal value of the original SPP. This trade-off is fairly easy to satisfy if the
problem has a small number of stages and random variables. However, as the number of stages and
random variables increase, it becomes more and more difficult to obtain accurate estimates of the
optimal value in a reasonable computational time. As a result, an important challenge in stochastic
programming is the design of efficient scenario-tree generation methods for SPPs with many stages
and/or random variables.

Many methods have been proposed to generate scenarios and scenario trees, we refer in particular
to the following works: Shapiro and Homem-de-Mello [35] and Shapiro [33] on Monte Carlo sampling;
Pennanen and Koivu [24], Koivu [17] and Leövey and Römisch [19] on quasi-Monte Carlo methods
and integration quadrature rules; Høyland and Wallace [16] and Høyland et al. [15] on moment
matching methods; Pflug [25] and Pflug and Pichler [28] on optimal quantization methods; Dupačová
et al. [6], Heitsch and Römisch [10] and Growe-Kuska et al. [8] on scenario reduction methods. Each
scenario-tree generation method is based on particular theoretical or practical justifications. For
instance, Monte Carlo and quasi-Monte Carlo for two-stage SPPs are justified by several statistical
results on the rate of convergence and bound on the optimal-value error; see Shapiro and Homem-
de-Mello [36], Homem-de-Mello [14], Mak et al. [20] and Bastin et al. [1]. For multistage SPPs,
asymptotic consistency of the discretization has been studied first by Olsen [21], and more recently
by Pennanen [22] who has developed conditions under which the optimal value and the optimal
solutions of the deterministic approximate problem converge toward those of the SPP. The optimal-
value error has also been studied using probability metrics, which measure the distance between
the true probability distribution of the random variables and its scenario-tree approximation sitting
on finitely many scenarios; see Pflug and Pichler [26] for a review on probability metrics. Bounds
on the optimal-value error by means of probability metrics have been obtained for instance in the
works of Heitsch and Römisch [11] and Pflug and Pichler [27]. The derivation relies on several
stability results, we refer to the works of Römisch [31] and Heitsch et al. [12] for a detailed analysis
on stability.

As of today, the use of scenario-tree generation methods for SPPs with many stages or random
variables is limited by the fast growth of the scenario-tree size. This is observed numerically and
was proved in the case of Monte Carlo sampling for multistage SPPs by Shapiro [34]. We think
that this limitation arises because scenario trees are often not suitable for the SPP they intend
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to solve. Indeed, the current methods address any SPP the same way by focusing mostly on the
discretization quality of the random variables, with little or no regard to the objective function and
the constraints that characterize the problem. However, it is reasonable to doubt that a particular
way to generate scenario trees can suit most SPPs. For this reason, we think that it is necessary to
identify classes of problems (i.e., problems satisfying similar properties) and to develop scenario-tree
generation methods tailored to each class. Additionally, the methods must include a way to look
for suitable tree structures. This structure is often considered by default with regular branching
coefficients, which explains why scenario-tree sizes become too large when the problem has many
stages.

Our motivation for doing this work is to find how to build scenario trees better suited for SPPs,
and therefore to broaden the applicability of scenario-tree generation methods to problems with
many stages and random parameters. With that goal in mind, we study the optimal-value error
that results from approximately solving a SPP with a scenario-tree. Specifically, we derive two main
results: an error decomposition and an error upper bound, both written as a sum of errors made
at each node of the scenario tree. The error decomposition shows how a particular discretization
with a scenario tree affects the optimal-value error. The error bound provides a figure of merit to
guide the generation of scenario trees that keep the optimal-value error as small as possible. These
results are obtained under general assumptions on the SPP and the scenario tree. In particular,
we do not rely on a specific way to generate the scenarios and we do not impose a specific type of
structure for the tree.

The remainder of this paper is organized as follows. Section 2 contains the preliminaries of the
two main results. In particular, Section 2.1 introduces the notation for the SPP, along with five
conditions that the problem must satisfy to ensure that the two main results hold. Section 2.2
introduces a more concise notation for the quantities described in Section 2.1, which will simplify
the mathematical developments. Section 2.3 introduces the notation for the scenario tree and the
deterministic approximate problem. Section 3 and 4 contain the error decomposition and the error
bound, respectively. Finally, Section 5 concludes the paper.

2 Preliminaries

We consider a stochastic programming problem with decisions made at integer time stages t ranging
from 0 to T ∈ N∗, where N∗ stands for the positive integers. Multistage problems correspond to the
case T ≥ 2, while two-stage problems correspond to T = 1. For the sake of conciseness, all results
in this paper are formulated as if T ≥ 2, but the reader can easily deduce the corresponding results
for two-stage problems.

2.1 Stochastic programming problem formulation

Stochastic programming problems deal with random parameters that are represented by a discrete-
time stochastic process of the form ξ := (ξ1, . . . , ξT ), defined on a probability space (Ω,A,P).
The random vector ξt contains the random parameters revealed during period (t − 1, t); it has a
probability distribution with support Ξt ⊆ Rdt , where dt ∈ N∗ can be arbitrary large. Throughout
this paper, random vectors are distinguished from their realizations by writing the former in bold
font. We denote by Ξ and Ξ..t the supports of ξ and ξ..t := (ξ1, . . . , ξt), respectively, and by Ξt(ξ..t−1)
the conditional support of ξt given the event {ω ∈ Ω | ξ..t−1(ω) = ξ..t−1} ∈ A. We assume no specific
probability distribution for the stochastic process ξ.

The decision vector yt at stage t ∈ {0, . . . , T} is said to satisfy the constraints of the problem if
it belongs to the set Yt ⊆ Rst of feasible decision vectors, where st ∈ N∗. For the sake of clarity, and
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without loss of generality, we assume throughout this paper that st = s and dt = d for all t. When
t ≥ 1, we also denote the set of feasible decision vectors by Yt(y..t−1; ξ..t) to emphasize that it may
depend on the sequence of decisions y..t−1 := (y0, . . . , yt−1) ∈ Rst and on the realization ξ..t ∈ Ξ..t
up to stage t. We consider sets of feasible decision vectors that can be represented as the solutions
of finitely many equality and inequality constraints, i.e., in the form given by Condition 1.

Condition 1. (i) The decision vector y0 belongs to Y0 if and only if y0 satisfies g0,i(y0) = 0 for
i ∈ I0 and g0,j(y0) ≤ 0 for j ∈ J0, where g0,i is a continuous function for all i ∈ I0 ∪ J0 and I0, J0

are some finite index sets. (ii) For each t ∈ {1, . . . , T} the following holds: the decision vector yt
belongs to Yt(y..t−1; ξ..t) if and only if yt satisfies gt,i(y..t; ξ..t) = 0 for i ∈ It and gt,j(y..t; ξ..t) ≤ 0 for
j ∈ Jt, where gt,i is a Carathéodory integrand for all i ∈ It ∪Jt and It, Jt are some finite index sets.

The functions gt,i define the constraints on the decisions; we refer the reader to the book of Rock-
afellar and Wets [30, Chapter 14], in particular Example 14.29, for the definition of Carathéodory
integrands.

We denote by Zt(ξ..t) the set of all feasible decision sequences up to stage t ∈ {1, . . . , T} and for
a realization ξ..t:

Zt(ξ..t) = {y..t ∈ Rs(t+1)
∣∣ y..t−1 ∈ Zt−1(ξ..t−1), yt ∈ Yt(y..t−1; ξ..t)}, (1)

and Z0 = Y0 at stage 0. Note that the set Zt(ξ..t) is the graph of the multivalued function
Zt−1(ξ..t−1) 3 y..t−1 7→ Yt(y..t−1; ξ..t). Therefore, Condition 1 implies that the sets Z0 and Zt(ξ..t)
are closed for every ξ..t ∈ Ξ..t, and that the multivalued function ξ..t 7→ Zt(ξ..t) is measurable; see
Rockafellar and Wets [30, Theorem 14.36].

We also require a boundedness condition on Z0 and Zt(ξ..t); together with Condition 1, it ensures
that Z0 and Zt(ξ..t) are compact sets for every ξ..t.

Condition 2. The set Z0 is bounded in Rs. For every t ∈ {1, . . . , T} and every ξ..t ∈ Ξ..t, the set
Zt(ξ..t) is bounded in Rs(t+1).

We restrict our attention to stochastic programming problems that have a non-empty set of
feasible decision vectors and a relative complete recourse at every stage, as shown in Condition 3.

Condition 3. The set Y0 is non-empty. The set Yt(y..t−1; ξ..t) is non-empty for every t ∈ {1, . . . , T},
every ξ..t ∈ Ξ..t and every y..t−1 ∈ Zt−1(ξ..t−1).

We introduce a total revenue function q : Rs(T+1) × Ξ → R, whose value q(y; ξ) represents
the revenues obtained from stage 0 to T for the sequence of decisions y = (y0, . . . , yT ) and the
realization ξ. The stochastic dynamic programming equations (see Bellman [2] and Bertsekas [4])
for this stochastic programming problem are

Q̂t(y..t−1; ξ..t) := sup
yt∈Yt(y..t−1;ξ..t)

Q̃t(y..t; ξ..t), ∀t ∈ {0, . . . , T}, (2)

Q̃t(y..t; ξ..t) := E[Q̂t+1(y..t; ξ..t+1) | ξ..t = ξ..t], ∀t ∈ {0, . . . , T − 1}, (3)

where for t = T the equation (2) is initialized by setting Q̃t(y..t; ξ..t) := q(y; ξ), and for t = 0 we
remove the arguments y..t−1 and ξ..t, i.e., Q̃t(y..t; ξ..t) = Q̃0(y0) and Q̂t(y..t−1; ξ..t) = Q̂0. We refer to
the left-hand sides of (2) and (3) as the stage-t recourse function and the stage-t expected recourse
function, respectively.

To ensure that the (expected) recourse functions are well-defined, we add the following two
conditions on the total revenue function.
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Condition 4. The function q(·; ξ) is upper semi-continuous for every ξ ∈ Ξ and q(·; ·) is measurable
jointly in (y, ξ) (i.e., with respect to the Borel sigma-algebra B(Rs(T+1) × RdT )).

Condition 4 implies that the total revenue function is a normal integrand ; see [30, Defini-
tion 14.27, Corollary 14.34].

Condition 5. There exists a measurable function h : Ξ → R such that |q(y; ξ)| ≤ h(ξ) for all
ξ ∈ Ξ and all y ∈ ZT (ξ), and h satisfies E[|h(ξ)|] < +∞ and E[|h(ξ)| | ξ..t = ξ..t] < +∞ for all
t ∈ {1, . . . , T − 1} and all ξ..t ∈ Ξ..t.

Note that Condition 5 requires that the integrability of h(ξ) conditional to ξ..t = ξ..t holds for
any ξ..t ∈ Ξ..t and not almost everywhere on Ξ..t. The reason for this is that we want the stage-t
(expected) recourse functions to be defined everywhere on Ξ..t. This will guarantee that the node
errors and the subtree errors, introduced in Section 3, are well-defined even if the scenarios are
chosen in a non-random fashion.

We shall show now that the five conditions above guarantee the existence of optimal decision
vectors at every stage of the problem and the finiteness of the (expected) recourse functions. We do
so by proving recursively, from stage T to 0, the existence of optimal solutions for the optimisation
problem at the right-hand side of (2). In the following, we use the notation δC(·) for the function
defined as δC(x) = 0 if x ∈ C and δC(x) = −∞ otherwise. Through this notation, we can express
the fact that the supremum of a real-valued function f over a set C ⊆ Rn is written equivalently as
the supremum of the extended-real-valued function f + δC over Rn; see [30, Chapter 1] for detailed
developments on extended real analysis.

The total revenue function (y, ξ) 7→ Q̃T (y; ξ) = q(y; ξ) is a finite-valued normal integrand by
Condition 4. It follows from this, and from the condition of measurability and compactness of ZT (ξ),
that (y, ξ) 7→ Q̃T (y; ξ)+δZT (ξ)(y) is a normal integrand and, for each ξ ∈ Ξ, y 7→ Q̃T (y; ξ)+δZT (ξ)(y)
is level-bounded in yT locally uniformly in y..T−1; see [30, Definition 1.16, Example 14.32]. Thus,
the stage-T recourse function, which takes the form

Q̂T (y..T−1; ξ) = sup
yT∈Rs

{Q̃T (y..T−1, yT ; ξ) + δZT (ξ)(y..T−1, yT )}, (4)

is also a normal integrand; see [30, Proposition 14.47]. Moreover, let ξ ∈ Ξ and let us consider
the following two cases: (i) If y..T−1 ∈ ZT−1(ξ..T−1), then ZT (ξ) 6= ∅, and hence the supremum in
(4) is attained, Q̂T (y..T−1; ξ) is finite and an optimal solution y∗T =: x∗T (y..T−1; ξ) exists, where we
introduce the notation x∗T (y..T−1; ξ) to emphasize that it depends on y..T−1 and ξ; (ii) If y..T−1 6∈
ZT−1(ξ..T−1), then the supremum in (4) is −∞, and this value is consistent with the fact that any
such y..T−1 is not a sequence of feasible decisions. Therefore, for every ξ ∈ Ξ we have

Q̂T (y..T−1; ξ)

{
∈ R if y..T−1 ∈ ZT−1(ξ..T−1);
= −∞ otherwise.

(5)

We shall prove now that the stage-(T − 1) expected recourse function

Q̃T−1(y..T−1; ξ..T−1) = E[Q̂T (y..T−1; ξ) | ξ..T−1 = ξ..T−1], (6)

is a normal integrand, which will allow the above arguments to be repeated at stage T − 1, and
recursively to stage 0. Let ξ..T−1 ∈ Ξ..T−1 and let us consider the following two cases: (i) If
y..T−1 ∈ ZT−1(ξ..T−1), then it follows from Condition 5 and an application of Lebesgue’s dominated
convergence theorem that Q̃T−1( · ; ξ..T−1) is finite-valued and upper semi-continuous at y..T−1; (ii)
If y..T−1 6∈ ZT−1(ξ..T−1), then it follows from (5) that Q̂T (y..T−1; ξ..T−1, ξT ) = −∞ for all ξT ∈
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ΞT (ξ..T−1), and hence Q̃T−1(y..T−1; ξ..T−1) = −∞. We deduce from (i)-(ii) that Q̃T−1( · ; ξ..T−1) is
upper semi-continuous on RsT for every ξ..T−1 ∈ Ξ..T−1. Since Q̃T−1 is also measurable jointly in
(y..T−1; ξ..T−1), we conclude that Q̃T−1 is a normal integrand; see [30, Corollary 14.34].

Finally, by carrying out the above arguments recursively to stage 0, we conclude that, for every
t ∈ {0, . . . , T}, every ξ..t ∈ Ξ..t and every y..t ∈ Zt(ξ..t), an optimal decision x∗t (y..t−1; ξ..t) exists and
the values Q̂t(y..t−1; ξ..t) and Q̃t(y..t; ξ..t) are finite (with the appropriate change of arguments for
t = 0).

2.2 Decision policy formulation

For the sake of conciseness, it is more convenient for future developments to introduce a single
notation for the stage-t (expected) recourse functions defined in (2)-(3). Previously, we introduced
x∗t (y..t−1; ξ..t) to denote the stage-t optimal decision vector when the realization is ξ..t and the
decisions prior to t are y..t−1. We can generalize this notation to represent any feasible decision at
stage t as a function of ξ..t and y..t−1. The development below formalizes this approach and shows
the link with the previous formulation.

We model a decision policy x := (x0, . . . , xT ) as a collection of a decision vector x0 ∈ Rs and
several decision functions x1, ..., xT such that the value xt(y..t−1; ξ..t) specifies the stage-t decision.
The fact that xt does not depend on future information is known as the non-anticipativity condition.
Feasibility conditions are now written in terms of function sets: the set of all stage-t feasible decision
functions, denoted by Xt, is defined as

X1 = {x1 : Z0 × Ξ1 → Rs | ∀ξ1 ∈ Ξ1, ∀y0 ∈ Z0, x1(y0; ξ1) ∈ Y1(y0; ξ1)}, (7)

and for each t ∈ {2, . . . , T},

Xt =
{
xt :

⋃
ξ..t∈Ξ..t

(Zt−1(ξ..t−1)× {ξ..t})→ Rs
∣∣ (8)

∀ξ..t ∈ Ξ..t, ∀y..t−1 ∈ Zt−1(ξ..t−1), xt(y..t−1; ξ..t) ∈ Yt(y..t−1; ξ..t)
}
.

At stage 0, we have X0 = Z0 (X0 is a vector set). The set of all feasible decision policies, denoted by
X , is given by X = ΠT

t=0Xt, where ΠT
t=0 denotes the Cartesian product. The link between decision

policies and decision vectors is as follows: for a decision policy x ∈ X and a realization ξ ∈ Ξ, the
associated decision sequence y = (y0, . . . , yT ) is given by

yt =

{
x0 if t = 0;
xt(y..t−1; ξ..t) if t ∈ {1, . . . , T}.

(9)

We introduce the (generalized) stage-t recourse function Qt : X × Ξ..t → R, for every t ∈
{1, . . . , T}, whose value Qt(x; ξ..t) represents the conditional expectation of the total revenues ob-
tained by implementing the policy x ∈ X given the realization ξ..t ∈ Ξ..t. At stage 0, we define
Q0 : X → R. The recourse function at stage t ∈ {0, . . . , T − 1} is obtained from the recourse
function at stage t+ 1 by the relation

Qt(x; ξ..t) = E
[
Qt+1(x; ξ..t+1)

∣∣ ξ..t = ξ..t
]
, ∀x ∈ X , ∀ξ..t ∈ Ξ..t, (10)

where for t = 0 we remove the argument ξ..t, i.e., Q0(x) = E
[
Q1(x; ξ1)

]
, and the relation is initialized

at stage T by setting QT (x; ξ) = q(y; ξ) with y given by (9).
In this setting, an optimal decision policy for the stochastic programming problem is a decision

policy x∗ = (x∗0, . . . , x
∗
T ) ∈ X satisfying the following inequalities:
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• at stage T :
QT (x..T−1, x

∗
T ; ξ) ≥ QT (x..T−1, xT ; ξ), ∀ξ ∈ Ξ, ∀x ∈ X ; (11)

• at stage t ∈ {1, . . . , T − 1}:

Qt(x..t−1, x
∗
t , x
∗
t+1..; ξ..t) ≥ Qt(x..t−1, xt, x

∗
t+1..; ξ..t), ∀ξ..t ∈ Ξ..t, ∀x..t ∈ Πt

i=0Xi; (12)

• at stage 0:
Q0(x∗0, x

∗
1..) ≥ Q0(x0, x

∗
1..), ∀x0 ∈ X0, (13)

where we use the shorthand x..t := (x0, . . . , xt) and x∗t.. := (x∗t , . . . , x
∗
T ). The value Q0(x∗) is the

optimal value of the stochastic programming problem.
Intuitively, the inequalities (11)-(13) mean the following: when using x∗t+1.. to make deci-

sions at stages t + 1 to T , the stage-t decision function x∗t is optimal for the function xt 7→
Qt(x..t−1, xt, x

∗
t+1..; ξ..t) regardless of the arbitrary policy x..t−1 ∈ Πt−1

i=0Xi used to make decisions
at stages 0 to t− 1.

It follows from the five conditions introduced in Section 2.1 that both sides of the inequalities
(11)-(13) are well-defined and finite-valued for any feasible policy and any random realization.

2.3 Scenario-tree formulation

The optimal value Q0(x∗) and the optimal policy x∗ of the stochastic programming problem are not
readily available in general. The scenario-tree approach to estimate Qt consists in approximating
the right-hand side of (10) as a weighted average of the values of Qt+1 for a selection of realizations
of ξt+1. In turn, Qt+1 is approximated in terms of Qt+2, and this recursive discretization scheme is
carried out to stage T , where the values of QT are computed directly from the total revenue function
q. A tree structure naturally arises from this scheme, in which sibling nodes at stage t+ 1 represent
the discrete values of Qt+1 whose weighted average approximates the value of Qt, represented by
their common parent node at stage t. The remainder of this section describes the scenario-tree
formulation, the corresponding decision functions and the deterministic approximate problem.

The scenario tree is a rooted tree structure T = (N , E), with N the (finite) node set, E the
edge set and n0 the root node. The structure is such that T edges separate the root from any
of the tree leaves. We introduce the notation C(n), a(n) and t(n) to denote, respectively, the set
of children nodes of n (the node(s) linked to n at the next stage), the ancestor node of n (the
node linked to n at the previous stage) and the stage of n. We also denote N ∗ := N \ {n0} and
Nt := {n ∈ N | t(n) = t}.

Every node n ∈ N ∗ of the scenario tree carries a positive weight wn > 0 and a discretization
point ζn of ξt(n). The latter satisfies

ζn ∈

{
Ξ1 if n ∈ N1;
Ξt(n)(ζ ..a(n)) if n ∈ N ∗ \ N1,

(14)

where ζ ..a(n) denotes the collection of all discretization points on the path from n0 to a(n), i.e.,
ζ ..a(n) := (ζa

t(n)−1(n), . . . , ζa
2(n), ζa(n)) with ak(n) the k-th ancestor node of n (the node linked to

n at the k-th previous stage). The value wn represents the weight of node n with respect to its
sibling nodes. We also define the absolute weight Wn of node n ∈ N , which represents its weight
with respect to the whole scenario tree:

Wn =

{
1 if n = n0;
wnwa(n) . . . wa

t(n)−1(n) if n ∈ N ∗.
(15)
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The feasible decision functions for the deterministic approximate problem are defined in a way
similar to (7)-(8): the set of all stage-t feasible decision functions for the approximate problem,
denoted by X̂t, is given by

X̂1 =
{
x1 : Z0 × {ζn |n ∈ N1} → Rs

∣∣ ∀n ∈ N1, ∀y0 ∈ Z0, x1(y0; ζn) ∈ Y1(y0; ζn)
}
, (16)

and for each t ∈ {2, . . . , T},

X̂t =
{
xt :

⋃
n∈Nt

(Zt−1(ζ ..a(n))× {ζ ..n})→ Rs
∣∣ (17)

∀n ∈ Nt, ∀y..t−1 ∈ Zt−1(ζ ..a(n)), xt(y..t−1; ζ ..n) ∈ Yt(y..t−1; ζ ..n)
}
.

At stage 0, we have X̂0 = Z0 (hence X̂0 = X0). The set of all feasible decision policies, denoted by
X̂ , is given by X̂ = ΠT

t=0X̂t.
We emphasize that in a general setting there is no inclusion relation between the sets Xt and X̂t,

because Xt contains functions defined on Ξ..t, whereas the functions in X̂t are defined on {ζ ..n |n ∈
Nt}. The set {ζ ..n |n ∈ Nt} is a strict subset of Ξ..t whenever the scenario tree does not include
all realizations of the stochastic process. It is also important to note that a decision policy x ∈ X
carries more information than a decision policy x′ ∈ X̂ . Indeed, we can use x to make decisions in
the deterministic approximate problem, but we cannot use x′ to make decisions in the stochastic
programming problem. This is true in general, however, a subtlety arises when the stage-t realization
ξ..t coincides with a discretization sequence ζ ..n for some n ∈ Nt. In that case, any decision policy
x′..t ∈ Πt

i=0X̂i can be used to make decisions at stages 0 to t in the stochastic programming problem.
This leads us to extend the domain of definition of the stage-t recourse function Qt( · ; ξ..t) to include
this particular case; the new definition is

Qt( · ; ξ..t) :

{
Πt
i=0(Xi ∪ X̂i)×ΠT

i=t+1Xi → R if ξ..t = ζ ..n for some n ∈ Nt;
X → R otherwise.

(18)

At stage 0, we still have Q0 : X → R.
The scenario tree provides estimators for the recourse functions (10). The node-n estimator of

the stage-t(n) recourse function Qt(n)(x; ζ ..n) is denoted by Q̂n(x) and is computed recursively from
the estimators at node m ∈ C(n) by

Q̂n(x) =
∑

m∈C(n)

wm Q̂m(x), ∀n ∈ N \ NT , ∀x ∈ ΠT
t=0(Xt ∪ X̂t). (19)

At node n ∈ NT the relation is initialized by setting Q̂n(x) = q(y; ζ ..n), where y is obtained from
the policy x and the scenario ζ ..n by (9).

We emphasize that our formulation of the scenario tree estimators is general, since we do not rely
on a specific way to obtain the tree structure, the discretization points and the weights. Moreover,
we do not require that the weights wm in (19) sum to one. This generality allows us to cover
numerous ways to generate scenario trees. For instance, the fact that the weights need not sum to
one can account for the use of importance sampling or quadrature rules methods; see, e.g., Shapiro
[33] and Pennanen [23]. A well-known particular case of the scenario-tree estimator is the so-called
sample average approximation, which is obtained from (19) by setting wn = 1/|C(a(n))| and by
getting ζn through a Monte Carlo sampling method. As a matter of fact, all scenario-tree generation
methods cited in Section 1 can be described using the above formulation.

The existence of an optimal decision policy for the deterministic approximate problem fol-
lows from the same arguments as in Section 2.1. This optimal decision policy, denoted by x̂ =
(x̂0, . . . , x̂T ) ∈ X̂ , satisfies the discrete counterpart of (11)-(13):
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• at stage T :

Q̂n(x..T−1, x̂T ) ≥ Q̂n(x..T−1, xT ), ∀n ∈ NT , ∀x ∈ ΠT
t=0(Xt ∪ X̂t); (20)

• at stage t ∈ {1, . . . , T − 1}:

Q̂n(x..t−1, x̂t, x̂t+1..) ≥ Q̂n(x..t−1, xt, x̂t+1..), ∀n ∈ Nt, ∀x..t ∈ Πt
i=0(Xi ∪ X̂i); (21)

• at stage 0:
Q̂n0(x̂0, x̂1..) ≥ Q̂n0(x0, x̂1..), ∀x0 ∈ X̂0. (22)

The value Q̂n0(x̂) is the optimal value of the deterministic approximate problem; it is the estimator
of Q0(x∗) and the value Q̂n0(x̂)−Q0(x∗) is what we refer to as the optimal-value error. It follows
from the five conditions in Section 2.1 that both sides of (20)-(22) are well-defined and finite-valued
for any feasible decision policy and any node in the scenario tree.

We end this section by a remark on two cases of equality between the recourse functions and its
estimators.

Remark 2.1. Since the stage-T recourse function and its estimator at any node n ∈ NT are both
computed directly from the total revenue function, we have that

Q̂n(x) = QT (x; ζ ..n), ∀n ∈ NT , ∀x ∈ ΠT
t=0(Xt ∪ X̂t). (23)

Another case of equality is obtained by noticing that the inequality (11) applied at ξ = ζ ..n, for any
n ∈ NT , provides the same optimality condition than (20). Consequently, the decision functions
x̂T (·; ζ ..n) and x∗T (·; ζ ..n) coincide, and hence

Q̂n(x..T−1, x̂T ) = QT (x..T−1, x
∗
T ; ζ ..n), ∀n ∈ NT , ∀x..T−1 ∈ ΠT−1

t=0 (Xt ∪ X̂t). (24)

3 Decomposition of the scenario-tree optimal-value error

The main result of this section is Theorem 3.5, which provides a node-by-node decomposition of
the scenario-tree optimal-value error |Q̂n0(x̂)−Q0(x∗)|.

We start by introducing the concepts of node errors and of subtree errors. We see from the
stochastic dynamic programming equations (2)-(3) that the optimal-value error results from several
errors made by approximating the right-hand sides of (2) and (3), alternatively. We call node
optimization error and node discretization error the errors made by approximating (2) and (3),
respectively, at a particular node in the scenario-tree. Their definitions are given explicitly below,
by means of the decision policy formulation of Section 2.2.

Definition 3.1 (Node optimization error). For each stage t ∈ {1, . . . , T − 1}, we define the opti-
mization error Enopt(x..t−1) at node n ∈ Nt and for a decision policy x..t−1 ∈ Πt−1

i=0(Xi ∪ X̂i) as

Enopt(x..t−1) = Qt(x..t−1, x̂t, x
∗
t+1..; ζ

..n)−Qt(x..t−1, x
∗
t , x
∗
t+1..; ζ

..n). (25)

At the root node, the optimization error is

En0
opt = Q0(x̂0, x

∗
1..)−Q0(x∗0, x

∗
1..). (26)
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The optimization error is always nonpositive (see the optimality conditions (11)-(13)).
The node-n optimization error measures the error on the stage-t(n) recourse function (2), for

ξ..t(n) = ζ ..n, made by using at this stage a decision function that is optimal for the deterministic
approximate problem instead of the optimal decision function of the stochastic programming prob-
lem. We do not define the node optimization error at stage T , because its value would be zero for
any n ∈ NT (see Remark 2.1).

Definition 3.2 (Node discretization error). For each stage t ∈ {0, . . . , T − 1}, we define the dis-
cretization error Endisc(x..t) at node n ∈ Nt and for a decision policy x..t ∈ Πt

i=0(Xi ∪ X̂i) as

Endisc(x..t) =
∑

m∈C(n)

wmQt+1(x..t, x∗t+1..; ζ
..m)−Qt(x..t, x∗t+1..; ζ

..n), (27)

if t ∈ {1, . . . , T − 1}, and

En0
disc(x0) =

∑
m∈C(n0)

wmQ1(x0, x
∗
1..; ζ

m)−Q0(x0, x
∗
1..), (28)

at the root node.

The node-n discretization error measures the error on the stage-t(n) expected recourse function
(3), for ξ..t(n) = ζ ..n, made by substituting the expectation with a finite sum over the children nodes
of n.

We define now the concept of subtree errors. We call a subtree rooted at node n ∈ N the scenario
tree T (n) = (N (n), E(n)) obtained by setting n as the root node and by considering only the nodes
that are the descendants of n, i.e., with N (n) = {n′ ∈ N | ∃k ≥ 0 such that ak(n′) = n} and
E(n) = {(n′, n′′) ∈ E | (n′, n′′) ∈ N (n) × N (n)}. Obviously, the subtree rooted at n0 is the whole
scenario tree (N , E). We distinguish between two subtree errors, which we refer to as optimal and
suboptimal. The optimal subtree error at node n measures the error between the stage-t(n) recourse
function (2), for ξ..t(n) = ζ ..n, and its node-n scenario-tree estimator. The suboptimal subtree error
at node n measures the error between the stage-t(n) expected recourse function (3), for ξ..t(n) = ζ ..n,
and its node-n scenario-tree estimator.

Definition 3.3 (Subtree errors). (a) For each stage t ∈ {1, . . . , T}, we define the optimal subtree
error ∆Qn(x..t−1) at node n ∈ Nt and for a decision policy x..t−1 ∈ Πt−1

i=0(Xi ∪ X̂i) as

∆Qn(x..t−1) = Q̂n(x..t−1, x̂t..)−Qt(x..t−1, x
∗
t..; ζ

..n). (29)

At the root node, the optimal subtree error is

∆Qn0 = Q̂n0(x̂)−Q0(x∗). (30)

(b) For each stage t ∈ {0, . . . , T}, we define the suboptimal subtree error ∆Qnsub(x..t) at node
n ∈ Nt and for a decision policy x..t ∈ Πt

i=0(Xi ∪ X̂i) as

∆Qnsub(x..t) =


Q̂n(x)−QT (x; ζ ..n) if t = T ;
Q̂n(x..t, x̂t+1..)−Qt(x..t, x∗t+1..; ζ

..n) if t ∈ {1, . . . , T − 1};
Q̂n0(x0, x̂1..)−Q0(x0, x

∗
1..) if t = 0.

(31)
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For every node n ∈ NT , the subtree errors ∆Qnsub and ∆Qn are identically zero (see Remark
2.1). In the general setting of the scenario-tree formulation of Section 2.3, we do not know whether
the subtree errors have positive or negative values. The node-n0 optimal subtree error (30) is the
scenario-tree optimal-value error that we want to decompose and bound.

The optimal and suboptimal subtree errors at node n gather implicitly all the node errors (op-
timization and discretization) made in the subtree rooted at n. To find an explicit relation between
the subtree errors and the node errors, we need to be able to derive a closed-form representation of
a quantity at node n from a recursive representation of this quantity over the nodes in the subtree
rooted at n. This is the purpose of the following lemma.

Lemma 3.4. Let a real value γn be assigned to every node n ∈ N \ NT of the scenario tree.
(a) If a sequence {αn} satisfies the recurrence relation

αn =

 γn +
∑

m∈C(n)

wm αm if n ∈ N \ NT ; (32)

0 if n ∈ NT , (33)

then αn has a closed-form representation at each node n ∈ N \ NT given by

αn =
1
Wn

∑
m∈N (n)\NT

Wm γm, (34)

where N (n) is the node set of the subtree rooted at n.
(b) If a sequence {βn} satisfies the recurrence relation

βn ≤

 γn +
∑

m∈C(n)

wm βm if n ∈ N \ NT ; (35)

0 if n ∈ NT , (36)

then βn has an upper bound at each node n ∈ N \ NT given by

βn ≤ 1
Wn

∑
m∈N (n)\NT

Wm γm. (37)

Parts (a) and (b) will be used in deriving the error decomposition theorem and the error bound
theorem, respectively.

Proof. (a) Let {un} and {vn} denote two sequences satisfying the recurrence relation (32)-(33) and
the closed-form (34), respectively. We will show by induction that un = vn holds for every node
n ∈ N \ NT .

Basis. Take an arbitrary n ∈ NT−1. We have that N (n) \NT = {n}, hence it follows from (34)
that

vn =
1
Wn

Wn γn = γn = un. (38)

Inductive step. Suppose that um = vm holds for every m ∈ Nt for a given stage t ∈ {1, . . . , T−1}.
Take an arbitrary n ∈ Nt−1. From (34), and using the following decomposition of N (n) \ NT :

N (n) \ NT = {n} ∪
( ⋃
m∈C(n)

N (m) \ NT
)
, (39)
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it follows that

vn = γn +
1
Wn

∑
m∈C(n)

[ ∑
l∈N (m)\NT

W l γl
]

(40)

= γn +
1
Wn

∑
m∈C(n)

[
Wm 1

Wm

∑
l∈N (m)\NT

W l γl
]

(41)

= γn +
1
Wn

∑
m∈C(n)

Wm vm (42)

= γn +
∑

m∈C(n)

wm um (43)

= un, (44)

where the equality (43) holds by the induction hypothesis and by the relation Wm = Wnwm. This
proves the inductive step and therefore the final result.

(b) Let {αn} and {βn} denote two sequences satisfying the recurrence relation (32)-(33) and
(35)-(36), respectively. We will show by induction that βn ≤ αn holds for every node n ∈ N \ NT .

Basis. For every node n ∈ NT−1, it follows from (35)-(36) that βn ≤ γn = αn.
Inductive step. Suppose that βm ≤ αm holds for every node m ∈ Nt for a given stage t ∈

{1, . . . , T − 1}. Take an arbitrary n ∈ Nt−1. From (35), and using the induction hypothesis, we
have that

βn ≤ γn +
∑

m∈C(n)

wm αm = αn, (45)

which proves the inductive step. The inequality (37) follows immediately using part (a) of this
lemma.

Theorem 3.5. The scenario-tree optimal-value error can be decomposed into a weighted sum of
node discretization errors and node optimization errors as follows:

∆Qn0 =
∑

n∈N\NT

Wn [Enopt(x̂..t(n)−1) + Endisc(x̂..t(n))], (46)

where for n = n0 the term Enopt(x̂..t(n)−1) corresponds to En0
opt.

Proof. We start by deriving a recurrence relation for the optimal subtree error at node n ∈ N \NT ,
by considering successively the cases t = 0 and t ∈ {1, . . . , T − 1}.

At the root node, using successively (19), (26) and (28), we can write ∆Qn0 as follows:

∆Qn0 = Q̂n0(x̂)−Q0(x∗) (47)

=
∑

m∈C(n0)

wm Q̂m(x̂)−Q0(x∗) (48)

=
∑

m∈C(n0)

wm
[
Q̂m(x̂)−Q1(x̂0, x

∗
1..; ζ

m)
]

(49)

+
∑

m∈C(n0)

wmQ1(x̂0, x
∗
1..; ζ

m)−Q0(x̂0, x
∗
1..) (50)

+Q0(x̂0, x
∗
1..)−Q0(x∗) (51)

=
∑

m∈C(n0)

wm ∆Qm(x̂0) + En0
disc(x̂0) + En0

opt. (52)
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For every t ∈ {1, . . . , T − 1} and every n ∈ Nt, using successively (19), (27) and (25), we can
write ∆Qn(x̂..t−1) as follows:

∆Qn(x̂..t−1) = Q̂n(x̂)−Qt(x̂..t−1, x
∗
t..; ζ

..n) (53)

=
∑

m∈C(n)

wm Q̂m(x̂)−Qt(x̂..t−1, x
∗
t..; ζ

..n) (54)

=
∑

m∈C(n)

wm
[
Q̂m(x̂)−Qt+1(x̂..t, x∗t+1..; ζ

..m)
]

(55)

+
∑

m∈C(n)

wmQt+1(x̂..t, x∗t+1..; ζ
..m)−Qt(x̂..t, x∗t+1..; ζ

..n)

+Qt(x̂..t, x∗t+1..; ζ
..n)−Qt(x̂..t−1, x

∗
t..; ζ

..n) (56)

=
∑

m∈C(n)

wm ∆Qm(x̂..t) + Endisc(x̂..t) + Enopt(x̂..t−1). (57)

Finally, by defining

γn =

{
En0

disc(x̂0) + En0
opt if n = n0; (58)

Endisc(x̂..t(n)) + Enopt(x̂..t(n)−1) if n ∈ N ∗ \ NT , (59)

we see that the sequence {∆Qn} satisfies the recurrence relation (32)-(33) (recall that ∆Qn = 0 for
every n ∈ NT ; see Remark 2.1). Thus, the decomposition (46) follows directly from (34) applied at
the root node.

4 Upper bound on the scenario-tree optimal-value error

The error decomposition of Theorem 3.5, although useful to enlight the contributions of two types
of errors in the optimal-value error, cannot be directly used to guide the generation of scenario trees.
The reason is that it features node optimization errors, which are difficult to quantity since they
depend on the scenario tree solely via the optimal policy x̂. Node discretization errors, conversely,
depend directly on the characteristics of a scenario tree, i.e., the structure, the discretization points
and the weights. Moreover, discretization errors enjoy a large litterature in numerical integration,
such as in quasi-Monte Carlo theory, where they are more often refered to as integration errors
(in this paper, we use the term ”discretization error” when the integrand is the recourse functions
(Definition 3.2) and ”integration error” when the integrand is any integrable function (Definition
4.4)).

The main result of this section is Theorem 4.3, which provides an upper bound on the optimal-
value that features only node discretization errors. Its derivation does not rely on the decomposition
of Theorem 3.5, it is based on the following two lemmas.

Lemma 4.1. For each stage t ∈ {1, . . . , T}, node n ∈ Nt and decision policy x..t−1 ∈ Πt−1
i=0(Xi∪X̂i),

the following holds:
|∆Qn(x..t−1)| ≤ max

u∈{bxt,x∗t }
|∆Qnsub(x..t−1, u)|, (60)

and at the root node:
|∆Qn0 | ≤ max

u∈{bx0,x∗0}
|∆Qn0

sub(u)|. (61)
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Proof. If ∆Qn0 ≥ 0, then it follows from (13) that

|∆Qn0 | = Q̂n0(x̂)−Q0(x∗) (62)

≤ Q̂n0(x̂)−Q0(x̂0, x
∗
1..) (63)

= ∆Qn0
sub(x̂0). (64)

Conversely, if ∆Qn0 < 0, then it follows from (22) that

|∆Qn0 | = −Q̂n0(x̂) +Q0(x∗) (65)

≤ −Q̂n0(x∗0, x̂1..) +Q0(x∗) (66)
= −∆Qn0

sub(x∗0). (67)

This proves the result at the root node.
Similarly, we show now that the result holds for any t ∈ {1, . . . , T − 1}, n ∈ Nt and x..t−1 ∈

Πt
i=0(Xi ∪ X̂i). If ∆Qn(x..t−1) ≥ 0, then it follows from (12) that

|∆Qn(x..t−1)| = Q̂n(x..t−1, x̂t..)−Qt(x..t−1, x
∗
t..; ζ

..n) (68)

≤ Q̂n(x..t−1, x̂t..)−Qt(x..t−1, x̂t, x
∗
t+1..; ζ

..n) (69)
= ∆Qnsub(x..t−1, x̂t). (70)

If ∆Qn(x..t−1) < 0, then it follows from (21) that

|∆Q̂n(x..t−1)| = −Qn(x..t−1, x̂t..) +Qt(x..t−1, x
∗
t..; ζ

..n) (71)

≤ −Q̂n(x..t−1, x
∗
t , x̂t+1..) +Qt(x..t−1, x

∗
t..; ζ

..n) (72)
= −∆Qnsub(x..t−1, x

∗
t ). (73)

This proves the inequality (60) for any t ∈ {1, . . . , T − 1}. The inequality for t = T holds trivially
since ∆Qn(x..T−1) = ∆Qnsub(x) = 0 for all n ∈ NT and all x ∈ ΠT

i=0(Xi ∪ X̂i) (see Remark 2.1).

Lemma 4.2. For each stage t ∈ {1, . . . , T − 1}, node n ∈ Nt and decision policy x..t−1 ∈ Πt−1
i=0(Xi ∪

X̂i), the following holds:

|∆Qn(x..t−1)| ≤
∑

m∈C(n)

wm max
u∈{bxt,x∗t }

|∆Qm(x..t−1, u)|+ max
u∈{bxt,x∗t }

|Endisc(x..t−1, u)|, (74)

and at the root node:

|∆Qn0 | ≤
∑

m∈C(n0)

wm max
u∈{bx0,x∗0}

|∆Qm(u)|+ max
u∈{bx0,x∗0}

|En0
disc(u)|. (75)

Proof. We first prove the result at the root node. Take an arbitrary x0 ∈ X0 (recall that X0 = X̂0).
Using successively (19), (29) and (28), we can write ∆Qn0

sub(x0) as

∆Qn0
sub(x0) = Q̂n0(x0, x̂1..)−Q0(x0, x

∗
1..) (76)

=
∑

m∈C(n0)

wm Q̂m(x0, x̂1..)−Q0(x0, x
∗
1..) (77)

=
∑

m∈C(n0)

wm
[
∆Qm(x0) +Q1(x0, x

∗
1..; ζ

m)
]
−Q0(x0, x

∗
1..) (78)

=
∑

m∈C(n0)

wm∆Qm(x0) + En0
disc(x0). (79)
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Combining the above equality with the inequality (61), in the particular case for which x0 ∈ {x̂0, x
∗
0},

and applying the triangle inequality yields the result at the root node.
Similarly, we show now that the result holds for any t ∈ {1, . . . , T − 1}, n ∈ Nt and x..t ∈

Πt
i=0(Xi ∪ X̂i). Using successively (19), (29) and (27), we can write ∆Qnsub(x..t) as

∆Qnsub(x..t) = Q̂n(x..t, x̂t+1..)−Qt(x..t, x∗t+1..; ζ
..n) (80)

=
∑

m∈C(n)

wm Q̂m(x..t, x̂t+1..)−Qt(x..t, x∗t+1..; ζ
..n) (81)

=
∑

m∈C(n)

wm
[
∆Qm(x..t) +Qt+1(x..t, x∗t+1..; ζ

..m)
]
−Qt(x..t, x∗t+1..; ζ

..n) (82)

=
∑

m∈C(n)

wm∆Qm(x..t) + Endisc(x..t). (83)

From the triangle inequality it follows that

|∆Qnsub(x..t)| ≤
∑

m∈C(n)

wm|∆Qm(x..t)|+ |Endisc(x..t)|. (84)

In the particular case for which x..t = (x..t−1, u), with u ∈ {x̂t, x∗t }, we combine the above inequality
with the inequality (60) to obtain

|∆Qn(x..t−1)| ≤ max
u∈{bxt,x∗t }

|∆Qnsub(x..t−1, u)| (85)

≤
∑

m∈C(n)

wm max
u∈{bxt,x∗t }

|∆Qm(x..t−1, u)|+ max
u∈{bxt,x∗t }

|Endisc(x..t−1, u)|. (86)

This proves the result for any t ∈ {1, . . . , T − 1}.

Theorem 4.3. The scenario-tree optimal-value error is bounded by a weighted sum of node dis-
cretization errors as follows:

|∆Qn0 | ≤
∑

n∈N\NT

Wn max
u∈Π

t(n)
i=0 {bxi,x∗i }

|Endisc(u)|. (87)

Proof. Take an arbitrary t ∈ {1, . . . , T − 1} and n ∈ Nt. Using the inequality (74) in the particular
case for which x..t−1 ∈ Πt−1

i=0{x̂i, x∗i } yields

max
v∈Πt−1

i=0{bxi,x∗i }
|∆Qn(v)| ≤

∑
m∈C(n)

wm max
v∈Πt−1

i=0{bxi,x∗i }

(
max

u∈{bxt,x∗t }
|∆Qm(v, u)|

)
(88)

+ max
v∈Πt−1

i=0{bxi,x∗i }

(
max

u∈{bxt,x∗t }
|Endisc(v, u)|

)
=

∑
m∈C(n)

wm max
(v,u)∈Πt

i=0{bxi,x∗i }
|∆Qm(v, u)| (89)

+ max
(v,u)∈Πt

i=0{bxi,x∗i }
|Endisc(v, u)|.

At all nodes n ∈ NT the following inequality holds trivially (see Remark 2.1):

max
v∈ΠT−1

i=0 {bxi,x∗i }
|∆Qn(v)| ≤ 0. (90)
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Finally, by defining

βn =

 max
v∈Π

t(n)−1
i=0 {bxi,x∗i }

|∆Qn(v)| if n ∈ N ∗; (91)

|∆Qn0 | if n = n0, (92)

and

γn =


max

w∈Π
t(n)
i=0 {bxi,x∗i }

|Endisc(w)| if n ∈ N ∗ \ NT ; (93)

max
w∈{bx0,x∗0}

|En0
disc(w)| if n = n0, (94)

we see that the sequence {βn} satisfies the recursive inequalities of Lemma 3.4 (b). Thus, the bound
(87) follows directly from (37) applied at the root node.

Bound in terms of worst-case integration errors

We want now to express the bound in the right-hand side of (87) as a weighted sum of worst-case
integration errors in some function sets. To this end, we first introduce the concept of integration
error at node n ∈ N \NT , which represents the error made by using a scenario-tree approximation
to compute the conditional expectation of f(ξt(n)+1) given ξ..t(n) = ζ ..n, with f an appropriately
integrable function. The node integration error generalizes the node discretization error of Definition
3.2 to the class of all integrable functions.

We denote by F1 the set of all functions f : Ξ1 → R that are integrable with respect to the
distribution of ξ1, and by Ft(ξ..t−1) the set of all functions f : Ξt(ξ..t−1) → R that are integrable
with respect to the conditional distribution of ξt given ξ..t−1 = ξ..t−1.

Definition 4.4 (Node integration error). For every t ∈ {0, . . . , T − 1}, we define the integration
error operator En at node n ∈ Nt as

En(f) =
∑

m∈C(n)

wmf(ζm)− E[f(ξt+1) | ξ..t = ζ ..n], ∀f ∈ Ft+1(ζ ..n), (95)

if t ∈ {1, . . . , T − 1}, and

En0(f) =
∑

m∈C(n0)

wmf(ζm)− E[f(ξ1)], ∀f ∈ F1, (96)

at the root node.

The concept of integration error naturally leads to the concept of worst-case integration error
Enwc(G) at node n ∈ N \ NT for a non-empty function set G:

Enwc(G) := sup
f∈G
|En(f)|. (97)

The following function sets of recourse functions are of particular interest to express the bound:

Qn0 =
{
ξ1 7→ Q1(x0, x

∗
1..; ξ1)

∣∣x0 ∈ {x∗0, x̂0}
}
, (98)

and for every t ∈ {1, . . . , T − 1} and n ∈ Nt,

Qn =
{
ξt+1 7→ Qt+1(x..t, x∗t+1..; ζ

..n, ξt+1)
∣∣x..t ∈ Πt

i=0{x̂i, x∗i }
}
. (99)

Corollary 4.5 below expresses the bound (87) by means of worst-case integration errors.
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Corollary 4.5. Let Gn, for every n ∈ N \NT , be any function sets satisfying Qn0 ⊆ Gn0 ⊆ F1 and
Qn ⊆ Gn ⊆ Ft(n)+1(ζ ..n). The scenario-tree optimal-value error is bounded by a weighted sum of
worst-case integration errors as follows:

|∆Qn0 | ≤
∑

n∈N\NT

Wn Enwc(Gn). (100)

Proof. The worst-case integration error (97) and the node discretization error of Definition 3.2 are
linked as follows:

Enwc(Qn) = max
u∈Π

t(n)
i=0 {bxi,x∗i }

|Endisc(u)|, ∀n ∈ N \ NT . (101)

Thus, Theorem 4.3 directly yields the right-hand side of (100) with Qn in place of Gn. Moreover, by
definition of the worst-case integration error, we have that Enwc(Gn) ≥ Enwc(Qn) for every n ∈ N \NT ,
which completes the proof.

5 Conclusion

An important challenge in stochastic programming is the generation of efficient scenario trees for
solving problems with many stages and/or many random parameters. As of today, solving a problem
within a given range of error requires a scenario tree of a size that grows fast with the number of
stages and random parameters. We believe that this occurs because current methods focus mostly
on approximating the stochastic process, with little or no regard to the revenue function, and
they often consider by default regular branching structures only. This paper aims at showing that
solution methods could be greatly improved by also taking into account information on the revenue
function and the constraints, and by tailoring methods to specific classes of problems. The two
theorems on the optimal-value error derived in this paper pave the way to designing such methods.

The first theorem is an exact decomposition of the optimal-value error as a weighted sum of
discretization errors and optimization errors made at each node of the scenario tree. This decompo-
sition shows that an inappropriate discretization at a node where the recourse function is ill-behaved
(e.g, with large variations) can contribute to most of the total optimal-value error.

The second theorem is an upper bound on the optimal-value error that features only node
discretization errors. The optimal-value error can be kept small by choosing a scenario tree with a
small value for the bound, hence the bound provides a figure of merit to assess the discretization
quality of any scenario tree

In the corollary of the second theorem, we show that the bound can be written as a weighted sum
of worst-case integration errors in certain functions sets. These sets contains the recourse functions
of the problem, therefore, problems with similar properties for the recourse functions will have
similar function sets in the bound. By identifying classes of problems according to these function
sets, and by leveraging on Quasi-Monte Carlo theory to compute the worst-case errors, it becomes
possible to design a scenario-tree generation method tailored to a specific class of problems. Within
a given class, the bound provides the figure of merit to find the most suitable scenario tree, which
may satisfy the tight trade-off between a high accuracy of the optimal-value estimates and a low
computational times available to solve the problems.
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[6] Dupačová, J., Gröwe-Kuska, N., and Römisch, W. (2003). Scenario reduction in stochastic
programming. Mathematical programming, 95(3):493–511.

[7] Dyer, M. and Stougie, L. (2006). Computational complexity of stochastic programming prob-
lems. Mathematical Programming, 106(3):423–432.

[8] Growe-Kuska, N., Heitsch, H., and Romisch, W. (2003). Scenario reduction and scenario tree
construction for power management problems. In Power Tech Conference Proceedings, 2003 IEEE
Bologna, volume 3, pages 7–pp. IEEE.

[9] Hanasusanto, G. A., Kuhn, D., and Wiesemann, W. (2016). A comment on “computational
complexity of stochastic programming problems”. Mathematical Programming, 159(1):557–569.

[10] Heitsch, H. and Römisch, W. (2003). Scenario reduction algorithms in stochastic programming.
Computational optimization and applications, 24(2-3):187–206.

[11] Heitsch, H. and Römisch, W. (2009). Scenario tree modeling for multistage stochastic programs.
Mathematical Programming, 118(2):371–406.

[12] Heitsch, H., Römisch, W., and Strugarek, C. (2006). Stability of multistage stochastic pro-
grams. SIAM Journal on Optimization, 17(2):511–525.

[13] Hobbs, B. F. (1995). Optimization methods for electric utility resource planning. European
Journal of Operational Research, 83(1):1–20.

[14] Homem-de Mello, T. (2008). On rates of convergence for stochastic optimization problems
under non-independent and identically distributed sampling. SIAM Journal on Optimization,
19(2):524–551.

[15] Høyland, K., Kaut, M., and Wallace, S. W. (2003). A heuristic for moment-matching scenario
generation. Computational Optimization and Applications, 24(2-3):169–185.

[16] Høyland, K. and Wallace, S. W. (2001). Generating scenario trees for multistage decision
problems. Management Science, 47(2):295–307.

[17] Koivu, M. (2005). Variance reduction in sample approximations of stochastic programs. Math-
ematical programming, 103(3):463–485.

[18] Kovacevic, R. M., Pflug, G. C., and Vespucci, M. T. (2013). Handbook of risk management in
energy production and trading. Springer.
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