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Abstract. In this paper, we study a Capacitated Lot Sizing Problem with Stochastic Setup 

Times (CLSP-SST).We describe a mathematical model that considers both regular costs 

(including production, setup and inventory holding costs) and expected overtime costs 

(related to the excess usage of capacity). The CLSP-SST is formulated as a two-stage 

stochastic programming problem. A procedure is proposed to effectively compute the 

expected overtime for a given setup and production plan when the setup times follow a 

Gamma distribution. A sample average approximation scheme is used to obtain upper 

bounds and a statistical lower bound. This is then used to benchmark the performance of 

two additional heuristics. A first heuristic is based on changing the capacity in the 

deterministic counterpart, while the second heuristic artificially modifies the setup time. We 

conduct our computational experiments on well-known problem instances and provide 

comprehensive analyses to evaluate the performance of each heuristic. 
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1. Introduction

Lot sizing models aim to obtain the optimal production plan in which
the timing and corresponding level of production are determined. In this
paper, we focus on the Capacitated Lot Sizing Problem (CLSP) with over-
time, which belongs to the class of dynamic lot sizing problems with a dis-
crete time scale, finite time horizon and deterministic dynamic demand (see
Pochet and Wolsey [32]). In the CLSP, several different items can be pro-
duced on a single machine in the same period. In its classical definition, this
problem minimizes the total cost (including production, setup and inventory
costs) incurred by a production plan that satisfies the demands and respects
the time capacity of the machine. The production capacity inherently limits
the resource consumption resulting from the setup (if considered) and pro-
duction in each period. In most of the research on the CLSP, setup times
are either ignored, or assumed to be deterministic. However, in practice it is
possible that setup times are stochastic, and thus the quality of the solutions
obtained by deterministic models may deteriorate once applied in real-life
settings (leading to inefficient or even infeasible plans at the operational
level).

Variability in setup times exists because of various reasons. It is possible
that the setup process is not standardized, or that errors occur during this
process, which increase the total setup time. In addition, there is always
the inherent variability in the execution time of a specific activity. The
literature on lean manufacturing emphasizes methods to reduce setup times
and to provide work standardization (Forza [15] and McIntosh et al. [26]).
These methods often include effective ways to reduce setup time variability
as well. Doolen and Hacker [14] mention various practices such as the use
of checklists during the setup of a machine, the use of documented standard
operating procedures, the use of devices to reduce operator errors during
the setup, and the use of training. In addition, McIntosh et al. [27] indicate
that the lack of standard procedures may indeed lead to variable durations
for the same type of setup. A detailed analysis of setup times given in
a case study by Gilmore and Smith [16] also shows that waiting for key
resources to perform the setup accounts for a large part of the total setup
time. In some cases, setup times increase due to unplanned maintenance
which needs to be performed in addition to the regular setup activities,
such as the replacement of worn out tools (see McIntosh et al. [28]). In the
latter paper, the authors provide an example of how poor equipment quality
leads to delays in setup times. In conclusion, the above-mentioned literature
indicates that variability in setup times is a realistic concern to companies.
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In our problem setting, we consider a Capacitated Lot Sizing Problem
with Stochastic Setup Times (CLSP-SST). In particular, we assume that
setup times are stochastic following a given probability distribution. Conse-
quently, we regard variability in setup times as a given and we do not seek
to decrease it. Therefore, the aim of this paper is to obtain efficient produc-
tion plans for the CLSP-SST. We adopt the static uncertainty strategy (see
Bookbinder and Tan [6]), where setup and production decisions are fixed at
the beginning of the planning horizon, and no dynamic adjustment of these
decisions is executed. We assume that a company can use overtime at the
end of any period if the given machine capacity is not sufficient due to the
specific realizations of the setup times. The overtime values can be thought
of as the recourse decisions, which are evaluated after observing the actual
setup times. Stochastic setup times hence lead to extra costs in the form of
overtime costs.

The contributions of this paper are fivefold:

• First, we introduce the lot sizing problem in the presence of stochastic
setup times. To the best of our knowledge, no research has addressed
this problem.

• Second, for a given setup and production plan, we develop an effective
procedure to evaluate the expected overtime for the case where the
setup times follow a Gamma distribution.

• Third, we propose a Sample Average Approximation (SAA) scheme to
obtain upper bounds and a statistical lower bound.

• Fourth, we propose two effective heuristics that are easily applicable
in practice. These heuristics are based on changing certain parameters
in the deterministic counterpart of the problem.

• Fifth, comprehensive computational results using a standard data set
allow us to compare the heuristic approaches and to provide manage-
rial insights.

The remainder of the paper is organized as follows. In Section 2, we
present a literature review which mostly focuses on the various stochastic
versions of the lot sizing problems. In Section 3, we describe the model
proposed for the CLSP-SST and discuss properties of the setup times and
the expected overtime. In Section 4, we explain the SAA method and the
two other heuristic methods proposed for the problem. In Section 5, we
present the results obtained by solving the well-known problem instances of
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Trigeiro et al. [39], which are adapted to include stochasticity in the setup
times. Finally, in Section 6 we end the paper with our main findings and
conclusions.

2. Literature Review

The CLSP (both the single-item version and the multi-item version)
belongs to the class of NP-hard combinatorial optimization problems (see
Bitran and Yanesse [5]), for which several effective optimal and heuristic
solution procedures have been proposed in the literature. Karimi et al. [21]
review single-level lot sizing problems, their extensions and available (ex-
act and heuristic) solution approaches. The interested reader is referred to
Brahimi et al. [7] for a review on single-item lot sizing problems, where both
uncapacitated and capacitated variants are considered. Jans and Degraeve
[18, 19] present comprehensive reviews of the available mathematical for-
mulations, and solution approaches for several dynamic lot sizing problems.
Buschkühl et al. [9] focus on models and algorithms proposed for multi-item
dynamic lot sizing problems, where various exact and approximate algo-
rithms are reviewed.

Stochastic versions of lot sizing problems mostly focus on demand un-
certainty (see Tempelmeier [37] and Aloulou et al. [1] for recent reviews
on stochastic lot sizing problems). Bookbinder and Tan [6] employ α-
service level constraints (where α denotes the probability that inventory
is non-negative), and develop three strategies to handle the resulting set-
ting: static uncertainty, dynamic uncertainty and static-dynamic uncer-
tainty. The static uncertainty strategy applies the idea of having frozen
schedules, in which all decisions related to setups and production levels are
determined at the beginning of the planning horizon. This decision rule,
which has been widely used in the literature for stochastic lot sizing prob-
lems (see, e.g., Tempelmeier [36], and Tempelmeier and Hilger [38]), is also
the main strategy that we consider in our paper. Jeunet and Jonard [20]
develop a number of lot sizing techniques to assess the effects of demand
variability on production plans with respect to two criteria: the regular
cost-effectiveness and robustness. Results, which are obtained by simula-
tion procedures, indicate that these two criteria are negatively correlated.
Brandimarte [8] represents the demand uncertainty by a directed scenario
tree, which corresponds to a multi-stage mixed-integer stochastic program-
ming model with recourse. The proposed formulation is based on a plant-
location model, and a heuristic method employing the fix-and-relax strat-
egy introduced by Dillenberger et al. [13] is developed. Results show that
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considering demand uncertainty in the planning phase provides significant
improvements especially for the instances with tight capacity. Recently,
Koca et al. [23] focus on a capacitated lot sizing problem with stochas-
tic demands and controllable processing times. Specifically, the demand
of each period follows a Normal distribution and processing times can be
reduced by outsourcing, adjusting the machine speed and so on. The reduc-
tion in processing time entails the so-called compression costs. It is further
assumed that the compression cost function is convex. The proposed prob-
lem is solved by considering the static uncertainty strategy and α-service
level constraints introduced by Bookbinder and Tan [6]. Results indicate
that controllable processing times are more effective for the instances with
medium capacity and high setup costs. Rossi et al. [33] consider a stochas-
tic version of the lot sizing problem in which the demand is assumed to be
uncertain and non-stationary. The authors develop a unified mixed-integer
linear programming model based on a piecewise linear approximation of the
loss function. The proposed models are based on the static-dynamic un-
certainty strategy. Results show that the solution approach is flexible and
effective, and it computes an accurate estimation of the total expected cost.

The survey presented in Aloulou et al. [1] indicates that stochastic vari-
ants of lot sizing problems are mostly based on single-item single-period
single-machine problems. Beraldi et al. [3] consider a version which is
the lot sizing and scheduling problem with identical parallel machines and
stochastic processing times. In this problem, setup costs are assumed to
be sequence-dependent and stochastic parameters are modelled by using a
scenario tree. A multi-stage mixed-integer stochastic programming formu-
lation is proposed and efficient heuristic procedures based on the fix-and-
relax strategy are developed. Dellaert and Melo [11] focus on a variant
which is a stochastic single-item production system in a make-to-order en-
vironment. They extend existing strategies, which have been proposed for
similar stochastic versions, by employing overtime costs whenever the to-
tal production exceeds the given capacity. The latter is consumed only by
production, i.e., setup times are not considered. In the proposed setting,
stochasticity is incurred due to the partial customer-order information. A
number of procedures are developed to obtain near-optimal production lot
sizes. These procedures are mainly based on the standard (s, S) and (R,S)
policies used in make-to-stock problems.

Dynamic lot sizing models mostly assume that items are produced on re-
liable machines. Kuhn [25] focuses on a single-item uncapacitated lot sizing
problem with stochastic machine breakdowns. Two cases are considered: (i)
the setup is totally lost after a breakdown and a new setup is required, and
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(ii) the cost for the setup needed to resume the production of the same item
after a breakdown is much lower than the original setup cost. A stochastic
dynamic programming model is developed to obtain an optimal produc-
tion plan for the proposed policies. Nourelfath [29] studies a multi-period
multi-item capacitated lot sizing problem where machine breakdowns are
assumed to be stochastic and the capacity is consumed only by production,
i.e., setup times are not considered. The proposed model includes a set of
constraints to ensure some minimum probability of meeting the customer
service level within a pre-determined value, and it is solved by a two-phase
solution approach.

In this paper, we study the CLSP-SST where setup times are random
variables with a known probability distribution. The aim in our problem
setting is to minimize the total cost including regular production costs and
expected overtime costs incurred due to the excess usage of the capacity.
This problem has not been discussed before and the literature review in-
dicates that uncertainty in lot sizing problems is mainly focused on other
problem characteristics such as demands and machine breakdowns.

3. Problem Statement and Model Formulation

We first provide the formal definition of the classical CLSP with over-
time, and next provide the formulation of the CLSP-SST in Section 3.1. Let
P = {1, ..., n} be the set of items and T = {1, ...,m} be the set of time peri-
ods. Several items can possibly be produced in the same time period. This
is the basic assumption in a big bucket lot sizing model. A single machine is
used for all items and this machine has a limited capacity Ct in each period
t. Each time that the production begins for item i in period t, a setup takes
place with a cost sci by using sti units of capacity (setup time). Producing
one unit of item i entails a cost vci and consumes vti units of capacity (unit
production time). A penalty cost oct is associated with the use of overtime
resulting from a capacity violation at time period t (see Özdamar and Birbil
[31], Özdamar and Barbarosoğlu [30], and Barbarosoğlu and Özdamar [2]).
A cost hci is incurred for each end-of-period inventory of item i. Moreover,
the demand of each item i in each period t (dit) is known. The standard
formulation of the CLSP with overtime (Model-SF) is given as follows:
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(Model-SF) min
∑
i∈P

∑
t∈T

(vcixit + sciyit + hcisit) +
∑
t∈T

octot (1)

subject to si,t−1 + xit = dit + sit, i ∈ P, t ∈ T, (2)

xit ≤Myit, i ∈ P, t ∈ T, (3)∑
i∈P

(vtixit + stiyit) ≤ Ct + ot, t ∈ T, (4)

sit ≥ 0, i ∈ P, t ∈ T, (5)

xit ≥ 0, i ∈ P, t ∈ T, (6)

ot ≥ 0, t ∈ T, (7)

yit ∈ {0, 1}, i ∈ P, t ∈ T. (8)

In the above model, xit represents the number of units of item i produced
in period t, yit is the binary setup variable associated with item i in period
t, sit is the number of units of item i in stock at the end of period t, and ot
is the amount of overtime used in period t. The objective (1) is to minimize
the total cost of production, setup, inventory and overtime. Constraints (2)
correspond to the material balance equations: for each item i, the demand in
period t is satisfied by the production in the current period t together with
the inventory from the previous period, and the excess amount builds up the
inventory for the next period. Constraints (3) indicate that production of an
item in a period requires a setup in that period. In these setup constraints,
big-M is a sufficiently large constant which can be set to

∑m
j=t dij . In other

words, production cannot exceed the remaining demand (the total demand
that should be satisfied in periods t to m). Constraints (4) ensure that the
total time spent for production and setup in each period does not exceed
the capacity limit plus the used overtime. Constraints (5) are needed since
we do not allow backorders, and constraints (6)–(8) specify the domain of
production, overtime and setup variables, respectively.

3.1. The Capacitated Lot Sizing Problem with Stochastic Setup Times

In the CLSP-SST, setup times are random variables with a known proba-
bility distribution. The production quantities and setups are decided before
the actual setup times are known, and these decisions remain fixed. As
discussed, this setting with a frozen schedule corresponds to the static un-
certainty strategy given by Bookbinder and Tan [6]. The actual setup times
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are only revealed when doing the setup. The company does not change its
production plan after the setup times are known, but resorts to overtime
usage if the current capacity in a period is not sufficient. Therefore, we
account for the expected overtime cost in the objective function. The model
proposed for this problem (Model-SST) is as follows:

(Model-SST) min
∑
i∈P

∑
t∈T

(vcixit + sciyit + hcisit) +
∑
t∈T

octOt(xt,yt) (9)

subject to si,t−1 + xit = dit + sit, i ∈ P, t ∈ T, (10)

xit ≤Myit, i ∈ P, t ∈ T, (11)

sit ≥ 0, i ∈ P, t ∈ T, (12)

xit ≥ 0, i ∈ P, t ∈ T, (13)

yit ∈ {0, 1}, i ∈ P, t ∈ T. (14)

In this model, the vectors xt and yt, where xt = {xit | i ∈ P} and
yt = {yit | i ∈ P}, are used to denote the production quantities and setup
variables of each item in period t, respectively. Let Ot(xt,yt) denote the
expected overtime resulting from the production plan (xt,yt). The objec-
tive is to minimize the total cost which consists of two main components:
(i) the total cost of production, setup and inventory, and (ii) the total cost
of expected overtime of the capacity. The latter component is imposed in
the model by considering the capacity as a soft constraint, which means
that the capacity constraint (4) is omitted in the model. However, the ca-
pacity constraint is implicitly taken into account through the calculation of
the expected overtime Ot(xt,yt). In other words, Ot(xt,yt) depends on the
production and setup plan, and the capacity parameters (i.e., unit produc-
tion times, stochastic setup times and capacity). The related calculations
are described in Section 3.2 by considering the Gamma distribution. In this
model, we keep the demand (10), setup (11), and domain constraints (12)–
(14). This formulation is a two-stage stochastic programming with recourse
(see Birge and Louveaux [4]). The production and setup decisions are the
first-stage decisions, and the overtime values correspond to the complete
recourse decisions in the second stage.

3.2. Properties of the Setup Times and the Expected Overtime

In this paper, we model setup times by employing the Gamma distri-
bution. This distribution is suitable for our problem since it is limited to
non-negative values. In the Gamma distribution, large values are possible
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but with small probabilities. This is a reasonable assumption for stochastic
setup times. The Gamma distribution also comprises several distributions
as a special case (such as Exponential, Erlang and Chi-Square), and its ad-
ditive property plays an important role in the computations of the expected
values. Given the Gamma distribution for the setup times, we develop an
analytical expression to exactly calculate the expected overtime for a given
production and setup plan. The heuristics developed in this paper (see Sec-
tion 4) can still be applied if another distribution function is chosen for the
setup times, but in that case the calculation of the expected overtime for a
given production and setup plan might need to be done via simulation.

Let Sit be the random setup time for item i in period t. We assume that
Sit is Gamma distributed with shape parameter αsti and scale parameter
λ. The mean and variance of Sit are computed as follows:

E[Sit] = αλsti, (15)

Var(Sit) = αλ2sti. (16)

In this paper, we impose that αλ = 1, so that the expected setup time for
each item i in period t (E[Sit]) is equal to its deterministic setup time (sti).
Note that this is needed to fairly compare the solutions obtained by the
proposed model to those obtained by the deterministic models.

The total time spent in period t to setup the machine for all products
produced in that period (St) is then defined as follows:

St =
∑
i∈Pt

Sit, (17)

where Pt denotes the set of items produced in period t, Pt = {i | yit =
1, i ∈ P}. It is easy to observe from Equation (17) that St is the sum of
random setup times of each item produced in period t. These variables have
the same scale parameter, and thus St is also Gamma distributed. The
shape parameter αt and the scale parameter λt of St are then represented
as follows:

αt = α
∑
i∈Pt

sti, (18)

λt = λ. (19)

If Ct >
∑

i∈Pt vtixit (the time capacity is greater than the total time
spent for production in period t), the expected overtime is calculated as
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follows (see Dellaert et al. [10] and Taş et al. [34, 35] for similar procedures):

Ot(xt,yt) =

∫ ∞
C′t

(u− C ′t)
(e−u/λt)uαt−1

Γ(αt)(λt)αt
du,

=

∫ ∞
C′t

(e−u/λt)uαt

Γ(αt)(λt)αt
du− C ′t

∫ ∞
C′t

(e−u/λt)uαt−1

Γ(αt)(λt)αt
du,

=αtλt

(
1− Γαt+1,λt(C

′
t)
)
− C ′t

(
1− Γαt,λt(C

′
t)
)
, (20)

where C ′t = Ct−
∑

i∈Pt vtixit (i.e., the remaining capacity). Note that we use
the remaining capacity in the computation of the expected overtime since
the total production time for each product, i.e., vtixit, is deterministic for a
given production plan.

If Ct ≤
∑

i∈Pt vtixit, Ot(xt,yt) is calculated by:

Ot(xt,yt) = E[St] +
(∑
i∈Pt

vtixit

)
− Ct. (21)

In the following proposition, we present the convexity property of the
expected overtime.

Proposition 3.1. The expected overtime in period t Ot(xt,yt) is a convex
function of the capacity consumption for that period in the deterministic
counterpart, i.e.,

∑
i∈P (vtixit + stiyit).

Proof. Suppose that a production plan is generated for a period t where
the production quantities and the corresponding setup decisions are known.
For the sake of simplicity, we refer to Ot as the expected overtime in that
period computed with respect to the given production plan. Let u denote the
capacity consumption for additional production that takes place in period t
while keeping the values of the setup variables unchanged. In other words,
the capacity consumption is increased by u. To prove that the expected
overtime is a convex function of the capacity consumption in period t, we
need to show that Ot is a convex function of u. More specifically, we must

prove that
∂2Ot
∂u2

≥ 0 by using the fact that Ot is continuously differentiable.

We distinguish between two cases:

Case 1. C ′t − u > 0.

Ot is computed based on Equation (20) as follows:

Ot =αtλt

(
1− Γαt+1,λt(C

′
t − u)

)
− (C ′t − u)

(
1− Γαt,λt(C

′
t − u)

)
.
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It is known from the properties of the Gamma function that:

Γα,λ(q) =
1

Γ(α)

∫ q

0

e−z/λzα−1

λα
dz

=
1

Γ(α)

∫ q

λ

0
e−yyα−1dy

=
1

Γ(α)
γ(α,

q

λ
). (22)

In Equation (22), γ(α, qλ) corresponds to the lower incomplete Gamma func-

tion with parameters α and
q

λ
, where α ≥ 0, q ≥ 0 and λ > 0. The first and

second derivative of γ(α, qλ) with respect to q are then computed as follows:

∂γ(α,
q

λ
)

∂q
=

1

λ

( q
λ

)α−1
e−

q
λ and (23)

∂2γ(α,
q

λ
)

∂q2
=

1

λ2

( q
λ

)α−2
e−

q
λ

(
α− 1− q

λ

)
. (24)

Then,
∂2Ot
∂u2

is computed as follows:

∂2Ot
∂u2

=− αtλt
∂2γ

(
αt + 1,

C′t−u
λt

)
∂u2

1

Γ(αt + 1)
+ (C ′t − u)

∂2γ
(
αt,

C′t−u
λt

)
∂u2

1

Γ(αt)

−2
∂γ
(
αt,

C′t−u
λt

)
∂u

1

Γ(αt)
. (25)

By incorporating Equations (23) and (24) into Equation (25), we obtain:

∂2Ot
∂u2

=− αtλt
1

λ2t

(
C ′t − u
λt

)αt−1
e
−
(
C′t−u
λt

)(
αt −

(
C ′t − u
λt

))
1

Γ(αt + 1)

+(C ′t − u)
1

λ2t

(
C ′t − u
λt

)αt−2
e
−
(
C′t−u
λt

)(
αt − 1−

(
C ′t − u
λt

))
1

Γ(αt)

+2
1

λt

(
C ′t − u
λt

)αt−1
e
−
(
C′t−u
λt

)
1

Γ(αt)
. (26)
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Since Γ(αt + 1) = αtΓ(αt), Equation (26) leads to:

∂2Ot
∂u2

=
1

λαtt

(
C ′t − u

)αt−1
e
−
(
C′t−u
λt

)
1

Γ(αt)
. (27)

We observe from Equation (27) that
∂2Ot
∂u2

> 0 for any u, where u ≥ 0 and

u < C ′t.

Case 2. C ′t − u ≤ 0.

Ot is computed by employing Equation (21) as follows:

Ot =E[St]− (C ′t − u). (28)

It is easy to observe from Equation (28) that
∂Ot
∂u

> 0 and
∂2Ot
∂u2

= 0.

These two cases show that for any period t, Ot is a convex function of
u. Therefore, we can conclude that for any period, the expected overtime is
a convex function of the capacity consumption in that period.

To illustrate the convexity property just proven, we solve one instance
(X11227B) from Trigeiro et al. [39] by the SAA method (the details of this
method will be presented in Section 4.1). We focus on one time period,
and we gradually increase the consumption of the capacity by producing
more units of some or all items that are already produced in that period.
Figure 1 presents the detailed results. From this figure, it is clear that
the expected overtime increases exponentially when we get closer to 100%
capacity consumption. This insight will be used in the construction of our
two heuristics.

12

A Capacitated Lot Sizing Problem with Stochastic Setup Times

CIRRELT-2017-07



0.00

4.00

8.00

12.00

16.00

20.00

24.00

28.00

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01

Expected	
Overtime

Capacity	Consumption(%)

Figure 1: The capacity consumption (in percentage) and the corresponding expected
overtime values in one time period (t = 17) for instance X11227B

4. Solution Methods

We first present the SAA method, which yields upper bounds and a
statistical lower bound, in Section 4.1. This lower bound is used to evaluate
the quality of the solutions generated by the two other heuristics presented
in Section 4.2.

4.1. Sample Average Approximation

The SAA method (Verweij et al. [40]) is based on solving R replications
of the stochastic problem, each of which takes into account only a limited
set K of scenarios, sampled from the original distributions. Assuming each
replication is solved to optimality, the average objective function value of the
R problems provides a statistical lower bound to the original problem. The
optimal solutions to the R problems are then reevaluated under a larger set
of scenarios to obtain an estimation of their true objective function values.
The solution achieving the lowest estimated cost is assumed to be the best
upper bound found to the original problem. Furthermore, the SAA method
specifies the computation of the estimated variance of the gap estimator.
Further details can be found in Verweij et al. [40].
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In what follows, we provide details on our implementation of the SAA
method for the CLSP-SST. The stochastic formulation considering a limited
set K of sample scenarios (Model-SAA) is defined as follows:

(Model-SAA) min
∑
i∈P

∑
t∈T

(vcixit + sciyit + hcisit) +
∑
t∈T

oct
∑
k∈K

( 1

|K|
okt

)
(29)

subject to si,t−1 + xit = dit + sit, i ∈ P, t ∈ T, (30)

xit ≤Myit, i ∈ P, t ∈ T, (31)∑
i∈P

(vtixit + stk,ti yit) ≤ Ct + okt , k ∈ K, t ∈ T, (32)

sit ≥ 0, i ∈ P, t ∈ T, (33)

xit ≥ 0, i ∈ P, t ∈ T, (34)

yit ∈ {0, 1}, i ∈ P, t ∈ T, (35)

okt ≥ 0, k ∈ K, t ∈ T. (36)

In this model, stk,ti denotes the realized setup time of item i in period t
according to scenario k, and okt is the decision variable expressing the over-
time used in period t upon the realization of scenario k. The objective is to
minimize the total cost of production, setup and inventory plus the average
cost incurred for overtime over all sample scenarios in K.

The SAA model is solved R times with different sets K of sample sce-
narios. Let z1, . . . , zR denote the optimal objective function values of the
R solutions obtained by the SAA model. It has been shown (see Kleywegt
et al. [22]) that

z =

∑R
r=1 zr
R

(37)

provides a statistical estimate for a lower bound on the optimal value of the
original problem, i.e., as expressed in the formulation (9)–(14). Given that
the SAA model in our case could be challenging to solve, it is possible that
an optimal solution for the SAA model is not found within a preset time
limit. In such cases, we use the lower bound as a substitute for the optimal
objective function values of the SAA model. Therefore, z remains a valid
statistical estimate for a lower bound on the optimal value of the original
problem.

14

A Capacitated Lot Sizing Problem with Stochastic Setup Times

CIRRELT-2017-07



In order to provide a statistical estimate for the upper bound on the
optimal value of the original problem, the SAA method approximates the
true cost of each of the R solutions. The approximation is obtained by using
a new sample set, which contains a much larger number of sample scenarios
compared to K. Assuming Gamma distributed random setup times, we are
able to calculate the true expected overtime for a given solution (as described
in 3.2). Therefore, for a given solution, we are able to exactly compute its
objective function value according to the original problem (i.e., Equation 9).
We denote this value by z∗r .

Thus, our upper bound is

z̄ = min{z∗1 , . . . , z∗R}. (38)

The previous calculations allow us to compute the following estimate for
the absolute gap, z̄−z. Furthermore, the SAA method allows the calculation
of the variances of z and z̄. Since we are able to exactly evaluate the upper
bound, its variance is zero. The variance of the z, is defined as follows (see
Verweij et al. [40]):

σ̂2z =
1

(R− 1)R

R∑
r=1

(zr − z)2. (39)

The variance of the absolute gap estimator is the sum of the variance of the
lower bound estimate and the variance of the upper bound estimate. Since
the latter is zero, the variance of the absolute gap estimator in our case is
σ̂2z .

4.2. Heuristics H1 and H2

The two heuristics that we propose in this section are based on Proposi-
tion 3.1. This provides the insight that when we are close to 100% capacity
consumption, even a small decrease in the capacity consumption provides a
substantial decrease in the expected overtime. Both heuristics are based on
the idea of solving the deterministic CLSP with overtime considering modi-
fied problem parameters and then evaluating the obtained solution with re-
spect to stochastic setup times to obtain the true expected cost. In the first
heuristic H1, we decrease the available capacity in the deterministic model,
and as such we introduce some buffer capacity, and hence obtain lower ex-
pected overtime when the resulting solution is evaluated in the stochastic
setting with the true capacity level. In the second heuristic H2, we increase
the setup times used in the deterministic model with similar effects.
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5. Computational Experiments

We conduct our computational experiments on the well-known data sets
developed by Trigeiro et al. [39] for the CLSP with deterministic setup times.
In these sets, the values of five problem parameters vary as follows: number
of items (10, 20 or 30), setup time (low or high), setup cost (low, medium or
high), demand variability (medium or high) and capacity utilization (low,
medium or high). Trigeiro et al. [39] randomly generate five instances for
each class, leading to 540 problem instances in total. Moreover, within each
instance each period is assumed to have the same capacity. Note that in
the original Trigeiro et al. [39] instances the unit production costs are set
to zero. This stems from the fact that all demand must be satisfied and
the production costs are time invariant, so that the total production cost is
fixed.We set the parameters of the Gamma distribution for the setup times
as follows: α = 1 and λ = 1. To generate an overtime cost which is in line
with other costs in the data set, we calculate the total holding and setup cost
in each period using an EOQ cost approximation. The obtained total cost
is then divided by the total capacity. More specifically, for each instance,
oct is computed as follows:

oct = ρ

(∑
i∈P

√
2discihci

Ct

)
. (40)

We conducted a number of preliminary experiments to determine an appro-
priate value of ρ. In the above expression, ρ is set to 50 according to the
results of these experiments. Parameter di represents the average demand
of item i and is calculated by:

di =

∑
t∈T dit

m
. (41)

Each model described in this paper is coded in C++ and solved using
IBM ILOG CPLEX 12.5 [17]. All experiments are performed on an Intel(R)
Xeon(R) CPU X5675 with 12-Core 3.07 GHz and 96 GB of RAM (by using
a single thread). We set the computational time limit to 30 minutes.

5.1. Reformulation of the CLSP with Overtime

In the literature, several reformulations of the classical lot sizing models
are provided (see Pochet and Wolsey [32] for an overview). Denizel and
Süral [12] reported that the transportation problem reformulation, which
was originally proposed by Krarup and Bilde [24], performs the best among
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the presented models. It is well-known that this reformulation provides a
better LP relaxation gap compared to the formulation in the original vari-
ables (see, e.g., Pochet and Wolsey [32]). The transportation reformulation
adapted to include overtime (Model-TR) is presented as follows:

(Model-TR) min
∑
i∈P

(
vci
∑
t∈T

m∑
l=t

zitl + sci
∑
t∈T

yit + hci
∑
l∈T

l−1∑
t=1

(l − t)zitl
)

+
∑
t∈T

octot (42)

subject to

l∑
t=1

zitl = dil, i ∈ P, l ∈ T, (43)

zitl ≤ dilyit, i ∈ P, t ∈ T, l = t, ...,m, (44)∑
i∈P

( m∑
l=t

vtizitl

)
+ stiyit ≤ Ct + ot, t ∈ T, (45)

zitl ≥ 0, i ∈ P, t ∈ T, l = t, ...,m, (46)

ot ≥ 0 t ∈ T (47)

yit ∈ {0, 1}, i ∈ P, t ∈ T. (48)

In this model, zitl denotes the number of units of item i produced in period
t to satisfy the demand in period l, where l ≥ t. The objective (42) is
to minimize the total cost of production, setup, inventory and overtime.
Constraints (43) ensure that the demand of item i in period l is satisfied by
the total amount produced in periods 1 through l. Constraints (44) indicate
that a setup is required for each production run. Constraints (45) state that
the total time spent for production and setup cannot exceed the capacity and
the overtime. Constraints (46)–(48) impose non-negativity for production
and overtime variables and integrality for setup variables, respectively.

We first compare the performance of the standard formulation (Model-
SF) to that of the transportation problem reformulation (Model-TR). Specif-
ically, we obtain solutions for all 540 problem instances by solving these two
models setting all setup times at their average values, and next evaluat-
ing this solution in the stochastic setting to obtain the true expected total
costs. In Table 1, we first present performance indicators pertaining to the
deterministic models in columns 2–5: the number of instances solved to opti-
mality (Opt), the average total cost (TC) of setup, inventory and overtime,
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the average final optimality gap in percentage (Gap(%)) and the average
computation time in seconds. In columns 6–8, we summarize the results
of the evaluation with respect to stochastic setup times: the average total
expected overtime (EO), the average total expected overtime cost (EOC),
and the average total expected cost (TEC) which includes setup, inventory
and expected overtime cost. Results given in Table 1 indicate that Model-
TR performs better than Model-SF both in terms of the computation time
and of the solution quality. These results are in line with those of Denizel
and Süral [12] for the deterministic problem. As a consequence, we use
the transportation problem reformulation in the remainder of our compu-
tational experiments and the Model-SAA presented in Section 4.1 is also
reformulated according to this transportation model.

Table 1: Results of Model-SF and Model-TR with α = 1, λ = 1 and ρ = 50

Deterministic Solution Evaluation
Model Opt TC Gap(%) Seconds EO EOC TEC

SF 366 64180.40 0.31 639.94 29.31 2662.33 66842.00
TR 370 64154.80 0.25 613.99 29.10 2656.40 66811.20

The solution obtained by Model-TR using the average values for the
setup times and its stochastic evaluation, constitute a naive baseline heuris-
tic solution. In what follows, we benchmark the performance of our proposed
heuristics to this baseline heuristic.

5.2. The Sample Average Approximation Heuristic

The quality of the SAA heuristic depends on the number of sample
scenarios, i.e., |K|, as well as the number of replications R. We first test
different values of |K|, and then we choose the value yielding the lowest total
expected cost. For that value, we then examine the effects of using various
values of R.

Table 2 presents the results of experiments where the number of scenarios
|K| ranges from 10 to 100. Note that for each |K|, only one run is carried
out and an experiment with several replications will be discussed next. The
columns in Table 2 give the same information as in Table 1, except for SAAC
which in this case is the average objective function value of the Model-SAA.
In other words, SAAC includes the total cost of setup and inventory plus the
average cost incurred for overtime over all sample scenarios in K. Results in
Table 2 indicate that the final optimality gap and the required computation
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time increase as the number of scenarios increases. Moreover, we observe the
SAA heuristic with |K| = 60 obtains the smallest total expected cost over
all instances compared to the other levels of |K|. The improvement provided
by the SAA heuristic with |K| = 60 compared to the total expected cost of
our baseline heuristic (see Table 1) is 3.12% on average.

Table 2: Results of the SAA method with R = 1, α = 1, λ = 1 and ρ = 50

SAA solutions Evaluation
Model-SAA Opt SAAC Gap(%) Seconds EO EOC TEC

|K| = 10 354 64481.93 0.38 678.79 5.12 489.97 64940.26
|K| = 20 344 64548.40 0.40 699.67 3.12 310.57 64791.12
|K| = 30 340 64582.64 0.41 711.83 2.54 248.93 64747.45
|K| = 40 337 64604.68 0.42 723.05 2.24 213.73 64728.93
|K| = 50 336 64637.52 0.45 729.79 2.13 209.58 64743.66
|K|=60 335 64635.31 0.44 732.35 2.06 205.39 64726.41
|K| = 70 334 64657.31 0.46 740.74 2.05 208.95 64739.29
|K| = 80 335 64667.18 0.47 749.58 1.92 190.47 64740.04
|K| = 90 333 64683.90 0.49 758.30 1.95 197.27 64749.30
|K| = 100 329 64689.36 0.50 763.26 1.95 202.44 64747.06

To further analyze the efficiency, we compare the total expected cost
of the solutions obtained by the SAA heuristic with |K| = 60 to the total
deterministic cost (including the cost of overtime) obtained by the Model-
TR using the average setup times. Note that the latter value corresponds to
a lower bound for the stochastic problem in case the Model-TR is solved
to optimality. The explanation is as follows. For a given solution and
a given realization of the setup times, the overtime is calculated as the
maximum of zero and the total capacity used (i.e., total production time
plus total realized setup times) minus the available capacity. This overtime
calculation is hence a convex function of the setup time (since it is the
maximum of two convex functions). Following Jensen’s inequality (which
indicates that a convex function applied to the average value of a random
variable is always less than or equal to the average value of the convex
function of the random variable), it holds that the overtime calculated using
the average setup times (i.e., the overtime obtained in the deterministic
solution when the setup times are set to their average value) is a lower
bound on the average overtime with random setup times (i.e., the average
value for the overtime when evaluated over the random setup times). If the
Model-TR provides a suboptimal solution due to the imposed time limit,
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we use the final lower bound found by that formulation since it is also a
valid lower bound for the stochastic problem (Model-SST). The average
difference between the total expected cost of the solution (the total cost of
setup, inventory and expected overtime) obtained by the SAA heuristic with
|K| = 60 and this lower bound is 1.45%. In other words, we observe that
the SAA heuristic with |K| = 60 provides very good solutions overall.

To further construct the SAA solutions, we experiment with various val-
ues of R, while fixing the size of K to 60. Specifically, we solve the test
instances with 10, 20 and 40 replications. The corresponding results are
given in Table 3. In this table, the second column (Opt) indicates the av-
erage number of instances (out of 540) solved to optimality over all the
replications. The third column (LB) reports the statistical lower bound as
calculated in Equation (37). The fourth column (UB) reports the best up-
per bound as calculated in Equation (38). The fifth column (UB-LB

LB (%))
provides the information on the gap between the best upper and the sta-
tistical lower bound in percentage. The sixth column (Seconds) reports
the average computation time in seconds per instance over all replications.
The final column (σ̂z) reports the standard deviation of the absolute gap as
calculated in Equation (39).

Table 3: Results of the SAA method with 10, 20 and 40 replications with |K| = 60, α = 1,
λ = 1 and ρ = 50

Replication Opt LB UB UB-LB
LB

(%) Seconds σ̂z
10 335.3 64247.4 64643.3 0.62 737.8 6.8
20 335.9 64264.2 64630.0 0.57 736.6 8.7
40 336.0 64273.9 64619.0 0.54 736.3 5.8

We observe that the statistical lower bound is increasing with the num-
ber of replications, whereas the upper bound is decreasing with the number
of replications. The gap between these two values decreases hence with an
increasing number of replications. The SAA method achieves an average gap
of 0.54% using 40 replications. Note that a gap of 0.62% can be achieved
with 10 replications, which consumes approximately a quarter of the com-
putation time required for the 40 replications. The best upper bound found
(64619.0) represents a 3.28% improvement over the upper bound achieved
with the baseline heuristic (66811.2). The statistical lower bound obtained
by 40 replications represents a 0.77% improvement compared to the lower
bound calculated as the total deterministic cost (including the cost of over-
time) obtained by the Model-TR using the average setup times. Finally,
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the average optimality gap reported by CPLEX [17] for the Model-SAA is
0.45%.

5.3. Heuristics H1 and H2: Changing Parameters in the Model-TR

In the baseline heuristic, we solved the Model-TR using the original
values given for each problem parameter. We considered the values given by
Trigeiro et al. [39] for each problem instance (no modification in the capacity
or in setup times). In this new part of the computational experiments, we
solve the Model-TR by employing a change in the parameter settings: (i) a
smaller capacity for each period (H1) and (ii) larger setup times (H2).

The aim in (i) and (ii) is to introduce some buffer capacity in the de-
terministic solution, which leads to smaller expected overtime usage in the
stochastic setting as explained at the end of Section 3.2. In case (i), we
decrease the capacity by a given percentage, p. In case (ii), we set the setup
times corresponding to a predetermined percentile of the setup time distri-
bution. In other words, the setup times in model-TR are set equal to the
wth percentile of the corresponding Gamma distribution. The solutions ob-
tained by employing the modified parameters in the deterministic model are
then evaluated in the stochastic setting by considering the original values
given for each problem element. More specifically, the stochastic evaluation
is performed where the expected setup time of each item is equal to the
original setup time and there is no reduction in the capacity.

The specific parameter settings used in the computational experiments
are as follows: (i) a smaller capacity for each period (p = 0.5%, 1%, 1.5%,
2%, 2.5%, 3%) and (ii) larger setup times (w = 0.55, 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95). Note that the Model-TR is always capable of ending
up with a feasible solution by using overtime in case it is needed. Table
4 presents the solutions obtained by the Model-TR for the 540 instances.
Note that in this table, SHC represents the total cost of setup and inventory.
Results given in Table 4 indicate that the total expected cost decreases as
we reduce the capacity up to a particular percentage, which is 1%. We ob-
serve that after this point, the total expected cost increases as the capacity
further decreases. Similarly, the total expected cost decreases as we employ
the setup times increased up to a particular percentile, which is the 75th

percentile. After this percentile, the total expected cost increases as the
setup times further increase. The main reason behind these observations is
as follows: as we decrease the capacity or increase the setup times at the
deterministic planning level, we have more restricted resources compared to
the one with the original parameters. This leads to higher setup and in-
ventory holding costs, but also to a decrease in the expected overtime cost
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since we introduce buffer capacity. However, after a certain value (specif-
ically p = 1% or w = 0.75), this is not the case anymore and the total
expected costs start to increase.

Table 4: Results of H1 and H2 with α = 1, λ = 1 and ρ = 50

Deterministic Solution Evaluation
Model Opt SHC Gap(%) Seconds EO EOC TEC

TR, p=0.005 368 64346.37 0.28 632.77 10.23 861.55 65207.91
TR, p=0.01 359 64596.09 0.33 657.73 3.40 265.49 64861.58
TR, p=0.015 356 64884.12 0.37 672.90 1.14 81.05 64965.18
TR, p=0.02 348 65213.48 0.43 684.76 0.46 40.61 65254.09
TR, p=0.025 344 65562.06 0.47 706.28 1.16 209.68 65771.76
TR, p=0.03 336 65949.80 0.60 732.40 6.32 1175.56 67125.36
TR, w=0.55 367 64175.45 0.26 616.76 25.57 2402.71 66578.15
TR, w=0.60 369 64266.54 0.27 625.78 12.34 1256.84 65523.38
TR, w=0.65 367 64364.32 0.30 637.39 6.97 760.46 65124.77
TR, w=0.70 361 64450.62 0.32 646.42 3.66 425.04 64875.67
TR, w=0.75 359 64576.45 0.35 656.27 1.68 210.71 64787.18
TR, w=0.80 355 64720.87 0.37 665.85 0.75 99.17 64820.04
TR, w=0.85 354 64907.31 0.42 681.58 0.32 43.77 64951.08
TR, w=0.90 339 65203.38 0.50 719.29 0.12 18.53 65221.92
TR, w=0.95 327 65635.77 0.62 763.16 0.56 99.23 65735.00

Results given in Table 4 show that changing problem parameters at the
deterministic planning level yields production plans which perform better in
the stochastic environment compared to those obtained by the Model-TR
with original problem parameters (see Table 1). The solution obtained by
the Model-TR with w = 0.75 (which provides the smallest total expected
cost over all variants of the Model-TR) leads to an improvement in the total
expected cost (compared to the baseline heuristic) of 3.03% on average,
which is only slightly worse than the result obtained by the SAA heuristic.
We further notice that the solutions obtained by Model-TR with w=0.70,
0.80 and 0.85 are similar to the ones obtained by the Model-TR with w =
0.75 (at most 0.25% difference in the total expected cost). We observe
that the heuristic based on Model-TR with increased setup times yields
more robust solutions compared to the heuristic based on the model with
decreased capacity, which is more sensitive to changes in the value of p.
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5.4. Effects of Increasing the Variability of the Gamma Distribution
In this section, we solve the 540 test instances by setting α to 0.0625

and λ to 16, leading to an increase in the coefficient of variation of the
setup times by 4. For the SAA heuristic, we observe from Section 5.2 that
the difference between the total expected costs obtained by considering a
different number of scenarios is at most 0.33% on average. Therefore, we
consider only three values for |K|, which are 20, 60 and 100, in this part of
the experiments. Note that the increase in variation of setup times does not
affect the Model-TR used in the baseline heuristic, nor the Model-TR with a
smaller capacity used in H1 since the average setup times remain the same.
The deterministic solutions obtained by these models (see Tables 1 and 4)
are now evaluated with respect to the distribution with the new parameters
(α = 0.0625 and λ = 16). The Model-TR with modified setup times used
in H2 and the Model-SAA are affected by the increase in variation since the
probability distribution for the setup times has changed.

Tables 5, 6 and 7 present the corresponding results for the 540 test
instances obtained by several methods (note that for each |K| in Table 7,
only one run is carried out). From Table 5, we observe that the results for
the deterministic solution using the average setup times have not changed
compared to the ones reported in Table 1, since the averages remain the
same as discussed above. The stochastic evaluation of this solution leads to
higher total expected costs. Comparing the results in Table 6 to those in
Table 4, we also note for each model that the total expected cost increases as
we increase the variation in setup times, due to the increase in the expected
overtime cost. For H1, the results of the deterministic solution in Table 6
are the same as in Table 4, since the parameters used by that heuristic have
not changed. The lowest total expected cost is achieved with a capacity
reduction of 2.5%. We hence observe that with this increased variability in
setup times, the capacity needs to be reduced more compared to the case
with lower variability, where the best solution was obtained with a reduction
of 1%. For H2, the results of the deterministic solution are different from
those given in Table 4 (obtained by setting α to 1.00 and λ to 1.00) since
the modified setup times used in that heuristic have changed due to the
increase in variation. Moreover, there is a significant change in average
computation times for the higher percentiles compared to those given in
Table 4. The maximum average difference is 73.72% observed in the Model-
TR employing the setup times modified with respect to the 95th percentile.
The total expected cost decreases as we employ the setup times increased
up to the 75th percentile. The improvement provided with this percentile
compared to the total expected cost of our baseline heuristic (see Table 5)
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is 11.54% on average. After the 75th percentile, the total expected cost
increases as the setup times further increase. We observe that both for
the case with regular variability and for the case with increased variability,
the smallest total expected cost is achieved by modifying the setup times
with respect to the 75th percentile. From this experiment, it seems that
the best choice of the percentile is not very sensitive to a big change in
variability. We further notice that the total expected costs obtained by
modifying the setup times with respect to 55th percentile and 60th percentile
are higher than those obtained by the classical Model-TR. The reason behind
this observation is as follows: when we have high variation in setup times,
considering small percentiles underestimates the realizations of setup times.
In other words, these two percentiles result in smaller setup times (compared
to the original setup times which are equal to the expected setup times)
leading to smaller regular costs (SHC), but larger expected overtime costs
and larger total expected costs (compared to those obtained by the original
problem elements).

In Table 7, the SAA heuristic with |K| = 100 provides the smallest total
expected cost over all instances, where the improvement with respect to the
total expected cost obtained by the naive baseline heuristic (the Model-TR)
is 12.71% on average. Moreover, the solutions obtained by the SAA heuristic
with |K| = 20 and with |K| = 60 lead to an improvement in the average total
expected costs (compared to those obtained by the Model-TR) of 11.11%
and 12.46%, respectively. In other words, the solutions obtained by the
Model-SAA perform well in the stochastic environment when we consider a
high variability in setup times.

To further analyze the effect of variability on the performance of the
Model-SAA, we solve the 540 instances where R is set to 10, 20 and 40, and
the size of K is equal to 60. The latter value is specifically chosen to be able
to compare the solutions obtained by setting α to 0.0625 and λ to 16 to those
obtained by setting α to 1.00 and λ to 1.00 (see Table 3). The corresponding
results are given in Table 8. We observe for each R that the upper bound
increases as we increase the variation in setup times, due to the increase in
the expected overtime cost. The average number of instances solved to opti-
mality decreases. Moreover, the average optimality gap reported by CPLEX
over all the SAA problems (1.46%) increases compared to the gap reported
over all the solutions given in Table 3 (0.45%). There is also a significant in-
crease of 40.7% in average computation times compared to the results given
in Table 3. Using the statistical lower bound provided by the SAA heuristic
for R = 10, we see that the solutions obtained are within 5.52% of optimal-
ity. We observe that this optimality gap improves substantially when we
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perform 20 or 40 replications instead of just 10. When we compare the per-
formance of the SAA method to that of the naive approach with respect to
high variation in setup times, we observe that the best upper bound found
by the SAA heuristic (68283.3) represents a 13.19% improvement over the
upper bound achieved with the baseline heuristic (78658.23). The statisti-
cal lower bound obtained by 40 replications represents a 4.69% improvement
compared to the lower bound calculated as the total deterministic cost (in-
cluding the cost of overtime) obtained by the Model-TR using the average
setup times. In other words, the SAA method performs well and provides
significant improvements for the settings with high variation in setup times.

Table 5: Results of Model-TR with α = 0.0625, λ = 16 and ρ = 50

Deterministic Solution Evaluation
Model Opt TC Gap(%) Seconds EO EOC TEC

TR 370 64154.80 0.25 613.99 162.85 14503.43 78658.23

Table 6: Results of H1 and H2 with α = 0.0625, λ = 16 and ρ = 50

Deterministic Solution Evaluation
Model Opt SHC Gap(%) Seconds EO EOC TEC

TR, p=0.005 368 64346.37 0.28 632.77 132.30 11597.70 75944.06
TR, p=0.01 359 64596.09 0.33 657.73 106.49 9169.03 73765.11
TR, p=0.015 356 64884.12 0.37 672.90 86.28 7297.47 72181.58
TR, p=0.02 348 65213.48 0.43 684.76 69.53 5820.43 71033.92
TR, p=0.025 344 65562.06 0.47 706.28 56.44 4794.13 70356.21
TR, p=0.03 336 65949.80 0.60 732.40 50.73 4860.54 70810.33
TR, w=0.55 388 63831.36 0.20 558.86 256.72 21982.73 85814.11
TR, w=0.60 379 64018.01 0.24 595.86 186.33 16549.88 80567.89
TR, w=0.65 366 64346.67 0.31 634.09 116.07 10919.46 75266.12
TR, w=0.70 353 64872.39 0.43 690.89 65.07 6600.99 71473.37
TR, w=0.75 325 65511.92 0.69 776.92 36.40 4069.28 69581.20
TR, w=0.80 294 66172.13 0.87 866.75 26.88 3657.17 69829.31
TR, w=0.85 260 66952.01 0.94 993.51 57.19 9637.45 76589.47
TR, w=0.90 215 68134.71 1.23 1127.22 119.22 20864.38 88999.08
TR, w=0.95 160 70217.04 2.08 1325.79 264.61 45040.00 115257.04
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Table 7: Results of the SAA method with R = 1, α = 0.0625, λ = 16 and ρ = 50

Deterministic Solution Evaluation
Model Opt SAAC Gap(%) Seconds EO EOC TEC

SAA, |K| = 20 286 65707.02 1.09 915.37 40.31 4210.88 69917.88
SAA, |K| = 60 251 65966.45 1.45 1027.05 25.94 2892.58 68859.04
SAA, |K|=100 245 66043.28 1.61 1058.94 22.58 2619.63 68662.90

Table 8: Results of the SAA method with 10, 20 and 40 replications with |K| = 60,
α = 0.0625, λ = 16 and ρ = 50

Replication Opt LB UB UB-LB
LB

(%) Seconds σ̂z
10 246.5 64821.4 68401.3 5.52 1039.6 43.7
20 247.9 65992.1 68345.2 3.57 1037.0 32.1
40 292.6 65996.5 68283.3 3.47 1034.7 22.3

5.5. Effects of the Unit Overtime Cost

In this section, we evaluate the solutions obtained by the heuristic meth-
ods where α and λ are equal to 1.00, and the value of ρ is increased by a
factor of 10 (ρ = 500). The cost of overtime is thus increased by a factor of
10.

Tables 9, 10 and 11 present the corresponding results for 540 instances
obtained by several methods. Table 9 provides the result for our baseline
heuristic. The total expected costs increase significantly, compared to those
given in Table 1, since we increased the overtime cost. Comparing the results
in Table 10 to those in Table 4, we also observe for each model that the total
expected cost increases as the unit overtime cost increases. However, there
is only a very small change in average computation times compared to those
obtained by setting ρ to 50: the maximum average difference is less then
2%. For H1, results given in this table indicate that the total expected cost
decreases as we reduce the capacity up to 2%. We observe that after this
point, the total expected cost increases as the capacity further decreases. We
hence notice that with the increased overtime costs, the capacity needs to be
reduced more compared to the case with lower overtime costs. For H2, the
total expected cost decreases as we employ the setup times increased up to
the 85th percentile. After this percentile, the total expected cost increases as
the setup times further increase. The Model-TR with setup times modified
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according to the 85th percentile provides the smallest total expected cost over
all instances, where the improvement with respect to the total expected cost
obtained by the baseline heuristic is 27.63% on average. The percentile level
that leads to the lowest total expected costs has increased compared to the
previous two cases. However, we also observe that the solutions obtained
by the Model-TR with w = 0.80 and 0.90 are very similar to those obtained
by the Model-TR with w = 0.85 (at most 0.54% difference in the total
expected cost). In other words, the solutions obtained by the Model-TR
with increased setup times perform well in the stochastic environment when
we employ a high unit overtime cost. From Table 11, it is observed that the
SAA heuristic with |K| = 60 and with |K| = 100 also perform well, where
the average improvement with respect to the total expected cost obtained
by the Model-TR is 27.38% on average and 27.61% on average, respectively.

To further analyze the effect of the unit overtime cost on the performance
of the SAA heuristic, we solve 540 instances where R is set to 10, 20 and
40, and the size of K is equal to 60. The corresponding results are given in
Table 12. Comparing the solutions given in this table to those in Table 3, we
observe for each R that the upper bound increases as the unit overtime cost
increases, due to the increase in the expected overtime cost. There is a slight
decrease in the average number of instances solved to optimality. Moreover,
the average optimality gap over all the SAA problems reported by CPLEX
[17] is 0.59% (compared to 0.45% for the case with low overtime costs). We
also observe a small change in the average computation times compared to
those obtained by setting ρ to 50 (the maximum average difference is 1.11%
when R = 40). Using the statistical lower bound provided by the SAA
heuristic for R = 10, we see that the solutions obtained are within 1.52%
of optimality. We observe that this optimality gap slightly improves when
we perform 20 or 40 replications instead of just 10. When we compare the
performance of the SAA method to that of the naive approach for the case
with high unit overtime costs, we observe that the best upper bound found
by the Model-SAA (65169.5) represents a 27.85% improvement over the up-
per bound achieved with the baseline heuristic (90330.63). The statistical
lower bound obtained by 40 replications represents a 0.96% improvement
compared to the lower bound calculated as the total deterministic cost (in-
cluding the cost of overtime) obtained by the Model-TR using the average
setup times.

27

A Capacitated Lot Sizing Problem with Stochastic Setup Times

CIRRELT-2017-07



Table 9: Results of Model-TR with α = 1, λ = 1 and ρ = 500

Deterministic Solution Evaluation
Model Opt TC Gap(%) Seconds EO EOC TEC

TR 368 64157.47 0.25 615.17 28.98 26173.16 90330.63

Table 10: Results of H1 and H2 with α = 1, λ = 1 and ρ = 500

Deterministic Solution Evaluation
Model Opt SHC Gap(%) Seconds EO EOC TEC

TR, p=0.005 366 64363.79 0.30 633.53 10.20 8567.33 72931.11
TR, p=0.01 361 64613.77 0.34 651.24 3.39 2633.26 67247.03
TR, p=0.015 356 64906.27 0.39 671.28 1.14 819.30 65725.57
TR, p=0.02 347 65268.16 0.58 687.48 0.45 388.39 65656.55
TR, p=0.025 344 65667.09 0.75 702.93 1.21 2171.07 67838.17
TR, p=0.03 335 66092.53 1.22 733.17 5.18 9557.40 75649.94
TR, w=0.55 368 64174.25 0.26 620.15 25.36 23643.53 87817.77
TR, w=0.60 370 64287.54 0.29 623.05 12.32 12493.40 76780.94
TR, w=0.65 363 64360.88 0.30 638.36 6.97 7597.91 71958.77
TR, w=0.70 362 64452.03 0.32 644.50 3.66 4260.27 68712.30
TR, w=0.75 360 64579.03 0.35 649.85 1.68 2105.39 66684.42
TR, w=0.80 356 64740.83 0.39 665.71 0.74 982.99 65723.82
TR, w=0.85 353 64936.08 0.43 679.94 0.31 432.83 65368.91
TR, w=0.90 345 65234.84 0.73 706.67 0.10 147.44 65382.30
TR, w=0.95 327 65703.66 1.37 762.49 0.81 1409.65 67113.31

Table 11: Results of the SAA method with R = 1, α = 1, λ = 1 and ρ = 500

Deterministic Solution Evaluation
Model Opt SAAC Gap(%) Seconds EO EOC TEC

SAA, |K| = 20 344 64657.13 0.48 698.50 2.40 2270.52 66927.65
SAA, |K| = 60 336 64791.63 0.59 739.69 0.86 803.35 65594.98
SAA, |K| = 100 328 64866.84 0.66 774.17 0.55 528.21 65395.04

6. Conclusions

In this paper, we introduced the CLSP-SST which is a capacitated lot
sizing problem with stochastic setup times. We described a mathematical
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Table 12: Results of the SAA method with 10, 20 and 40 replications with |K| = 60,
α = 1, λ = 1 and ρ = 500

Replication OPT LB UB UB-LB
LB

(%) Runtime σ̂z
10 333.9 64273.1 65248.9 1.52 744.6 9.3
20 334.3 64335.2 65212.7 1.36 744.0 6.5
40 334.9 64335.4 65169.5 1.30 744.5 4.7

formulation that minimizes the total expected cost including regular costs
and expected overtime costs. The expected overtime in any period is a con-
vex function of the capacity consumption for that period in the deterministic
counterpart. We have developed a procedure to effectively evaluate the ex-
pected overtime for setup times which follow a Gamma distribution, and
proposed an SAA approach and two heuristics to obtain efficient production
plans. Computational results showed that the SAA method provides very
good solutions to be employed in stochastic settings. In the first case with
low variability and low overtime costs, the SAA heuristic provides a 3.28%
improvement compared to a naive heuristic. When we have high variability
in setup times or when exceeding capacity brings a high violation cost, the
improvement is 13.19% and 27.85% respectively. The SAA method also cal-
culates a statistical lower bound and the results indicate that the solutions
found are on average within 0.54% of this lower bound for the case with
low variability and low overtime costs, within 3.47% for the case with high
variability and within 1.30% for the case with high overtime costs.

In general, we have observed that heuristic H2, which is based on the de-
terministic model with overtime where setup times are modified with respect
to the probability distribution, also performs very well. Setting the setup
times equal to the 80th percentile provides a very good overall compromise
for the three cases we analysed (i.e., the case with low variability and low
overtime costs, the case with high setup time variability, and the case with
high overtime costs) and leads to high quality solutions which deviate only
1.14% on average from the best upper bounds for the various cases that we
explored. This heuristic has the advantage that it is very easy to implement
in practice, since we only have to solve an adapted deterministic model. Fu-
ture research should focus on considering both stochastic setup times and
stochastic processing times.
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[2] G. Barbarosoğlu, L. Özdamar, Analysis of solution space-dependent
performance of simulated annealing: the case of the multi-level capaci-
tated lot sizing problem, Computers and Operations Research 27 (2000)
895–903.

[3] P. Beraldi, G. Ghiani, E. Guerriero, A. Grieco, Scenario-based planning
for lot-sizing and scheduling with uncertain processing times, Interna-
tional Journal of Production Economics 101 (2006) 140–149.

[4] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming,
Springer Series in Operations Research and Financial Engineering,
2011.

[5] G.R. Bitran, H.H. Yanesse, Computational complexity of the capaci-
tated lot size problem, Management Science 28 (1982) 1174–1186.

[6] J.H. Bookbinder, J.-Y. Tan, Strategies for the probabilistic lot-sizing
problem with service-level constraints, Management Science 34 (1988)
1096–1108.

[7] N. Brahimi, S. Dauzere-Peres, N. M. Najid, A. Nordli, Single item lot
sizing problems, European Journal of Operational Research 168 (2006)
1–16.

[8] P. Brandimarte, Multi-item capacitated lot-sizing with demand uncer-
tainty, International Journal of Production Research 44 (2006) 2997–
3022.

30

A Capacitated Lot Sizing Problem with Stochastic Setup Times

CIRRELT-2017-07
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