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Abstract. Industrial synergies are forms of collaborative partnerships between companies 

resulting in the sharing of resources or the exchange of material or energy by-products. 

They generally have both economic and environmental benefits. The creation of such 

innovative partnerships within a territory leads to the development of an industrial symbiosis 

(IS), which is a dynamic networks of interconnected industrial actors. IS can develop in 

different manners, with different levels of planning and serendipity, in which the diffusion of 

trust and knowledge are generally thought to play a key role. This paper proposes and 

evaluates a simple agent-based model of self-organized IS development capable of 

simulating the impacts of social factors (i.e., social structure, trust, and knowledge diffusion) 

on the creation of industrial synergies, and eventually on the emergence of IS. This model 

was tested using NetLogo. Its consistency with the original design objectives was validated 

with a sensitivity analysis that considered several factors. Next, experiments were designed 

and carried out in order to study the influence of the social structure and dynamics. Results 

revealed that both factors have an influence on synergy creation, as IS is a function of both 

social dynamics and structure. However, more analysis is required to better understand the 

limits of such a model, as well as to validate the model’s assumptions. 
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1 Introduction 

Industrial synergies are forms of collaborative partnerships between companies resulting in the 

sharing of resources or the exchange of material or energy by-products. They typically include 

by-product synergies (i.e., re-use of by-products), shared infrastructures, and a joint provision of 

common resources or services (i.e., collaborative provision of non-core business services or 

resources). They generally have both economic and environmental benefits. The creation of 

synergies within a territory leads to the development of industrial symbiosis (IS). In this paper, 

we adopt the framework proposed by Boons et al. (2016), who define “IS as a process of 

connecting flows among industrial actors through (1) use of secondary material, water, and 

energy resources and/or (2) utility and service sharing, such as collective use of infrastructure 

or environmentally related services across a network.” IS are dynamic networks of 

interconnected industrial actors. They can be initiated in different manners. Boons et al. (2016) 

proposes seven IS dynamics inferred from empirical observations. This paper proposes a simple 

model capable of simulating self-organized IS (Chertow, 2007). 

Modeling and simulating a Complex Adaptive System requires the identification of factors that 

drive the behavior of its components in terms of decision making and interaction with their 

environment and each other. In the context of self-organized IS, geographic proximity, social 

embeddedness, and trust are identified as positive factors and enablers of industrial symbiosis 

development (Velenturf and Jensen, 2016; Chertow and Ehrenfeld, 2012; Ashton and Bain, 

2012; Gibbs, 2003; and Hewes and Lyons, 2008).  

Along these lines, the general objective of this paper is to propose and evaluate a simple 

agent-based model of self-organized IS development capable of simulating the impacts of social 

factors (i.e., social structure, trust, and knowledge sharing) on the emergence of IS.  

This paper is organized as follows. Section 2 presents a literature review of self-organized IS 

and agent-based models of IS. Section 3 presents the model, while Section 4 presents and discuss 

the experiments and their results. Section 5 concludes the paper. 
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2 Literature Review 

This literature review first focuses on the concept of self-organized Industrial Symbiosis and 

its social dimensions. Next, it introduces the paradigm of agent-based modeling, and focuses 

specifically on agent-based models of IS development.  

2.1 Self-organized Industrial Symbiosis 

IS can be shaped by different processes, with various degrees of both intentionality and 

influence from external actors or environmental factors, such as public or private third-party 

organizations, governments, policies, and culture (Boons et al., 2016). Self-organized IS are 

characterized by self-motivated industrial actors who intentionally or not identify by-product 

exchanges, or resource or service sharing opportunities. This process exploits, to various extents, 

an organizations’s capacity to acquire the necessary knowledge, and then engage and mobilize 

with other actors (Boons and Spekkink, 2012). It is a bottom-up process that is influenced by the 

industrial actors’ attributes (e.g., past experience, expertise, financial situation); capacity (e.g., 

to engage in risky transaction, to acquire knowledge and to mobilize partners); and social 

environment (e.g., their social interactions, local regulations, culture and social norm) as they 

develop and make investment decisions in industrial synergies. Because these attributes, capacity 

and factors can change over time, the processes that shape IS can also evolve as a result of 

individual or collective learning; the diffusion of the IS philosophy (e.g., from existing local and 

non-local IS cases); new social ties development; or new policy introduction (e.g., government 

strategies, environmental regulations, economic and innovation incentives). The next two 

sections briefly introduce the concepts of social embeddedness, trust and knowledge diffusion 

and sharing in social networks. 

2.1.1 Social embeddedness and trust 

As postulated by Chertow and Ehrenfeld (2012), Ashton and Bain (2012), Velenturf and 

Jensen (2016), and others, self-organized IS dynamics is generally influenced by the social 

embeddedness of local industrial actors, their mutual trust, and their social structure. Actors in a 

group are socially embedded if their behavior is influenced by other actors from the group, or by 

social norms that are shared within that group (Ashton and Bain, 2012). Hence, the nature and 

structure of social ties within a group influence IS dynamics.  

Agent-Based Model of Self-Organized Industrial Symbiosis

2 CIRRELT-2017-12



For instance, Doménech and Davies (2011b) analyse the mechanisms and factors of 

embeddedness, such as trust, information exchange, and joint problem solving, that lead to IS 

development. The authors highlight the importance of trust-building and its influencing factors 

as central elements in the process. Similarly, Domenech and Davies (2011a) use Social Network 

Analysis to study the structure of the by-products exchanges in the Kalundborg Study. Although 

this study is limited to formal IS exchanges at a specific time (i.e., it does not analyze actual 

social ties, nor how the social structure evolved, nor how new actors were added to create new 

IS exchanges), it does give an idea of its underlying social structure: a network of industrial 

actors with a high degree of centrality (i.e., presence of hub actors with several connections) and 

a short average distance between the actors (i.e., minimum number of social connections linking 

two actors).  

Another social characteristic of IS development is the organizations’ institutional capacity to 

mobilize the necessary actors (e.g., industry, government, consultant, researcher) to improve the 

set of opportunities to initiate and implement industrial synergies (Boons and Spekkink, 2012). 

This capacity requires that other member organizations to have a certain degree of understanding 

of the others’ expertise and their capacity to contribute to synergy creation. This aspect is 

addressed in the next section. 

2.1.2 Knowledge sharing in social networks 

Knowledge management (i.e., documenting and sharing of tacit and explicit knowledge 

within and between organizations) in industrial symbiosis, and how it shapes IS dynamics, has 

been poorly studied. Although Boons and Spekkink (2012) found that the institutional capacity 

to acquire and use technical knowledge did not play any role in IS development in a survey of 

eco-industrial parks in the Netherlands, Schiller et al., (2014) suggest that tacit and explicit 

knowledge diffusion in industrial networks, and how it is influenced by trust, should be studied, 

insofar as it is an integral part of the social dimension of IS. In particular, Haskins (2006, pp 

324) identifies “Knowledge about, acceptance of and commitment to the concept (of Eco-

Industrial Parks/IS)” as being one of the critical factors of IS development. 

In the context of social networks, knowledge diffusion and sharing -which involves 

information seeking and learning from others- are influenced by both the structural properties of 

social connections and the intrinsic properties of these connections (e.g., strength, closeness, 
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nature). In particular, Borgatti and Cross (2003) found that the meta-knowledge about the 

expertise, the perception of value, and accessibility of an organization's social connections affect 

positively the diffusion of that expertise between network members. As mentioned earlier, it is 

also a necessary factor of the institutional capacity to mobilize actors and network members. 

Thus, the collective learning of this meta-knowledge increases the ability to take advantage of 

new opportunities. In the context of industrial symbiosis, the development of such meta-

knowledge can be fostered by green social networking and dedicated social media platforms, 

such as those proposed by Ghali et al. (2016). 

In brief, the diffusion and utilization of knowledge to initiate and create industrial synergies 

and develop IS, are poorly studied. It is not clear which aspects of knowledge sharing and 

utilization play the most significant role and to what extent. Yet, they are a necessary part of the 

diffusion of the IS philosophy and the identification of industrial synergy opportunities. 

2.2 Agent based modeling and simulation of IS dynamics 

Agent-Based Modeling (ABM) is a computational tool used for studying of socio-technical, 

biological and economic systems by simulating the dynamics of these systems using computer 

simulation. These types of applications of ABM are referred to as Agent-Based Simulation 

(ABS). By modeling the individual behaviors and interactions between the key components of 

Complex Adaptive Systems, ABM enables researchers to anticipate the potential impacts of 

small behavioral changes (e.g., how components interact, communicate, make decisions, 

influence one other), or environmental changes from the social, natural, or economic sub-

systems (e.g., new regulations, policies, shared infrastructures, material market prices).  

In this paradigm, agents are specifically designed to simulate individual behaviors observed 

in the system, such as reactive (i.e., programmed response to specific stimuli), goal-oriented (i.e., 

response planned by the agent to achieve some goals), and learning (i.e., response influenced by 

the agent’s past experience). Agents have specific perceptions of their environment, which can 

be stochastic and shared with other agents. They also have specific, yet limited, capacity to 

modify their environment. Similarly, agents are said to be social when they are designed to 

communicate with others either directly (i.e., signal or message exchange) or indirectly (i.e., 

share blackboard or databases, modification of their environment, perception of the others’ 

behavior). Thus, the structure of a “multi-agent collective” is both dynamic and path dependent, 
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as it emerges from both their behavior (i.e., the scope of their decisions and actions) and the way 

they exchange and perceive information. 

Although ABMS is a versatile tool, its value is limited to the anticipation of general trends of 

systemic behavior due to the intractable complexity of human societies and our limited ability to 

model this complexity. The next section introduces various IS applications of ABMS. 

2.2.1 Agent-Based Models of IS Dynamics 

Previous studies have developed and used advanced tools for analyzing material and energy 

flows and social network structures in IS. However, very few dynamic models have been 

development to simulate how IS develop over time. The general principle of this approach is to 

model and simulate certain aspects of IS (e.g., creation of industrial synergies; exchange of 

knowledge, material or energy; industrial, sorting and handling processes; creation and 

development of social connections) to anticipate the impacts of various parameters (e.g., market 

price; landfill fees; social network structure) on specific performance indicators (e.g., volume of 

material diverted from landfill; number of active industrial synergies). Such studies are difficult 

or impossible using traditional social science tools, because data may simply not exist. The 

development of a dynamic IS model enables researchers to investigate specific situations that 

cannot be observed otherwise. 

The ABS application proposed by Bichraoui, et al. (2013) aims to anticipate the impacts of 

potential conditions on IS development (e.g., number of synergies). The authors study the 

impacts of learning (i.e., by imitation of others’ behavior) and cooperation (i.e., willingness to 

exchange information about output by-products). This model directly simulates by-products 

production and exchange flows. It considers the notion of proximity as any agent can only learn 

from other agents within a specific distance. It also includes the notion of plant life cycle. Here 

the validity of the model is assessed with a sensitivity analysis that quantitatively evaluate the 

impact of these factors. However, these result are not directly compared to actual data. Therefore, 

model validation remains largely qualitative (i.e., only general trends are validated).  

Albino, et al. (2016) propose another application of ABS which aims at evaluating the 

capacity of simple contract mechanisms to foster a stable IS. Firm agents have the ability to 

select their actions (i.e., create/maintain a synergy, or do nothing) according to some utility 

function. They also have a local threshold to specify their willingness to commit to the creation 
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of a synergy. Firm agents belong to any of a specific sequence of production stages. In other 

words, any firm from a given stage can receive by-products from the previous stage, and send 

its own by-products to the next stage. This model also considers trust as a parametric probability 

of maintaining a synergy with another firm. However, it does not evolve during simulation; it 

has the same value for all agents; and it has no other purpose. Furthermore, this model considers 

full disclosure of by-product information. In other words, all agents know what other agents 

produce and use, although they are only interested in the by-products they produce or use. There 

is also no notion of proximity, unlike in Bichraoui et al. (2013). Finally, some parameters are 

configured using realistic data. However, there is no reported calibration or validation of the 

model. 

Romero and Ruiz (2014) propose an agent-based model of industrial areas that undergo 

conversion into an eco-industrial park. The model is based on a conceptual framework described 

in Romero and Ruiz (2013). In this model, agents represent firms and are described with 

technical (i.e., material/waste/product production/consumption, operational efficiency), 

economic (i.e., cost/benefit, innovativeness), and social (i.e., trustworthiness) attributes. The 

value of these attributes is either calculated or randomly configured according to the behavioral 

category of the agents (i.e., traditional, ecologic, strategic). Like in Albino, et al. (2016), the firm 

agents’ decisions are driven by a utility function, which is a weighted average of the economic 

profit, the environmental impact, the strategic benefit, and the social benefit. Like in Bichraoui, 

et al. (2013), this model also considers firms’ life cycle through firm agents’ decision-making 

options, which are to produce, adapt (i.e., according to the social, natural or economic changes), 

cooperate (i.e., exchange by-product material), and manage disappearance (i.e., when the firm 

leave the IS). Concerning environmental changes, they are modeled as variations of the unit cost 

of waste flows, the unit cost of resource flows, and product demand. Therefore, the agents’ 

adaptation capability is implemented as the updating of their attributes. This model also contains 

a by-product/material substitution knowledgebase used by agents to find industrial synergies. 

This also suggests a full disclosure of by-product/material information. The authors do not report 

any implementation or experimental results. 

Finally, Couto Mantese and Capaldo Amaral (2017) use agent-based simulation to assess the 

value of several IS performance indicators for hypothetical scenarios involving simple and 

theoretical eco-industrial parks. This model primarily focuses on modeling material flows 
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between company agents and a landfill agent. Although it is not based on any specific eco-

industrial park, this application is original because its objective is to assess the behavior and 

usefulness of performance indicators. Again, its usefulness is limited by the relevance of the 

scenarios and the validity of the model, which are not evaluated. 

ABS models of IS development are clearly in their infancy. The limited scope of these models 

and the lack of detailed data for calibration and validation are limitations that must be overcome 

to improve their usefulness and accuracy. Nonetheless, they provide valuable modeling insight 

and perspectives to develop more accurate models. The model presented in the next section 

contributes to this body of knowledge by providing a first model of social embeddedness in the 

context of self-organized IS. 

3 Agent-based model 

This section presents the hypothesis and the details of the proposed model. The general 

conceptual process is based on the Theory of Planned Behavior (TPB, Figure 1). 

3.1 Hypothesis and model overview 

Agents represent plants of an industrial park, which, whenever possible and under certain 

conditions, can create industrial synergies with each other. All plant agents (we use the term 

“plant” in the remainder of the paper) follow the same generic decision and interaction processes, 

but have their own corresponding social attributes, values, and levels of knowledge. The 

proposed self-organized IS structure is heterarchical. Thus, plants exchange knowledge only 

with their social contacts, and are not aware of what happens in the network as a whole. 

Unlike the models presented earlier, this model does not consider explicitly waste and by-

product flows. Instead, potential industrial synergies are randomly pre-defined between pairs of 

plants. Each of these potential synergies also specifies for each of the concerned plants some 

investment they must make to operationalize the synergy. These investments, along with random 

revenues, condition the profitability of the synergy. This modeling approach allows us to control 

the number of potential synergies in any given network without having to model flows and 

address their input/output compatibility.  
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We also do not consider the active search for synergies and the notion of proximity. Instead, 

we consider serendipitous identification of industrial synergies within the direct social contacts 

of plants. Consequently, along with the pre-definition of potential synergies, we also pre-define 

a network of social contacts and introduce randomly during simulation new contacts between 

plants. Therefore, if a potential synergy is pre-defined between two plants that are never in 

contact during simulation, then this synergy is never created.  

 

Figure 1: General Planned Behavior of plant agents 

Thus, plants only rely on their social contacts and the diffusion of the IS philosophy to identify 

potential synergies. This diffusion process is modeled as both internal (i.e., within a plant’s social 

contacts) and external processes (i.e., when plants learn from other sources). The internal 

diffusion process is a function of the trust plants have for each other. Unlike Albino, et al. (2016), 

for whom trust is an attribute of the network, and Romero and Ruiz (2014), for whom trust is an 

attribute of the plants, we model trust as an attribute of a directed social contact. It is the 

perception of a given plant of the level of trustworthiness of another plant. It is non-symmetrical 

and influenced by its reputation within the plant’s social contacts. 
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Finally, knowledge is modeled as a bounded variable representing the level of acquaintance 

of any plant with respect to the IS philosophy. The diffusion of knowledge from one plant to 

another is a function that only allows transfer from a higher level of knowledge towards a lower 

level. Similarly, we do not model knowledge accessibility constraints nor the cost of knowledge 

sharing. Knowledge is always available between socially connected plants.  

Concerning the plants’ range of actions, it is limited to knowledge transfer and the creation, 

or not, of industrial synergies. First, knowledge transfer involves the updating of knowledge and 

social parameters. To do so, time is discretized, and plants’ attributes at any time period are 

computed using mathematical functions (see details below), their attributes, and other attributes 

from their environment (i.e., financial parameters, other agents’ attributes) at the previous time 

period. Next, the creation of a synergy follows a decision process that first requires the 

identification of a potential industrial synergy, which we refer to as awareness (Figure 1). If a 

plant’s knowledge level is greater than a particular threshold, then it becomes aware of any 

existing potential synergies within its own network of contacts and informs the potential partner 

of its existence. Next, plants must both be willing to create a partnership with each other. We 

refer to this as willingness (Figure 1). It is influenced by trust, as well as how many synergies 

have been created within a particular plant’s social contacts, which represent subjective norm in 

the TPB framework. Both awareness and willingness define the plants’ attitude toward creating 

-or not- the potential synergy. Once the potential synergy is known by both potential and willing 

partners, they have access to investment information (i.e., cost, anticipated revenues). They both 

use it to compute the net present value of the synergy to determine if it is profitable. This defines 

the perceived behavioral control of both plants involved (Figure 1). If and only if both partners 

find it profitable, then the synergy is created. 

3.2 Plant attributes and behavior 

The plants’ attributes describe their characteristics at any given time period, such as their 

knowledge level, their level of social influenceability, their level of social interaction with other 

plants, or their willingness to commit to the creation of an industrial synergy. Some of these 

attributes are dynamically computed (i.e., variables), while others are pre-determined 

(parameters). The following sections describe in details the different components of the model. 
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3.2.1 Social contacts 

Each plant could potentially have a social contact with any other plants. We assume that a 

social contact represents any social relationship between, at least, any two of the managers of 

two plants. We also assume that social relationships can influence management decisions. These 

social contacts are, by nature, dynamic. They can be created during simulation; their attributes 

can evolve in time; and they can be transformed into an industrial synergy. Their existence is 

modeled as a binary variable 𝛾𝛾𝑖𝑖𝑖𝑖, which represents a social contact between plant i and j, with 

𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃, 𝑃𝑃 being the set of all plants, and 𝛾𝛾𝑖𝑖𝑖𝑖 =  𝛾𝛾𝑗𝑗𝑗𝑗. Variables 𝛾𝛾𝑖𝑖𝑖𝑖 for all  𝑗𝑗, 𝑖𝑖 ∈ 𝑃𝑃 represent the 

social network structure of 𝑃𝑃. 

𝛾𝛾𝑖𝑖𝑖𝑖 = � 1   𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 0  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                        

  

Next, we define the notion of social network of a plant, or more simply its contacts, as the set 

of plants 𝐶𝐶𝑖𝑖 with whom plant i has a social contact with (i.e., 𝐶𝐶𝑖𝑖 = � 𝑗𝑗 | 𝑗𝑗, 𝑖𝑖 ∈ 𝑃𝑃,  𝛾𝛾𝑖𝑖𝑖𝑖 = 1, � ). The 

set of all social contacts of any plant is bounded, as we only consider here social contacts within 

𝑃𝑃 (i.e., 𝐶𝐶𝑖𝑖 ⊂ 𝑃𝑃,∀𝑖𝑖 ∈ 𝑃𝑃). They are characterized by both their structure (𝛾𝛾𝑖𝑖𝑖𝑖, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃), and their 

nature, which is represented by other variables and parameters defined below.  

3.2.2 Potential industrial synergy 

A potential industrial synergy is modeled as the existence of a potential industrial synergy 

between two plants. It is a binary parameter 𝑠𝑠𝑖𝑖𝑖𝑖, which represents the existence or absence of a 

potential industrial waste exchange between plant i and j, with 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃, and 𝑠𝑠𝑖𝑖𝑖𝑖 =  𝑠𝑠𝑗𝑗𝑗𝑗. Variables 

𝑠𝑠𝑖𝑖𝑖𝑖 for all ∀ 𝑗𝑗, 𝑖𝑖 ∈ 𝑃𝑃 represent the set of potential industrial synergies within 𝑃𝑃.  

𝑠𝑠𝑖𝑖𝑖𝑖 = �1   𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
0   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                      

  

Because these potential synergies are not necessarily known at any time, unless specific 

conditions are met, we must also define the notion of awareness, which represents whether or 

not the plants involved are aware of any potential exchanges. Thus, we also define binary 

variable 𝐴𝐴𝑖𝑖𝑖𝑖𝑡𝑡 , which represents the awareness of plant i at time t of the existence/absence of a 

potential synergy with plant j, with 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃, and 𝐴𝐴𝑖𝑖𝑖𝑖𝑡𝑡 ≠ 𝐴𝐴𝑗𝑗𝑗𝑗𝑡𝑡 . As explained later, the value of 𝐴𝐴𝑖𝑖𝑖𝑖𝑡𝑡  

is a function of the knowledge of plants i and 𝑠𝑠𝑖𝑖𝑖𝑖. 
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In order to model the existence of a created synergy, we also define variable 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡  to specify 

whether two plants i and j share an industrial synergy at time period t, with 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑆𝑆𝑗𝑗𝑗𝑗𝑡𝑡 . 

𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 = �1   𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡 
0   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                     

 

3.2.3 Trust 

We adopt Yu and Singh (2000) formal definition of trust. Hence, the trust rating assigned by 

plant i to j at time t is a continuous variable 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡, with 𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 ∈ [−1,1] (i.e., minimum and maximum 

trustworthiness). At the beginning of each time period, each plant updates its rating of other 

plants using Equations (1) and (2) to model how trust evolves over time and how it is propagated 

through social contacts. We use several parameters to describe how much each plant can be 

influenced by its own set of contacts, and how much trust can be influenced by other 

serendipitous external events. 

Tijt+1 = �
min[ Tijt + βi�Tıȷt���-Tijt� + dij

t; 1]    if    Tijt ≤ Tıȷt���

max [-1; Tij
t + βi�Tıȷt���-Tijt� + dij

t]   if   Tijt > Tıȷt���
    (1) 

𝑇𝑇𝚤𝚤𝚤𝚤𝑡𝑡��� =
∑ 𝑇𝑇𝑘𝑘𝑘𝑘𝑡𝑡   𝑘𝑘|𝑘𝑘∈𝐶𝐶𝑖𝑖∩𝐶𝐶𝑗𝑗

�𝐶𝐶𝑖𝑖∩𝐶𝐶𝑗𝑗�
          (2) 

with 

𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃  

𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡  trust rating assigned by plant i to j at time t with  𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 ∈ [−1,1]; 

𝑇𝑇𝚤𝚤𝚤𝚤𝑡𝑡���   reputation of plant j assigned by common contacts of plants i and j at time t; 

�𝐶𝐶𝑖𝑖 ∩ 𝐶𝐶𝑗𝑗� number of common social contacts of plant i and j 

𝛽𝛽𝑖𝑖  social influenceability level of plant i with 𝛽𝛽𝑖𝑖 ∈ [0,1]; 

𝑑𝑑𝑖𝑖𝑖𝑖
𝑡𝑡  trust increment assigned by plant i to j at time t due to serendipitous social event 

between i to j with  𝑑𝑑𝑖𝑖𝑖𝑖
𝑡𝑡 ∈ [−1,1]. 

In brief, Equations (1) and (2) define trust at time period t as a continuous variable. It is 

influenced by the past trust value of agent j, its reputation (w.r.t. the common contacts of agents 

i and j) and the level of influenceability of agent i, and other serendipitous social events. 
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3.2.4 Knowledge and knowledge transfer 

Knowledge is modeled as an aggregated level of awareness 𝐾𝐾𝑖𝑖𝑡𝑡 ∈  [0,1] of plant i with respect 

to the IS philosophy. We assume that, all things being equal, the higher this level of knowledge, 

the more likely a plant will be to consider the creation of an industrial synergy. This assumption 

means that if managers are either aware of the IS philosophy or the existence of industrial 

synergy practices in their own industrial sector, they are more likely to have a positive attitude 

towards adopting such a solution for their own industrial needs. We also assume that this 

knowledge can only be gained through knowledge acquisition (e.g., learning or hiring of 

experts), or sharing, which is a function of the social interaction intensity and trust levels within 

the social contacts of a plant. To do so, plants also update at the beginning of each time period 

their knowledge level according to Equation (3). 

𝐾𝐾𝑖𝑖𝑡𝑡+1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1;𝐾𝐾𝑖𝑖𝑡𝑡 +  𝛽𝛽𝑖𝑖.∑ 𝐾𝐾𝚤𝚤𝚤𝚤𝑡𝑡�  𝑗𝑗∈𝐶𝐶𝑖𝑖|𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡≥𝑡𝑡𝚤𝚤� + 𝑙𝑙𝑖𝑖𝑡𝑡�       (3) 

with 

𝐾𝐾𝑖𝑖𝑡𝑡  knowledge of plant i at time t with 𝐾𝐾𝑖𝑖𝑡𝑡 ∈  [0,1] 

𝐾𝐾𝚤𝚤𝚤𝚤𝑡𝑡� = max �0;𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡 �𝐾𝐾𝑗𝑗𝑡𝑡 − 𝐾𝐾𝑖𝑖𝑡𝑡�� with 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃 

𝐾𝐾𝚤𝚤𝚤𝚤𝑡𝑡�   maximum knowledge increment of plant i from j at time period t; 

𝑙𝑙𝑖𝑖𝑡𝑡   knowledge gain at time period t due to learning or the hiring with  𝑙𝑙𝑖𝑖𝑡𝑡 ∈  [0,1]; 

𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡   social interaction intensity of plant i and j at t with  𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡 ∈  [0,1]; 

𝑡𝑡𝚤𝚤�  minimum trust threshold of plant i to consider knowledge sharing or a synergy 

with another plant; 

Equation (3) defines the knowledge level of a plant at any given time period, as its knowledge 

at the previous time period, plus the knowledge gained from social interactions within its trusted 

contacts, plus the knowledge gained from learning/hiring. 

Next, based on Equations (1) and (3), we define the concept of awareness of a potential 

industrial waste exchange introduced earlier is defined as: 

𝐴𝐴𝑖𝑖𝑖𝑖𝑡𝑡 =  �1  if   𝐾𝐾𝑖𝑖𝑡𝑡 ≥ 𝑘𝑘�  and 𝑠𝑠𝑖𝑖𝑖𝑖 = 1
0   otherwise                      

  

Agent-Based Model of Self-Organized Industrial Symbiosis

12 CIRRELT-2017-12



with 

𝑘𝑘�   minimum knowledge threshold required to be aware of a potential exchange. 

𝑘𝑘�  represents the fact that plants must possess a minimum level of understanding of the IS 

philosophy to be aware of the existence of any potential synergy. We assume that it is the only 

necessary condition although in practice, some technical expertise may be involved. Because 

being aware of the existence of a potential synergy, does not guarantee the plant is ready to adopt 

that solution, we introduce here the notions of acceptance and willingness.  

3.2.5 IS Acceptance and Willingness to commit 

The willingness of a plant to commit with another plant represents the non-financial attribute 

of its willingness to create a synergy with this plant. It is a function of the IS acceptance level of 

that plant and its trust toward the other plant (Equation 5). The IS acceptance level represents 

how much a plant is willing to invest in a synergy regardless of its partner. It is influenced by 

the percentage of his/her social contacts with a synergy (subjective norm), and its recent 

knowledge acquisition (Equation 4). We did not, however, model the negative impact of synergy 

creation failure. This results in a strictly increasing level of knowledge and acceptance functions 

as shown in Equations (3) and (4). We also introduce the notion of self-confidence of a plant, 

which allows us to model various attitude toward risk with respect to any knowledge acquisition 

between two consecutive periods.  

𝐵𝐵𝑖𝑖𝑡𝑡+1 = min�1;  𝐵𝐵𝑖𝑖𝑡𝑡 + 𝛽𝛽𝑖𝑖.
∑ 𝑆𝑆𝑝𝑝𝑡𝑡�𝑝𝑝∈𝐶𝐶𝑖𝑖

|𝐶𝐶𝑖𝑖|
+ 𝜇𝜇𝑖𝑖. (𝐾𝐾𝑖𝑖𝑡𝑡 − 𝐾𝐾𝑖𝑖𝑡𝑡−1)�     (4) 

𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡 =  �𝐵𝐵

𝑡𝑡  if   𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝑡𝑡𝚤𝚤�  and   Aij
t = 1   

0   otherwise                                
       (5) 

with 

𝑆𝑆𝑝𝑝𝑡𝑡� = �1   if  plant 𝑝𝑝 has an industrial synergy with any plant at time period t 
0   otherwise                                                                                                             

  

𝐵𝐵𝑖𝑖𝑡𝑡  Acceptance level of plant i to create a synergy at time t with 𝐵𝐵𝑖𝑖𝑡𝑡 ∈ [0,1]; 

𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡   willingness to commit of plant i to create a synergy with plant j at time t 

𝜇𝜇𝑖𝑖  self-confidence of plant i to use its knowledge; 
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𝑤𝑤�    minimum level of willingness to commit to any synergy creation.  

The willingness of plant i to commit with j at t takes a non-zero value if and only if i is aware 

of a potential synergy with j, and if i trusts j beyond threshold 𝑡𝑡𝚤𝚤�. Furthermore, it must be larger 

than 𝑤𝑤�  for any plant to commit to any synergy creation. It is also a function of its acceptance 

level. 

3.3 Investment decision 

To simulate investment decisions, we propose a simple financial analysis carried out during 

simulation by any plant facing that decision. First, we consider that a potential synergy is 

modeled as an exchange of a random volume of waste/by-products that is sold annually by its 

producer to a buyer, at a random market price. Thus, the annual cash flow variation is directly 

attributable to the synergy and can be expressed as in Equations (6) and (7). 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 = 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒ℎ,𝑡𝑡. �𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 + 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡�      (6) 

𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 = 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒ℎ,𝑡𝑡. �𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 − 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 − 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡�    (7) 

with  

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 net cash flow of the producer during period t; 

𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 net cash flow of the buyer during period t; 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒ℎ,𝑡𝑡 volume of waste/by-product exchanged between plants i and j; 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 landfill cost during period t; 

𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 price of waste/by-product during period t; 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 price of new resource during period t; 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 transportation cost during period t; 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 includes landfill cost savings and revenues from the sale of its waste. In practice, 

the situation is more complex and can include contracts (Albino, et al., 2016). Next, 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑡𝑡 

includes the savings from not having to buy new resources, minus the cost of the alternative 

waste/by-product that must be acquired and transported. Using these values, we calculated the 

Net Present Value with Equation (8).  
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𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗 = ∑ 𝑅𝑅𝑖𝑖,𝑡𝑡
(1−𝑑𝑑)𝑡𝑡

𝑁𝑁
𝑡𝑡=0          (8) 

with 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗 Net Present Value of the potential industrial synergy between plant i and j; 

𝑑𝑑  discount rate 

𝑁𝑁  number of periods to pay off the initial investment. 

3.4 Plant behaviors 

At the beginning of each time period, each plant executes sequentially two processes: trust 

and knowledge update (Figure 2), and synergy creations (Figure 3). First, trust and knowledge 

update consists of updating trust, knowledge, and the acceptance variables. This is done for all 

social contacts of the plant. Next, synergy creation consists of a series of tests and computations 

that aim at: (1) identifying if the plant is aware of the potential synergy with a social contact; (2) 

computing if the plant is willing to commit to an IS with its social contact; and (3) computing 

the profitability of the potential synergy. If all tests are positive, then the synergy is created. If 

not, the process continues for all its social contacts. Once both processes have been executed, 

new random social contacts are added globally, and the social networks (i.e., list of contacts) of 

the involved plants are updated. 

Each computation only involves data calculated at previous periods. The simulation process 

starts with initial value and ends when a certain number of time periods has been reached. Data 

are then collected for analysis. 
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Figure 2: 

Trust and knowledge update process 

Figure 3: 

Industrial synergy creation process 

4 Model implementation and experiments 

This model was implemented with NetLogo. The next section presents simple calibration and 

validation experiments we performed. 

4.1 Model Initialization and calibration 

To calibrate the model, we performed a sensitivity analysis with parameters 𝛽𝛽𝑖𝑖, 𝜇𝜇𝑖𝑖, 𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡  and 𝑡𝑡𝚤𝚤� 

to study their influence on the average number of synergies created. To do so, we analyzed the 

impact of each parameters with 200 plants and random social networks, by setting all other 

parameters to its midpoint value, and by running 30 simulation runs for several values along its 

entire range (e.g., 0, 0.25, 0.5, 0.75, 1). Then, we averaged the results for each value point.  
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First, we observed that their influence is non-linear. When the social influenceability 𝛽𝛽𝑖𝑖 

increases, the average number of synergies starts increasing at 0.25, and increases almost linearly 

after. Concerning self-confidence 𝜇𝜇𝑖𝑖, the average number of synergy increases almost linearly 

and reach a plateau around 0.75. Concerning the social interaction intensity 𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡 , the average 

number of synergy also increases with a maximum around 0.75. Finally, the minimum 

knowledge threshold 𝑡𝑡𝚤𝚤� is the only parameter that does not positively correlate with the average 

number of synergy, which decreases more or less linearly as it increases. Although it is not 

possible to quantitatively calibrate these parameters with actual data, their general trends indicate 

that their influence is as expected and that the model is consistent with the original design 

objectives. For all other experiments, these parameters are drawn randomly using a uniform 

distribution with limited ranges of values to create a relatively homogeneous population of plants 

with respect to their social characteristics (see Table 1 and Table 2). 

Table 1: Simulation parameters 

Notation Description Ranges of parameters 

Social Parameters 

Tijt=0 initial trust rating assigned by plant i to j  [-1; 1] 

𝐾𝐾𝑖𝑖𝑡𝑡=0 Initial knowledge level of plant i  
Experiment a 

[0; 0.5] 
Experiment b 

[0; 0.25] 

𝑙𝑙𝑖𝑖𝑡𝑡 non-social knowledge gain of plant i at period t due to 
learning or hiring 

Experiment a 
[0; 0.1] 

Experiment b 
[0; 0.2] 

𝛽𝛽𝑖𝑖 social influenceability level of plant i  [0.5; 1.0]* 

𝜇𝜇𝑖𝑖  self-confidence of plant i [0.5; 1.0]* 

𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡  Social interaction intensity between plants i and j at 
period t 

[0.5; 1.0]* 

𝑡𝑡𝚤𝚤� minimum trust threshold of plant i to consider 
knowledge sharing or a synergy with others 

[0.25; 0.75]* 

𝑘𝑘�  minimum knowledge threshold to be aware of a 
potential synergy 

[0.75; 1.0] 

𝑤𝑤�  minimum willingness threshold of plant i to consider 
creating a synergy with others 

[0.5; 1.0] 

* after calibration 
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Table 2: Economic parameters 

Economic Parameters 

𝐼𝐼𝑖𝑖,𝑗𝑗 Initial investment of synergy between plant i and j $1000 

𝑑𝑑 discount rate 10% 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒ℎ,𝑡𝑡 Anticipated volume of exchanged by-products at period t [1000; 10 000] 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 landfill cost [$70; $90] 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 selling price of residual [$1; $150] 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡  Transport cost 4$/ton 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 Resource price [$1; $150] 

 

4.2 Experiments 

To illustrate the usefulness of this model, we designed an experiment to study the impact of 

several factors on the number of synergies created over time, including the number of potential 

synergies, the number of new social contacts per period, and the type of social network. The next 

section presents the design of these experiments. 

4.2.1 Design of experiment 

As shown in Table 1, we performed two series of experiments in order to test two different 

general knowledge configurations (i.e., experiment a, medium average initial knowledge level 

with small non-social gains; experiment b, low average initial knowledge level with medium 

non-social gains). Next, for each of them, three experimental factors were defined separately 

(Table 3). The potential synergy level represents the general potential to create a dense IS. Some 

parks may have more potential synergies than others. The two other factors represent 

respectively the social dynamics and social structure between plants. More specifically, the 

number of new social contacts per period is a proxy of the social dynamics. A higher level of 

new social contacts can be used to simulate the use of a green social media without input-output 

matching function, or an eco-industrial park with an extension activity program or coordinator 

in industrial ecology. New social links are randomly added, although they do respect the structure 

type of the initial social network. This aspect is developed next. 
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Table 3: Experimental design 

  Number of new social contacts per period 

  

0% 0.5% 1% 

Po
te

nt
ia

l s
yn

er
gy

 le
ve

l 

5% 
scale-free scale-free scale-free 

random random Random 

10% 
scale-free scale-free scale-free 

random random Random 

15% 
scale-free scale-free scale-free 

random random Random 
 

All other factors were drawn randomly for uniform distributions with specific ranges of values 

as presented in Table 1 and Table 2. Furthermore, in all experiments, we consider an industrial 

park of 50 plants. The number of new social contacts per period is expressed as a percentage of 

all possible social contacts within a set of 50 plants (i.e., 50 x 49 / 2 = 1225). We consider 3 

levels (0%, 0.5%, 1%). The potential synergy level is also expressed as a percentage of all 

possible pairs of plant. Again, we consider 3 levels (5%, 10%, 15%). Finally, concerning the 

network structure, we consider two types: scalefree and random networks, as described in the 

next section. We used a factorial design, so all combinations of factors were simulated 30 times 

for a total of 36 experiments and 1080 simulation runs (see Table 3).  

4.2.2 Network types 

We consider two types of network structures to describe social structures: random and scale 

free networks. Random graphs are generated using random probability distribution, in which 

each edge of a network has a uniform and independent probability of occurrence. We used a 

probability of 0.02 in order to match the number of initial social links in the scale-free network. 

Thus, the expected number of social contacts with 50 plants and a probability of 0.02 is 49, which 

represents 4% of all possible social contacts. Scale free networks exhibiting power-law degree 

distribution. In other words, the fraction 𝑓𝑓(𝑚𝑚) of nodes with m links decrease with m according 

to Equation (9). We built scale-free networks by progressively adding a node n from the initial 

set of 50 to the network, and by adding a link between node n and another node i from the 

network with a probability 𝑃𝑃𝑛𝑛𝑛𝑛 based on the Barabási-Albert model (Equation 10). 
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𝑓𝑓(𝑚𝑚) ≈ 𝑎𝑎.𝑚𝑚−𝑘𝑘         (9) 

𝑃𝑃𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑖𝑖
∑ 𝑘𝑘𝑗𝑗𝑗𝑗

          (10) 

with 

𝑘𝑘𝑖𝑖  number of social links of plant i. 

This construction process creates scale-free networks with 49 links. It was also used to add 

social links during simulation. Scale free networks better represent social structures in which 

there are many people with few connections, and few people who are very connected.  

4.3 Results and discussion 

The experimental output studied is the number of synergies initiated each year. The results of 

the repetitions of each experiment, which are simulated instances of IS dynamic, were averaged 

for each year. Thus, the graphs shown in the next sub-sections represent an average dynamic for 

a specific set of conditions. 

4.3.1 Impact of potential industrial synergy level 

Figure 4(a, c) illustrates (for 0.5% of new social links and the knowledge configuration of 

experiment a -the average plants’ initial knowledge level is 0.25; the average non-social 

knowledge gain per year is 0.05; and the average minimum knowledge level to be aware of a 

potential synergy is 0.875-) how the average number of synergy evolves for both types of 

network. We can see that, on average, there is no synergy created before year 5. With the 

configuration of experiment a, knowledge sharing through social links was necessary to reach 

the minimum level of knowledge required in 5 years on average, and so, regardless of the level 

of potential synergies. Figure 4(a, c) also shows that a higher level of potential synergy increases 

the number of industrial synergies initiated, which is to be expected because the higher the 

number of potential synergies, the larger the overlap of the sets of potential synergies and social 

links.  

Also, although new social links are added linearly, their impact is not, as it slows as time 

progresses. This lag is due to learning. As the average overlap between social links and potential 

synergies increases linearly, it takes time for knowledge to reach the minimum level for these 

potential synergies to be discovered. Once this level is achieved, many of these synergies are 
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implemented rapidly until there is no new potential synergy to discover. This is also shown in 

Figure 6(a) for both types of network and no new social links added, where no new synergies 

are discovered after 10 years. It is also suggested in Figure 4(b and d), where the number of 

initiated synergies is expressed as a percentage of the number of potential synergies. It shows 

that this measure of IS dynamics is independent of the level of potential synergies, which 

suggests that social dynamics (e.g., social interaction level, number of new social links, network 

structure, trust level) and learning (e.g., from non-social learning or hiring) might be factors 

constraining the ability of the entire network to identify potential synergies. As discussed in the 

next section, this is furthermore suggested by the fact that a higher level of social dynamics (i.e., 

number of new social links) significantly increases the percentage of the number of potential 

synergy initiated for all three levels of potential synergies (Table 4). These results are similar for 

all experimental setups (Table 4). Consequently, more experiments are needed to investigate this 

phenomenon, which suggests that, in purely self-organized IS, both learning and social dynamics 

are enablers of synergy creation. 

Table 4: Impact of social dynamics on the total percentage of potential synergy initiated 
(random network) 

  Number of new social links 

  0% 0.5% 1% 

Po
te

nt
ia

l 
sy

ne
rg

y 
le

ve
l 

5% 12.4% 65.6% 72.8% 

10% 13.0% 64.6% 71.9% 

15% 10.8% 64.3% 74.8% 

Average 12.1% 64.8% 73.2% 

 

Agent-Based Model of Self-Organized Industrial Symbiosis

CIRRELT-2017-12 21



  

(a) (b) 

  

(c) (d) 

Figure 4: Impact of potential synergy level on the number of synergy initiated (a, scale free 
network; c random network) and the percentage of potential synergy initiated (b scale free 

network; d random network) 

4.3.2 Impacts of social dynamics 

As shown in Figure 5 (a, b) for 10% of potential synergies and both types of networks, the 

higher the number of new social links, the higher the average number of initiated synergies. 

These results are similar for all experimental setups. We can see that even a slight increase of 

social activity from 0% to 0.5%, increases the likelihood of creating synergies. However, a 

similar increase from 0.5% to 1% has a much smaller impact for both types of networks. This 

suggest that more work is needed to better understand how social dynamics affects self-

organized IS dynamics. It also implies that mechanisms, actors, or social media capable of 
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facilitating the creation of social links between plants may increase the creation of industrial 

synergies in an industrial park, although its impact may vary according to its pre-existing social 

dynamics as well as its synergistic potential.  

 

  

(a) (b) 

Figure 5: Impact of social dynamics on the number of initiated synergies. 

4.3.3 Impact of network type 

Figure 6(a, b, c) presents the impacts of types of network structure for, respectively, 0%, 0.5% 

and 1% of new social links. We can see that random networks always outperform scale-free 

networks. This is true for all tested configurations and knowledge conditions. However, this 

result must be investigated further insofar as the network structure of potential synergies was 

random. Consequently, the hub-like structure of scale-free social networks has a smaller overlap 

with random networks of potential synergies, which certainly affects its performance. 

Furthermore, synergy networks are not necessarily random as shown by Domenech and Davies 

(2011a) who mention a hub-like structure in the case of the Kalundborg study. Again, future 

work will require a thorough analysis of IS structures, as well as more simulation of realistic 

initial network structure conditions. 
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(a) 

 
(b) 

 
(c) 

Figure 6: Impact of network type (10% potential synergy level; (a) 0%, (b) 0.5%, (c) 1% of 
new social links) 

4.3.4 Impacts of Knowledge conditions 

Figure 7 presents the impact of different knowledge conditions (i.e., initial knowledge level 

and knowledge gain due to learning or hiring) from experiments a and b. Only the results for 0% 

new social link, scale free network, and 15% potential synergy are presented, because there is 

no difference between both conditions as soon as new social links are added, which suggest that, 

for the tested conditions, social dynamics tend to dominate initial knowledge and non-social 

learning conditions. However, a small difference appears with no new social links. As expected, 

we can see that a smaller level of initial knowledge tends to delay slightly the creation of 

synergies (it takes more time to become aware of potential synergies), although the end results 

are comparable. This is observed for all level of potential synergies and both types of network. 

Again, this calls for more in-depth analysis of the impact of initial knowledge level, and how 

plants learn in a non-social manner, on IS development.  

Agent-Based Model of Self-Organized Industrial Symbiosis

24 CIRRELT-2017-12



 

Figure 7: Impact of knowledge conditions 

5 Conclusion 

The agent-based model of self-organized IS dynamic is the first to explicitly model trust as 

an attribute of a directed social link between two plants, and to include it in the processes of 

knowledge diffusion and synergy creation. Although the experiments reported here show how 

IS attributes can emerge from the interactions and behavior of individual plants, this model 

remains simplistic and many assumptions were made. The experiments also illustrate how such 

a model could be used as a complementary tool for case studies, surveys, and other empirical 

studies, which provide the knowledge required to model appropriately.  

In order to improve it, there are many different opportunities. For instance, we can address 

the stability of supply, both in quality and quantity, which is required to consider explicitly waste 

flows. Furthermore, we can also consider the dynamic introduction of new plants that can be 

more or less proactively added to create more synergies. Along this line, we should improve the 

discrete modeling of time and model more accurately, per month or even week, along with 

exchange flows, their price and cost, as well as raw material and market fluctuations. Other 

factors could also be included such as purchase contracts. Finally, we should also study the actual 

network structures of synergies in IS, and simulate these structures to improve the accuracy of 

our model. 

Agent-Based Model of Self-Organized Industrial Symbiosis

CIRRELT-2017-12 25



Acknowledgement 

This project was funded by the Industrial Innovation Scholarships Program of the Fonds de 

recherche du Québec ‐ Nature et technologies (FRQNT) in partnership with the Centre de 

transfert technologique en écologie industrielle (CTTÉI). 

References 

Albino, V., Fraccascia, L., Giannoccaro, I., 2016. Exploring the role of contracts to support the 

emergence of self-organized industrial symbiosis networks: an agent-based simulation study. 

Journal of Cleaner Production, 112, 4353-66. 

Ashton, W.S., 2009. The structure, function, and evolution of a regional industrial ecosystem. 

Journal of Industrial Ecology, 13(2), 228-246. 

Ashton, W.S., Bain, A.C., 2012. Assessing the "Short Mental Distance" in Eco-Industrial 

Networks. Journal of Industrial Ecology, 16(1), 70-82. 

Bichraoui, N., Guillaume, B., Halog, A., 2013. Agent-based modelling simulation for the 

development of an industrial symbiosis - preliminary results. Procedia Environmental Sciences, 

17, 195-204. 

Boons, F., Spekkink, W., 2012. Levels of institutional capacity and actor expectations about 

industrial symbiosis. Journal of Industrial Ecology, 16 (1), 61-69. 

Boons, F., Spekkink, W., Mouzakitis, Y., 2011. The dynamics of industrial symbiosis: a proposal 

for a conceptual framework based upon a comprehensive literature review. Journal of Cleaner 

Production, 19(9-10), 905-11. 

Boons, F., Chertow, M., Park, J., Spekkink, W., Shi, H., 2016. Industrial Symbiosis Dynamics 

and the Problem of Equivalence: Proposal for a Comparative Framework. Journal of Industrial 

Ecology, DOI:10.1111/jiec.12468. 

Borgatti, S.P., Cross, R., 2003. A Relational View of Information Seeking and Learning in Social 

Networks. Management Science, 49(4), 432-445. 

Chandra-Putra, H., Chen, J., Andrews, C.J., 2015. Eco-Evolutionary Pathways Toward Industrial 

Cities. Journal of Industrial Ecology, 19(2), 274-284. 

Agent-Based Model of Self-Organized Industrial Symbiosis

26 CIRRELT-2017-12



Chertow, M.R., 2007. “Uncovering” industrial symbiosis. Journal of Industrial Ecology, 11(1), 

11–30. 

Chertow, M., Ehrenfeld, J.R., 2012. Organizing self-organizing systems. Journal of Industrial 

Ecology, 16(1), 13–27. 

Chertow, M.R., Ashton, W.S., Espinosa, J.C., 2008. Industrial symbiosis in Puerto Rico: 

environmentally related agglomeration economies. Regional Studies, 42 (10), 1299-1312. 

Couto Mantese, G., Capaldo Amaral, D., 2017. Comparison of industrial symbiosis indicators 

through agent-based modeling. Journal of Cleaner Production, 140, 1652-1671. 

Doménech, T., Davies, M., 2011a. Structure and morphology of industrial symbiosis networks: 

The case of Kalundborg. In Procedia - Social and Behavioral Sciences, Volume 10, 79-89, 4th 

& 5th UK Social Networks Conferences. 

Doménech, T., Davies, M., 2011b. The role of embeddedness in industrial symbiosis networks: 

phases in the evolution of industrial symbiosis networks. Business Strategy and the 

Environment, 20 (5), 281-296. 

Haskins, C., 2006. Multidisciplinary investigation of eco-industrial parks. Systems Engineering, 

9(4), 313-330. 

Hewes, A.K., Lyons, D.I., 2008. The humanistic side of eco-industrial parks: champions and the 

role of trust. Regional Studies, 42(10), 1329-1342. 

Ghali, M.R., Frayret, J.-M., Robert, J.-M., 2016. Green social networking: Concept and Potential 

Applications to Initiate Industrial Synergies. Journal of Cleaner Production, 115(1), 23-35. 

Gibbs, D., 2003. Trust and networking in inter-firm relations: the case of eco-industrial 

development. Local Economy, 18, 222–36.  

Gibbs, D., Deutz, P., 2007. Reflections on implementing industrial ecology through eco-

industrial park development. Journal of Cleaner Production, 15(17), 1683-1695. 

Jensen, P.D., Basson, L., Hellawell, E.E., Bailey, M.R., Leach, M., 2011. Quantifying 

‘geographic proximity’: experiences from the United Kingdom’s national industrial symbiosis 

programme. Resources, Conservation and Recycling Journal. 55 (7), 703-712. 

Romero, E., Ruiz, M.C., 2013. Framework for applying a complex adaptive system approach to 

model the operation of eco-industrial parks. Journal of Industrial Ecology, 17(5), 731-741. 

Romero, E., Ruiz, M.C., 2014. Proposal of an agent-based analytical model to convert industrial 

areas in industrial eco-systems. Science of the Total Environment, 468-469, 394-405. 

Agent-Based Model of Self-Organized Industrial Symbiosis

CIRRELT-2017-12 27



Schiller, F., Penna, A.S., Basson, L., 2014. Analyzing networks in industrial ecology - a review 

of Social-Material Network Analyses. Journal of Cleaner Production, 76(1), 1-11. 

Velenturf, A.P.M., Jensen, P.D., 2016. Promoting Industrial Symbiosis: Using the Concept of 

Proximity to Explore Social Network Development. Journal of Industrial Ecology, 20(4), p 

700-709. 

Yu, B., Singh, M.P., 2000. A social mechanism of reputation management in electronic 

communities. Lecture Notes in Computer Science, Cooperative Information Agents IV: The 

Future of Information Agents in Cyberspace - Proceedings of the 4th International Workshop, 

CIA 2000, 1860, 154-165. 

 

Agent-Based Model of Self-Organized Industrial Symbiosis

28 CIRRELT-2017-12


	1 Introduction
	2 Literature Review
	2.1 Self-organized Industrial Symbiosis
	2.1.1 Social embeddedness and trust
	2.1.2 Knowledge sharing in social networks

	2.2 Agent based modeling and simulation of IS dynamics
	2.2.1 Agent-Based Models of IS Dynamics


	3 Agent-based model
	3.1 Hypothesis and model overview
	3.2 Plant attributes and behavior
	3.2.1 Social contacts
	3.2.2 Potential industrial synergy
	3.2.3 Trust
	3.2.4 Knowledge and knowledge transfer
	3.2.5 IS Acceptance and Willingness to commit

	3.3 Investment decision
	3.4 Plant behaviors

	4 Model implementation and experiments
	4.1 Model Initialization and calibration
	4.2 Experiments
	4.2.1 Design of experiment
	4.2.2 Network types

	4.3 Results and discussion
	4.3.1 Impact of potential industrial synergy level
	4.3.2 Impacts of social dynamics
	4.3.3 Impact of network type
	4.3.4 Impacts of Knowledge conditions


	5 Conclusion
	Acknowledgement
	References
	CIRRELT-2017-12-abstract.pdf
	Bibliothèque et Archives Canada, 2017




