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Abstract. We study the Capacitated Supplier Selection problem with Total Quantity 
Discount policy and Activation Costs, a procurement problem where a company needs a 
certain quantity of different products from a set of potential suppliers, and introduce its 
variant under uncertainty. In its deterministic form, the problem aims at selecting a subset 
of the suppliers and the relative purchasing plan satisfying the demands at minimum cost, 
taking into account that the suppliers offer discounts based on the total quantity of products 
purchased and that the activation of a business activity with a supplier has a fixed cost. 
However, due to the long-term nature of the problem, several parameters may be affected 
by uncertainty. Thus, we propose a two-stage stochastic programming formulation with 
recourse, highlighting the strategic and the operational decisions involved, as well as the 
effect of the different sources of uncertainty. In particular, we focus on the cases in which 
only the products price or only the products demand are stochastic. The general model and 
the recourse actions are adapted for these special cases, and the resulting modeling 
approaches are validated on a large set of instances. The experiments show the 
convenience of having in place models considering uncertainty explicitly with respect to 
using expected values for approximating it, and give rise to interesting managerial insights. 
Due to the computational burden of solving the resulting stochastic models (for a sufficiently 
large number of scenarios), we also propose a simple solution framework based on valid 
inequalities and other accelerating mechanisms. 
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1. Introduction

Procurement logistics problems mainly concern the operational decisions of a company that

needs to buy products/raw materials from several potential suppliers. Since a large portion of a

firm total cost is represented by procurement expenditure, regardless of the type of purchased goods,

it is of crucial importance to optimize this aspect through the use of sophisticated mathematical

models and efficient solution algorithms. That is why, despite of its long history in the specialized

literature, procurement problems still foster new research contributions (see, e.g., Manerba, 2015).

In general, decisions underlying the procurement processes aim to elaborate a purchasing plan

that adequately satisfies an internal demand while minimizing the procurement costs depending on

product prices. Let M be a set of suppliers, indexed by i, and let K be a set of products, indexed

by k. Each product k ∈ K, for which a positive integer demand dk is required, can be purchased

in a subset Mk ⊆M of suppliers at a positive basic price fik, potentially different for each supplier

i ∈Mk. The so-called Supplier Selection (SS) problem consists in deciding which suppliers have to

be visited and which amount of each product has to be purchased in each visited supplier (Aissaoui

et al., 2007). However, real procurement settings may be complicated by several factors making

the basic SS problems inadequate to provide a solution to the actual decision process. Common

complicating factors are:

• restricted product availabilities: when a supplier cannot guarantee a priori to satisfy

completely a product demand, then the purchase of each product has to be split over different

suppliers thus complicating the creation of a purchasing plan. In this work we assume that,

for each product k ∈ K, a quantity qik is available at each supplier i ∈Mk (capacitated SS);

• discount policies: to be more competitive, suppliers often try to push-up their sales by

offering discounts.) In this paper we assume that all the suppliers propose the so-called

total quantity discount (TQD), a policy in which the cumulative quantity purchased (i.e., the

number of units bought regardless of the type of products involved) determines the discount

rate applied by the supplier to the total purchase cost. More precisely, each supplier i ∈ M
defines a set Ri = {1, . . . , ri}, indexed by r, of ri consecutive and non-overlapping intervals

represented by [lir, uir] and associated with a discount rate δir ∈ [0, 1) such that δi,r+1 ≥ δir
r = 1, ..., ri−1 (i.e., the higher the interval, the greater the discount). Then, for each supplier

i ∈M , the discount rate δir is applied to the total purchase cost if the total quantity purchased

lies in the interval r ∈ Ri, i.e., is greater than or equal to lir and less than or equal to uir.

An example of the cost function for a specific supplier i offering a TQD policy is plotted in

Figure 1, where only the lower bound of each interval is indicated;

• contract activation costs: in general, clients can benefit from the discounts only by previ-

ously activating a contract with the selected suppliers. In this paper we consider a cost ai for

each supplier i ∈ M , corresponding to the fee that the company has to paid in order to un-

dertake a business activity with that supplier. Trade-offs between these activation costs and

the possible saving due to the discounted purchase further complicate the supplier selection;
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Figure 1: Piece-wise linear function representing the cost of buying Q units from a supplier i offering a TQD policy.

• data uncertainty: the high competition on the markets and the globalization, with the

consequent larger possibility of products availability but also with a longer time for obtain-

ing them (due to the delocalization of the factories), push the companies to sign long-term

purchasing contracts in order to sustain their offer. This increases the volatility of some pa-

rameters particularly affected by uncertainty. For example, a precise forecast of the future

product demand is hard to obtain since it depends from several unknown a-priori inter-

nal and external factors. Again, product prices and availabilities at the suppliers are also

subject to fluctuations due to market and environmental conditions. Since using approx-

imated/estimated data may results in non-convenient or even infeasible purchasing plans,

when the actual information reveals, in this work we propose an explicit modeling of the

possible sources of uncertainty for the problem.

Under this setting, some research questions arise. First, how the data uncertainty can affect

the supplier selection when involving total quantity discounts? Second, can we incorporate this

uncertainty in a model able to ensure a competitive advantage to the company?

To face the aforementioned questions, we consider the Capacitated Supplier Selection problem

with Total Quantity Discount policy and Activation Costs (CTQD-AC) and introduce its variant

under uncertainty (CTQD-ACu). The problem aims at selecting a subset of the suppliers and the

relative purchasing plan that satisfies the demands at minimum cost, taking into account that the

suppliers offer discounts based on the total quantity of products purchased and that the activation of

a business activity with a supplier has a fixed cost. In order to tackle different sources of uncertainty

we propose two-stage Stochastic Programming (SP) formulations with recourse, highlighting the

strategical and the operational decisions involved. To the best of our knowledge, this represents

the first study concerning the CTQD-AC problem under uncertainty.

The rest of the paper is organized as follows. In Section 2, we review the literature concern-

ing SS problems with quantity discount policies and stochastic data. In Section 3, we propose a

mixed-integer linear programming (MILP) formulation for the deterministic CTQD-AC. In Section

4, we study the possible sources of uncertainty of the problem and propose a two-stage SP model

to explicitly cope with them. In particular, we focus on the cases in which only the product prices

3

A Stochastic Programming Approach for the Capacitated Supplier Selection Problem with Total Quantity Discount and Activation Costs

CIRRELT-2017-13



(Sections 4.2) or only the product demands (Section 4.3) are stochastic variables. A solution frame-

work is presented in Section 5, whereas the generation of the deterministic benchmark instances and

that of the scenario trees are presented in Section 6. Section 7 is devoted to the experimental vali-

dation of our modeling and solution approaches and to the discussion of some economic/managerial

insights. Finally, conclusions and possible future extensions are drawn in Section 8.

2. Literature review

Quantity discounts, i.e. price discounts provided by suppliers with respect to large orders of

products (Munson and Rosenblatt, 1998), have existed as ubiquitous tools of commerce incentive

for hundreds of years within any type of application context. Evidently, they have a great impact on

purchasing, transportation, and inventory costs as well as on marketing and supply-chain coordina-

tion goals. In a recent monograph, Munson and Jackson (2015) review the most relevant quantity

discount scenarios from both the buyer’s and seller’s perspectives. Concerning the buyer’s side, it

emerges that the most common issues to face are about a) how many units should be ordered when

suppliers offer quantity discount schedule, and b) in which conditions should a buyer attempt to

negotiate a discount schedule from its suppliers. In particular, the order sizing issue, complicated

by the selection of suppliers among a predefined set, represents the SS problem already discussed

in the previous section and has a long story in the specialized literature (see, e.g., Benton, 1991).

Since the last two decades, the SS problem and lots of its variants involving quantity discounts

have been studied under a quantitative perspective and the assumption of deterministic data.

For these problems, mathematical programs (mostly MILPs) have been developed and both exact

and heuristic solution algorithms have been proposed. For example, Mirmohammadi et al. (2009)

consider a single-item multi-period material requirement planning problem and propose a branch-

and-bound algorithm exploiting some properties as fathoming rules. Munson and Hu (2010) analyze

the inventory impact of incorporating quantity discounts into centralized purchasing scenarios for a

multi-site organization, whereas Krichen et al. (2011) study the convenience of a retailers coalition

in the presence of a single-supplier and permissible delay in payments through cooperative game

theory. Recently, Jolai et al. (2013) propose a multi-objective mixed integer nonlinear programming

model for solving a multi-item multi-period and multi-supplier problem taking into account linear

discount pricing scheme, the limits on the suppliers availability, the delivery rate and the quality

of the items, the minimum order quantities, and the budgetary limitations. In the present paper

we study a multi-supplier and multi-product SS problem considering total quantity discounts and

fixed costs for contract activations.

Different discount policies have been studied in the literature, including incremental discount,

fixed fees, truckload discount, but the total quantity (also called all-unit) discount represents the

most popular form applied so far (Munson and Jackson, 2015). A motivation for this preference de-

pends on the fact that TQD fits well many multi-product procurement settings where the purchase

is completed at a single point in time, i.e. without auctions or other rebate mechanisms. The exis-

tence of a single point in time for completing the purchase under a TQD policy is forced by the fact
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that further purchases achieving an higher discount interval may results in a smaller total cost (look

at point discontinuities of the function plotted in Figure 1), thus in the necessity for suppliers to

give back money. Application contexts in which total quantity discounts have been used are incred-

ibly various, from dairy (McConnel and Galligan, 2004) to chemical industry (Crama et al., 2004),

from project’s resource investment (Shahsavar et al., 2016) to telecommunication systems (van de

Klundert et al., 2005). Goossens et al. (2007) study the basic SS procurement problem, in which

suppliers are assumed to have unlimited availability for offered products, under the presence of total

quantity discounts and show its NP-completeness by reduction from the 3-Dimensional Matching

Problem, also demonstrating that it can not be solved by a polynomial-time approximation algo-

rithm with a constant ratio (unless P = NP). They propose a branch-and-bound algorithm based

on a min-cost flow formulation of the problem and also study four variants taking into account

market share constraints, the possibility of buying more than products demand (more-for-less), a

limited number of winning suppliers, and multi-period scenarios, respectively. The capacitated ver-

sion of this problem (Capacitated Total Quantity Discount Problem, CTQDP), in which quantities

of product available at suppliers are limited, has been studied in Manerba and Mansini (2012b,

2014) where the authors propose efficient branch-and-cut and Variable Neighborhood Decomposi-

tion Search (VNDS) matheuristic solution approaches. The CTQDP has been extended to include

transportation costs based on truckload shipping rates in Mansini et al. (2012). The authors pro-

pose iterative rounding schemes based on the linear programming relaxation to heuristically solve

the problem and demonstrate their efficiency on a large set of randomly generated instances.

There also exist some works considering more than one type of discounts simultaneously. For

example, Stadtler (2007) creates an intricate MIP to handle, in the same model, both all-units and

incremental discounts for a multi-period SS problem. More recently, Ebrahim et al. (2009) propose a

multi-objective mathematical model and a scatter search algorithm for the solution of a single-item

purchasing problem considering all-unit, incremental, and total business volume discounts.

Contrarily to the conspicuous literature on supplier selection problems under data uncertainty

(Anupindi and Akella, 1993, Awasthi et al., 2009), only few contributions can be found about

stochasticity in the presence of quantity discount schedules. Sen et al. (2013) consider a multi-item,

multi-period, and multi-supplier problem involving quantity discounts and formulate a scenario-

based multi-stage stochastic optimization model. They also propose certainty-equivalent heuristics

and evaluate them for three bidding events (involving random events such as a drop in price, a price

change in the spot market or a new discount offer) of a large manufacturing company. More re-

cently, Hammami et al. (2014) develop a two-stage stochastic programming model for a SS problem

(faced by a multi-site buyer in the context of automotive manufacturing) integrating the exchange

rate fluctuation uncertainties with price discounts while explicitly considering transportation and

inventory costs. Finally, even if not explicitly including discounts, Zhang and Zhang (2011) address

a SS problem with a similar combinatorial structure, given by the presence of fixed selection costs

and limitation on minimum and maximum order sizes. Since the demand is stochastic, in their

model a penalty cost or an holding cost is incurred if the ordered quantity is less or more than the

realized demand, respectively.
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We precise that the procurement setting studied in this paper assumes that transporting the

products from the suppliers to the company’s depot is an outsourced operation, and it does not

take part of the optimization. Instead, if a company uses its own fleet of vehicles to achieve the

procurement process, at an operating level, each involved vehicle has also to be routed through its

purchasing trip so to minimize the traveling costs as well. The single and multi-vehicle Traveling

Purchaser Problem (TPP) are well-known routing problems combining purchasing costs, traveling

costs, and supplier selection (Manerba et al., 2017) that find many applications in procurement

logistics contexts (Beraldi et al., 2017, Gendreau et al., 2016). Interesting enough, a TPP variant

involving total quantity discounts is studied in Manerba and Mansini (2012a) where a branch-and-

cut approach, exploiting valid inequalities and matheuristic strategies for the TPP and CTQDP

subproblems, is proposed. As far as we know, the only other work integrating quantity discount and

routing decisions is proposed by Nguyen et al. (2014). In particular, they study an Open Vehicle

Routing Problem where the trucks utilization is optimized by building multi-stop routes and by

increasing order sizes through purchase incentives. In this case, however, the problem is applied in

the outbound transportation context, where the decision maker is a seller.

3. The deterministic CTQD-AC

Let xi be a binary variable taking value 1 if a purchasing contract is activated with supplier

i ∈ M and the corresponding activation cost is paid, and 0 otherwise. Let zikr be a variable

representing the units of product k ∈ K purchased from supplier i ∈ Mk in interval r ∈ Ri and

yielding a discount rate δir. Finally, let yir be a binary variable taking value 1 if supplier i ∈ M
applies the discount interval r ∈ Ri (i.e., if

∑
k∈K zikr ∈ [lir, uir]), and 0 otherwise. Then, a MIP

formulation for the CTQD-AC is as follows:

min
∑
i∈M

aixi +
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fikzikr (1)

subject to ∑
i∈Mk

∑
r∈Ri

zikr ≥ dk k ∈ K (2)

∑
r∈Ri

zikr ≤ qik k ∈ K, i ∈Mk (3)

liryir ≤
∑
k∈K

zikr ≤ uiryir i ∈M, r ∈ Ri (4)∑
r∈Ri

yir ≤ xi i ∈M (5)

zikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (6)

xi ∈ {0, 1} i ∈M (7)

yir ∈ {0, 1} i ∈M, r ∈ Ri. (8)
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Objective function (1) establishes the minimization of the sum of activation and purchasing costs.

Constraints (2) ensure that the demand dk for each product k ∈ K is satisfied, whereas constraints

(3) state that it is not possible to purchase from supplier i an amount of product k larger than the

quantity available. Constraints (4) define interval bounds for each supplier. If interval r for supplier

i is selected (yir = 1), then the total amount purchased has to lie between the lower bound lir and

the upper bound uir. On the contrary, if interval r is not selected (yir = 0), then
∑

k∈K zikr = 0.

Constraints (5) guarantee that at most one interval for each supplier is selected if supplier i is

visited (xi = 1), and that no interval is selected if the supplier is not visited (xi = 0). Finally,

constraints (6)–(8) are non-negativity and binary conditions on variables. Note that, the integrality

of z variables is not explicitly declared in the formulation since a solution with this property always

exists if demands, products availabilities, and lower/upper bounds are integral values.

In order to avoid pathologies, we make some assumptions. First, note that a feasible plan can

exist only if the total availability of each product over the suppliers is greater or equal to its demand,

hence we will assume
∑

i∈Mk
qik ≥ dk,∀k ∈ K. Second, to guarantee the correct application of the

discount policy to the entire purchase, we assume li1 = 0,∀i ∈M and
∑

k∈K qik ≤ ui,ri ,∀i ∈M .

The CTQD-AC generalizes the more-for-less TQD problem variant described in Goossens et al.

(2007) where suppliers have unlimited availability for offered products and activation costs are not

considered. In this variant, as stated in constraints (2) of our model, it is allowed to buy more

than the required demand dk, for each product k, in order to achieve higher discounts. In turn,

this implies that it is possible to buy more quantities from a supplier paying less because of the

discount applies to the entire purchase (look at the points of discontinuity in Figure 1). This

anomaly, along with the behavioral cooperation possibilities in order to take advantage from that,

is studied for example in Jucker and Rosenblatt (1985). Even if, in the original TQD problem, the

product demand has to be satisfied exactly, we consider the more-for-less variant because it better

models a real long-term procurement process as the one we want to study.

4. The CTQD-AC under uncertainty

In this section, we study all the possible sources of uncertainty for the just presented CTQD-

AC. Even if unpredictability could theoretically affect each type of data, in this problem it makes

sense to consider it only on the product prices fik, on the product demand dk, and on the product

availability qik. These data represent, in fact, information strongly related to operational decisions

(as the daily construction of a purchasing plan) that are the most affected by variability. We are

confident that all the remaining problem data, as the ones related to the discount policies or the

activation costs proposed by the suppliers, can be considered deterministic over the optimization

horizon, and known a priori (actually, they are part of the contract clauses stipulated with the

suppliers). We denote the resulting stochastic problem as CTQD-ACu.

4.1. A general two-stage SP formulation for CTQD-ACu

In the following, we propose a two-stage stochastic programming formulation for the CTQD-

AC in which the product prices, the demands, and the availabilities are stochastic variables. We
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assume that each uncertain parameter consists of two components, an estimated deterministic

component and a stochastic oscillation. More precisely, given a product k ∈ K, let dk and d∆
k (ξ)

be the estimated deterministic component and the stochastic oscillation of each product demand,

respectively. Similarly, given a product k ∈ K and a supplier i ∈ Mk, let fik and f∆
ik (ξ) be the

estimated deterministic component and the stochastic oscillation of each product price, respectively,

whereas let qik and q∆
ik(ξ) be the estimated deterministic component and the stochastic oscillation

of each product availability, respectively. To ensure the feasibility of the stochastic problem, we

must assume that the condition
∑

i∈Mk
(qik + q∆

ik) ≥ dk + d∆
k holds for each k ∈ K, too.

The first-stage decision is about which suppliers are involved in the purchasing, how much we

expect to purchase from each supplier and, consequently, in which discount interval we expect the

total quantity of products purchased lies. The second-stage recourse decision deals instead with

adjusting the quantity purchased of each product in each supplier, thus possibly impacting also on

the chosen discount interval for each supplier (that may be changed with respect to the first-stage

decisions). Note that this last recourse action is necessary to obtain a stochastic programming

formulation with complete recourse, given that product demands and availabilities are stochastic.

Instead, we do not allow the possibility to activate new contracts or to exclude any contracts with

respect to those already decided in the first stage. Then, the CTQD-ACu problem can be stated

as follows:

min
∑
i∈M

aixi +
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fikzikr + IE[Q(x,y, z, ξ)] (9)

subject to ∑
i∈Mk

∑
r∈Ri

zikr ≥ dk k ∈ K (10)

∑
r∈Ri

zikr ≤ qik k ∈ K, i ∈Mk (11)

liryir ≤
∑
k∈K

zikr ≤ uiryir i ∈M, r ∈ Ri (12)∑
r∈Ri

yir ≤ xi i ∈M (13)

zikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (14)

xi ∈ {0, 1} i ∈M (15)

yir ∈ {0, 1} i ∈M, r ∈ Ri. (16)

Here, the constraints have been already explained, whereas the objective function is further guided

through the expected value of a function Q(x,y, z, ξ) corresponding to the second-stage optimiza-

tion problem. In order to formulate this problem, we introduce the following second-stage variables:

• z2+
ikr := extra units of product k purchased from supplier i in interval r with respect to the

first stage decision, k ∈ K, i ∈Mk, r ∈ Ri;

• z2−
ikr := reduction in units of purchased product k from supplier i in interval r with respect to

the first stage decision, k ∈ K, i ∈Mk, r ∈ Ri;
8
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• y2
ir :=

{
1 if

∑
k∈K(zikr + z2+

ikr − z
2−
ikr) ∈ [lir, uir]

0 otherwise
, i ∈M, r ∈ Ri;

• λ2+
ikr := 1 if an extra purchase occurs for product k from supplier i in interval r, 0 otherwise,

k ∈ K, i ∈Mk, r ∈ Ri;

• λ2−
ikr := 1 if a reduction of the purchase occurs for product k from supplier i in interval r, 0

otherwise, k ∈ K, i ∈Mk, r ∈ Ri.

Then, the second-stage optimization problem is as follows:

Q(x,y, z, ξ) := min
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)[f∆
ik (zikr + z2+

ikr − z
2−
ikr) + fik(z

2+
ikr − z

2−
ikr)] (17)

subject to ∑
i∈Mk

∑
r∈Ri

(zikr + z2+
ikr − z

2−
ikr) ≥ dk + d∆

k k ∈ K (18)

∑
r∈Ri

(zikr + z2+
ikr − z

2−
ikr) ≤ qik + q∆

ik k ∈ K, i ∈Mk (19)

liry
2
ik ≤

∑
k∈K

(zikr + z2+
ikr − z

2−
ikr) ≤ uiry

2
ik i ∈M, r ∈ Ri (20)∑

r∈Ri

y2
ir ≤ xi i ∈M (21)

z2−
ikr ≤ zikr k ∈ K, i ∈Mk, r ∈ Ri (22)

z2+
ikr ≤ (qik + q∆

ik)λ
2+
ikr k ∈ K, i ∈Mk, r ∈ Ri (23)

z2−
ikr ≤ (qik + q∆

ik)λ
2−
ikr k ∈ K, i ∈Mk, r ∈ Ri (24)

λ2+
ikr + λ2−

ikr ≤ 1 k ∈ K, i ∈Mk, r ∈ Ri (25)

z2+
ikr, z

2−
ikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (26)

λ2+
ikr, λ

2−
ikr ∈ {0, 1} k ∈ K, i ∈Mk, r ∈ Ri (27)

Objective function (17) establishes the minimization of the purchasing costs derived from the

variation of the purchased quantities and from the price oscillation. Constraints (18) ensure that

the real demand (i.e., the expected one plus its oscillation) for each product is satisfied. Constraints

(19) state that it is not possible to purchase from supplier i an amount of product k larger than

the real availability (i.e., the expected one plus its oscillation). Constraints (20) define interval

bounds for each supplier with respect to the second-stage binary variables y2. If interval r for

supplier i is selected (y2
ir = 1), then the total amount purchased has to lie between the lower

bound lir and the upper bound uir. On the contrary, if interval r is not selected (y2
ir = 0), then∑

k∈K(zikr + z2+
ikr − z2−

ikr) = 0. Constraints (21) guarantee that at most one interval r for each

supplier is selected if supplier i is visited (xi = 1), and that no interval is selected if the supplier is

not visited (xi = 0). Constraints (22) state that a product purchase can not be reduced more than

the quantity decided in the first stage. Constraints (23)–(25) together ensure the orthogonality
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between z2+
ikr and z2−

ikr through the use of binary variables λ2+
ikr and λ2−

ikr. This way, the purchase

of a product cannot be increased and reduced by a positive quantity at the same time. Finally,

constraints (26)–(27) state non-negativity and binary conditions on variables.

The above presented model is very general and exploits the separation of strategic from operative

decisions of the problem guaranteeing a complete recourse. However, it has two main drawbacks:

1. all the interdependences among the different stochastic variables in the problem constraints

make hard to point out any useful consideration about the uncertainty without having pre-

viously considered the various stochastic aspects by themselves;

2. the proposed recourse action, i.e. the possibility to modify the discount interval for each

supplier on the base of the current realization of the uncertainties, is not very realistic in a

long-term procurement setting. In general, in fact, the purchaser and the supplier decide the

interval in the contract clauses, i.e. the established discount is granted only if minimum and

maximum quantities are respected.

In order to overcome this situation, in the following, we will focus on the particular cases in which

only the products price or only the products demand is stochastic. We denote these problems as

CTQD-ACup and CTQD-ACud, respectively. For them we will propose two-stage SP formulations

in which the decisions about the discount intervals are locked by the first stage and the recourse

actions consist in modifying the purchased quantities within a predefined interval, or, if necessary,

to purchase outside from the selected suppliers to satisfy the demand.

Despite of the importance of all the sources of uncertainty discussed, product prices and demands

represent the stronger uncertain factors in these type of procurement settings. Instead, minimum

available quantities for products may be guaranteed by the suppliers within the contract activation

clauses.

4.2. The CTQD-AC with stochastic prices (CTQD-ACup)

As already said, the only considered recourse action in this case is adjusting the purchased

quantities, given that discount intervals are locked by the first-stage decision for each supplier.

Hence, the two-stage stochastic programming formulation for CTQD-ACup reduces to the same

first stage (9)–(16) in which the recourse function is as follows:

Q(x,y, z, ξ) := min
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)[f∆
ik (zikr + z2+

ikr − z
2−
ikr) + fik(z

2+
ikr − z

2−
ikr)] (28)

subject to ∑
i∈Mk

∑
r∈Ri

(zikr + z2+
ikr − z

2−
ikr) ≥ dk k ∈ K (29)

∑
r∈Ri

(zikr + z2+
ikr − z

2−
ikr) ≤ qik k ∈ K, i ∈Mk (30)

liryik ≤
∑
k∈K

(zikr + z2+
ikr − z

2−
ikr) ≤ uiryik i ∈M, r ∈ Ri (31)
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z2−
ikr ≤ zikr k ∈ K, i ∈Mk, r ∈ Ri (32)

z2+
ikr ≤ qikλ

2+
ikr k ∈ K, i ∈Mk, r ∈ Ri (33)

z2−
ikr ≤ qikλ

2−
ikr k ∈ K, i ∈Mk, r ∈ Ri (34)

λ2+
ikr + λ2−

ikr ≤ yir k ∈ K, i ∈Mk, r ∈ Ri (35)

z2+
ikr, z

2−
ikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (36)

λ2+
ikr, λ

2−
ikr ∈ {0, 1} k ∈ K, i ∈Mk, r ∈ Ri. (37)

The two-stage model proposed for the problem with stochastic prices cannot be solved in the

present form because of the difficult evaluation of the second-stage objective function that involves

the calculation of a multidimensional integral. In the practical applications (see, e.g., Wallace

and Ziemba, 2005), it is common to assume that the random vector ξ follows a known discrete

distribution involving a finite number of possible scenarios and to solve the so-called Deterministic

Equivalent Problem (DEP) considering all those scenarios. More precisely, we explicitly consider

a set S of potential scenarios. Each scenario s ∈ S is associated with a realization of the price

oscillation f∆
iks occurring with probability ps, such that the standard axiom

∑
s∈S ps = 1 is satisfied.

Then, the DEP of the two-stage stochastic model (9)–(16) and (28)–(37) is as follows:

min
∑
i∈M

aixi +
∑
s∈S

ps
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)(fik + f∆
iks)(zikr + z2+

ikrs − z
2−
ikrs) (38)

subject to ∑
i∈Mk

∑
r∈Ri

zikr ≥ dk k ∈ K (39)

∑
r∈Ri

zikr ≤ qik k ∈ K, i ∈Mk (40)

liryir ≤
∑
k∈K

zikr ≤ uiryir i ∈M, r ∈ Ri (41)∑
r∈Ri

yir ≤ xi i ∈M (42)

∑
i∈Mk

∑
r∈Ri

(zikr + z+
ikrs − z

−
ikrs) ≥ dk k ∈ K, s ∈ S (43)

∑
r∈Ri

(zikr + z+
ikrs − z

−
ikrs) ≤ qik k ∈ K, i ∈Mk, s ∈ S (44)

liryir ≤
∑
k∈K

(zikr + z+
ikrs − z

−
ikrs) ≤ uiryir i ∈M, r ∈ Ri, s ∈ S (45)

z−ikrs ≤ zikr k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (46)

z+
ikrs ≤ qikλ

+
ikrs k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (47)

z−ikrs ≤ qikλ
−
ikrs k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (48)

λ+
ikrs + λ−ikrs ≤ yir k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (49)
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xi ∈ {0, 1} i ∈M (50)

yir ∈ {0, 1} i ∈M, r ∈ Ri (51)

zikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (52)

z+
ikrs, z

−
ikrs ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (53)

λ+
ikrs, λ

−
ikrs ∈ {0, 1} k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (54)

The just proposed model has been already explained in each part, considering that the new variables

z+
ikrs, z

−
ikrs, λ

+
ikrs, and λ+

ikrs have, for a given scenario s ∈ S, the same meaning of z2+
ikr, z

2−
ikr, λ

2+
ikr,

and λ2+
ikr, respectively.

4.3. The CTQD-AC with stochastic demands (CTQD-ACud)

A similar approach can be used for modeling the CTQD-ACud. However, it is easy to under-

stand that some second-stage feasibility issues may appear when the stochastic oscillation d∆
k (ξ) is

positive. In order to prevent infeasibility, we complete the recourse by introducing a slack variable

wk ≥ 0 for each product k representing the units of product k that has to be purchased outside from

the selected suppliers to satisfy the demand. The two-stage stochastic programming formulation of

CTQD-ACud is then composed by the first stage (9)–(16) and by the following recourse function:

Q(x,y, z, ξ) := min
∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fik(z2+
ikr − z

2−
ikr) +

∑
k∈K

Fkwk (55)

subject to ∑
i∈Mk

∑
r∈Ri

(zikr + z2+
ikr − z

2−
ikr) + wk ≥ dk + d∆

k k ∈ K (56)

∑
r∈Ri

(zikr + z2+
ikr − z

2−
ikr) ≤ qik k ∈ K, i ∈Mk (57)

liryik ≤
∑
k∈K

(zikr + z2+
ikr − z

2−
ikr) ≤ uiryik i ∈M, r ∈ Ri (58)

z2−
ikr ≤ zikr k ∈ K, i ∈Mk, r ∈ Ri (59)

z2+
ikr ≤ qikλ

2+
ikr k ∈ K, i ∈Mk, r ∈ Ri (60)

z2−
ikr ≤ qikλ

2−
ikr k ∈ K, i ∈Mk, r ∈ Ri (61)

λ2+
ikr + λ2−

ikr ≤ yir k ∈ K, i ∈Mk, r ∈ Ri (62)

z2+
ikr, z

2−
ikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (63)

λ2+
ikr, λ

2−
ikr ∈ {0, 1} k ∈ K, i ∈Mk, r ∈ Ri (64)

wk ≥ 0 k ∈ K. (65)

Since the use of external supplies, i.e., buy in the spot market, has to be discouraged unless for the

strict need of satisfying the demand, these wk variables are penalized in the objective function (55)

by using a (possibly disadvantageous) external price Fk for each product k.
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Again, by considering a set S of scenarios in which each scenario s ∈ S is associated with a

realization of the demand oscillation d∆
ks occurring with probability ps, we present in the following

the DEP formulation of the stochastic model (9)–(16) and (55)–(65):

min
∑
i∈M

aixi +
∑
s∈S

ps

∑
k∈K

∑
i∈Mk

∑
r∈Ri

(1− δir)fik(zikr + z2+
ikrs − z

2−
ikrs) +

∑
k∈K

Fkwks

 (66)

subject to ∑
i∈Mk

∑
r∈Ri

zikr ≥ dk k ∈ K (67)

∑
r∈Ri

zikr ≤ qik k ∈ K, i ∈Mk (68)

liryir ≤
∑
k∈K

zikr ≤ uiryir i ∈M, r ∈ Ri (69)∑
r∈Ri

yir ≤ xi i ∈M (70)

∑
i∈Mk

∑
r∈Ri

(zikr + z+
ikrs − z

−
ikrs) + wks ≥ dk + d∆

ks k ∈ K, s ∈ S (71)

∑
r∈Ri

(zikr + z+
ikrs − z

−
ikrs) ≤ qik k ∈ K, i ∈Mk, s ∈ S (72)

liryir ≤
∑
k∈K

(zikr + z+
ikrs − z

−
ikrs) ≤ uiryir i ∈M, r ∈ Ri, s ∈ S (73)

z−ikrs ≤ zikr k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (74)

z+
ikrs ≤ qikλ

+
ikrs k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (75)

z−ikrs ≤ qikλ
−
ikrs k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (76)

λ+
ikrs + λ−ikrs ≤ yir k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (77)

xi ∈ {0, 1} i ∈M (78)

yir ∈ {0, 1} i ∈M, r ∈ Ri (79)

zikr ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri (80)

z+
ikrs, z

−
ikrs ≥ 0 k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (81)

λ+
ikrs, λ

−
ikrs ∈ {0, 1} k ∈ K, i ∈Mk, r ∈ Ri, s ∈ S (82)

wks ≥ 0 k ∈ K, s ∈ S. (83)

For each product k ∈ K, variable wks has the same meaning of wk in a given scenario s ∈ S.

5. The solution framework

Thanks to the discretization, the DEP models of CTQD-ACup and of CTQD-ACud can be easily

casted into an off-the-shelf MIP solver such as Cplex or Gurobi. However, due to the enormous
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number of scenario-dependent constraints and variables, its plain exact solution procedure results

computationally too expensive even for relatively small instances and number of scenarios. Hence,

we propose a tailored exact solution framework based on valid inequalities for the problem and

several accelerating techniques. The procedure has been partially inherited from the branch-and-

cut approach proposed for the deterministic CTQDP in Manerba and Mansini (2012b) and adapted

to the multi-scenario context. The purpose of this method is, on the one hand, to speed up the

collection of all the data useful for our analysis and, on the other hand, to put a first consistent

base point for developing and comparing other future ad-hoc solution approaches.

In our solution method we adopt IBM Ilog Cplex 12.6.1 as a general branch-and-cut framework,

implementing and incorporating some improvements to the model (preprocessing routines, the cre-

ation of a MIP start solution, and the separation of valid inequalities) through the C++ Concert

Technology ’s callbacks provided by the solver. We precise that other possible mathematical pro-

gramming techniques can be applied apart from the ones proposed in the following. For example,

Stadtler (2007) suggests to use a Special Ordered Sets of Type 1 (SOS1) for modeling each set of

variables {yir|r ∈ Ri}, since at most one interval can be selected for any supplier i ∈M . However,

we found this adjustment ineffective in some preliminary experiments.

5.1. Preprocessing

Some simple routines can be applied to reduce the number of variables or to strengthen the

coefficients of the problem. First, note that the binary condition on the variables corresponding to

the selection of a supplier’s first interval is not strictly necessary since li1 = 0,∀i ∈ M . Hence, we

can substitute (51) in CTQD-ACup and (79) in CTQD-ACud with

yir ∈ {0, 1}, i ∈M, r ∈ Ri \ {1} and yi1 ≥ 0, i ∈M.

Note that the model constraints already guarantee the unitary upper bound on y variables.

Second, let R∗i := {r ∈ Ri :
∑

k∈K qik < lir} be the set of discount intervals that can never be

reached even buying all quantities available at supplier i ∈ M . Then, in both our models, we can

set to zero variables yri , i ∈ S, r ∈ R∗i . In turn, this implies zrik = 0, i ∈ S, k ∈ K, r ∈ R∗i , and, for

each scenario s ∈ S, z+
ikrs, z

−
ikrs, λ

+
ikrs, λ

−
ikrs = 0, k ∈ K, i ∈Mk, r ∈ R∗i .

Finally, let M∗ :=
{
i ∈M : ∃k ∈ K such that

∑
j∈Mk\{i} qjk < dk

}
be the set of suppliers that

has to be necessarily selected in any feasible solution of the problem. Then, we can add to CTQD-

ACup the following constraints

∑
r∈Ri

zikr ≥ max

0, dk −
∑

j∈Mk\{i}

qik

 k ∈ K, i ∈M∗,

and set to 1 variables xi for each i ∈M∗. Note that this does not hold for CTQD-ACud because of

the presence of w variables.
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5.2. MIP start solution

In general, having a feasible initial solution helps in pruning the branch-and-cut decision tree

and speeds up the solution. We take advantage from the fact that in CTQD-ACup the uncertainty

affects only the product prices and not the required or the available product quantities. This

implies that each feasible solution of a CTQDP-ACup deterministic approximation (in which each

stochastic price is substituted by any realization) is feasible as well for its DEP considering several

scenarios, possibly generating a different objective function value. For this reason, we solve the

DEP to optimality considering only a single scenario, i.e. the one in which stochastic variables are

replaced by their expected values, and provide the resulting solution as a MIP starting solution for

the multi-scenario complete problem.

The same property does not hold for CTQD-ACud, where there is no guarantees that a feasi-

ble solution for a given scenario remains feasible for another one due to the demand oscillation.

However, any infeasible CTQD-ACud solution (x, y, z, z+, z−, λ+, λ−, w) can be always converted

to a feasible one by duly adjusting the w slack variables. Hence, in order to get a feasible solution

quickly, we optimally solve (as above) a single-scenario CTQD-ACud and provide the non-complete

solution (x, y, z, z+, z−, λ+, λ−) to the solver so it can easily adjust the remaining variables for

reaching the feasibility.

5.3. Valid inequalities

The linear relaxation of our DEP models can be strengthened introducing some classes of valid

inequalities. For example, the following cuts have been shown to be effective in solving problem

with a TQD structure (see e.g. Manerba and Mansini, 2012b, 2014):

zikr ≤ min{qik, uir}yir, i ∈Mk, r ∈ Ri, k ∈ K. (84)

Constraints (84) bounds the quantity that can be purchased for each product in a given interval

by the minimum between quantity available for that product and the upper bound of the interval.

This excludes the systematic selection of the last intervals of each supplier in the LP relaxation.

Moreover, we directly add the following cuts∑
r∈Ri

zikr ≤ qikxi k ∈ K, i ∈Mk, (85)

that trivially improve inequalities (40) and (68) in CTQD-ACup and CTQD-ACud, respectively.

6. Instances generation

The CTQD-ACup has never been studied before in the literature, hence no benchmark instances

exist for the problem (neither for its deterministic counterpart). For this reason, we generate a new

collection of hard-to-solve benchmark instances for providing a realistic testbed for our stochastic

approaches and fostering other contributions on the topic. In this section, we present the detailed

method used to generate the deterministic CTQD-AC instances and to produce the scenario trees

for the stochastic data in CTQD-ACup and CTQD-ACud.
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First, each product k ∈ K is assigned to a random subset Mk of suppliers, and to a basic price fk,

randomly chosen in [10, 200]. Then, for each product k sold by supplier i, the available quantity qik

is generated uniformly in [1, 15] whereas the product price fik is randomly generated in [0.9fk, 1.1fk]

(i.e., the prices of the same product cannot vary more than the 20% from a supplier to another).

Moreover, the penalty price Fk is generated for each product k ∈ K such that Fk := 1.2 maxi∈Mk
fik

(i.e., it is the 20% more costly than the maximum price among the considered suppliers), in order

to discourage external supplies.

The demand for each product k is generated as follows:

dk :=

⌈
dk −

(
(dk − 1)

fk
maxk∈K{fk}

)⌉
,

where

dk :=

λ maxi∈Mk
{qik}+ (1− λ)

∑
i∈Mk

qik

 with λ ∈ (0, 1).

The term dk allows to control, through parameter λ varying in (0, 1), the number of suppliers

included in a feasible solution. More precisely, the lower the value of λ, the higher the number of

suppliers required to satisfy the entire demand. Finally, the real demand is adjusted with respect

to the average expensiveness of a product (i.e., the more expensive the product, the lower the

corresponding demand). Two values of λ will be considered.

Data concerning the discounts offered by the suppliers are inspired on the generation method

proposed in Manerba and Mansini (2012b) for the CTQDP. More precisely, for each supplier i ∈M
and each interval r ∈ Ri, lower bounds are generated as an a priori percentage 0 ≤ αir < 1 of

the total amount of products available from a specific supplier, i.e. lir = bαir
∑

k∈K qikc. Upper

bounds uir for interval r ∈ R \ {ri} of supplier i ∈ M are set to the value corresponding to the

lower bound of the following interval minus 1, whereas ui,ri =
∑

k∈K qik, i ∈ M . We consider two

different discount policies (DP):

• DP1 : given a supplier i ∈ M , the number of discount intervals ranges randomly between

3 and 5, with a random interval width (even if, in order to generate reasonable instances,

we set αi,1 ≥ 0.6). Discount rates applied in all intervals are randomly generated such that

δi,ri ≤ 0.05 and δir ≤ δi,r+1, r ∈ R \ {ri};

• DP2 : the number of intervals is equal to 3 for all suppliers, with αi,1 = 0.7 and αi,2 = 0.9,

i ∈M . Moreover, discount rates are fixed for all the suppliers and equal to 1%, 2%, and 3%,

respectively. We precise that, even when all the suppliers use common discount rates, the

resulting problem is still NP−hard (see Goossens et al., 2007).

Thus, while DP1 is a more random generation, DP2 creates very similar discount conditions for

all the suppliers thus highlighting the role of the activation costs and of the product availabilities.

Finally, two types of activation costs (AC ) have been considered. In the first type, AC1, the

activation cost for a business activity is generated as a defined percentage γ of the total quantity
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of products available in the supplier multiplied by a global average product price, i.e.

ai := f
∑
k∈K

γqik, where f :=

∑
i∈M f i
|S|

and f i :=

∑
k∈K fik

|K|
.

On the contrary, in AC2 instances, activation costs are inversely proportional to the supplier’s

average product price, i.e.

ai :=

(
f +

f

f i

)∑
k∈K

γqik.

Parameter γ has been set equal to 0.1, to create activation costs proportional to the average

purchasing ones.

In the end, we generate an instance for each combination of |M | = {5, 10, 20} (the number of

suppliers), |K| = {10, 20, 30} (the number of products), DP = {DP1, DP2} (the type of discount

policy), AC = {AC1, AC2} (the type of activation cost), and λ = {0.1, 0.8}. This means that our

complete dataset is composed by 72 deterministic instances.

6.1. Scenario tree generation for stochastic prices

In the following we describe how the scenario tree is built for CTQD-ACup, for any given

deterministic instance. For each scenario s ∈ S, we generate the stochastic price fiks of each

product k ∈ K and supplier i ∈Mk and then calculate its oscillation f∆
iks := fiks−fik. The value of

fiks is drawn according to a probability distribution with location parameter µ = fik and truncated

between [fik − βfik, fik + βfik], with β = {0.1, 0.3} (i.e., the oscillation of each price fik may vary

no more than βfik). In our tests, in order to reasonably model the uncertainty of a product price

around an estimated mean value, we used the Normal and the Gumbel distributions. Since our

truncated distribution support varies proportionally to the mean value, we also need to modify the

distribution scale parameter accordingly. In particular, we use a standard deviation σ = 0.25µ

for the Normal distribution and a scale parameter σ = 0.20µ for the Gumbel distribution. These

coefficients have been empirically calculated such that the probability of discarding a generated

value never exceeds 0.2 for both the distributions, i.e.,

P [fiks ≤ fik − βfik] + P [fiks ≥ fik + βfik] ≤ 0.2.

6.2. Scenario tree generation for stochastic demands

The scenario tree for CTQD-ACud is built for any given deterministic instance in a similar

way. For each scenario s ∈ S, we generate the stochastic price dks for each k ∈ K and calculate

its oscillation d∆
ks := dks − dk. The value of dks is drawn according to a Uniform or a Gumbel

probability distribution in [0.5dk, 2dk] (i.e., the demand dk may be halved or doubled at most). In

the same spirit of the scenario tree generation for the stochastic prices, for the Gumbel distribution

we decided to use a location parameter µ = dk and a proportional scale parameter σ = 20µ .
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7. Computational experiments

The benchmark instances presented in Section 6 are used to empirically validate our modeling

approaches through stability and economical analysis of the solutions, and to show the efficiency

of our solution framework. The computational resources for the preliminary stability analysis have

been provided by HPC@POLITO cluster (http://hpc.polito.it). All the other experiments

have been done on a Intel(R) Core(TM) i7-5930K CPU@3.50 GHz machine with 64 GB RAM and

running Windows 7 64-bit operating system.

7.1. Stability analysis

Being part of the stochastic models we proposed for CTQD-ACup and for CTQD-ACud, the

scenario tree generation procedures described above must be validated in terms of stability. We

evaluate their in-sample stability by considering a subset of instances corresponding to several

combinations of |M | = {5, 10, 20}, |K| = {10, 20, 30}, and λ = {0.1, 0.8}. We generate 10 different

scenario trees for each instance and solve the corresponding stochastic problem varying the number

of considered scenarios. The percentage ratios between the standard deviation and the mean of the

optimal solution values are computed over the 10 runs and plotted in Figures 2 and 3.

In particular, Figure 2 shows the results concerning CTQD-ACup for any combination of dis-

tributions (Normal and Gumbel) and value of β used (β = {0.1, 0.3}). The number of scenarios

considered varies from 2 up to 40. As expected, the stability of the solutions tends to increase

rapidly with the number of scenarios and it is a little bit harder to achieve for the distributions

with a larger domain (i.e., with β = 0.3). More important, the stability is independent from the

number of suppliers considered, the number of products involved, and the demand generation type

(the λ value). Note also that, by using the Gumbel distribution, the standard deviation decreases

with more oscillations. However, in all the cases, 30 scenarios seem sufficient to maintain the per-

centage ratio between the standard deviation and the mean of the optimal solution values decisively

under the 1% threshold, which is a precision suitable with the problem setting (Perboli et al., 2014).

Figure 3 shows instead the results concerning CTQD-ACud for any distributions considered

(Uniform and Gumbel in [0.5dk, 2dk]). Here, the number of scenarios considered varies from 10 up

to 100. We can see that, for both the distributions, now there are more different converging trends

and a wider span of values for the same number of scenarios but for different instances. This is

reasonable, given the wider domains of the distributions for the products demand. The convergence

for the Uniform distribution is harder to obtain, in particular when the number of products is lower.

However, for both the distributions, 100 scenarios are sufficient to maintain the percentage ratio

between the standard deviation and the mean of the optimal solution values under, or very near

to, the 1% threshold.

According to the above stability analysis, we will consider 30 scenarios for CTQD-ACup instances

and 100 scenarios for the CTQD-ACud ones in all the following experiments.

7.2. Evaluation of the solution framework

In order to settle the benefits from using the solution framework proposed in Section 5 (referred

in the following as B&C), we have compared its performance with the resolution by Cplex of the plain
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(a) Normal distribution, β = 0.1 (b) Normal distribution, β = 0.3

(c) Gumbel distribution, β = 0.1 (d) Gumbel distribution, β = 0.3

Figure 2: Percentage ratio between the standard deviation and the mean of the optimal solution values of 16
instances identified by |M |.|K|.λ over 10 different scenario tree generations for stochastic prices.

DEP formulations of the two problem variants (Cplex). The results of this comparison, on a subset

of instances, are shown in Tables 1 and 2 for CTQD-ACup and CTQD-ACud, respectively. For each

instance (identified by |M |, |K|, and λ parameters) and for both the solution methods, we present

the CPU time in seconds t(s) needed to prove the optimality, the time-to-best ttb(s), i.e. the time

needed to achieve the best solution, and the number of nodes explored by the branch-and-bound

algorithm on which both the methods rely (BBn).

It appears evident that B&C outperforms the MIP solver on average and also on each single

simulation, despite of the characteristics or the dimension of the instances. Computational times

for B&C are, on average, ten times lower than the Cplex’s ones on CTQD-ACup instances, and the

time-to-best values follow the same proportion. The effort of B&C on strengthening the bounds of

the solutions (through the introduction of cuts and good initial feasible solutions) clearly results in

much smaller branch-and-bound trees, thus speeding up the convergence toward optimality. The

difference in performance is exacerbated on CTQD-ACud instances, where a greater number of

scenarios is considered. In fact, while the B&C times remain good and reasonable, Cplex ceases

to be a suitable solution alternative (look for example at instances involving 10 supplier and 10
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(a) Uniform distribution in [0.5dk, 2dk] (b) Gumbel distribution truncated in [0.5dk, 2dk]

Figure 3: Percentage ratio between the standard deviation and the mean of the optimal solution values of 8
instances (identified by |M |.|K|.λ) over 10 different scenario tree generations for stochastic demands.

Cplex B&C

|M | |K| λ t(s) ttb(s) BBn t(s) ttb(s) BBn
5 10 0.1 58 58 35 6 2 8
5 10 0.8 112 97 119 13 9 27
5 20 0.1 370 339 200 35 30 23
5 20 0.8 567 293 4837 21 14 17
5 30 0.1 681 516 524 58 31 21
5 30 0.8 527 518 785 58 56 20

10 10 0.1 3520 2664 2219 166 117 317
10 10 0.8 3180 2649 1918 126 62 249
10 20 0.1 7035 2745 3347 666 488 416
10 20 0.8 3471 2667 717 306 302 128

avg: 1952.0 1254.5 1470.1 145.6 111.0 122.6

Table 1: Cplex vs B&C for CTQD-ACup

products for which about two days are needed to reach optimality).

7.3. Analysis of the stochastic solution

In the following, we evaluate the economic advantage of considering uncertainty through the

use of stochastic models with recourse for CTQD-ACup and CTQD-ACud with respect of using

expected values for approximating the stochastic variables. To this aim, we compute two well-

known stochastic programming measures (see, e.g., Birge, 1982 or Birge and Louveaux, 1997), i.e.

the Value of the Stochastic Solution (VSS) and the Expected Value of Perfect Information (EVPI),

for both the problems on the complete set of generated instances and considering all the above

described scenario tree generations. More precisely, V SS := EEV −RP and EV PI := RP −WS,

where RP is the objective value of the stochastic solution (recourse problem solution), EEV is the

solution value of the stochastic model with the first-stage decision fixed by solving the deterministic

problem using expected values for approximating the random parameters (expected value solution),

and WS is the solution value of a problem in which it is assumed to know at the first-stage the

realizations of all the stochastic variables (wait-and-see solution).

Tables 3-5 show, for each deterministic instance (uniquely identified by |M |, |K|, λ, DP , and AC

parameters) and for each scenario tree generation concerning CTQD-ACup, the percentage values

of VSS and EVPI with respect to the objective value of the stochastic solution. More precisely,

20

A Stochastic Programming Approach for the Capacitated Supplier Selection Problem with Total Quantity Discount and Activation Costs

CIRRELT-2017-13



Cplex B&C

|M | |K| λ t(s) ttb(s) BBn t(s) ttb(s) BBn
5 10 0.1 1193 1029 934 63 23 15
5 10 0.8 5092 4756 1210 81 81 25
5 20 0.1 72348 64168 7380 738 542 62
5 20 0.8 4546 4012 1171 202 182 27
5 30 0.1 32455 24530 3750 1049 945 33
5 30 0.8 19113 18081 3250 844 819 27

10 10 0.1 154458 54805 15076 4183 4140 678
10 10 0.8 154295 149507 8595 4160 3761 800

avg: 55437.5 40111.0 5170.8 1415.1 1311.7 208.4

Table 2: Cplex vs B&C for CTQD-ACud

VSS% and EVPI% are computed as VSS/RP*100 and EVPI/RP*100, respectively. For each set

of instances involving the same number of suppliers, average and maximum values of VSS% and

EVPI% are also shown.

Normal distribution Gumbel distribution
Instance β = 0.1 β = 0.3 β = 0.1 β = 0.3

|M | |K| λ DP AC VSS% EVPI% VSS% EVPI% VSS% EVPI% VSS% EVPI%
5 10 0.1 1 1 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.5
5 10 0.1 1 2 0.0 0.2 1.1 0.5 0.0 0.2 0.1 0.6
5 10 0.1 2 1 0.0 0.2 0.0 0.3 0.4 0.1 0.0 0.1
5 10 0.1 2 2 0.5 0.3 2.7 0.4 0.4 0.3 0.5 0.3
5 10 0.8 1 1 0.0 0.4 0.8 1.7 0.0 0.4 0.4 0.9
5 10 0.8 1 2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.1
5 10 0.8 2 1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
5 10 0.8 2 2 0.1 0.2 0.5 1.0 0.0 0.2 0.0 1.8
5 20 0.1 1 1 0.2 0.2 2.0 0.3 0.1 0.2 0.6 0.2
5 20 0.1 1 2 0.2 0.2 1.8 0.2 0.0 0.1 1.4 0.2
5 20 0.1 2 1 0.0 0.1 0.3 0.1 0.0 0.1 0.3 0.1
5 20 0.1 2 2 0.4 0.2 1.5 0.3 0.3 0.2 0.3 0.3
5 20 0.8 1 1 0.0 0.2 0.0 0.5 0.0 0.1 0.2 0.5
5 20 0.8 1 2 0.2 0.1 1.0 0.3 0.1 0.1 0.6 0.5
5 20 0.8 2 1 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.2
5 20 0.8 2 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 30 0.1 1 1 0.1 0.1 0.0 0.0 0.1 0.1 0.4 0.1
5 30 0.1 1 2 0.1 0.1 0.9 0.0 0.1 0.1 0.6 0.0
5 30 0.1 2 1 0.3 0.1 1.6 0.1 0.0 0.1 0.1 0.1
5 30 0.1 2 2 0.3 0.1 0.3 0.1 0.3 0.1 0.2 0.1
5 30 0.8 1 1 0.3 0.0 0.3 0.1 0.0 0.1 0.6 0.1
5 30 0.8 1 2 0.2 0.1 1.4 0.3 0.0 0.1 0.7 0.1
5 30 0.8 2 1 0.0 0.3 0.0 0.7 0.0 0.3 0.3 0.9
5 30 0.8 2 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

avg: 0.1 0.1 0.7 0.4 0.1 0.1 0.3 0.3
max: 0.5 0.4 2.7 1.7 0.4 0.4 1.4 1.8

Table 3: VSS and EVPI for CTQD-ACup instances with |M | = 5.

We can clearly see that the VSS% values are quite low, on average and also for the most

part of the instances, independently from their dimension and the discounts or activation costs

characteristics. More precisely, the percentage VSS for the distributions with the smaller domain

(i.e., with β = 0.1) is always lower than 0.7% whereas, for bigger variations of the prices (i.e., with

β = 0.3) the average values goes up to 1.5% with some picks around the 3% (see in particular the

|K| = 10 product instances in the Normal distribution columns). Thus, the explicit consideration of

uncertainty through a SP approach does not give a particular conservativeness to the solutions with

respect to use of deterministic expected values for the unknown parameters, unless the procurement

involves only few products subject to very strong price fluctuations.

Similarly to Tables 3-5, Tables 6 and 7 report the VSS% and EVPI% values for the CTQD-ACud

concerning the two types of scenario tree generation. Note that, in Table 7, the results for the 16
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Normal distribution Gumbel distribution
Instance β = 0.1 β = 0.3 β = 0.1 β = 0.3

|M | |K| λ DP AC VSS% EVPI% VSS% EVPI% VSS% EVPI% VSS% EVPI%
10 10 0.1 1 1 0.1 0.8 1.5 2.4 0.1 0.8 0.4 2.3
10 10 0.1 1 2 0.0 1.1 3.1 3.0 0.3 1.1 1.5 2.4
10 10 0.1 2 1 0.1 0.9 2.2 2.7 0.1 0.8 1.3 2.8
10 10 0.1 2 2 0.0 0.5 2.3 1.7 0.0 0.7 1.0 1.5
10 10 0.8 1 1 0.1 1.9 2.3 4.2 0.1 1.8 1.4 3.9
10 10 0.8 1 2 0.2 1.3 2.0 4.3 0.6 1.2 0.3 3.9
10 10 0.8 2 1 0.0 1.2 1.8 3.2 0.0 1.0 1.1 2.5
10 10 0.8 2 2 0.2 0.9 3.0 3.7 0.3 0.8 2.0 3.2
10 20 0.1 1 1 0.4 0.5 1.3 1.0 0.2 0.5 1.9 0.9
10 20 0.1 1 2 0.4 0.5 0.8 1.0 0.2 0.6 1.1 0.8
10 20 0.1 2 1 0.5 0.6 1.4 1.5 0.4 0.6 1.9 1.2
10 20 0.1 2 2 0.0 0.4 2.4 0.9 0.5 0.4 1.5 0.8
10 20 0.8 1 1 0.5 0.5 2.2 2.7 0.5 0.3 1.1 1.4
10 20 0.8 1 2 0.4 0.6 1.9 1.8 0.1 0.5 1.1 0.8
10 20 0.8 2 1 0.4 0.0 0.0 1.4 0.0 0.1 0.0 1.3
10 20 0.8 2 2 0.2 0.3 1.3 1.4 0.2 0.3 1.0 1.5
10 30 0.1 1 1 0.3 0.4 1.9 0.5 0.3 0.4 1.4 0.6
10 30 0.1 1 2 0.4 0.2 1.8 0.9 0.3 0.3 1.1 0.7
10 30 0.1 2 1 0.5 0.2 2.5 0.9 0.2 0.2 0.7 1.0
10 30 0.1 2 2 0.3 0.2 0.6 0.5 0.5 0.3 0.6 0.4
10 30 0.8 1 1 0.1 0.3 2.0 1.9 0.2 0.2 0.8 1.6
10 30 0.8 1 2 0.0 0.0 0.0 1.2 0.0 0.0 0.0 1.0
10 30 0.8 2 1 0.2 0.6 0.4 1.7 0.0 0.6 0.6 1.4
10 30 0.8 2 2 0.0 0.3 0.0 1.5 0.0 0.5 0.4 1.2

avg: 0.2 0.6 1.6 1.9 0.2 0.6 1.0 1.6
max: 0.5 1.9 3.1 4.3 0.6 1.8 2.0 3.9

Table 4: VSS and EVPI for CTQD-ACup instances with |M | = 10.

Normal distribution Gumbel distribution
Instance β = 0.1 β = 0.3 β = 0.1 β = 0.3

|M | |K| λ DP AC VSS% EVPI% VSS% EVPI% VSS% EVPI% VSS% EVPI%
20 10 0.1 1 1 0.1 1.0 2.3 3.2 0.2 1.0 0.8 3.1
20 10 0.1 1 2 0.0 1.3 1.7 4.8 0.0 1.3 0.8 3.9
20 10 0.1 2 1 0.7 1.4 2.8 4.4 0.4 1.4 1.2 4.4
20 10 0.1 2 2 0.4 1.3 2.2 3.3 0.3 1.0 1.6 2.9
20 10 0.8 1 1 0.3 2.9 2.2 6.9 0.2 2.9 2.5 6.5
20 10 0.8 1 2 0.2 2.5 0.7 8.2 0.1 2.0 0.6 6.4
20 10 0.8 2 1 0.0 0.9 0.4 4.7 0.0 0.9 0.2 4.1
20 10 0.8 2 2 0.1 1.5 0.9 4.7 0.2 1.6 1.0 4.4
20 20 0.1 1 1 0.4 0.5 2.1 1.0 0.2 0.4 1.9 0.9
20 20 0.1 1 2 0.6 0.7 1.8 2.5 0.6 0.6 1.7 2.1
20 20 0.1 2 1 0.2 1.0 2.9 2.0 0.3 1.0 2.2 1.8
20 20 0.1 2 2 0.5 0.9 2.4 2.0 0.3 0.8 2.6 1.9
20 20 0.8 1 1 0.5 1.6 1.5 4.6 0.5 1.5 0.7 4.1
20 20 0.8 1 2 0.3 0.9 0.8 3.4 0.3 1.2 1.3 3.2
20 20 0.8 2 1 0.4 1.3 1.2 3.9 0.4 1.5 0.4 3.3
20 20 0.8 2 2 0.5 0.7 2.4 2.8 0.3 0.8 0.5 3.2
20 30 0.1 1 1 0.6 0.4 2.0 0.9 0.4 0.5 1.5 1.0
20 30 0.1 1 2 0.1 0.6 2.5 1.6 0.2 0.4 1.4 1.5
20 30 0.1 2 1 0.3 0.5 1.7 1.3 0.3 0.6 1.4 1.2
20 30 0.1 2 2 0.2 0.6 2.9 1.3 0.4 0.5 1.1 1.2
20 30 0.8 1 1 0.2 0.8 2.0 3.1 0.2 0.7 0.4 2.5
20 30 0.8 1 2 0.2 1.0 1.6 3.6 0.2 0.8 1.8 2.6
20 30 0.8 2 1 0.4 0.5 0.0 2.5 0.3 0.6 0.5 2.3
20 30 0.8 2 2 0.0 0.6 0.8 3.0 0.0 0.6 0.5 2.8

avg: 0.3 1.1 1.7 3.3 0.3 1.0 1.2 3.0
max: 0.7 2.9 2.9 8.2 0.6 2.9 2.6 6.5

Table 5: VSS and EVPI for CTQD-ACup instances with |M | = 20.

biggest instances (i.e., instances involving 20 suppliers and 20 or 30 products) are missing. Due

to the great number of considered scenarios, in fact, we have not be able to optimally solve those

instances in a reasonable amount of time even through our solution framework.

The results considering demand uncertainty show a completely different impact of the SP ap-

proach on the solution quality with respect to the case under price uncertainty. In this case, the

VSS% values are considerable high, in particular in presence of a lower number of suppliers, and
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|M | = 5 |M | = 10
Instance Uniform distribution Gumbel distribution Uniform distribution Gumbel distribution

|K| λ DP AC VSS% EVPI% VSS% EVPI% VSS% EVPI% VSS% EVPI%
10 0.1 1 1 9.5 3.3 5.1 3.7 6.1 1.7 4.9 1.1
10 0.1 1 2 27.9 2.7 21.0 3.2 8.5 1.8 5.1 1.7
10 0.1 2 1 4.9 5.4 28.6 6.3 11.9 2.0 8.9 2.2
10 0.1 2 2 25.2 7.0 11.9 9.6 8.3 2.1 9.5 1.9
10 0.8 1 1 43.2 10.4 31.1 11.8 15.0 5.8 7.9 6.2
10 0.8 1 2 8.3 4.8 1.4 6.1 4.7 3.6 19.6 3.7
10 0.8 2 1 43.1 6.2 40.0 8.7 31.3 2.3 20.2 2.4
10 0.8 2 2 34.9 9.7 29.2 10.6 21.0 4.7 8.7 4.5
20 0.1 1 1 13.6 3.9 20.1 5.7 11.0 1.4 8.3 2.2
20 0.1 1 2 14.0 3.8 6.0 5.3 14.9 1.8 3.5 2.5
20 0.1 2 1 34.3 4.1 20.8 6.1 13.3 1.8 11.5 2.0
20 0.1 2 2 21.2 3.2 14.5 4.4 16.7 2.1 6.3 2.8
20 0.8 1 1 13.4 11.9 7.1 15.5 36.6 1.8 25.8 1.6
20 0.8 1 2 25.8 5.5 18.6 7.4 18.4 4.0 31.7 4.8
20 0.8 2 1 8.0 4.0 32.9 5.4 10.3 2.4 6.1 3.1
20 0.8 2 2 41.7 4.2 31.7 5.9 9.9 4.2 5.6 4.7
30 0.1 1 1 30.3 3.0 5.4 4.7 11.1 1.6 8.6 2.3
30 0.1 1 2 12.7 3.2 5.2 4.8 12.2 1.2 5.0 1.8
30 0.1 2 1 36.8 2.6 28.5 3.6 18.0 1.6 10.6 2.5
30 0.1 2 2 17.9 2.7 10.9 4.3 18.1 1.3 7.8 2.1
30 0.8 1 1 44.6 6.5 30.9 8.8 5.6 2.2 5.9 2.4
30 0.8 1 2 35.8 3.8 24.8 6.0 10.4 2.9 14.7 3.8
30 0.8 2 1 11.5 7.8 38.8 10.2 22.3 2.6 17.0 3.3
30 0.8 2 2 2.9 10.7 4.6 13.9 7.0 5.8 2.1 7.8

avg: 23.4 5.4 19.6 7.2 14.3 2.6 10.6 3.1
max: 44.6 11.9 40.0 15.5 36.6 5.8 31.7 7.8

Table 6: VSS and EVPI for CTQD-ACud instances with |M | = 5 and |M | = 10

Instance Uniform distribution Gumbel distribution
|M | |K| λ DP AC VSS% EVPI% VSS% EVPI%

20 10 0.1 1 1 17.5 2.1 14.5 1.5
20 10 0.1 1 2 10.3 2.3 6.8 1.7
20 10 0.1 2 1 8.0 4.5 11.0 4.9
20 10 0.1 2 2 25.2 2.2 15.2 2.3
20 10 0.8 1 1 10.2 3.1 6.2 2.3
20 10 0.8 1 2 9.1 3.7 10.4 3.0
20 10 0.8 2 1 16.2 4.1 12.5 3.9
20 10 0.8 2 2 21.2 5.5 7.4 7.0

avg: 14.7 3.4 10.5 3.3
max: 25.2 5.5 15.2 7.0

Table 7: VSS and EVPI for CTQD-ACud instances with |M | = 20

is a little bit higher for the Uniform distribution than for the Gumbel. More precisely, the average

VSS% considering the Uniform distribution is equal to 23.4% for |M | = 5 instances, while goes

down to about 14% for |M | = {10, 20} ones. The average values for the Gumbel are about 4%

lower than the relative values for the Uniform. Remarkably, 18 times out of the total instances,

the VSS% exceeds the 30%. In general, this means that the demand uncertainty is the very critical

factor to consider in procurement settings and that solutions coming up from an explicit study of

the demand fluctuations (as we did through our SP approach) can be very useful on the long-term

minimization of the costs.

7.4. Economic and managerial considerations

The previous analysis gives some insightful results. Clearly, it emerges how the more relevant

source of uncertainty in this setting is represented by the demand, presenting quite large V SS.
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In particular, a potential error due to the usage of the mean values can bring to a gap between

the stochastic and the expected value solutions of more than 15% for medium-large procurements,

and of more than 20% when few suppliers are involved. From a managerial point of view, this

means that an integration of our models and algorithms for the CTQD-ACud in a Decision Support

System (DSS) might effectively give a strategic advantage to a company facing such a type of

procurement. Since the discounts are granted if a certain amount of product is purchased, this DSS

may also foster some collaborative interactions with other companies in order to further aggregate

the demand (Perboli et al., 2016).

Due to the great number of scenarios to consider (see Section 7.1), the size of the problems

that we can manage is still limited. However, it can be compatible with lots of different markets

as, for example, the Automotive one where the number of big suppliers for a single part (body,

chassis, electrical components, interiors, powertrain, and so on) are globally less than 100 with the

53% of the suppliers with revenues over 5 billions dollars (Jetli, 2014; Berret et al., 2016). Since in

the last years the Automotive market had a profit around 7.5%, a competitive company needs a

conservativeness for its long-term procurements as the one prospected by our modeling approach.

On the contrary, the volatility of the products price seems affecting the problem in a negligible

way. First, it has to be said that even such as small percentages of saving on procurement costs

could be of interest in those markets where the profits are very marginal (e.g., the market of

computer/hi-tech hardware components where the profit is in the order of 4-5%). Second, and

more important, it seems that stipulating total quantity discount contracts with the suppliers (in

which discount clauses are known in advance) naturally prevents undesirable expenditures due to

the product prices uncertainty. The price fluctuations are in fact absorbed by the discount applied

to the total amount of products purchased at a supplier. Note that the product aggregation given

by the model, needed to calculate this type of discounts, leads to a built-in control of the uncertainty

on each single product parameters. The quite low EVPI% values for the CTQD-ACup also confirm

that having precise information about the product prices does not impact valuably on the solution

quality in this type of procurement setting.

Another critical issue, from a managerial point of view, is how much CTQD-ACud optimal

solutions make use of external supplies in the spot market (corresponding to the use of w variables)

to satisfy the demand due to a lack of supply. In Figure 4, for both the distributions, we plot

the percentage of product quantity purchased out of the selected suppliers with respect to the

total amount purchased. These percentages, calculated on all the solved instances, have been

averaged by different values of λ (first chart), by number of suppliers (second chart), and by

number of products (third chart). Spot market is, on average, more consistent for instances with

more suppliers and when the average available quantities tend to be closer to the product demands

(i.e., when λ=0.1). Instead, a higher number of products leads to less spot market supplies. Again,

the diversification of the products and the aggregation process to calculate the discounts helps in

controlling the undesirable use of too many spot-suppliers. The highlighted trends are similar for

both the distributions, but the values are halved (or more than halved) when considering a Gumbel

distribution for the demands. More precisely, the percentages for the Uniform distribution can
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Figure 4: Average percentage of quantities purchased at external suppliers with respect to the total amount purchased.

reach the 10-12% of the total purchase and never go under the 5%. Instead, for the Gumbel, the

higher value is about 5% with many cases where the external supplies are irrelevant (1-2% or less).

8. Conclusions and future research

In this paper, we have studied a long-term multi-product multi-supplier procurement problem

called Capacitated Supplier Selection problem with Total Quantity Discount policy and Activation

Costs, introducing its variant under uncertainty. In its deterministic form, the problem aims at

selecting a subset of the suppliers and the relative purchasing plan such that the product demands

are satisfied at minimum cost, also taking into account the discount policy offered by the suppliers

and the cost to activate a business activity with them. Discounts are based on the total quantity of

products purchased, regardless of the type of product. Since the assumption of having deterministic

data is quite unrealistic in a long-term perspective, we explicitly consider all the reasonable sources

of uncertainty and propose a general two-stage Stochastic Programming formulation with recourse

to cope with them. Then, we adapt the model and the recourse actions for two particular cases,

i.e. the ones in which only the product prices or only the product demands are stochastic variables.

The modeling approaches are evaluated on a large set of instances and by considering different

probability distributions and different parameterizations. In particular, we show how using total

quantity discount contracts to select suppliers represents itself a good way in mitigating the effects

of products price fluctuations. On the contrary, it is evident, how a more conservative approach (as

the SP one) is crucial to cope with demand uncertainty in terms of solution quality and percentage

of quantities purchased at external suppliers.

Some future extensions can be sketched. First, the results in this work are obtained through

a branch-and-cut solution framework that has resulted more efficient than state-of-the-art MIP

solvers. However, the computational times needed to reach the optimality for medium-large in-

stances (with a reasonable number of scenarios) are still too high. We believe that scenario-based

decomposition methods, like a heuristic Progressive Hedging (Perboli et al., 2017), or a Logit-based

approximation (Tadei et al., 2012) might be more suitable. These methods could also allow to

tackle instances with a larger number of scenarios or a more complex scenario tree structure neces-
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sary to model specific market cases, as economic crises or changes in market shares (Crainic et al.,

2016). Second, once studied the basic supplier selection problem with quantity discounts under

uncertainty, it could be interesting to consider additional complicating features (in order to address

more realistic applications). Some of them, as highlighted for example in Goossens et al. (2007) or

Sadrian and Yoon (1994), are the introduction of inventory costs for the products, market share

constraints, and limitation on the number of selected suppliers.
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