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Abstract. This paper addresses the generation of scenario trees to solve stochastic programming 

problems that have a large number of possible values for the random parameters (possibly infinitely 

many). For the sake of the computational efficiency, the scenario trees must include only a finite 

(rather small) number of scenarios, therefore, it provides decisions only for some values of the 

random parameters. To overcome the resulting loss of information, we propose to introduce an 

extension procedure. It is a systematic approach to interpolate and extrapolate the scenario-tree 

decisions to obtain a decision policy that can be implemented for any value of the random 

parameters at little computational cost. To assess the quality of the scenario-tree generation 

method and the extension procedure (STGM-EP), we introduce three generic quality parameters 

that focus on the quality of the decisions. We use these quality parameters to develop a framework 

that will help the decision-maker to select the most suitable STGM-EP for a given stochastic 

programming problem. We perform numerical experiments on two case studies. The quality 

parameters are used to compare three scenario-tree generation methods and three extension 

procedures (hence nine couples STGM-EP). We show that it is possible to single out the best 

couple in both problems, which provides decisions close to optimality at little computational cost. 
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1 Introduction

Stochastic programming is a mathematical programming framework used to formulate and solve
sequential decision-making problems under uncertainty. It relies on the assumption that the prob-
ability distribution of the random parameters is known (possibly inferred from data), and that
the information about these parameters becomes available stage by stage. If the distribution is
supported by a finite number of points, small enough for a tractable computation, then all the ran-
dom outcomes can be represented in a so-called scenario tree, and solving the stochastic program
on the scenario tree provides the optimal decisions for every outcome. In this context, stochastic
programming has proved to be a powerful framework to solve problems in energy, transportation,
logistic, finance, etc.; see, e.g., Wallace and Fleten (2003), Schultz et al. (2003), Yu et al. (2003),
Louveaux (1998) and Powell and Topaloglu (2003). The situation becomes more complicated if the
random parameters take a large (possibly infinite) number of values, since stochastic programming
problems are then large-scale optimization problems (possibly infinite dimensional problems) that
are typically impossible to solve analytically or computationally in a reasonable time. In that case,
the scenario tree is built with a finite subset of scenarios, obtained by discretizing the stochastic
process that models the random parameters across the stages. Many discretization schemes for gen-
erating scenario trees have been developed in the literature; we will cite some important references
in Section 1.2. The scenario-tree generation method enables the decision-maker to obtain estimates
of the optimal value and the optimal solutions of the stochastic program, but two questions remain
open for the decision-maker:

• How to implement the optimal solutions that are scenario dependent? Apart from the first-
stage decisions, which are not scenario dependent, all subsequent stage decisions depend on
the scenarios, and therefore they may not be implementable if the real-world realization of
the stochastic process does not coincide with a scenario in the tree.

• How to tell which method provides the best quality decisions for a given problem? Methods
are typically built from mathematical results on the optimal-value error (consistency, rate
of convergence, etc.), but it is unclear whether a good optimal-value estimate systematically
implies good quality decisions. Additionally, the claimed effectiveness may be guaranteed
under assumptions that are not fulfilled in practice. Also, it may hide some unknown quantities
(e.g., the implied constant in a big-O notation for the rate of convergence) that prevents the
decision-maker from knowing with certainty that the best method from a theoretical point of
view will be the most efficient when put into practice.

In this paper, we show that both questions are inherently linked and we propose a mathematical
framework that answers both of them.

The remainder of this paper is organized as follows: In Section 1.1 and 1.2, we introduce the
notation to describe the stochastic programming problem and the scenario-tree formulation; this
notation is summarized in Appendix A. In Section 1.3, we describe with more details the motivation
of our approach. In Section 2, we develop the quality evaluation framework, and we provide in
Section 3 the statistical tools (estimators, confidence intervals) to put it into practice. We present
actual extension procedures in Section 4, and we apply them in the two case studies in Section 5.
Finally, Section 6 concludes the paper.

1.1 Stochastic programming problem formulation

We consider a stochastic programming problem with a time horizon T ∈ N∗ and integer time stages
t ranging from 0 to T . The stagewise evolution of the random parameters is represented by a
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stochastic process ξ = (ξ1, ..., ξT ), defined on a probability space (Ω,A,P), where ξt is a random
vector with dt components that represent the random parameters revealed in period (t− 1, t). We
define ξ..t := (ξ1, . . . , ξt) the partial stochastic process up to stage t, and we denote the supports of
ξt, ξ..t, and ξ by Ξt, Ξ..t, and Ξ, respectively. Throughout this paper, random quantities are always
written in bold font, while their realizations are written with the same symbols in normal font.

At each stage t ∈ {1, . . . , T}, the decisions must be based only on the information available at
this stage in order to be non-anticipative. Thus, the stage-t decision function, denoted by xt, is
defined as

xt : Ξ..t → Rst (1)

ξ..t 7→ xt(ξ..t),

where st is the number of decisions to be made at stage t (for the sake of clarity, we consider that
st = s and dt = d for all t). The decisions at stage 0 are represented in a vector x0 ∈ Rs. We
assume that each decision function belongs to an appropriate space of measurable functions, e.g.,
the space Lp(Ξ..t;Rs) of p-integrable functions for p ∈ [1,+∞]. The decision policy (or simply
policy) is denoted by x and is the collection of all the decision vector/functions from stage 0 to
stage T , i.e., x = (x0, x1, . . . , xT ) ∈ Rs ×ΠT

t=1Lp(Ξ..t;Rs) or equivalently

x(ξ) = (x0, x1(ξ1), . . . , xt(ξ..t), . . . , xT (ξ)). (2)

The set of feasible decision vectors (or simply feasible set) is denoted by X0 at stage 0 and by
Xt(x..t−1(ξ..t−1); ξ..t) at stage t ∈ {1, . . . , T}; the latter notation emphasizes that it may depend
on the realization ξ..t ∈ Ξ..t and on the decisions x..t−1(ξ..t−1) := (x0, ..., xt−1(ξ..t−1)) prior to t. A
decision policy is feasible if it yields a feasible decision vector at every stage with probability one.
We assume that the space of feasible policies is nonempty and that the decisions made at each
stage do not alter the probability distribution of the stochastic process. We emphasize that our
modelization can include integrity constraints.

We introduce a revenue function q(x(ξ); ξ) that represents the total revenues obtained from
stage 0 to T for a policy x and a realization ξ of the stochastic process. We are interested in
the dependence of the first moment of q(x(ξ); ξ) with respect to the decision policy, i.e., in the
functional Q(x) := E[q(x(ξ); ξ)]; we suppose that Q(x) is well-defined for any feasible policy x.

The stochastic programming problem consists in finding a feasible and non-anticipative policy
that maximizes Q(·), which means finding x∗ of the form (2) satisfying

Q(x∗) = max
x=(x0,...,xT )

E[q(x(ξ); ξ)] (3)

s.t. x0 ∈ X0; (4)

x1(ξ1) ∈ X1

(
x0; ξ1

)
, w.p.1; (5)

xt(ξ..t) ∈ Xt

(
x..t−1(ξ..t−1); ξ..t

)
, w.p.1, ∀t ∈ {2, . . . , T}. (6)

Constraints (5) and (6) hold with probability one (w.p.1). The policy x∗ is called an optimal decision
policy and Q(x∗) is the optimal value of the stochastic programming problem. Some additional
conditions should be added to ensure that there exists at least one optimal decision policy; see, e.g.,
Rockafellar and Wets (1974).

1.2 Scenario tree and scenario-tree deterministic program

In most problems the optimal value Q(x∗) and the optimal decision policy x∗ are difficult to compute
exactly, or approximately within a sufficiently small error, as shown in Dyer and Stougie (2006) and
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Hanasusanto et al. (2016). For this reason, approximate solution methods have been developed,
such as the large family of scenario-tree generation methods. We refer the reader to the following
references for a general presentation on stochastic programming and solution methods: Birge and
Louveaux (1997), Ruszczyński and Shapiro (2003), Schultz (2003), and Defourny et al. (2011).

A scenario-tree generation method builds a scenario-tree deterministic program from a finite
subset of realizations of ξ (called scenarios). The scenarios are obtained through a discretiza-
tion scheme, which can be performed using many possible techniques, and are organized in a tree
structure to approximate the stagewise evolution of information (called filtration) of the stochastic
process. Some of the most popular works on scenario generation are: Shapiro and Homem-de Mello
(1998) and Mak et al. (1999) on the Monte Carlo method; Pennanen and Koivu (2002), Drew and
Homem-de Mello (2006), and Leövey and Römisch (2015) on integration quadrature and quasi-
Monte Carlo; Høyland and Wallace (2001) and Høyland et al. (2003) on moment-matching; Pflug
(2001), Pflug and Pichler (2012), and Pflug and Pichler (2015) on optimal quantization; Dupačová
et al. (2003) and Heitsch and Römisch (2009) on scenario reduction; Frauendorfer (1996) and Ediris-
inghe (1999) on bound-based approximations; Chen and Mehrotra (2008) and Chen et al. (2015)
on sparse grid quadrature rules.

All the above methods provide a procedure to generate scenarios from ξ, but only a few also
provide a systematic approach to generate a tree structure, i.e., to organize the scenarios in a
structure with branchings at every stage. In most cases, the choice of a tree structure is left to
the decision-makers themselves, who may choose it empirically. Throughout this paper, we use
the term scenario-tree generation method to name a procedure that generates a set of scenarios
organized in a tree structure; this includes the case where the structure is chosen beforehand by the
decision-maker. The remainder of this section introduces the notation for the scenario tree and the
scenario-tree deterministic program.

A scenario tree is a rooted tree structure T = (N , E), with (finite) node set N , edge set E , and
root node n0. The structure is such that T edges separate the root from any of the leaves. We
denote by C(n), a(n), and t(n), respectively, the children nodes of n, the ancestor node of n, and
the stage of n (i.e., the number of edges that separate n from n0). We also denote N ∗ := N \ {n0}
and Nt := {n ∈ N | t(n) = t}. Each node n ∈ N ∗ carries a discretization point ζn of ξt(n) and a
weight wn > 0. The latter represents the weight of n with respect to its sibling nodes. The weight
of n with respect to whole scenario tree, denoted by Wn, is the product of all wm for m on the
path from n0 to n. We emphasize that we let the weights be any positive real values to cover a
large setting of discretization schemes. We denote by ζ ..n the sequence of discretization points on
the path from n0 to n; hence ζ ..n is a discretization point of ξ..t(n).

The scenario-tree approach proceeds as follows: the vector x̂n ∈ Rs is the decision at node
n ∈ N and the sequence x̂..n := (x̂n0 , . . . , x̂n) denotes the decision vectors on the path from n0 to
n. The scenario-tree deterministic program is written as

Q̂∗ := max
{x̂n :n∈N}

∑
l∈NT

W l q(x̂..l; ζ ..l) (7)

s.t. x̂n0 ∈ X0; (8)

x̂n ∈ X1

(
x̂n0 ; ζn

)
, ∀n ∈ N1; (9)

x̂n ∈ Xt

(
x̂..a(n); ζ ..n

)
, ∀n ∈ Nt, ∀t ∈ {2, . . . , T}, (10)

The optimal decision vector at each node is denoted by x̂n∗ and, for convenience, we define x̂∗ :=
{x̂n∗ |n ∈ N} and we refer to it as the tree optimal policy.

We emphasize that if the stochastic program cannot be solved exactly, which is our case of
interest in this paper, then the outputs x̂∗ and Q̂∗ of the scenario-tree approach are approximations

4

Quality Evaluation of Scenario-Tree Generation Methods for Solving Stochastic Programming Problem

CIRRELT-2017-17



of x∗ and Q(x∗), respectively.

1.3 Motivations and extension procedure formulation

Scenario trees have proved to be a useful approach for a wide class of stochastic programming
problems (see the references in the Introduction). However, as pointed out in Ben-Tal et al. (2009),
this approach fails to provide decisions for all values of the random parameters. The reason is that
the decisions at stage t are only available for the set {ζ ..n |n ∈ Nt}, which is a proper subset of Ξ..t.
If the stochastic process has a continuous distribution, then the former set has probability zero, and
therefore the real-world realization of the stochastic process never coincides with a scenario in the
tree. In that case, only the stage-0 decision, which is not scenario dependent, can be implemented
by the decision-maker. This raises the first question written in the Introduction: How to implement
the optimal solutions that are scenario dependent?

An attempt to answer this question, proposed for instance in Kouwenberg (2001), Chiralak-
sanakul and Morton (2004), and Hilli and Pennanen (2008), consists in solving dynamically the
scenario-tree deterministic program on a shrinking horizon in order to implement the stage-0 deci-
sion recursively at every stage. However, a drawback of this approach is its computational cost. It
requires as many solutions as the total number of stages, and the procedure must be carried out all
over again for each new realization ξ. With this approach, it can be computationally costly to per-
form an out-of-sample test, which is an evaluation of the tree decisions on a set of scenarios directly
sampled from ξ, since it is typically required to test the decisions on thousands of realizations for
a reliable accuracy. Therefore, a satisfactory answer to the first question would be to find a way
to provide decisions for any value of the random parameters, in a manner that allows a thorough
out-of-sample test.

The second question raised in the introduction is concerned with the choice of the scenario-tree
generation method. Methods are usually developed with the goal to control the optimal-value error
|Q(x∗) − Q̂∗|. But as far as the decisions are concerned, it is unclear whether a small value of the
error always implies a tree optimal policy x̂ close to the optimal decision policy x∗. Additionally,
the notion of closeness between the two policies is in itself difficult to define, because x̂ is a finite
set of vectors whereas x∗ is a sequence of functions. For this reason, the focus is sometimes made
on controlling the distance between the two stage-0 decision vectors x̂n0 and x∗0. This is done
for instance in Pennanen (2005), where the scenario trees are generated in a way that guarantees
the convergence of x̂n0 toward x∗0 as the number of scenarios increases. However, such approaches
address only the quality of the stage-0 decisions. They ignore the decisions in the following stages,
as if those decisions were irrelevant or irremediably out of reach for an evaluation. We do not believe
so.

In this paper, we completely depart from the view of the references above. From the tree optimal
policy x̂, we intend to recover a decision policy of the form (2) in order to treat the decisions of the
scenario tree as a candidate solution of the stochastic programming problem. We do so as follows:
after solving the program (7)-(10), we extrapolate and interpolate the tree optimal decisions outside
the set of the scenarios. We refer to this as an extension procedure and to the resulting policy as
an extended tree policy. The extended tree policy (formalized in Definition 1.1) is defined over all
possible realizations of the stochastic process, and it coincides with the tree optimal policy on the
scenarios of the tree.

Definition 1.1. Let x̂∗ = {x̂n∗ |n ∈ N} be a tree optimal policy. An extended tree policy for x̂∗

is a decision policy x̃ = (x̃0, . . . , x̃T ), where x̃0 = x̂n0∗ and for every t ∈ {1, . . . , T}, x̃t is defined as
in (1) and satisfies

x̃t(ζ
..n) = x̂n∗, for all n ∈ Nt. (11)
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The extension procedure enables a thorough out-of-sample test of the policy, because the de-
cisions are available merely through the evaluation of a function at a particular point, which can
be carried out many times at little cost. Since the extended tree policy x̃ is a candidate solution
of the stochastic program, it can be compared with the optimal policy x∗. A natural comparison
criterion, which is highly relevant for the decision-maker, is to compare the value Q(x̃) with Q(x∗).
Although this idea provides the basis for our quality evaluation framework, we show that it must
be addressed with care because the extended tree policy may not satisfy the feasibility requirement.

Our quality evaluation framework is based on three quality parameters that will enable the
decision-maker to compare couples of scenario-tree generation method and extension procedure
(STGM-EP) in order to select the best one for a given problem. We refer to Kaut and Wallace (2007)
for a discussion on the evaluation of scenario-tree generation methods for two-stage problems, which
provided the inspiration for this paper. We also refer to the works of Defourny et al. (2013) where
some extension techniques are introduced using regression tools from machine learning. However,
their approach and ours differ in several aspects, the main one being their desire to select the
best policy, while we want to select the best method (i.e., the whole family of policies that can be
obtained by the method; see Remark 1.1). The reason why we focus on methods rather than on
policies lies in the way scenario trees are used in practice. Very often, problems are solved regularly
with different data to infer the random parameters, and therefore a new policy must be computed
for each new data set. In that case, our quality evaluation framework requires to run the selection
test just on one data set. Then, the selected STGM-EP can be used to compute a policy for each
new data set without additional comparison tests. We will discuss this point in more details after
the definition of the selection criterion in Section 2.3.

Remark 1.1. Although the framework developed in this paper can be applied to any scenario-tree
generation method, the future mathematical developments require to differentiate two categories
of methods. On the one hand, the stochastic methods use some random sampling techniques to
build scenario trees. The stochasticity implies that every output scenario tree is different when the
method is carried out multiple times. On the other hand, the deterministic methods generate a
unique scenario tree (i.e., a unique tree structure, set of discretization points and weights).

Stochastic methods are more difficult to assess. Since different scenario trees imply different
tree optimal policies, and therefore different extended tree policies, we need to be able to consider
somehow all the possible extended tree policies that a stochastic method may yield. A way to do so
is to see all these policies as the realizations of a random extended policy x̃, the latter is denoted in
bold font to distinguish it from a particular realization x̃ω (see Figure 1). Therefore, by x̃ we denote
the family of all decision policies that are obtained in a random manner by a particular STGM-EP.

Since the goal of this paper is to assess the quality of methods, we shall focus on studying
the quality of x̃ rather than a specific realization of it. To this end, we will denote by Ex̃[·] the
expectation operator taken with respect to the probability measure of x̃. This measure is defined
on the infinite dimensional space Rs×ΠT

t=1Lp(Ξ..t;Rs) of decision policies, which makes it a highly
complicated mathematical object. However, we do not further develop this point in this paper
because, as far as practitioners are concerned, the only important matter is that the probability
measure of x̃ can be sampled by generating several scenario trees, and hence the expectation can be
estimated by a finite sum. The statistical properties of such estimation will be studied in Section 3.

2 Quality parameters

In this section, we introduce the quality parameters that assess any scenario-tree generation method
and extension procedure. We assume the following condition holds throughout this section:
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Ω

Tω1

Tω2

...

Tωk

...

x̂∗ω1

x̂∗ω2

...

x̂∗ωk

...

x̃ω1 =: x̃(ω1)

x̃ω2 =: x̃(ω2)

...

x̃ωk
=: x̃(ωk)

...

Figure 1: A stochastic STGM-EP yields a random extended tree policy x̃. As a random element,
this policy can be seen as a map x̃ : Ω→ Rs ×ΠT

t=1Lp(Ξ..t;Rs) obtained through the composition
of several transformations represented by the arrows.

C1. The stochastic program (3)-(6) and the scenario-tree deterministic program (7)-(10) each have
an optimal decision policy.

The framework developed in the section works for both stochastic and deterministic methods.
However, for the sake of conciseness, it is expressed for stochastic methods only. The equivalent
results for the deterministic ones are easy to deduce by removing the expectation Ex̃[·] and by
substituting x̃ with its unique realization x̃.

2.1 Probability of feasibility and conditional revenues

It follows from Definition 1.1 that an extended tree policy yields feasible decisions at the root node
and for any realization ξ..t that coincides with a discretization sequence ζ ..n for a node n ∈ Nt in
the scenario tree. For any other realization the feasibility is not guaranteed and will depend on the
considered STGM-EP. The first two features of the extended tree policy that we want to assess is
its probability of feasibility at every stage and its conditional revenues given the feasibility.

Consider a random extended tree policy x̃, and let x̃ be a realization of x̃. The subset of Ξ..t
on which x̃ provides feasible decisions from stage 0 to t, denoted by Ξ̃..t(x̃), is defined as

Ξ̃1(x̃) =
{
ξ1 ∈ Ξ1 | x̃1(ξ1) ∈ X1(x̃0; ξ1)

}
, (12)

and
Ξ̃..t(x̃) =

{
ξ..t ∈ Ξ..t

∣∣ ξ..t−1 ∈ Ξ̃..t−1(x̃), x̃t(ξ..t) ∈ Xt

(
x̃..t−1(ξ..t−1); ξ..t

)}
, (13)

for each t ∈ {2, . . . , T}. Thus, the probability that x̃ provides feasible decisions from stage 0 to t
is P[ξ..t ∈ Ξ̃..t(x̃)]. When considering the random policy x̃, the set Ξ̃..t(x̃(ω)) varies depending on
the outcome ω ∈ Ω (see Figure 1). Taking into account the randomness of x̃ leads to the following
definition of the quality parameters p(t) and CR.

Definition 2.1. (i) The probability p(t) that a random extended tree policy x̃ yields feasible decisions
up to stage t ∈ {0, . . . , T} is given by p(0) = 1 and

p(t) = P(ξ,x̃)[ξ..t ∈ Ξ̃..t(x̃)]. (14)

(ii) The conditional revenues CR obtained with x̃ when it yields feasible decisions up to the end of
the optimization horizon is given by

CR = E(ξ,x̃)[q(x̃(ξ); ξ) | ξ ∈ Ξ̃..T (x̃)]. (15)

The value CR is well-defined provided that p(T ) > 0.
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The sequence (p(0), p(1), . . . , p(T )), non-increasing by definition of Ξ̃..t(x̃), provides information
about the stagewise evolution of the size of the stage-t feasible region Ξ̃..t(x̃) (as a sequence of
numbers ranging from 0 to 1) embedded in the support Ξ..t.

Although CR is a natural quantity to compute, its interpretation can be tricky. By definition
of the conditional expectation as a ratio of an expectation and a probability, the values of CR are
inherently linked with those of p(T ). If p(T ) is less than one, then the conditional revenues are
computed on a subset of random parameters, and therefore their values can be larger than the
optimal ones Q(x∗). Typically, it will be observed in the numerical experiments that the lower p(T )
the larger CR, which means that CR becomes almost irrelevant when p(T ) is much smaller than
one, as it gives the expected revenues in a world where pessimistic scenarios are ignored. Conversely,
if p(T ) is close to one, then CR is forced not to exceed Q(x∗) too much (and in the limit p(T )→ 1,
Q(x∗) is an upper bound on CR), therefore its value is meaningful for the decision-maker.

When considering two STGM-EPs, denoted by A and B, a decision-maker will select A if the
respective quality parameters satisfy:

pA(T ) > pB(T ) and CRA > CRB, with pA(T ) ≥ α, (16)

where α ∈ (0, 1] is the feasibility threshold that the decision-maker considers as satisfactory. As we
will see in the numerical experiments, the selection criterion (16) allows to put aside scenario-tree
generation methods and extension procedures of poor quality. However, for the reason explained
above, it is not always conclusive and it may not allow to single out the best method out of a
group of good methods. In Section 2.3, we introduce a third quality parameter leading to a more
robust selection criterion. To this end, we first address the feasibility restoration of the extended
tree policy.

2.2 Feasibility restoration

In a real-world application, the extended tree policy x̃ can be used all the way to the end of the
optimization horizon provided the real-word realization ξ satisfies ξ ∈ Ξ̃..T (x̃). If this condition does
not hold, then there exists a stage t∗ ≥ 0 such that ξ..t 6∈ Ξ̃..t(x̃) for every t > t∗, and therefore the
decision-maker has to find alternative feasible decisions from stage t∗+1 to T . This is known in the
literature as the feasibility restoration problem. A necessary condition for restoring the feasibility
is that the decisions (x̃0, . . . , x̃t∗(ξ..t∗)) do not lead to an empty feasible sets from stage t∗+ 1 to T .
This is guaranteed if we assume that the following condition holds:

C2. The stochastic programming problem has a relatively complete recourse at every stage.

There are several approaches to address the feasibility restoration. In the works of Küchler and
Vigerske (2010) and Defourny et al. (2013), the feasibility is restored by projecting the infeasible
decision on the feasible set, which is done by solving non-linear optimization problems. In this
paper, in order to proceed with the idea that the decisions must be available at little computational
cost, we investigate the possibility that the decision-makers have the ability to fix any infeasibility
by their own empirical knowledge on the problem. In other words, we assume that the following
condition holds:

C3. The decision-maker possesses a recourse policy, obtained empirically, that always provides
feasible decisions.

We model the recourse policy as a sequence r = (r1, . . . , rT ), where the stage-t recourse function rt
takes a realization ξ..t and a sequence of decisions x..t−1(ξ..t−1) and yields a feasible decision vector,
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i.e., rt(x..t−1(ξ..t−1); ξ..t) ∈ Xt(x..t−1(ξ..t−1); ξ..t). We emphasize that the definition of rt differs from
the definition of xt in (1), since rt depends also on the previous decisions.

The implementation of x̃ (if feasible) and r (otherwise) yields a new decision policy, called the
feasible extended tree policy, that provides feasible decisions at every stage and for every realization
of the stochastic process. Definition 2.2 provides its explicit construction.

Definition 2.2. Let x̃ be an extended tree policy and r a recourse policy. The feasible extended
tree policy x resulting from x̃ and r is given by x0 = x̃0 and recursively from t = 1 to t = T by

xt(ξ..t) =

{
x̃t(ξ..t) if ξ..t ∈ Ξ̃..t(x̃),

rt(x..t−1(ξ..t−1); ξ..t) otherwise,
(17)

where for t = 1 the term x..0(ξ..0) corresponds to x0.

A stochastic STGM-EP yields a feasible extended tree policy that is random and is denoted by
x (see Remark 1.1 and Figure 1).

2.3 Distance between methods and selection criterion

The expected revenues obtained by implementing the feasible extended tree policy x is Q(x) =
Eξ[q(x(ξ); ξ)]. Since all realizations x of the random policy x are feasible and non-anticipative, we
have that

Q(x) = Eξ[q(x(ξ); ξ)] ≤ Q(x∗), w.p.1. (18)

We emphasize that the left-hand side of the inequality is a random variable, which is why the
inequality holds with probability one. We see from (18) that every realization x of x provides a
lower bound Q(x) of Q(x∗). The nonnegative value Q(x∗) − Q(x) provides a relevant measure of
quality of x. However, in general Q(x∗) is not known, hence the computation may be done with
Q̂∗ or an upper bound on Q(x∗) rather than with Q(x∗). This approach was used in the particular
case of the Monte Carlo method for two-stage problems by Mak et al. (1999), and was developed
further by Bayraksan and Morton (2009).

In this paper, we are interested in assessing the quality of methods, therefore, we must address
the quality of x rather than a specific realization x. The inequality (18) still holds if we take the
expectation of the left-hand side. This leads to the following definition of the distance d(x, x∗)
between the feasible extended tree policy x and the optimal policy x∗.

Definition 2.3. The distance d(x, x∗) between the feasible extended tree policy x and the optimal
policy x∗ of the stochastic program (3)-(6) is given by

d(x, x∗) = Q(x∗)− Ex
[
Q(x)

]
≥ 0. (19)

This distance defines a concept of ”optimal choice” for the selection of the scenario-tree gener-
ation method and the extension procedure, in the sense of the following proposition.

Proposition 2.4. A scenario-tree generation method and an extension procedure yield a ran-
dom policy x that is optimal with probability one for the stochastic program (3)-(6) if and only
if d(x, x∗) = 0.

Proof. The proof is straightforward: we have that d(x, x∗) = 0 if and only if Ex[Q(x∗)−Q(x)] = 0,
and by the inequality (18), this is equivalent to Q(x∗) = Q(x) with probability one. By construction,
the random policy x is feasible and non-anticipative with probability one, which completes the
proof.
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Thus, the distance d(x, x∗) measures how far (in terms of revenues) the considered STGM-EP
is from an ideal method that would always provide the optimal decisions. In applications, the
value d(x, x∗) represents the expected missing revenues that results from the implementation of any
(randomly chosen) realization x of x.

It follows from Proposition 2.4 that a decision-maker will select the STGM-EP that provides
the smallest value of d(x, x∗). This selection criterion assesses the absolute quality of a method,
i.e., in comparison to the ideal method. In applications, Q(x∗) is typically not known, hence the
decision-maker will rather compare the relative efficiency of two methods, as shown in Definition
2.5.

Definition 2.5 (Selection criterion). Let A and B be two couples of scenario-tree generation method
and extension procedure that yield random policies xA and xB, respectively. We say that A is better
than B for the stochastic programming problem if

ExA [Q(xA)] > ExB [Q(xB)]. (20)

Criterion (20) guarantees that the whole family of policies obtained by A is of better quality on
average than those obtained by B. For this reason, we say that the selection criterion (20) is in the
average-case setting. This setting is particularly relevant when the problem is solved regularly, each
time with new data to infer the distribution of the random parameters. In that case, one runs the
selection test just once, and uses the selected STGM-EP to obtain a new decision policy for each
new data set. It is reasonable to expect the selected STGM-EP to perform well on the other data
sets, provided of course the latter do not change the distribution too much, i.e., provided they affect
the parameters of the distribution and not the very nature of the distribution itself. Moreover, the
law of large numbers guarantees that the average performance of a method is a relevant quality
criterion for a problem solved regularly.

It is worth noting an alternative selection setting that suits better decision-makers who intend
to solve always the exact same problem. We call it a comparison in the best-case setting because it
is based on the best policy x(ω), for all ω ∈ Ω, that a STGM-EP yields. In the best-case setting,
A is better than B if

sup
ω∈Ω

Q(xA(ω)) > sup
ω∈Ω

Q(xB(ω)). (21)

The interpretation of (21) is the following: if the decision-maker has unlimited computational
resources and carries out A and B enough times, then eventually A will yield a policy with expected
revenues higher than those obtained with any policy yielded by B. An estimator for supω∈ΩQ(x(ω))
is maxk=1,...,K Q(xk), where x1, . . . , xK are K realizations of x, which links the selection criterion
(21) with the policy selection technique developed by Defourny et al. (2013). The drawback of (21)
lies in the potentially long time required to find the best policy. This prevents the criterion to be
used when the problem is solved regularly with different data, since the decision-maker will have to
go through the selection test to find the best policy for each new data set.

The criterion (20) in the average-case setting can be slightly modified to assess not only the
expected revenues, but also the stability of the STGM-EP with regard to its repeated use. We
say that a method is stable if it yields decision policies that are close to each other in terms of
expected revenues (otherwise it is called unstable). The importance of stability in the evaluation
of scenario-tree generation methods has been discussed in Kaut and Wallace (2007). In our frame-
work, a measure of stability is provided by the variance Varx[Q(x)]; the lower the variance, the
more stable the method. A decision-maker may substitute in (20) the expectation Ex[Q(x)] with
δ Ex[Q(x)]− (1− δ)Varx[Q(x)], for δ ∈ (0, 1), to include a measure of stability in the selection cri-
terion. Obviously, deterministic methods are the most stable, since x is not random and therefore
Varx[Q(x)] = 0.
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3 Statistical estimation of the quality parameters

In this section, we show how to estimate the quality parameters introduced in Section 2. After
introducing their statistical estimators in Section 3.1, we derive in Section 3.2 their confidence
intervals, and in Section 3.3 we provide an algorithmic procedure to find the optimal sample sizes,
defined as those minimizing the confidence interval bound for a given computational time.

3.1 Estimators

The quality parameters are estimated by sampling the probability distribution of ξ and the prob-
ability measure of x̃ (or x). Since the latter is sampled by generating several scenario trees (see
Figure 1), and by solving the deterministic program (7)-(10) for each one, it is typically more costly
to sample x̃ (or x) than ξ. For this reason, it is relevant to consider an estimator that samples K
times the random policy and K ×M times the stochastic process, and to leave a degree of free-
dom in choosing how to balance the relative values of K and M to maximize the efficiency of the
estimators.

We define the estimators of p(t), CR, and Ex[Q(x)] as follows:

p̂(t)K,M =
1

K

K∑
k=1

1

M

M∑
m=1

1
Ξ̃..t(x̃k)

(ξk,m..t ), (22)

ĈRK,M = (p̂(T )K,M )−1

(
1

K

K∑
k=1

1

M

M∑
m=1

q(x̃k(ξk,m); ξk,m)1
Ξ̃..T (x̃k)

(ξk,m)

)
, (23)

̂Ex[Q(x)]K,M =
1

K

K∑
k=1

1

M

M∑
m=1

q(xk(ξk,m); ξk,m), (24)

where {x̃k | k = 1, . . . ,K} and {xk | k = 1, . . . ,K} are two sets of K independent and identically
distributed (i.i.d.) realizations of x̃ and x, respectively; {ξk,m | k = 1, . . . ,K;m = 1, . . . ,M} is a

set of K ×M i.i.d. sample points of ξ; ξk,m..t is the shorthand for (ξk,m1 , . . . , ξk,mt ); and the notation
1U (·), for some set U , is the indicator function:

1U (u) :=

{
1 if u ∈ U ;

0 otherwise.
(25)

We emphasize that each estimator (22)-(24) is computed using K ×M out-of-sample scenarios.

3.2 Confidence interval

To derive a confidence interval for the quality parameters, it is convenient to introduce a single
notation for them, and to do all the mathematical developments with it. To this end, we define the
quantity of interest θ that we want to estimate:

θ := E[φ(x, ξ)], (26)

where φ :
(
Rs × ΠT

t=1Lp(Ξ..t;Rs)
)
× Ξ → R is a map whose definition varies depending on the

considered quality parameter, and x denotes a random policy being either x̃ or x. Throughout this
section, for the sake of clarity, we do not add the subscript (x, ξ) to the expectation, probability,
variance, and covariance operators. If θ = p(t), we have

φ(x̃, ξ) = 1
Ξ̃..t(x̃)

(ξ..t), (27)
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and if θ = Ex[Q(x)],
φ(x, ξ) = q(x(ξ); ξ). (28)

As for CR, it is the ratio of two expectations of the form (26). Following the definition of the
estimators (22)-(24), we define the estimator θ̂K,M of θ as follows:

θ̂K,M =
1

K

K∑
k=1

1

M

M∑
m=1

φ(xk, ξk,m), (29)

where {xk} is a set of K i.i.d. realizations of x, and the sample points {ξk,m} are defined as above.
It is immediate to see that θ̂K,M is an unbiased and consistent estimator of θ. To derive a confidence
interval for θ, we assume that the following condition holds:

C4. The random variable φ(x, ξ) is square-integrable: E[φ(x, ξ)2] < +∞.

The following proposition provides a confidence interval for θ; the notation [a ± b] is a shorthand
for the interval [a− b, a+ b].

Proposition 3.1. Assume condition C4 holds. Then, a 100(1 - α)% asymptotic confidence interval
for θ is

I1−α
K,M =

[
θ̂K,M ± z1−α/2

(β + γ(M − 1)

KM

)1/2
]
, (30)

where zα denotes the α-level quantile of a standard normal distribution and β and γ are given by

β = Var[φ(x, ξ)], (31)

γ = Cov[φ(x, ξ1), φ(x, ξ2)], (32)

with ξ1 and ξ2 two i.i.d copies of ξ.

Proof. Consider the random variables Uk := 1
M

∑M
m=1 φ(xk, ξk,m) for all k ∈ {1, . . . ,K}. These

random variables are i.i.d. because of the i.i.d. assumption on {xk} and {ξk,m}. We shall now
verify that E[U2

k ] <∞ to apply the central limit theorem to 1
K

∑K
k=1 Uk. We have

E[U2
k ] =

1

M2

[ M∑
m=1

E
[
φ(xk, ξk,m)2

]
+

M∑
m=1

M∑
m′=1
m′ 6=m

E
[
φ(xk, ξk,m)φ(xk, ξk,m

′
)
]]
, (33)

and by Cauchy-Schwarz inequality the expectation in the double sum is bounded by E[φ(xk, ξk,m)2].
Therefore, Condition C4 implies that E[U2

k ] is finite for any k.

The central limit theorem applied to 1
K

∑K
k=1 Uk yields the following convergence:

P
(∣∣∣ K1/2

Var[U1]1/2

( 1

K

K∑
k=1

Uk − θ
)∣∣∣ ≤ z1−α/2

)
−→

K→+∞
P(|Z| ≤ z1−α/2) = 1− α, (34)

where Z follows a standard normal distribution and zα denotes the α-level quantile of Z. Thus, a
100(1 - α)% asymptotic confidence interval for θ is

I1−α
K,M =

[
θ̂K,M ± z1−α/2

Var[U1]1/2

K1/2

]
. (35)
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The quantity Var[U1] can be simplified using the fact that the random variables φ(x1, ξ1,m), for all
m ∈ {1, . . . ,M}, are i.i.d:

Var[U1] =
1

M2

M∑
m=1

Var[φ(x1, ξ1,m)] +
1

M2

M∑
m=1

M∑
m′=1
m′ 6=m

Cov[φ(x1, ξ1,m), φ(x1, ξ1,m′)] (36)

=
1

M
Var[φ(x1, ξ1,m)] +

M − 1

M
Cov[φ(x1, ξ1,1), φ(x1, ξ1,2)]. (37)

Finally, defining β = Var[φ(x1, ξ1,m)] and γ = Cov[φ(x1, ξ1,1), φ(x1, ξ1,2)], and combining (35) and
(37), yields the confidence interval

I1−α
K,M =

[
θ̂K,M ± z1−α/2

(β + γ(M − 1)

KM

)1/2
]
. (38)

The quantities β and γ, defined in (31) and (32), are not available analytically for the same
reason as θ. They can be estimated through the following consistent and unbiased estimators β̂K,M
and γ̂K,M that use the same sample sets {xk} and {ξk,m} as θ̂K,M :

β̂K,M =
1

K

K∑
k=1

1

M

M∑
m=1

φ(xk, ξk,m)2 − (θ̂K,M )2, (39)

γ̂K,M =
1

K

K∑
k=1

( 1

M

M∑
m=1

φ(xk, ξk,m)
)2
− (θ̂K,M )2. (40)

Finally, let us observe that a deterministic STGM-EP always satisfies γ = 0. Indeed, a
deterministic STGM-EP yields a nonrandom policy (i.e., x(ω) = x for all ω ∈ Ω), therefore
γ = Cov[φ(x, ξ1), φ(x, ξ2)] = 0, because ξ1 and ξ2 are independent. As a result, when applied
to a deterministic STGM-EP, the estimator and the confidence interval will be set with K = 1 and
γ = 0.

3.3 Optimal sample size selection

The bound of the confidence interval (30) depends on the two sample sizes K and M . There is a
degree of freedom in choosing how to balance the values of K and M , and this choice will clearly
affect the estimation quality of θ. We propose a systematic procedure to find K and M in an
optimal way, i.e., to minimize the bound of the confidence interval for a given computational time.

We denote by t0 and t1 the times required to obtain one realization xk of x and ξk,m of ξ,
respectively, and by t2 the time required to compute the quantity φ(xk, ξk,m). Thus, the whole
computation of θ̂K,M takes Kt0 + KM(t1 + t2) units of time. We denote by τ > 0 the total
computational time available to the decision-maker (of course it is required that τ ≥ t0 + t1 + t2).

The optimal sample sizes K∗ and M∗ that minimize the confidence interval bound for a com-
putational time τ are the optimal solutions of the following program:

Pτ (β, γ) : min
K,M

β + γ(M − 1)

KM
(41)

s.t. Kt0 +KM(t1 + t2) ≤ τ, (42)

K ∈ N∗,M ∈ N∗. (43)

13

Quality Evaluation of Scenario-Tree Generation Methods for Solving Stochastic Programming Problem

CIRRELT-2017-17



It is also possible to consider the reverse problem, i.e., to find K∗ and M∗ that minimize the
computational time required to have the value β+γ(M−1)

KM lower than some target v > 0. In that
case, K∗ and M∗ are the optimal solutions of the following program:

Pv(β, γ) : min
K,M

Kt0 +KM(t1 + t2) (44)

s.t.
β + γ(M − 1)

KM
≤ v, (45)

K ∈ N∗,M ∈ N∗. (46)

We describe now the procedure that we propose to estimate the quality parameters of a stochastic
STGM-EP:

(i) compute the estimators β̂K0,K0 and γ̂K0,K0 for two values K0 ≥ 2 and M0 ≥ 2 (set empirically
to have a fast but fairly accurate estimation), and estimate t0, t1, and t2;

(ii) solve the program Pτ (β̂K0,M0 , γ̂K0,M0) for the time limit τ , and retrieve (K∗,M∗);

(iii) compute θ̂K∗,M∗ , β̂K∗,M∗ , γ̂K∗,M∗ , and derive the confidence interval I1−α
K∗,M∗ .

A decision-maker interested in having highly reliable estimates, regardless of the computational
cost, can substitute in step (ii) the program Pτ (β̂K0,M0 , γ̂K0,M0) with Pv(β̂K0,M0 , γ̂K0,M0) for some
variance target v > 0.

As for the estimation of the quality parameters of a deterministic STGM-EP, it is done by
setting K = 1 and by letting M be as large as possible within the computational time limit.

In Section 5.4 of the numerical experiments, we will prove the relevance of the optimal sample
size selection by comparing the efficiency of the estimator (29) with a more classical estimator that
samples x and ξ together.

4 Proposed procedures to extend the tree policy

4.1 Nearest-neighbor extension

The nearest-neighbor (NN) extension assigns to x̃t(ξ..t) the value of the decisions x̂n∗ at the node
n ∈ Nt nearest to ξ..t. Several nearest-neighbor extensions can be defined depending on (i) the
metric used to define the distance between ξ..t and ζ ..n, and (ii) the subset of Nt in which the
nearest node is searched. For (i), we choose the stage-t Euclidean metric ‖ · ‖t defined as

‖u‖t =
( t∑
i=1

d∑
j=1

[(ui)j ]
2
)1/2

, (47)

where u = (u1, . . . , ut) ∈ Rd× · · ·×Rd and (ui)j denotes the j-th component of ui; for convenience,

we also denote ‖ui‖2 =
∑d

j=1[(ui)j ]
2. For (ii), two relevant choices exist. The first is to search the

nearest node among the whole stage-t nodes Nt; the second is to search only among the children
nodes C(m), where m ∈ Nt−1 is the node corresponding to the decisions made at stage t − 1. We
refer to the first choice as NN-AT (AT standing for across tree) and to the second as NN-AC (across
children). We note that both extensions yield the same stage-1 decision function, therefore, they
coincide for two-stage problems.
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Nearest-neighbor extension across tree (NN-AT)

The extension across tree searches for the nearest node among the whole of Nt. It allows to switch
among the branches of the scenario tree, hence it is less sensitive than NN-AC to the decisions made
at the previous stages. The node n nearest to the realization ξ..t is chosen by comparing the whole
history of the random parameters up to stage t, by means of the norm (47). Thus, the set Ξ..t is
partitioned into |Nt| Voronöı cells V n

t,AT defined as

V n
t,AT =

{
ξ..t ∈ Ξ..t

∣∣ ∀r ∈ Nt \ {n}, ‖ξ..t − ζ ..n‖t < ‖ξ..t − ζ ..r‖t}, (48)

for all n ∈ Nt. On each cell V n
t,AT, the decision function is constant and yields the decision x̂n∗.

Thus, the stage-t decision function is piecewise constant on Ξ..t and takes the form

x̃AT
t (ξ..t) =

∑
n∈Nt

x̂n∗ 1V n
t,AT

(ξ..t), ∀ξ..t ∈ Ξ..t, (49)

where 1V n
t,AT

(·) is the indicator function (defined in (25)).

Nearest-neighbor extension across children (NN-AC)

The extension across children searches for the nearest node at stage t among the set C(m), where
m ∈ Nt−1 is the node of the decisions at the previous stage. This extension is computationally
advantageous because it does not require to partition the whole set Ξ..t at every stage, but only its
subset V m

t,AC×Ξt with V m
t,AC the Voronöı cell of m. This set is partitioned into |C(m)| Voronöı cells

V n
t,AC defined as

V n
t,AC = V m

t,AC ×
{
ξt ∈ Ξt

∣∣ ∀r ∈ C(m) \ {n}, ‖ξt − ζn‖ < ‖ξt − ζr‖
}
, (50)

for all m ∈ C(n). The stage-t decision function is piecewise constant on Ξ..t and takes the form

x̃AC
t (ξ..t) =

∑
n∈C(m)

x̂n∗ 1V n
t,AC

(ξ..t), ∀ξ..t ∈ V m
t,AC × Ξt. (51)

We illustrate the stage-1 decision function of the nearest-neighbor extension in Figure 2 (a), and
the Voronöı cells in Figure 3 (a)-(b); they correspond to the scenario tree represented in Figure 4.

4.2 N-nearest-neigbhor-weighted extension (NNNW)

The nearest-neighbor extension can be generalized to a weighted average over the N -nearest nodes
(denoted by NNNW). To define it formally, let us denote by VN (ξ..t) ⊆ Nt, for N ≥ 2, the set of
the N -nearest stage-t nodes to ξ..t for the metric (47). The stage-t decision function of the NNNW
extension is given by

x̃t(ξ..t) =
∑

n∈VN (ξ..t)

λn(ξ..t) x̂
n∗, ∀ξ..t ∈ Ξ..t, (52)

where λn(·) is a weight function that we define as

λn(ξ..t) =

[ ∑
l∈VN (ξ..t)

∏
m∈VN (ξ..t)\{l}

‖ξ..t − ζ ..m‖t
]−1 ∏

m∈VN (ξ..t)\{n}

‖ξ..t − ζ ..m‖t, (53)

for every n ∈ VN (ξ..t). This definition is justified by the fact that λn(·) satisfies:
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(i) λn(·) ≥ 0;

(ii)
∑

n∈VN (ξ..t)
λn(ξ..t) = 1 for every ξ..t ∈ Ξ..t;

(iii) λn(ζ ..n) = 1 and λm(ζ ..n) = 0 for every m ∈ VN (ζ ..n) \ {n}.

The properties (i) and (ii) imply that x̃t(ξ..t) is a convex combination of the tree decisions x̂n∗ for
n ∈ VN (ξ..t), and (iii) ensures that x̃t(·) satisfies x̃t(ζ

..n) = x̂n∗, which is a requirement of Definition
1.1. We note that since x̃t(ξ..t) is a convex combination of x̂n∗, it may fail to provide integer values
even if all x̂n∗ are integers. For this reason, the NNNW extension cannot be used directly for integer
programs, unless some techniques are introduced to restrict x̃t(·) to a set of integers.

An illustration of this extension is displayed in Figure 2 (b), for the scenario tree in Figure 4.

(a) NN (b) 2NNW

Figure 2: First-stage extended decision functions of NN (a) and 2NNW (b), for the scenario tree
in Figure 4.

(a) NN-AT (b) NN-AC

Figure 3: Voronöı cells (48) and (50) in the support of (ξ1, ξ2) for NN-AT (a) and NN-AC (b), and
for the scenario tree in Figure 4. The +-markers are the sites of the cells.

5 Numerical experiments

5.1 Preliminaries of the numerical experiments

In this section, we apply the quality evaluation framework developed in Section 2, 3, and 4 on two
case studies: a two-stage newsvendor problem and a four-stage multi-product assembly problem;
for the latter, we use the same data as in Defourny et al. (2013). We generate the scenario trees by
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Figure 4: An example of a 3-stage scenario tree (T = 2). The values in bracket are the
discretization points ζn for n ∈ N1 ∪N2. The values in parenthesis are the optimal decisions x̂n∗

for n ∈ N1 (only shown at stage 1).

three different methods: optimal quantization (OQ), randomized quasi-Monte Carlo (RQMC), and
Monte Carlo (MC) (see the corresponding references in Section 1.2). The tree structures are chosen
beforehand with constant branching coefficients, i.e., |C(n)| is constant for all n ∈ N \NT . The tree
decisions are extended by the three extension procedures introduced in Section 4: nearest-neigbhor
across tree (NN-AT), nearest-neigbhor across children (NN-AC), and two-nearest-neigbhor-weighted
(2NNW). The resulting STGM-EPs (summarized in Table 1) are compared by means of the quality
parameters, and the selection of the best method is done in the average-case setting.

The generation of scenario trees for both case studies is based on the discretization of a standard
normal N (0, 1) distribution. Discretization by the OQ method is done by Algorithm 2 in Pflug and
Pichler (2015), which minimizes the Wasserstein distance of order 2 between the N (0, 1) distribution
and its approximation sitting on finitely many points. This method provides a set of discretization
points along with the corresponding probabilities.

Discretization by the RQMC method is done by the technique of randomly shifted lattice rules
(see, e.g, L’Ecuyer and Lemieux (2000) and Sloan et al. (2002)). This technique randomizes a
low discrepancy set of N points in [0, 1] and transforms it with the inverse N (0, 1) cumulative
φ−1 : (0, 1)→ R. The output set of points is{

φ−1({i/N + u}) | i = 0, . . . , N − 1
}
, (54)

where u is a realization of a uniform distribution in [0, 1] and {·} is the fractional part function. The
weight corresponding to each point is set to 1/N , as it is customary in quasi-Monte Carlo. The set
of points (54) enjoys two important properties, making it interesting for discretization the N (0, 1)
distribution: (i) each point has a marginal N (0, 1) distribution, (ii) the points are not independent
of each other, they cover uniformly the part of the support of N (0, 1) where the probability mass
is concentrated. We note that each new realization u implies a new set of points, therefore, RQMC
is a stochastic scenario-tree generation method. We refer for instance to Koivu (2005) for the use
of the RQMC method in stochastic programming.

Discretization by the MC method provides the so-called Sample Average Approximation (see
Shapiro (2003)). Although MC is known by theoreticians to be less efficient than RQMC and OQ
for sampling in small dimension, it is often used by practitioners because it remains the most natural
and easiest way to generate scenarios. For this reason, we include it in the evaluation test.
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The numerical experiments are implemented in Python 2.7.4 on a Linux machine with Intel
Xeon X5472 @ 3.00GHz. We use CPLEX 12.6.1.0 with default setting to solve the scenario-tree
deterministic programs.

Notation Description
NN-AC nearest-neighbor extension across children
NN-AT nearest-neighbor extension across tree
2NNW 2-nearest-neighbor-weighted extension across tree

(a) Extension procedures

Notation Description
OQ optimal quantization method
RQMC randomized quasi-Monte Carlo method
MC Monte Carlo method

(b) Scenario-tree generation methods

Table 1: STGM-EPs considered in the numerical experiments.

5.2 Case study 1: the newsvendor problem

The newsvendor problem is stated as follows: A newsvendor buys to a supplier x0 newspapers at
stage 0 at a fixed price a. At stage 1, the newsvendor sells x1,1 newspapers at price b and returns
x1,2 to the supplier, the latter pays c for each newspaper returned. Demand for newspapers is given
by a positive random variable ξ1. Although the decisions involve integer variables, it is customary
to relax the integrity constraints and to consider the corresponding continuous problem (see, e.g.,
Birge and Louveaux (1997)). The two-stage stochastic program takes the form

max
(x0, x1,1, x1,2)

−a x0 + E[b x1,1(ξ1) + c x1,2(ξ1)] (55)

s.t. x1,1(ξ1) ≤ ξ1; (56)

x1,1(ξ1) + x1,2(ξ1) ≤ x0; (57)

x0 ∈ R+, x1,1(ξ1) ∈ R+, x1,2(ξ1) ∈ R+. (58)

The parameters are set to a = 2, b = 5, and c = 1. The demand ξ1 follows a log-normal distribution,
i.e., log(ξ1) follows a N (µ, σ2) distribution, the mean is set to µ = log(200) and the variance to
σ2 = 1/2 (these values for the parameters are taken from Proulx (2014)).

The optimal value of (55)-(58) rounded off to the second decimal is Q(x∗) = 500.25. The optimal
stage-1 decision functions are x∗1,1(ξ1) = min(x∗0, ξ1) and x∗1,2(ξ1) = max(x∗0 − ξ1, 0).

The numerical experiments are performed with the methods in Table 1 and for scenario trees
with 5, 20, 40, and 80 scenarios. Although the resulting scenario trees have small sizes, we will see
that clear conclusions can be drawn from them. Moreover, we wish to assess the quality of methods
with small scenario sizes, because a method that performs well with few scenarios can also be used
to solve a generalization of the problem with more stages. Indeed, having good quality decisions
with only 5 scenarios opens the door to the solution of the problem with, e.g., 10 stages, since a
10-stage scenario tree with a branching of 5 nodes at every stage remains tractable (510−1 ' 2×106

nodes). However, if 80 scenarios are required to obtain good quality decisions for the problem
with 2 stages, then the same problem extended to 10 stages is intractable for the tested method
(8010−1 ' 1017 nodes).
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Optimal selection of sample sizes:

The quality parameters are estimated using the procedure described in Section 3.3, for a computa-
tional time limit of one hour for each STGM-EP. The optimal sample sizes K∗ and M∗ are displayed
in Table 2 (since the extensions across tree or across children coincide for two-stage problems, we
remove the suffix -AT and -AC).

5 scen. 20 scen. 40 scen. 80 scen.

K∗ M∗ K∗ M∗ K∗ M∗ K∗ M∗

OQ-NN 1 19× 106 1 9× 106 1 5× 106 1 3× 106

OQ-2NNW 1 10× 106 1 6× 106 1 4× 106 1 2× 106

RQMC-NN 168× 103 32 64× 103 50 46× 103 19 20× 103 36
RQMC-2NNW 161× 103 19 66× 103 28 43× 103 21 20× 103 32
MC-NN 179× 103 25 79× 103 24 39× 103 38 21× 103 28
MC-2NNW 152× 103 23 62× 103 34 33× 103 46 18× 103 41

Table 2: Optimal sample sizes K∗ and M∗ for a limit of 1h of computation for each STGM-EP.
The values M∗ are rounded-off to the nearest 106 for OQ; the values K∗ are rounded-off to the

nearest 103 for RQMC and MC.

We have that K∗ = 1 for the optimal quantization method, since it is a deterministic way to
generate scenario trees (see Remark 1.1 and the discussion at the end of Section 3.2). We emphasize
that each value K∗ ×M∗ is the number of out-of-sample scenarios used to test the corresponding
STGM-EP.

Quality parameters p(1) and CR:

The probability of feasibility p(1) and the conditional revenues CR given the whole feasibility of
the extended tree policy x̃ = (x̃0, x̃1,1, x̃1,2) take the form (see Definition 2.1):

p(1) = P(ξ1,x̃)[ξ1 ∈ Ξ̃1(x̃)], (59)

CR = E(ξ1,x̃)[−a x̃0 + b x̃1,1(ξ1) + c x̃1,2(ξ1) | ξ1 ∈ Ξ̃1(x̃)], (60)

where Ξ̃1(x̃) = {ξ1 ∈ Ξ1 | (x̃0, x̃1,1(ξ1), x̃1,2(ξ1)) satisfy (56), (57), (58)}. The estimates of p(1) and
CR are displayed in Table 3. To facilitate the comparison with the optimal value Q(x∗), the
estimates of CR are given in percentage of Q(x∗) and are denoted in the table by CR%.

It follows from the estimates in Table 3 that a clear hierarchy exists among the three scenario-
tree generation methods: OQ is better than RQMC which, in turn, are better than MC, as well as
between the two extension procedures: 2NNW is better than NN. This hierarchy can be schematized
as

OQ > RQMC > MC and 2NNW > NN. (61)

The couple OQ-2NNW with only 20 scenarios yields an extended tree policy that is very close to
the optimal policy in terms of feasibility (99.8% of the time) and expected revenues (100.2% of the
optimal ones); we recall that CR% may be greater than 100% when p(1) < 1, because CR% computes
the expected revenues on a subset of values of the random parameters. This nearly achieves the
goal we formulated in Section 1.3, i.e, to introduce the extension procedure to recover a decision
policy of the original stochastic program, and to find the STGM-EP providing the closest policy to
x∗.
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5 scen. 20 scen. 40 scen. 80 scen.

p(1) CR% p(1) CR% p(1) CR% p(1) CR%

OQ-NN 0.618 102.1 0.620 114.4 0.622 116.8 0.623 118.2
OQ-2NNW 0.957 101.8 0.998 100.2 0.999 100.1 0.997 100.3
RQMC-NN 0.613 112.8 0.602 118.7 0.612 119.1 0.617 119.1
RQMC-2NNW 0.895 109.1 0.961 104.8 0.977 103.0 0.985 102.0
MC-NN 0.610 100.1 0.612 113.5 0.616 116.4 0.619 117.8
MC-2NNW 0.757 101.9 0.790 106.3 0.798 107.3 0.804 107.5

Table 3: Estimates of the quality parameters p(1) and CR%. Data in bold font single out the
STGM-EPs that satisfy p(1) ≥ 0.98 and CR ≥ 99%×Q(x∗), which can be considered as
satisfactory. Confidence intervals are not displayed for the sake of clarity; the widest 95%

confidence interval for each column from left to right are: ±0.0009; ±0.11; ±0.001; ±0.2; ±0.0014;
±0.3; ±0.0017; ±0.3.

The second best couple, namely RQMC-2NNW, provides good quality decisions from 80 scenar-
ios. However, even for this many scenarios, the probability of feasibility is statistically significantly
below that of OQ-2NNW. Any other couple (including that made by combining MC and 2NNW)
yields decisions with low probability of feasibility (less than 80%). In that case, the conditional
revenues CR cannot be trusted, as we explained in the discussion following Definition 2.1.

Quality parameter Ex[Q(x)]:

Since the stage-1 recourse decisions are known analytically for the newsvendor problem, a decision-
maker is interested in the stage-0 decision only. For this reason, we assess the quality of the feasible
extended tree policy x = (x̃0, r1,1, r1,2), where (r1,1, r1,2) are the recourse decisions given by

r1,1(x0; ξ1) = min(x0, ξ1), (62)

r1,2(x0; ξ1) = max(x0 − ξ1, 0). (63)

The quality of x is assessed through the expected revenues that it yields, i.e., through the third
quality parameter given by

Ex[Q(x)] = E(ξ1,x̃0)[−a x̃0 + b r1,1(x̃0; ξ1) + c r1,2(x̃0; ξ1)]. (64)

Table 4 displays the estimates of Ex[Q(x)] in percentage of Q(x∗), along with the corresponding
95% confidence interval bounds (column ±CI95%). Since only the stage-0 decision is assessed by
(64), the estimates do not depend on an extension procedure.

5 scen. 20 scen. 40 scen. 80 scen.

Est. ±CI95% Est. ±CI95% Est. ±CI95% Est. ±CI95%

OQ 99.80 0.04 99.96 0.05 99.95 0.07 100.01 0.09
RQMC 98.71 0.08 99.78 0.12 100.00 0.22 99.92 0.25
MC 91.44 0.11 97.22 0.15 98.62 0.17 99.35 0.27

Table 4: Estimates of Ex[Q(x)] with x = (x̃0, r1,1, r1,2) (given in percentage of Q(x∗)).
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The OQ method achieves 99.8% of the optimal expected revenues with only 5 scenarios, while
20 scenarios are needed for the RQMC method to reach this value. From 40 scenarios, the distinc-
tion between OQ and RQMC is made impossible by the statistical error (though small: less than
±0.25%), and both methods yield a decision close to optimality. The MC method yields the lowest
quality stage-0 decision, which is statistically significantly below the OQ and RQMC methods for
all tested scenario sizes. However, as far as the stage-0 decision is concerned, the use of MC with 80
scenarios is acceptable since the expected revenues are greater than 99% of the optimal ones. This
last observation, combined with the estimates of p(1) in Table 3, shows that the drawback of MC
lies mostly in the poor quality of its stage-1 decision functions. This statement is supported by the
graphical analysis done in the next paragraph.

Plots of the stage-1 decision functions

The extended stage-1 decision functions x̃1,1 and x̃1,2 are displayed for each STGM-EP in Figure 5,
and are compared with their optimal counterparts x∗1,1 and x∗1,2. This graphical comparison allows
to understand why some STGM-EPs provide expected revenues higher than others.

As expected from the above quantitative analysis, the couple OQ-2NNW in (b) yields stage-
1 decisions that fit very well the optimal ones. The approximation quality is also quite good for
RQMC-2NNW in (d). As for MC, in (e) and (f), it appears that the functions have a large variability
due to the absence of a variance reduction technique, and an erratic behavior due to a discretization
scheme that covers the support of ξ1 less uniformly than RQMC and OQ.
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(a) OQ/NN (b) OQ/2NNW

(c) RQMC/NN (d) RQMC/2NNW

(e) MC/NN (f) MC/2NNW

Figure 5: Plots of x̃1,1 and x̃1,2 (solid lines) compared with x∗1,1 and x∗1,2 (dashed lines) for 20
scenarios. For RQMC and MC, five realizations of x̃1,1 and x̃1,2 are displayed on the same figure.

The x-axis is the demand ξ1.
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5.3 Case study 2: the multi-product assembly problem

We consider the four-stage multi-product assembly problem presented in Defourny et al. (2013),
Section 4.1, with the same numerical parameters and stochastic process. The stochastic program
takes the form:

max
(x0,..., x3)

−c>0 x0 + E
[
− c>1 x1(ξ1)− c>2 x2(ξ..2) + c>3 x3(ξ..3)

]
(65)

s.t.
8∑
j=1

Ai,j x1,j(ξ1) ≤ x0,i, ∀i ∈ {1, . . . , 12}; (66)

5∑
k=1

Bj,k x2,k(ξ..2) ≤ x1,j(ξ1), ∀j ∈ {1, . . . , 8}; (67)

x3,k(ξ..3) ≤ max(0, bk,0 +
3∑
t=1

bk,tξt), ∀k ∈ {1, . . . , 5}; (68)

x3,k(ξ..3) ≤ x2,k(ξ..2), ∀k ∈ {1, . . . , 5}; (69)

x0 ∈ R12
+ , x1(ξ1) ∈ R8

+, x2(ξ..2) ∈ R5
+, x3(ξ..3) ∈ R5

+. (70)

The interpretation of this problem is as follows: At stage 0, a quantity x0,i of a product i is
purchased at a price c0,i per unit. At stage 1, a quantity x1,j of a product j is produced at a cost
c1,j per unit from the quantity of products available at the previous stage, and in proportions given
by the matrix A in (66). The same production scheme happens again at stage 2, with the quantity
x2,k, the cost c2,k, and in proportions given by the matrix B in (67). At stage 3, a quantity x3,k of
the final product k is sold at price c3,k per unit, and the demand for k is max(0, bk,0 +

∑3
t=1 bk,tξt)

where ξ1, ξ2, ξ3 are three i.i.d. N (0, 1) variables.
The optimal value of the problem is estimated by Defourny et al. (2013) at about 375; we

refer to their paper for more details, in particular for the values of the parameters. The numerical
experiments are performed with the STGM-EPs in Table 1 and for scenario trees with 125, 512,
and 1000 scenarios (corresponding to the branching coefficients 5, 8, and 10, respectively).

Optimal selection of sample sizes:

The quality parameters are estimated using the procedure described in Section 3.3, for a compu-
tational time limit of two hours for each STGM-EP. Table 5 displays the optimal sample sizes K∗

and M∗. The value K∗ ×M∗, which is the number of out-of-sample scenarios used to test the
corresponding STGM-EP, is larger for the couples involving the extension NN-AC, since it is com-
putationally less costly than the other two extensions (it does not require to partition the whole
support of the random parameters at every stage).

Quality parameters p(t) and CR:

We compute the quality parameters p(t) and CR for an extended decision policy of the form x̃ =
(x̃0, x̃1, x̃2, r3), where r3 is the optimal recourse function at stage 3 available analytically for this
four-stage assembly problem. Although the use of a recourse policy was not initially introduced
for the quality parameters p(t) and CR, in this problem it is readily deducible from the constraints
(68)-(69), hence we take it into account in the computation of p(t) and CR. The optimal recourse
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125 scen. 512 scen. 1000 scen.

K∗ M∗ K∗ M∗ K∗ M∗

OQ–NN-AC 1 11× 106 1 9× 106 1 7× 106

OQ–NN-AT 1 6× 106 1 3× 106 1 2× 106

OQ–2NNW 1 4× 106 1 2× 106 1 2× 106

RQMC–NN-AC 4613 376 873 491 298 474
RQMC–NN-AT 4783 155 825 301 286 315
RQMC–2NNW 4639 139 792 409 275 323
MC–NN-AC 5079 172 842 707 294 457
MC–NN-AT 4829 147 863 159 278 318
MC–2NNW 4764 118 786 430 280 327

Table 5: Optimal sample sizes K∗ and M∗ for a limit of 2h of computation for each STGM-EP.
The values M∗ are rounded-off to the nearest 106 for OQ.

decisions at stage 3 are given by

r3,k(x..2; ξ..3) = min
(
x2,k,max(0, bk,0 +

3∑
t=1

bk,tξt)
)
, ∀k ∈ {1, . . . , 5}. (71)

It follows that the probability of feasibility does not reduce from stage 2 to 3, i.e., we have p(3) =
p(2). Additionally, we note that all three extension procedures yield stage-1 decisions that satisfy
the constraint (66), hence we also have p(1) = 1 for all STGM-EPs. We display in Table 6 the
estimates of p(2) and CR.

125 scen. 512 scen. 1000 scen.

p(2) CR p(2) CR p(2) CR

OQ–NN-AC 1 366.1 (±0.4) 1 370.7 (±0.5) 1 372.8 (±0.5)

OQ–NN-AT 0.986 366.3 (±0.6) 0.986 370.9 (±0.8) 0.985 371.9 (±0.9)

OQ–2NNW 0.402 352.3 (±1.2) 0.396 426.0 (±1.6) 0.394 365.1 (±1.8)

RQMC–NN-AC 1 349.8 (±1.0) 1 365.7 (±2.0) 1 369.3 (±3.4)

RQMC–NN-AT 0.958 350.4 (±1.5) 0.958 367.3 (±2.6) 0.958 374.3 (±4.3)

RQMC–2NNW 0.334 3.4 (±2.6) 0.414 283.6 (±4.0) 0.414 351.3 (±7.6)

MC–NN-AC 1 296.7 (±1.4) 1 331.7 (±1.7) 1 343.8 (±3.5)

MC–NN-AT 0.871 300.1 (±1.7) 0.873 340.2 (±3.8) 0.875 354.8 (±4.53)

MC–2NNW 0.356 93.0 (±3.0) 0.442 310.1 (±3.7) 0.446 383.2 (±7.1)

Table 6: Estimates of the quality parameters p(2) and CR for an extended decision policy of the
form x̃ = (x̃0, x̃1, x̃2, r3). Data in bold font single out the STGM-EPs that satisfy p(2) ≥ 0.98.
Parentheses in the CR-column include the 95% confidence intervals. In the p(2)-column this
interval is not shown for the sake of clarity and because it is typically smaller than the last

decimal displayed.

We note that the extension NN-AC satisfies exactly p(2) = 1, because the decisions that it yields
always satisfy the constraint (67). The estimates in Table 6 clearly show the following hierarchy
among the scenario-tree generation methods and extension procedures:

OQ > RQMC > MC and NN-AC > NN-AT > 2NNW. (72)
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The hierarchy remains the same as the first case study for the scenario-tree generation methods.
However, for the extension procedure, we have now that the nearest neighbor (NN) extensions yield
better quality decisions than the extension with the 2 nearest neighbors (2NNW). The reason for
this could be that the optimal decision functions at stage 1 and 2 are close to piecewise constant,
and therefore the NN extension is more suitable for approximating them.

In particular, we observe that the couple OQ–NN-AC with 1000 scenarios yields a decision
policy with 100% probability of feasibility and expected revenues estimated at 372.8 ± 0.5, hence
only about 0.6% away from optimality (assuming it is equal to 375, as estimated by Defourny et al.
(2011)). As a result, it is possible to build a decision policy at almost optimality for the four-stage
multi-product assembly problem using the optimal quantization method for generating the scenario
tree and the nearest-neighbor extension across children for extending the decisions out of the set of
scenarios.

Expected value solution

We end this section by showing that the four-stage multi-product assembly problem should not be
solved by the deterministic approach, known as the expected value solution (see Birge and Louveaux
(1997), Chapter 4), that consists in solving the program (65)-(70) where ξ is substituted by its
expectation (hence resulting in a deterministic program). Since the random parameters enter the
constraints at stage 3, the decisions obtained by such approach are feasible from stage 0 to 2. At
stage 3, we complete these decisions by the recourse functions (71) to obtain a feasible decision
policy, which can then be compared with the decision policies built from the extension procedures.
The expected revenues obtained by this approach (also known as the expected result of using the
expected value solution) are estimated at 263 ± 1, with 95% confidence. We see that this value is
much smaller than the expected revenues obtained by any of the scenario-tree generation method
combined with the extension NN-AC (see Table 6).

5.4 Efficiency of the sample size selection technique

We end the numerical experiments by showing that the estimator θ̂K,M defined in (29) and the
optimal sample sizes selection introduced in Section 3 provide an efficient way for estimating the
quality parameters. In particular, we want to show that it is more efficient that the classical
estimator θ̃N that samples N times the random policy and the stochastic process, as opposed to
θ̂K,M , which samples K times the random policy and K ×M times the stochastic process. In the
following, we use the notation introduced in Section 3.2 and 3.3.

Recall that we want to estimate an expectation of the form θ = E[φ(x, ξ)]. To this end, we
define the estimator θ̃N as follows:

θ̃N =
1

N

N∑
n=1

φ(xn, ξn), (73)

where {(xn, ξn) |n = 1, . . . , N} is a set of N i.i.d. samples of (x, ξ). To compare the efficiency of
θ̂K,M and θ̃N for estimating θ, we compare their variances. They are given by

Var(θ̂K,M ) =
β + γ(M − 1)

KM
and Var(θ̃N ) =

β

N
, (74)

where β and γ are defined in (31) and (32). More specifically, we want to compare Var(θ̂K∗,M∗)

and Var(θ̃N∗), where (K∗,M∗) is given by the optimal sample size selection technique described
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in Section 3.3, and N∗ is the number of sample points (xn, ξn) that can be obtained within the
same time limit τ . Since the computation of θ̃N takes N(t0 + t1 + t2) units of time, we simply have
N∗ = bτ/(t0 + t1 + t2)c.

The variances are compared in the context of the first case study, where the quality parameter
Ex[Q(x)] was computed in Table 4 with a time limit of one hour for each scenario-tree generation
method. Table 7 displays the ratio Var(θ̃N∗)/Var(θ̂K∗,M∗) for the RQMC and MC methods (the
comparison is not relevant for the OQ method because K∗ = 1). We see that the ratio ranges
from about 8 to 16, hence Var(θ̃N∗) is typically one order of magnitude larger than Var(θ̂K∗,M∗).

This comparison shows that the estimator θ̂K∗,M∗ achieves a higher accuracy than θ̃N∗ when the
computational time is limited.

5 scen. 20 scen. 40 scen. 80 scen.
RQMC 12.39 16.48 9.18 14.52
MC 7.84 10.11 14.06 12.25

Table 7: Estimates of Var(θ̃N∗)/Var(θ̂K∗,M∗).

6 Conclusion

In this paper, we introduced a quality evaluation framework, whose goal is to help the decision-maker
to find the most suitable scenario-tree generation method and extension procedure (STGM-EP) to
solve a given stochastic programming problem. From the scenario-tree optimal decisions, which
are given for a finite set of scenarios only, the extension procedure builds a decision policy of the
original problem. The framework consists of several quality parameters that assess the decisions
yielded by a STGM-EP, and of several selection criteria that find the most suitable STGM-EP for
a given problem in different settings. We focus in particular on the average-case setting, because
we think that it is the most relevant when the problem is solved regularly with different data for
the random parameters, which is the way scenario trees are often used in practice. The framework
also includes the statistical tools (estimators, confidence intervals, sampling strategy) needed for
an efficient application on a real-world problem. Overall, this newly introduced framework can
be applied to a great deal of problems (two-stage or multistage, linear or nonlinear, continuous or
integer variables) and to all scenario-tree generation methods, as far as we are aware.

We apply this framework on a two-stage newsvendor problem and a four-stage multi-product
assembly problem. We demonstrate that simple extension procedures, such as the ones that set
the decisions to the value of the nearest-neigbhor nodes in the scenario tree, provide good quality
decisions at little computational cost. The application of the average-case selection criterion reveals
that among the three tested methods, namely the Monte Carlo method, the randomized quasi-
Monte Carlo method, and the optimal quantization method, the last one yields the highest quality
decisions in both case studies. Randomized quasi-Monte Carlo method also yields good quality
decisions, but it typically requires more scenarios to achieve a similar quality than the optimal
quantization method. The quality of the Monte Carlo method is always statistically significantly
below the other two methods for the small scenario sizes. The fact that the Monte Carlo method
requires much more scenarios to provide acceptable quality decisions confirms that it is not suitable
for multistage stochastic programming.

The quality evaluation framework was developed for stochastic programming problems with an
objective function given by an expectation. We think that future work should look for a generaliza-
tion to objective functions that also include some risk measures. More extension procedures should
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also be investigated. Several techniques other than interpolation and extrapolation can be con-
sidered, such as regression and curve fitting. Another important future work would be the quality
evaluation of decision policies on the so-called rare events (also known as black swan events). Meth-
ods that build scenario trees by taking into account the stochastic process, but not the variation
of the revenue function, may not incorporate those events in the tree. This result in overoptimistic
policies that may provide decisions with disastrous consequences should one of these events occur.

Overall, we hope that the approach introduced in this paper will bring more attention to the
importance of the evaluation of decision policies and scenario-tree generation methods. We believe
that quality evaluation techniques should eventually be included in every stochastic optimization
software to help practitioners making better decisions.
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A Appendix: Notation

Notation Description
T optimization horizon
ξt random vector at stage t
ξ or (ξ1, ..., ξT ) stochastic process
ξ..t components from stage 0 to stage t of ξ
ξt (resp. ξ; resp. ξ..t) a realization of ξt (resp. ξ; resp. ξ..t)
Ξt (resp. Ξ; resp. Ξ..t) support of ξt (resp. ξ; resp. ξ..t)
d number of random parameters revealed at each period
s number of decisions made at each stage
q(·; ·) revenue function
Q(·) expected revenue function
Q(x∗) optimal value of the stochastic program
xt decision function if t ≥ 1; decision vector if t = 0
x or (x0, ..., xT ) decision policy
x..t components from stage 0 to stage t of x
x∗ optimal policy of the stochastic program
Xt feasible decision set at stage t
x̃ extended decision policy
x feasible extended decision policy
N node set of the scenario tree
E edge set of the scenario tree
N ∗ set of nodes minus the root
Nt node set at stage t
n0 root node
a(n) ancestor node of n
C(n) set of children nodes of n
ζn discretization vector at node n
ζ ..n discretization sequence leading to node n
wn weight of node n with respect to its siblings
Wn weight of node n with respect to the whole scenario tree

Q̂∗ optimal value of a deterministic program
x̂n decision vector at node n
x̂..n sequence of decision vectors leading to node n
x̂∗n optimal decision vector at node n
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Handbooks in operations research and management science: Stochastic Programming, volume 10,
pages 353–425. Elsevier.

Shapiro, A. and Homem-de Mello, T. (1998). A simulation-based approach to two-stage stochastic
programming with recourse. Mathematical Programming, 81(3):301–325.

Sloan, I. H., Kuo, F. Y., and Joe, S. (2002). Constructing randomly shifted lattice rules in weighted
sobolev spaces. SIAM Journal on Numerical Analysis, 40(5):1650–1665.

Wallace, S. W. and Fleten, S.-E. (2003). Stochastic programming models in energy. In Ruszczyński,
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