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Abstract. This paper describes a Benders decomposition algorithm capable of efficiently 

solving large-scale instances of the well-known multi-commodity capacitated network 

design problem with demand uncertainty. The problem is important because it models many 

real-world applications, including telecommunications, transportation, and logistics. This 

problem has been tackled in the literature with meta-heuristics and exact methods, but many 

benchmark instances, even though of moderate size, remain unsolved. To successfully 

apply Benders method to these instances, we propose various acceleration techniques, 

including the use of cutting planes, partial decomposition, heuristics, stronger cuts, 

reduction and warm-start strategies. Extensive computational experiments on benchmark 

instances were conducted to evaluate the efficiency and robustness of the algorithm as well 

as of the proposed strategies. The numerical results confirm the superiority of the proposed 

algorithm over existing ones. We dedicate this work to Professor Jacques F. Benders who 

left this world January 2017. 
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1 Introduction

A wide range of real-world applications in diverse settings such as logistics, transportation, production planning,
and telecommunications can be modeled as Network Design (ND) problems [12, 34, 26]. In general terms, these
problems revolve around the selection of a subset of (capacitated) arcs out of a potential set in order to support
the flow requirements between various origin-destination (OD) pairs. The decisions are to be made such that
an effective trade-off between the cost of design decisions and their impact on the performance of the resulting
network is achieved, while demand and a set of problem-specific constraints are satisfied [31, 14].

Uncertainty characterizes many cases for which ND models are the methodology of choice, in particular the
strategic and tactical planning processes yielding decisions to be used repetitively over a certain time horizon
[19, 48, 49]. Moreover, the impact on the performance of a system of the uncertainty regarding its future state
is far from trivial because mid to long-term decisions are generally difficult to reverse or costly to adjust [54].
Stochastic programming has become the methodology of choice to properly capture the uncertainty in such cases
[28, 15].

Stochastic Network Design (SND) problems aim to find a single design that remains cost-effective when
plausible realizations of the uncertain elements are encountered. To characterize the uncertainty set, a common
practice is to use a set of discrete scenarios [2]. Once the appropriate set of scenarios is generated, the SND
problem can be formulated in an extensive form as a two-stage stochastic program. The first-stage models the
design decisions, i.e., selection of arcs. The second-stage formulates the recourse actions by measuring the cost-
effectiveness of the first-stage design in servicing the demands (e.g., flow decisions) for each realization of the
uncertainty.

ND constitutes a challenging class of NP-hard combinatorial optimization problems. Considering the uncer-
tainty does not make them any easier to address as it yields much larger instances. Thus, they remain notoriously
hard to solve with exact methods and off-the-shelf optimization solvers [6, 17]. To give an idea of the inherent dif-
ficulty of the generic SND problems, moderate instances with more than 20 scenarios remain still unattainable for
state-of-the-art algorithms and optimization solvers; see section 5. Given the economical, political and environ-
mental significance of many ND problems [13, 40], we need efficient and accurate methodologies to address more
realistically sized instances of this important family of optimization problems, particularly in stochastic settings.

Various solution algorithms have been designed to handle stochastic programs with recourse; see [45] for a
comprehensive review. Most of these solution procedures rely heavily on the premises of the Benders Decompo-
sition (BD) method [1, 39]. The BD approach is commonly referred to as L-shaped decomposition ([53]) when
applied to stochastic programs.

BD is based on a pattern of projection, outer linearization and relaxation [23, 24]. First, the model is projected
onto the subspace defined by the first-stage variables. The projected term is then dualized and an equivalent model
is built by enumerating all extreme points and rays of the dual polyhedron. The extreme rays indicate feasibility
requirements for the first-stage variables (i.e., feasibility cuts) and the extreme points state the projected cost
(i.e., optimality cuts). Enumerating all the extreme points and rays of the dual polyhedron is not computationally
practical and most of the associated cuts will not be active at an optimal solution. Therefore, a relaxation of the
equivalent formulation is performed such that it initially includes no cuts, these being iteratively generated by
sequentially solving a Master Problem (MP) and one or several Subproblems (SPs).

The BD method enables decomposing the SND problems according to the realization of the random elements
that set the values of the uncertain parameters in the model. It thus simplifies the solution of these problems since,
often, a large portion of variables and constraints are associated to the large number of scenarios used to represent
the uncertainty [5]. The BD algorithm is also known to be largely used as an exact method for deterministic ND

A Benders Decomposition Method for Two-Stage Stochastic Network Design Problems

CIRRELT-2017-22 1



problems, as it provides the means to separate the design and flow decisions [10]. Moreover, it constitutes currently
the state-of-the-art exact method for SND problems [18]. We aim to further enhance this algorithm by refining
existing acceleration strategies and proposing novel ones. We investigate, in particular, the idea of tightening
the MP by means of various valid inequalities (VIs) appended in a cutting-plane fashion. More importantly, we
propose a set of VIs that can be used to improve the quality of the classical Benders cuts. We also propose a new
strategy to generate Pareto-optimal cuts, which is equivalent to the most widely used strategy in the literature, but
numerically performs better. To avoid the generation of feasibility cuts, we propose to apply a relatively complete
recourse property to the formulation that, when combined with the use of strengthened combinatorial cuts, can
be tailored to enforce the original feasibility requirements of the problem. In essence, this strategy completely
eliminates the need to generate feasibility cuts, in favor of a focused search for optimality cuts, which have a
greater effect on improving the value of the lower bound generated by the BD method. Moreover, to mitigate the
ineffective initial iterations of the BD method, we propose a strategy based on the idea of “properly deflecting the
master solutions” so as to chose better dual values for the set of initial cuts. Last but not least, to handle large
instances more effectively, size-reduction procedures and a simple heuristic are developed, and the algorithm is
embedded in a branch-and-cut framework.

To test the method we propose, we address the well-known Multi-Commodity Capacitated Fixed-charge Net-
work Design Problem with Stochastic Demands (MCFNDSD). Extensive numerical experiments on a broad range
of instances show that the algorithm delivers superior performance compared to state-of-the-art solution algo-
rithms and optimization solvers.

The contribution of this paper therefore is threefold: 1) To enhance the state-of-the-art of BD algorithms,
through new acceleration strategies and the refinement of existing ones; 2) To propose an exact algorithm capable
of efficiently solving standard benchmark instances of the MCFNDSD; 3) To study experimentally the algorithm
and proposed strategies, and thus to characterize their behavior and suggest promising research directions.

The rest of this article is organized as follows. The problem is presented in Section 2, while Section 3 provides
the literature review of the Benders decomposition algorithm and its application to the problem at hand. Section
4 details the proposed and enhanced acceleration strategies, and Section 5 displays the results of the numerical
experiments and the associatd analyzes. Conclusions and future research directions are discussed in Section 6.

2 Problem Definition

In the MCFNDSD problem, a set of commodities K are to be simultaneously routed through a directed graph
consisting a set of nodes N and a set of potential arcs A . With each commodity k ∈K is associated a stochastic
demand dk(ω) ≥ 0 which is to be routed from a unique origin node O(k) ∈ N to a unique destination node
D(k) ∈N for each realization ω of the uncertainty set Ω. The goal is to select a subset of the arcs to meet all
demand at minimum cost, computed as the sum of the fixed design costs, charged whenever an arc is used, and the
expected transportation costs. The unit transportation cost on arc a ∈A for commodity k is denoted ck

a, and the
fixed design cost for arc a ∈A is represented by fa. In addition, there is a capacity limit ua on each arc a ∈A ,
limiting the maximum flow traversing it.

The MCFNDSD is modeled as a two-stage stochastic mixed-integer linear program (MILP) by using binary
design variables ya indicating if arc a∈A is used (1) or not (0) and a recourse function Q : {0,1}|A |→R∪{+∞}
measuring the expected flow costs. The compact formulation of the MCFNDSD is

MCFNDSD = min
y∈Y

f T y+Q(y). (1)
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The objective function minimizes the total fixed cost plus the expected routing costs. The feasible space of the
first-stage variables is written in compact form in order to keep the generality of formulation for a broader class
of the ND problems. For example, this set may contain any type of constraints such as contingency requirements
or the degree restrictions on each node. The recourse function associated to the design vector y is defined by

Q(y) = Eω [Φ(y;ω)] , (2)

where the function Φ(y;ω) can be defined by using continuous flow variables xk
a(ω)≥ 0 to reflect the amount of

flow on arc a ∈A for commodity k ∈K under realization ω ∈Ω. The recourse problem ω ∈Ω is

Φ(y;ω) = min
x(ω)∈R|A ||K |+

∑
k∈K

∑
a∈A

ck
axk

a(ω) (3)

s.t. ∑
a∈A (i)+

xk
a(ω)− ∑

a∈A (i)−
xk

a(ω) = dk
i (ω) ∀i ∈N ,∀k ∈K (4)

∑
k∈K

xk
a(ω)≤ uaya ∀a ∈A , (5)

where A(i)+ and A(i)− indicate the set of outward and inward arcs incident to node i. The vectors dk
i (ω) express

the nodal balance and are defined as

dk
i (ω) =


dk(ω) if i = O(k)
−dk(ω) if i = D(k)
0 otherwise.

(6)

The objective function (3) minimizes the total flow costs. Constraint set (4) imposes the flow conservation
requirements for each commodity on each node. Constraints (5) enforce the capacity limit on each arc.

2.1 A brief review on the MCFNDSD

The outlined MCFNDSD problem is notoriously difficult to solve. Its main difficulty is rooted in the complex
interrelation between the design and flow costs, weak linear programming (LP) relaxation, degeneracy, and the
additional challenges stemming from the very large problem dimensions characterizing most applications [21].
Therefore, heuristics have been the most used solution algorithms to obtain good solutions within reasonable
running times. Crainic et al. [15] devised a master-slave parallel progressive hedging based meta-heuristic. They
decomposed the problem according to the scenarios where each subproblem is an NP-hard deterministic ND
formulation. Then, the algorithm seeks a consensus for the design decisions among the SPs by systematically
updating the fixed costs. An improvement to this algorithm, by investigating the idea of having multiple scenario
subproblems, is proposed in [17]. The authors observed that despite the increased difficulty of each SP, more
elegant results could be obtained. A BD-based heuristic for the problem with large number of scenarios was
introduced in [5], the authors reporting encouraging results compared to the classical algorithm and state-of-the-
art of commercial solvers.

Similar to the exact algorithms, it has been only quite recently that tight bounds were obtained for the deter-
ministic version of the problem [6]. The results obtained provide a promising overture toward handling determin-
istic ND problems exactly. However, it is not a viable tool to address the stochastic variant of the problem, since
it considers all the scenarios at the same time. An enhanced BD method and applied to the SND problems was
presented in [16], the authors further improved the algorithm in [18]. To the best of our knowledge, it constitutes
the state-of-the-art of the exact methods for the MCFNDSD problem. Due to the closeness of this algorithm to
the method presented in this article, we shall shortly discuss it in more details.
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3 The Benders Decomposition Method

Let ȳ indicate any possible design for the considered ND problem, π and α be the dual variables associated to the
constraints (4) and (5). The dual subproblem (DSP), which is the dual of Φ(ȳ;ω), can be stated as

DSP(ȳ;ω) = max
π∈R|N ||K |,α∈R|A|+ ,s∈R|A ||K |+

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uaȳaαa (7)

s.t. π
k
a−−π

k
a+−αa + sk

a = ck
a ∀a ∈A ,k ∈K , (8)

where a+ and a− respectively indicate the tail and head of arc a, and sk
a is the slack variable associated to the

constraint (8) for commodity k ∈K and arc a ∈ A . The DSP(ȳ;ω) can be either unbounded or feasible, if the
dual polyhedron is not empty. The former case indicates the infeasibility of the primal subproblem for solution ȳ.
Thus, there is direction of unboundedness which satisfies

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uaȳaαa > 0, (9)

the (π,α) is the solution of the dual cone obtained by replacing ck
a with 0 in constraint 8. In the latter case,

capturing the optimal value of DSP(ȳ;ω) in a single variable θω ∈R1, we aim for θω never to exceed the optimal
value associated to the given design ȳ, i.e.,

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uaȳaαa > θω . (10)

The BD method exploits this result. It iteratively solves an MIP problem, called MP, which involves only the
y and θ variables. The MP has initially no constraints except for those imposed on the design variables. Each
time the MP is solved, the optimal value of the design variables is extracted and fixed in the formulation (7-8) for
each ω ∈Ω. A feasibility or optimality cut for each scenario can then be generated by complementing (9) or (10)
and replacing the fixed design variables with arbitrary values. These cuts are then inserted in the MP and the next
iteration is performed. Accordingly, the MP at iteration t has the following form

MPt = min
y∈Y,θ∈R|Ω|

f T y+Eω [θω ] (11)

s.t. ∑
k∈K

dk(ω)
(

π̄
k
O(k)− π̄

k
D(k)

)
− ∑

a∈A
uaᾱaya ≤ 0 ∀ω ∈Ω,(π̄, ᾱ) ∈ Et

ω (12)

∑
k∈K

dk(ω)
(

π̄
k
O(k)− π̄

k
D(k)

)
− ∑

a∈A
uaᾱaya ≤ θω ∀ω ∈Ω,(π̄, ᾱ) ∈ Lt

ω , (13)

where Et
ω and Lt

ω stand for the set of feasibility and optimality cuts associated to scenario ω up to iteration t.
This process continues until the upper and lower bounds coincide, for which an optimal solution to the original
problem is attained. The pseudo-code of the algorithm is presented in Algorithm 1.

In Algorithm 1, εopt indicates the desired optimality tolerance and DSP(ȳ;ω) is the optimal cost of the dual
subproblem ω for the given solution ȳ. To verify the optimality gap, the MP gives a valid lower bound (LB) on
the optimal cost because it is a relaxation of the Benders equivalent formulation. On the other hand, the cost of
the ȳ solution plus the expected cost of the SPs gives a valid upper bound (UB) on the optimal cost, because it is
equivalent to fixing the current solution ȳ in the original formulation.

3.1 Literature review on acceleration strategies

The BD method has proven successful for a wide range of difficult optimization problems, including ND problems
[10]. A naive implementation of the classical algorithm may however preform disappointingly. Researchers have
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Algorithm 1 : The multi-cut Benders decomposition algorithm
L0

ω ← /0, E0
ω ← /0, ∀ω ∈Ω; UB← ∞; LB←−∞; t← 0

while (UB−LB)/UB > εopt do
Solve the MPt to obtain ȳ
if infeasible then

return infeasible
end if
t← t +1
LB← f T ȳ+Eω{θ̄ω}
for ω ∈Ω do

Solve DSP(ȳ;ω)

if unbounded then
Find the extreme ray (π̄, ᾱ)

Et
ω ← Et−1

ω ∪{(π̄, ᾱ)}
Break the cut generation loop

end if
Lt

ω ← Lt−1
ω ∪{(π̄, ᾱ)}

end for
UB←min{UB, f T ȳ+Eω{DSP(ȳ;ω)}}

end while

thus explored ways to overcome the drawbacks of the algorithm when applied to various optimization problems.
We briefly review the acceleration strategies that are closest to what we will present in this article and refer
the interested readers to [39] for a detailed review on this subject. These strategies can be classified into four
categories.

Probably the most studied category revolves around the generation of cuts. Magnanti and Wong [30] were
the first to propose the generation of non-dominated optimality cuts when the dual SP has multiple optima for
a given feasible solution. This strategy, which entails the solution of an additional SP, is instantiated using a
core point of the MP to identify a non-dominated cut. Papadakos [37] emphasized that the previous method
can be inefficient due to the dependency on the auxiliary SP and the difficulty of extracting the core point, and
showed how alternative core points can be used in each iteration to generate Pareto-optimal cuts by means of an
independent SP. Sherali and Lunday [50] viewed the Pareto-optimal cut generation strategy as a multi-objective
optimization problem. The authors showed that the cuts could be generated by simply perturbing the right-hand
side values of the constraints in the primal SP. Alternative feasibility cuts for binary problems where the SP is a
feasibility checking program and involves big-M constraints, where proposed in [8]. The authors showed that the
combinatorial cuts can efficiently be separated by searching for minimal infeasible subsystems in the solutions of
the relaxed MP. Bodur et al. [4] employed Gomory mixed-integer cuts to strengthen the classical Benders cuts,
by adding them to the SP each time it is solved.

The numerical burden of iteratively solving a mixed-integer MP and a series of SPs is one of the major draw-
backs of the BD method. Thus, the second category of acceleration strategies involves techniques to efficiently
solve the MP and SPs. Geoffrion and Graves [25] proposed to solve the MP each time to ε-optimality and steadily
decrease the ε value as the algorithm proceeds in order to ensure the global convergence. Similar idea at the SP
level has been applied in [55] to extract sub-optimal solutions of the dual polyhedron to generate cuts. Mcdaneil
and Devine [33] showed that valid optimality and feasibility cuts can be produced when the LP relaxation of the
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MP is solved. The authors proposed to apply the algorithm in two phases. In the first phase, all integrality require-
ments are ignored to quickly generate cuts and tighten the master formulation. In the second phase, the integrality
constraints are reintroduced and the solution process continues until the global optimum is found. Solving the
MP heuristically has been proposed by Côté and Laughton [11]. The authors applied Lagrangian relaxation on
the optimality and feasibility cuts to maintain the nice structure of their MP. Related to this general idea, different
(meta-) heuristic algorithms have been employed to faster optimize the MP and avoid many costly iterations of the
MP (see, e.g., [38]). Similarly, heuristics have been employed by several authors to extract approximate optimality
(e.g., [41]) and feasibility cuts [29]. To avoid solving a MILP program at each iteration, modern implementations
of the BD method work by building a single branch-and-bound tree (e.g., [22]). The algorithm generates the
Benders cuts for the integer (and possibly fractional) solutions encountered inside the tree, and guarantees the
convergence to the optimal solution. Finally, managing the size of the MP by periodically removing ineffective
cuts has appeared as a promising technique to reduce the computational burden, especially when multiple cuts per
iteration are added to the master formulation (e.g., [36]).

The third category revolves around the MP to enhance the quality of the generated solutions for the set of
complicating variables, particularly at the initial iterations. The instability of the MP in respect to the generated
solutions is one of the main drawbacks of the BD which can cause overly slow convergence of the algorithm due
to initial large steps and excessive oscillations when it approaches a local optimum [44]. A constraint to restrict
the Hamming distance of the generated solutions from a stabilizing point was proposed to address the issue in
[49], while van Ackooji et al. [52] observed significant speedups when the MP was stabilized by a trust region
method in L1 norm. Heuristics are also often used as a warm-start strategy to generate a set of high-quality initial
solutions and their associated cuts to tighten the relaxed MP, e.g., [27]. It is worth mentioning that heuristics
have also proven very useful in mitigating the erratic progression of the primal bounds through the exploration
of the neighborhoods of the current solution, e.g., [42]. Strengthening the relaxed MP with VIs is also a widely-
used strategy to tighten the initial master formulation, e.g., [46]. Birge and Louveaux [3] demonstrated that it
is preferable to add a single cut per SP when the decomposition yields several independent SPs. This strategy,
referred to as multi-cut reformulation, prevents the loss of information in the aggregation step and strengthens the
MP faster.

The last category is specifically tailored for two-stage stochastic programs, although it is equally applicable
to any problem where the decomposition yields multiple SPs. It addresses the decomposition scheme of the BD
method through partially projecting the second stage variables. This idea was first tested in [35] where the authors
proposed to retain in the master formulation a scenario SP associated to the maximum demand. Crainic et al. [16]
proposed various strategies to properly chose and retain a subset of the SPs in the master formulation, and then
significantly improvements to this strategy through simultaneously selecting and creating SPs to be retained in the
MP [18] . The authors referred to this technique as partial-decomposition strategy (PDS).

In conclusion, not a single strategy is a silver bullet and various acceleration strategies need to be incorporated
into the classical BD framework. This is particularly true for realistic instances of SND problems, for which
multi-cut reformulation, Pareto-optimal cut generation scheme, a two phase approach, single search tree strategy
and partial decomposition strategy are considered. As the results of this paper indicate, however, these strategies
are not sufficient to reach a high-performance BD method. Our goal is thus to contribute to the enhancement of
the categories mentioned above, as outlined in the following section.
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4 Enhancing Benders Decomposition Method

We present in this section various enhancement strategies aimed to address several drawbacks of the algorithm,
including: (1) weak relaxation of the MP, (2) generation of low-quality cuts, (3) ineffective initial iterations,
(4) slow progression of the primal bound, and (5) time consuming iterations. In section 4.1, VIs are proposed
to alleviate the weak relaxation of the MP. The cut-generation scheme is revisited in section 4.2 to efficiently
generate stronger/better cuts. A warm-start strategy is presented in section 4.3 to improve the quality of the initial
cuts. Finally, reduction strategies, upper-bounding heuristic, branching and node selection rules are discussed in
section 4.4 in order to effectively handle the integer phase of the algorithm.

4.1 Valid inequalities

After the relaxation step of the BD method, an important part of the formulation is projected out. Thus, the
algorithm exhibits a very poor performance due to the absence of sufficient leading information. Particularly at
the initial iterations of the algorithm, weak and low quality lower bounds and solutions are generated. These
iterations correspond to a large portion of the computational time, while they yield a limited contribution to the
overall convergence. Although the PDS can considerably dampen these undesirable behaviors, more significant
accelerations can be achieved by making use of strong VIs. We shall numerically show that the best results can
be attained when both strategies are applied. Note that the benefit of VIs is well established in the literature. To
the best of our knowledge, they are merely used as a warm-start to the MP. In this section, we propose a cutting
plane that extends the use of the VIs throughout the whole solution process. Moreover, we observed numerically
that better performance can be achieved when these VIs are prioritized over the classical Benders cuts.

4.1.1 Lower bounding function

The first class of VIs contains useful information regarding the projected terms of the objective function. We
observe that, for any OD pair, a minimum flow cost can be calculated since the corresponding demand must be
satisfied. Let PO(k)D(k) indicate the shortest path connecting the origin of commodity k to its destination. Inequality
(14) provides a lower estimation on the recourse cost of the scenario ω . This inequality can be justified based
on the simple argument that the routing cost for each commodity is at least as large as that of the cheapest route
satisfying it.

θω ≥ ∑
k∈K

∑
a∈PO(k)D(k)

dk(ω)ck
a ∀ω ∈Ω. (14)

Inequality (14) provides a weak estimation of the recourse cost, however. This is because the considered
problem is capacitated. More importantly, it gives no leading information on the design (first-stage) variables.
To provide a stronger bound, referred to as the lower bounding function (LBF), on scenario ω , we make use of a
deterministic Multi-Commodity Capacitated Network Flow (MCNF) problem with minimum demands, i.e., dk =

minω∈Ω{dk(ω)},∀k ∈K ; see Appendix B for the formulation. This problem is equivalent to the LP relaxation
of the deterministic version of the considered ND problem with the demand dk,∀k ∈K . Its solution provides a
valid lower bound on the cost of each scenario, since the demands are replaced by the minimum volume for each
commodity.

Theorem 4.1. Let x̄k
a and ȳ be the optimal solution of the MCNF problem, π̄ be the dual values associated to the

flow conservation constraints, then

θω ≥ ∑
k∈K

∑
a∈A

ck
ax̄k

a + ∑
k∈K

(dk(ω)−dk)(π̄
k
O(k)− π̄

k
D(k))+ ∑

a∈A
fa (ȳa− ya) ∀ω ∈Ω, (15)
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is a VI for the MP.

Proof. See Appendix B.

4.1.2 Cutset inequalities

Based on the feasibility requirements of the problem at hand, there should be sufficient capacity installed across
any partition of the network to support the movement of the commodity flows. Let N̄⊂N be any nonempty subset
of the node set N and N its complement, i.e., N =N\N̄. The corresponding cutset (N̄,N)= {a ∈A |a+ ∈ N̄,a− ∈ N},
where a+ and a− stand for the tail and head of arc a, respectively. Let K(N̄,N) = {k ∈K |O(k) ∈ N̄,D(k) ∈ N} be
the associated commodity subset. We define the maximum flow over this cutset as dmax

(N̄,N)
=maxω∈Ω

{
∑k∈K (N̄,N) dk(ω)

}
.

(N̄,N) is a valid cutset if dmax
(N̄,N)

> 0. According to this notation, one can derive cover inequalities (CI) according
to definitions 4.1 and 4.2.

Definition 4.1. C ⊆ (N̄,N) is a cover if the total capacity of the arcs in (N̄,N)\C does not support (cover) the
flow of demand, i.e., ∑a∈(N̄,N)\C ua < dmax

(N̄,N)
.

Definition 4.2. A cover set C is minimal if opening any arc in C is sufficient to cover the demand, i.e., ∑a∈(N̄,N)\C ua+

uq ≥ dmax
(N̄,N)

,∀q ∈C.

For any cover set C ⊆ (N̄,N), the CI takes the form ∑a∈C ya ≥ 1, imposing the necessity of opening at least
one of the arcs in the set C to meet the flow requirements. To separate and lift this set of inequalities, we follow
the procedure proposed by Chouman et al. [7] for the deterministic ND problem (summarized in Appendix C).
Let’s C1 indicate a subset of arcs in (N̄,N) that take value larger than 1− εci in the current solution and, similarly,
C0 ⊆ (N̄,N) with value smaller than εci, where εci is a sufficiently small positive number. The procedure first finds
a minimal cover set of C over (N̄,N)\(C0 ∪C1). Then, it applies a lifting procedure on arcs in (N̄,N)\C to find
lifting coefficients λa for each variable. The violated and lifted cover inequality (LCI) of the form (16) will be
found, if there is any.

∑
a∈(N̄,N)\C

λaya + ∑
a∈C

ya ≥ 1+ ∑
a∈(N̄,N)\(C∪C0)

λa. (16)

The so-called minimum cardinality inequalities (MCI) also belong to the family of cutset inequalities and
have frequently been used to address ND problems. MCIs are derived for the cutset (N̄,N), indicating the least
number of arcs, denoted l(N̄,N)), that must be opened in any feasible solution. Let the arc capacities in (N̄,N) be
sorted and numbered in a non-decreasing order, i.e., ua ≥ ua+1,a ∈ (N̄,N),a = 1, ..., |(N̄,N)|. We define l(N̄,N) =

max
{

h|∑t=1,...,h ut ≥ dmax
(N̄,N)

}
+ 1. Subsequently, ∑a∈(N̄,N) ya ≥ l(N̄,N) is a valid MCI cut. A lifting procedure

similar to that for the CIs is applied to strengthen the quality of MCI cuts (see [7] and Appendix D). Define
l(N̄,N)\(C1∪C0) as the least number of arcs that must be opened in set (N̄,N)\(C0 ∪C1). After applying the lifting
procedure, a lifted minimum cardinality inequality (LMCI) of the following form can be extracted:

∑
a∈C1∪C0

λaya + ∑
a∈(N̄,N)\(C1∪C0)

ya ≥ l(N̄,N)\(C1∪C0)+ ∑
a∈C1

λa. (17)

Generating good cutsets quickly is of critical importance for the effectiveness of this family of inequalities.
We have implemented the same cutset generation scheme as [7] with cardinality of one and two because in
our preliminary results we observed that they are responsible for most of the lower bound improvement in our
algorithm.
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4.1.3 Network connectivity cuts

The feasibility requirements of the ND problem requires the existence of at least one connecting path with suffi-
cient capacity between each OD pair. This implies that a sufficient number of arcs exiting (entering) each origin
(destination) node should be opened to provide the capacity required to move the demand out of (into) the respec-
tive node. Additionally, at least one arc should enter and one should exit any node than might be a transshipment
node for a commodity. These conditions are generally enforced through the flow conservation constraints (4). Yet,
after the decomposition, the enforcing constraints at each node are eliminated and the network is disconnected,
particularly for initial iterations of the algorithm. To alleviate this issue, we propose the following network con-
nectivity inequalities (NCI), to be added in priority to the relaxed MP.

The NCIs aim to force the feasibility requirements described above. Considering first origin (destination)
nodes, consider node i ∈N with dmax

i = maxω∈Ω{∑k∈K |O(k)=i dk(ω)> 0} (the inner sum computed on D(k) = i
for destination nodes), and set A +(i) (A −(i)) of exiting (entering) arcs. Sort (and number) the arcs in A +(i)
in non-decreasing order, i.e., ua≥ ua+1,a∈A +(i),a= 1, ..., |A +(i)| (same for A −(i)). Then, the least number of
exiting (entering) arcs that must be opened in any feasible solution may be defined as l+i =max

{
h|∑t=1,...,h ut ≥ dmax

i
}
+

1, yielding the following valid cardinality NCI inequality

∑
a∈A +(i)

ya ≥ l+i . (18)

Let I = {i ∈N |i 6= O(k) and i 6= D(k),∀k ∈K } be the set of purely intermediary nodes (i.e., no commod-
ity originates or terminates at such a node). The following proposition defines NCI inequalities addressing the
connectivity issue.

Proposition 4.1. Given the set of intermediary nodes I , the following set of inequalities are valid for the
MCFNDSD and thus for the MP.

ya ≤ ∑
b∈A +(i)

yb ∀i ∈I ,a ∈A −(i), (19)

yb ≤ ∑
a∈A −(i)

ya ∀i ∈I ,b ∈A +(i). (20)

Proof. For an intermediary node, exiting arcs can exist if there is at least one entering arc, and vice versa. This
follows from the positive fixed costs in the objective function and the flow conservation requirements.

The inequalities (19) and (20) can be further strengthened for the first phase of the algorithm according to the
following lemma.

Lemma 4.1. If the integrality requirement is relaxed, i.e., ya ∈ [0,1],∀a∈A +(i)∪A−(i) and i∈I , then inequal-
ities (19) and (20) can rewritten as

∑
a∈A +(i)

uaya− ∑
a∈A −(i)

uaya = 0 ∀i ∈I . (21)

Proof. The inward flow to node i ∈I is equal to maxω∈Ω{∑k∈K ∑a∈A +(i) xk
a(ω)} which entails ∑a∈A +(i) uaya ≥

maxω∈Ω{∑k∈K ∑a∈A +(i) xk
a(ω)} at any feasible solution. Since node i is an intermediary node, the same amount

of flow should exit from it, i.e., maxω∈Ω{∑k∈K ∑a∈A +(i) xk
a(ω)}= maxω∈Ω{∑k∈K ∑a∈A −(i) xk

a(ω)}, which gives

∑a∈A −(i) uaya ≥maxω∈Ω{∑k∈K ∑a∈A +(i) xk
a(ω)}. When the binary requirement is relaxed, the flow approximates

the exact amount of the opened capacity. This completes the proof since ∑a∈A +(i) uaya =maxω∈Ω{∑k∈K ∑a∈A +(i)

xk
a(ω)}= maxω∈Ω{∑k∈K ∑a∈A −(i) xk

a(ω)}= ∑a∈A −(i) uaya.
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4.1.4 Flow cuts

The PDS provides the possibility of generating a wide range of VIs involving both flow and design variables.
Strong inequalities (SI) are the well-known examples of such inequalities. SIs are very effective when incorporated
in a cutting-plane method. They are derived from the observation that any commodity flow on an arc cannot be
larger than its corresponding demand or the arc capacity. Let Ω̄ indicate the set of retained and created scenarios
and bk

a(ω) = min{dk(ω),ua}, then

xk
a(ω)≤ bk

a(ω)ya ∀ω ∈ Ω̄, a ∈A , k ∈K , (22)

is valid for the MCFNDSD and hence for the Benders MP. These inequalities entail an easy separation and are
added to the MP if they violate the current solution by at least η units. We also examined flow cover and flow
pack inequalities (see [7]). We decided, however, to exclude them from our algorithm because their contribution
on the lower bound improvement tended to be limited when the above inequalities were already appended.

4.2 Strengthening the Benders Cuts

After focusing on improving the quality of the master solutions in the previous subsections, we now turn to the
cut-generation scheme. In particular, we reinterpret the cut-generation strategy of Magnanti and Wong [30] in
order to generate Pareto-optimal cuts more efficiently, discus a strategy to handle cuts with big-M coefficients,
and further improve the quality of the optimality cuts by making use of VIs at the SP level.

4.2.1 Generating Pareto-optimal cuts

The primal SP is degenerated, thus, multiple optimal solutions can be extracted from its dual formulation. Each
alternative dual solution produces an optimality cut of particular strength [51]. The dual values thus need to be
judiciously selected in order to append the best possible cuts to the MP. Magnanti and Wong [30] employed the
notion of dominance to generate the strongest cut possible.

Definition 4.3. An optimality cut (13) corresponding to (π̂, α̂)∈U(DSP(ȳ;ω)) dominates or is stronger than that
corresponding to (π̄, ᾱ) ∈U(DSP(ȳ;ω)) if

∑
k∈K

dk(ω)
(

π̂
k
O(k)− π̂

k
D(k)

)
− ∑

a∈A
uaα̂aya ≥ ∑

k∈K
dk(ω)

(
π̄

k
O(k)− π̄

k
D(k)

)
− ∑

a∈A
uaᾱaya y ∈ Y, (23)

with strict inequality for at least one point y ∈ Y .

Definition 4.4. An optimality cut (π̂; α̂) ∈U(DSP(ȳ,ω)) is called Pareto-optimal if it is not dominated by any
other cut. Similarly, the dual point (π̂, α̂) is called Pareto-optimal.

Note that U(DSP(ȳ;ω)) indicates the dual polyhedron of DSP(ȳ;ω). The authors used the core point notion
to formulate an auxiliary problem to extract the Pareto-optimal dual solution. A point y0 is called core point of Y
if it belongs to the relative interior of the convex hull of the Y set.

Definition 4.5. Let y0 and DSP(ȳ;ω) respectively indicate the core point and objective function of the dual SP
(7–8). Then, the optimal solution (π̂, α̂) of

DSP(y0,ω) = max
π∈R|N ||K |,α∈R|A |+ ,s∈R|A ||K |+

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uay0

aαa (24)

s.t. π
k
a−−π

k
a+−αa + sk

a = ck
a ∀a ∈A ,k ∈K (25)

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uaȳaαa = DSP(ȳ;ω), (26)

is Pareto-optimal.
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The auxiliary problem (24–26) is solved after solving the regular SP (7–8) in order to derive the corresponding
Pareto-optimal cut. The dependency of the Magnanti-Wong approach on this auxiliary problem can, however,
overshadow the performance of the overall algorithm. It doubles the number of the SPs and the secondary problem
is relatively more difficult to solve. We found that the latter issue is to a very large extend due to the presence of
the equality constraint (26), which may entail numerical instabilities as well.

The purpose of the equality constraint (26) is to restrict the SP (7-8) to the optimal face of the dual polyhedron
where all the alternate optimal solutions exist. The objective function (24) attempts to pick a solution, among
the available alternatives on the optimal face, which gives the tightest cut as measured from an interior point of
the MP. This equality constraint is not required, however, to extract the best dual solution. To remove it from
formulation (24-26), we first recall the following definitions from linear programming theory.

Definition 4.6. An alternate optimal solution exists if at least one nonbasic variable possesses a reduced cost of
zero.

Thus, when we identify that at least one alternate dual optima exists, we search the best one to generate the
cut by restricting the SP to the optimal face; Corollary 4.1 of linear programming theory states how to fix the SP
to the optimal face.

Corollary 4.1. Variables with nonzero reduced cost maintain their current value at any alternate optimal solution.

Proof. If a variable with nonzero reduced cost changes its value, the optimal objective value should change as
well, which contradicts the definition of the alternate optima.

From the duality theory, an active constraint on the optimal face has a nonzero dual value. Thus, each in-
equality constraint with nonzero dual value should be converted into an equality. This is equivalent to fixing the
slack variables with nonzero reduced cost to zero. Using these definitions, Lemma 4.2 formally introduces an
equivalent SP to extract Pareto-optimal cuts.

Lemma 4.2. Let ( #»
α , #»

π , #»s ) indicate the vector of variables with nonzero reduced cost, as obtained from solving
the DSP(ȳ;ω) problem. Then, the solution of

DSP(y0;ω) = max
π∈R|N ||K |,α∈R|A |+ ,s∈R|A ||K |+

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uay0

aαa (27)

s.t. π
k
a−−π

k
a+−αa + sk

a = ck
a ∀a ∈A ,k ∈K (28)

( #»
α , #»

π , #»s ) = 000, (29)

is equivalent to that obtained from the Magnanti-Wong problem.

Proof. The equivalence is evident because only variables with zero reduced cost can change their value, which
does not effect the objective value of (7-8). Note that, the variables are unbounded and if they have a nonzero
reduced cost, their value at the optimal solution is necessarily zero.

The equality (29) fixes a set of variables to their current value (zero), which can efficiently be handled by the
optimization solvers, e.g., CPLEX. This variable fixation also helps the solver to further reduce the scale of the
auxiliary SP (27-29) through inspection and removal of the unnecessary constraints and variables.
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4.2.2 Improving the optimality cuts

We make use of VIs to improve the quality of the optimality cuts as well as the LP relaxation. The underlying
idea is to apply a cutting-plane method on each SP to tighten its formulation before generating the Benders cut.
To do so, once the SP is solved, we can extract the value of the flow variables, denoted as x̄. Given the current
(x̄, ȳ) solution, violated VIs can be extracted and added to the SP. Note that this is equivalent to adding columns
to the dual SP. We show that the tightened SP yields stronger cuts, which also improves the LP relaxation bound.

Various VIs can be used to realize the aforementioned goal. We have experimented with two well-known
families of inequalities, namely SIs and flow pack (FP) inequalities [7]. In the rest of this section, we present the
theoretical results only for the case when the SIs are used. These results can be easily generalized for other VIs.

To demonstrate the impact of the SIs on the classical optimality cuts, assume that they are added to the primal
formulation of the SP (3–5) and β indicates the vector of the associated dual variables. The dual formulation,
referred to as Strong Dual Subproblem (SDSP), is

SDSP(ȳ;ω) = max
π∈R|N ||K |,α∈R|A |+ ,s,β∈R|A ||K |+

∑
k∈K

dk(ω)
(

π
k
O(k)−π

k
D(k)

)
− ∑

a∈A
uaȳaαa− ∑

k∈K
∑

a∈A
bk

a(ω)ȳaβ
k
a (30)

s.t. π
k
a−−π

k
a+−αa−β

k
a + sk

a = ck
a ∀a ∈A , k ∈K . (31)

In comparison to problem (7–8), the above formulation is larger in scale and may entail a higher degree
of degeneracy. This is, however, well compensated through significant reductions in the number of iterations.
Proposition 4.2 establishes the relation among the two dual formulations SDSP(ȳ;ω) and DSP(ȳ;ω).

Proposition 4.2. For a given first stage solution ȳ, the relation SDSP(ȳ;ω)≥DSP(ȳ;ω) among the two formula-
tions of the SPs always holds true.

Proof. Consider the primal formulation of the two dual problems. The objective functions are equal but the
feasible regions of the SP with the SIs, denoted Φ̄(ȳ;ω), is a subset of the one without the SIs, denoted Φ(ȳ;ω).
This implies that the latter is a relaxation of the former: Φ̄(ȳ;ω) ≥ Φ(ȳ;ω). According to the strong duality
theory, we have SDSP(ȳ;ω) = Φ̄(ȳ;ω)≥Φ(ȳ;ω) = DSP(ȳ;ω).

Recalling the dominance rule and the properties of the core point, we can now formally state the effect of the
SIs on the optimality cuts.

Proposition 4.3. The cut generated from SDSP(ȳ;ω) is not dominated by the one extracted from DSP(ȳ;ω).

Proof. To prove the theorem by contradiction, assume that (π̄1, ᾱ1, β̄1) ∈U(DSP(ȳ;ω)) dominates (π̄2, ᾱ2, β̄2) ∈
U(SDSP(ȳ;ω)), where β1 = 0. (Note that, to lighten the presentation, we present the equations using a vector
representation.) Based on Definition 4.3, we have

dT
π̄1− ᾱ

T
1 uy−bT

β̄1y≥ dT
π̄2− ᾱ

T
2 uy−bT

β̄2y ∀y ∈ Y, (32)

such that there is at least one ȳ ∈ Y that

dT
π̄1− ᾱ

T
1 uȳ−bT

β̄1ȳ > dT
π̄2− ᾱ

T
2 uȳ−bT

β̄2ȳ. (33)

On the other hand, based on inequality (32) we have

dT
π̄1− ᾱ

T
1 uy0−bT

β̄1y0 ≥ dT
π̄2− ᾱ

T
2 uy0−bT

β̄2y0 ∀y0 ∈ Y c, (34)
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where Y c is convex hull of Y . The last inequality is true because any y0 ∈ Y c can be expressed as y0 = ∑t∈T λtyt ,

∑t∈T λt = 1, λt ≥ 0 for some finite number of y1, ...,y|T | ∈Y . On the other hand, we know that for y0 the following
inequality holds according to Proportion 4.2

dT
π̄2− ᾱ

T
2 uy0−bT

β̄2y0 ≥ dT
π̄1− ᾱ

T
1 uy0−bT

β̄1y0. (35)

Note, y0 ∈ ri(Y c) because y0 is a Magnanti-Wong point. Based on the inequalities (34) and (35), we can write the
following equality

dT
π̄1− ᾱ

T
1 uy0−bT

β̄1y0 = dT
π̄2− ᾱ

T
2 uy0−bT

β̄2y0. (36)

Based on Theorem 6.4 of [43], it exists a scalar θ > 1 such that ŷ = θy0 +(1−θ)ȳ belongs to Y c. Multiplying
equality (36) by θ and the strict inequality (33) by 1−θ (which reverses the inequality), and adding these two,
we get the following strict inequality

dT
π̄1− ᾱ

T
1 uŷ = dT

π̄1− ᾱ
T
1 uŷ−bT

β̄1ŷ < dT
π̄2− ᾱ

T
2 uŷ−bT

β̄2ŷ, (37)

which contradicts inequality (32) and hence our assumption.

We will numerically verify in section 5.2 that applying a cutting plane on each SP not only yields larger
step-increases in the lower bound but also results in tighter LP relaxation bounds.

4.2.3 Feasibility cuts

As defined in constraints (12), the cuts associated with infeasible solutions do not improve the values of the θ

variables. They also make the solution of the MP more complicated. More importantly, we observed that, in most
iterations, the infeasibility of the ȳ solution is rather limited, meaning that merely a small portion of the demands is
left unsatisfied. In such cases, optimality cuts can still be generated instead of feasibility cuts which, considering
our preliminary results, is a more numerically efficient strategy. To do so, one can employ the strategy proposed
by [47] solving an auxiliary MILP problem in order to relax a minimum number of constraints of the subproblem
so that an optimality cut can be generated. We propose a different and simpler strategy, however, which avoids
solving an auxiliary MILP problem. We propose to apply a relatively complete recourse property to model (3-5),
consisting of adding a dummy arc between the nodes of each OD pair to provide extra capacity at a high premium
unit price. The inclusion of these dummy arcs in all recourse problems ω ∈ Ω defines an outsourcing strategy
enabling any arbitrary quantity of a commodity to be flowed directly between its associated origin and destination
nodes. As a result, Φ(y;ω) is always feasible.

These optimality cuts using dummy arcs may involve big-M coefficients. To avoid the insertion of such weak
cuts and maintaining the global convergence, we make use of combinatorial cuts. We first identify the infeasibility
of the current solution using Property 4.1.

Property 4.1. For a given design solution ȳ, if there exists at least one SP such that a positive amount of flow is
routed on a dummy arc, then ȳ is an infeasible design to the MCFNDSD.

When the current solution is identified as infeasible according to Property 4.1, the optimality cuts for those
subproblems that involve big coefficients are not added to the MP. Instead, the following combinatorial cut is
added:

∑
a∈A |ȳa=1

(1− ya)+ ∑
a∈A |ȳa=0

ya ≥ 1. (38)
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By adding an inequality (38) each time the MP solution is infeasible, one ensures that the original feasibility
requirements defined in the problem are enforced. These combinatorial cuts can be further strengthened according
to the following proposition.

Proposition 4.4. For a given infeasible integer solution ȳ, the following inequality is globally valid.

∑
a∈A |ȳa=0

ya ≥ 1. (39)

Proof. Let A0 and A01 indicate the set of binary variables fixed to 0 and the set of free variables at the current inte-
ger node of the branch-and-bound tree. We can easily conclude that the infeasibility is due to not opening enough
capacity, since otherwise the dummy arcs would not have been used due to their large flow costs. This corresponds
to opening at least one arc in the set of closed arcs to break the infeasibility, i.e., a ∈A0∪ (A01|ȳa = 0). This is
equivalent to ∑a∈A0 ya +∑a∈A01|ȳa=0 ya = ∑a∈A |ȳa=0 ya ≥ 1 because ȳa = 0,∀a ∈A0 and A0∩A01 = /0.

4.3 Warm-Start Strategy

The BD method is very well-known for suffering from ineffective initial iterations due to the generation of low-
quality solutions and zig-zagging behavior. To effectively overcome these drawbacks, we propose a warm-start
(WS) strategy to generate an initial set of tight cuts. Unlike the heuristic-based warm-start strategies, the under-
lying idea of our approach is to deflect the current master solution. Given an initial starting point yws, the current
master solution ȳ, and a convex combination weight 0 < λ < 1, we deflect the current master solution according
to yws = λ ȳ+(1−λ )yws. Then, yws is used to generate the cuts instead of ȳ. If the starting solution also satisfies
the core point properties, we do not need to solve the auxiliary SP (24-26) to generate pareto-optimal cuts, since
the deflected point guarantees the generation of a non-dominated cut (see [37], Theorem 6). The upper bound
generated using the deflected solution is also valid for the LP relaxation of the problem. Therefore, as long as we
are applying this strategy, no auxiliary SP is required to be solved. This yields appreciable savings in computa-
tional time. The current master solution might be infeasible and thus render the new yws infeasible as well. In this
case, we solve an auxiliary problem to reset yws at a feasible solution at the vicinity of ȳ. This auxiliary problem
is presented in Appendix A.

This strategy is also capable of considerably alleviating the instability issue of the MP. It dampens the initial
large steps of the algorithm through taking an average with a centered solution. Thus, the yws and the whole
procedure can also be interpreted as a stabilizing point and a stabilization strategy [20].

The strategy is sensitive to the initial value of the yws. We thus propose to solve a MCNF problem with
maximum demand, i.e., dk = maxω∈Ω{dk(ω)},∀k ∈ K . Given the solution ỹ of this problem, we set yws

a =

ymax
a := max{0.5, ỹa},∀a ∈A .

4.4 Managing the Branch-and-Bound Tree

The search tree is one of the most important parts of the algorithm, since its size directly determines its efficiency.
To the best of our knowledge, there is no in-depth study in the literature to address the branch-and-bound tree
in the cutting plane implementation of the BD method. We examined various cut generation strategies. The
preliminary experiments indicated that generating as many cuts as possible at the root node (i.e., first phase of
the algorithm) and then generating cuts merely for the potential incumbent solutions yields the best performance.
Generating cuts for every or the first 100 fractional solutions inside the tree caused overly slow performance of
the algorithm. The reason was due to the low impact of the cuts, generating too many of them and spending too
much time on their extraction and handling. In the rest of this section, we present branching and node selection
strategies, a primal heuristic, and reduction procedures.

A Benders Decomposition Method for Two-Stage Stochastic Network Design Problems

14 CIRRELT-2017-22



4.4.1 Branching and node selection rules

Node and variable selection decisions are of crucial importance in our algorithm. With respect to the branching,
We perform an irregular branching at the root node while, for the rest of the algorithm, we follow the default
settings of the optimization solver (CPLEX). To create the first two child nodes at the top of the tree, we first
identify two set of variables, ˜A0 and ˜A1, which include the variables that very likely take value 0 or 1 in an optimal
solution. Identifying the variables in each set relies on the information gathered during the first phase of the
algorithm. Variables which consistently took values smaller than εbranch or larger than 1− εbranch are respectively
added to ˜A0 and ˜A1, such that, for the current master solution ȳ they satisfy ∑a∈Ã1

(1− ȳa)+∑a∈Ã0
ȳa ≤ 1−εbranch,

with εbranch a small positive number. The left branch is then created by adding two constraints of the form

∑a∈ ˜A0
ya = 0 and ∑a∈ ˜A1

ya = | ˜A1|, which is equivalent to fixing the variables. The complement to this node
indicates that at least one variable in the joint set ˜A0∪ ˜A1 should change its value. Therefore, the right branch is
created by adding a combinatorial cut of the form ∑a∈ ˜A1

(1− ya)+∑a∈ ˜A0
ya ≥ 1.

The left branch has a considerably small sub-domain, which helps to quickly find good feasible solutions. The
right branch has also an improved bound since it violates the root solution. As for the node selection strategy, we
tested several different strategies. At the end, we decided to follow the default of the optimization solver which
implements the state-of-the-art strategies.

4.4.2 Upper bounding heuristic

Our branch-and-cut algorithm is dependent on the quality of the incumbent solution to avoid searching inferior
regions of the solution space. We thus propose a simple heuristic to generate tight upper bounds on the optimal
integer solution at the end of first phase. The proposed heuristic, unlike the ones in the literature, depends on the
BD method itself rather than the problem. Algorithm 2 presents the pseudo-code of this heuristic.

Algorithm 2 : The upper bounding heuristic

Extract the sets ˆA0, ˆA1, and ˆA01 based on the LP solution of the first phase
ι ← maximum number of iterations; Th← time limit per iteration
RMP← derive the restricted MP through imposing ∑a∈ ˆA0

ya = 0 and ∑a∈ ˆA1
ya = | ˆA1|

for all t = 0 : ι do
Solve RMP for the given time limit Th

if RMP infeasible then
Add strong combinatorial cut ∑a∈ ˆA0

ya ≥ 1
Break the loop

end if
Evaluate the current solution, generate cuts, and add the cuts to the formulation
Update the current best upper bound (if possible)
if the solution was infeasible for at least one SP based on Propoerty 4.1 then

Add strong combinatorial cut ∑a∈ ˆA0
ya +∑a∈ ˆA01|ȳa=0 ya ≥ 1

else
Add combinatorial cut ∑a∈A |ȳa=1 (1− ya)+∑a∈A |ȳa=0 ya ≥ 1

end if
end for
Remove the fixing constraints ∑a∈ ˆA0

ya = 0 and ∑a∈ ˆA1
ya = |ĉA1| and go to the second phase.
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We observed that the LP solution is fairly tight and close to an optimal integer solution. Thus, a simple
fix-and-optimize procedure can yield high quality solutions. The variables that take values smaller than 0.1 or
greater than 0.9 are respectively added to the sets ˆA0 and ˆA1. The rest of the variables are added to the set of
free variables ˆA01. To derive the Restricted Master Problem (RMP), variables in ˆA0 and ˆA1 are fixed to 0 and 1,
respectively. The RMP is then solved. If feasible, the produced solution is evaluated to get an upper bound and
a set of optimality cuts. In order to avoid revisiting that solution, a valid combinatorial inequality is also added
to the RMP. If the RMP became infeasible, the heuristic procedure terminates and a strong combinatorial cut is
added to the formulation. The algorithm iterates for a maximum ι iterations. A time limit of Th is imposed on
each iteration of the RMP. At the end, all the constraints imposing the bounds on the variables are removed from
the model. But, all the generated optimality and combinatorial cuts will remain in the formulation, since they are
both useful and valid.

4.4.3 Reduction procedures

The efficiency of the algorithm can be improved by reducing the size of the formulation. The SPs can be solved
more efficiently and the search tree becomes more manageable. The reduction ideas are mainly based on the well-
known reduced-cost methodology [22, 9]. One flow conservation constraint in formulation (3–5) is redundant
for each commodity k. Thus, we can fix the dual variable associated to its origin (or destination) to zero, i.e.,
πk

O(k) = 0, ∀k ∈K .
Many of the proposed VIs provide no further convergence advantage after a few iterations. Likewise, a small

subset of the Benders cuts only are required for global convergence. Thus, a cleanup strategy is required to keep
the scale of the MP manageable by removing the unnecessary cuts and VIs. The proposed cleanup strategy keeps
a record of the slack values for each cut and inequality. If a cut or a VI exhibits a large slack value over some
predefined number of iterations, it will be considered as a candidate for removal from the master formulation. In
order to avoid frequent cut removal, which profoundly disturbs the optimization solver, the candidate cuts will be
removed just before the second phase of the algorithm. Note that this strategy is not applied during the second
phase because the cuts are appended to the master formulation as lazy constraints and the solver eliminates them
if they become slack. Last but not least, the cleanup is also applied to the SPs as soon the LP phase is terminated
in order to remove the additional VIs which will be inactive during the second phase, where cuts are generated
only for integer y solutions.

5 Numerical Results and Analysis

In this section, we present the numerical assessment of the proposed algorithm. We first experiment different
versions of the BD algorithm to evaluate the impact of the proposed algorithmic enhancements on convergence.
The second part of the analysis is dedicated to a comparison between our exact algorithm and state-of-the-art
algorithms and optimization solvers. We test the robustness and limitations of our method on larger instances in
the third part of the experiments.

To carry out the numerical tests, we have used standard benchmark instances, referred to as R and S in the
literature [15, 16, 17]. There are 16 instances in the S data set. These instances are defined on fully connected
graphs of 16 or 30 nodes, with 14, 40 or 80 commodities, and 10, 20, 60 or 90 scenarios. For presentation
purposes, we divided them into three classes based on the number of commodities, which determines the instance
difficulty. Twelve instance classes of R family, r04 to r14 inclusively, along with five different cost/capacity ratios
(1, 3, 5, 7, and 9) were selected. Three numbers of scenarios (16, 32, and 64) are considered for each instance of
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the R set. To generate these scenarios, demands were assumed to be linearly correlated and five levels of positive
correlation (0%, 20%, 40%, 60%, and 80%) were used to create different instances. In summary, 825 different
instances of the R set are considered. Attributes of the considered instance classes are described in Table 1.

Table 1: Attributes of the instance classes.

Name |N| |A| |K| |Ω| Cost/Capacity Ratio Correlation Number of Instances

s01 16, 30 |N|2 14 10, 20 - - 4
s02 16, 30 |N|2 40 20, 60, 90 - - 6
s03 16, 30 |N|2 80 20, 60, 90 - - 6

r04 10 60 10 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r05 10 60 25 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r06 10 60 50 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r07 10 82 10 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r08 10 83 25 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r09 10 83 50 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r10 20 120 40 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r11 20 120 100 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r12 20 120 200 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r13 20 220 40 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75
r14 20 220 100 16, 32, 64 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 75

All programs were coded in C++, using the CPLEX version 12.6.1.0 as the optimization solver. The code was
compiled with g++ 4.8.1, executed on Intel Xeon E7-8837 CPUs running at 2.67GHz with 16GB RAM under a
Linux operating system, in single-thread mode. The branch-and-cut algorithm was also implemented using the
CPLEX callable libraries.

5.1 Implementation details

A number of algorithmic components need to be specified for a complete description of the implementations used
to perform the numerical tests.

First, the VIs are added to the MP and SPs during the first phase of the algorithm only. LBF and NCI
inequalities are added to the master formulation a priori. The other inequalities are added to the MP or SP
formulation in a cutting plane method. At the MP level, our initial computational tests indicated that superior
performance can be attained through prioritizing the VIs over the Benders cuts. This means that we keep solving
the MP and generating the VIs as long as a violated one can be found. This considerably reduces number of
the SPs to solve, which constitutes the major computational bottleneck of the algorithm. At the SP level, solving
several SPs to generate a single cut is computationally costly. Moreover, in the presence of the SIs, few violated FP
inequalities can be found. For this reason, the SIs are first added to the SP formulations and the FPs are appended
in a cutting plane fashion. The cutting plane is executed on each SP only for one iteration per cut generation cycle.

The S instances involve arcs that start and end at the same node. These arcs can be removed from the network,
when the associated node is not both origin and destination for a specific commodity k ∈K . This follows from
the non-negative cost coefficients in the objective function. Moreover, when several commodities share the same
OD pair, they can be aggregated into a single commodity if their flow costs are identical.
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To specify the stopping criteria, a run time limit of 2 hours, maximum number of 1000 iterations, and op-
timality tolerance of 1% were considered. The time limit and optimality tolerance for the first phase were
fixed to 1 hour and 0.3%. To set the search parameters, extensive computational tests on 5 chosen instances
from the R family were conducted and the following parameters have been fixed throughout the numerical tests:
εgap = 10−2, εci = 10−5, η = 10−2, y0 = 0.5, λ = 0.5, εbranch = 10−1, Th = 5%"of total time", ι = 5, εh = 10−3,
TI = "total iterations of the first phase−2”.

The following notation is used in Tables 2 to 7 and 9: "Time (Sec.)" gives the CPU time in seconds, "Gap (%)"
presents the optimality gap in percentage, "Sol. (%)" indicates percentage of the instances solved to optimality and
"Ave." represents the weighted average values. Given the upper bound UB and lower bound LB, the optimality
gap is calculated as 100(UB - LB)/UB. For the sake of ease in the comparisons, when the algorithm fails to find
any feasible solution, the reported optimality gap is set to 100%.

5.2 Analysis of the algorithmic enhancements

The goal of this analysis is to assess the effectiveness of the proposed algorithmic enhancements. We investigate
to what degree our acceleration strategies are further enhancing the state-for-the-art BD method, as discussed in
section 3.1 and outlined in [18]. Therefore, we activated the proposed strategies one by one and observed their
cumulative additive value with respect to the convergence of the state-of-the-art Benders algorithm for the problem
at hand [18]. For the PDS, we have implemented the best strategy reported in [18], i.e., retaining two scenarios
based on the row covering strategy and creating a single artificial scenario. As suggested by the same authors, we
have added the SIs and simple cardinality inequalities to the MP in order to expedite the convergence rate of the
algorithm.

For the numerical analyses of this section, we have chosen a subset of the R and S instances: r04 to r10 with
64 scenarios and s01 and s02. This subset covers all the instances addressed in the literature (i.e., R set) and gives
the opportunity to assess the behavior of the algorithm on very different network structures (i.e., S set).

5.2.1 Feasibility cuts

We first study the proposed strategy to avoid the generation of classical feasibility cuts. As the numerical results
in Table 2 indicate, adding the relatively complete recourse to the model and using strong combinatorial cuts
outperforms the use of classical feasibility cuts. This can partially be explained by the fact that most of the
master solutions are slightly infeasible, meaning that the constructed network at the MP fails to cover only a small
portion of the demand. In this case, the generated optimality cuts seem to improve the lower bound faster than the
inclusion of feasibility cuts. Moreover, the current solutions to the MP that are infeasible are usually so for only
a small subset of the subproblems. Thus, following the proposed strategy, optimality cuts are still being added
for all feasible subproblems. In turn, this accelerates the rate at which the relaxation defined by the MP can be
improved.

5.2.2 Pareto-optimal cuts

Table 3 displays the numerical comparison between our cut generation strategy denoted "Proposed approach (I)",
and that of [30]. We also examined a variant of our approach in which the core point is dynamically updated
according to y0← 1

2(ȳ+ y0). This variant is referred to as "Proposed approach (II)".
Two key observations can be made from Table 3. First, the proposed cut generation scheme outperforms the

original method of [30]. For 125 out of 175 R instances that both methods solve, the proposed approach reduced
the average CPU time by 21.23%. For the other 50 instances, our approach improved the average optimality gap
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Table 2: Assessing the performance of the strategy to avoid generating feasibility cuts

Benders with feasibility cuts Benders with complete recourse
Time (s) Gap (%) Sol. (%) Time (s) Gap (%) Sol. (%)

r04 160.43 0.65 100.00 86.01 0.65 100.00
r05 224.16 0.79 100.00 190.57 0.76 100.00
r06 3135.42 1.52 76.00 2655.89 1.39 72.00
r07 993.86 0.91 92.00 618.58 0.85 100.00
r08 2877.81 1.86 64.00 2494.79 1.41 76.00
r09 5989.05 1.98 24.00 5602.56 1.70 36.00
r10 5879.67 3.72 20.00 5694.71 3.84 24.00

s01 56.03 0.17 100.00 56.86 0.15 100.00
s02 7200.00 54.59 0.00 7200.00 54.40 0.00

Ave. R. 2751.49 1.63 68.00 2477.59 1.51 72.57
Ave. S. 4342.41 32.82 40.00 4342.74 32.70 40.00

and CPU time by 2.32% and 9.53%, respectively. The superiority of our approach is particularly evident for the
instances for which the algorithm executes more iterations involving the dummy arcs. In this case, the resolution
of the auxiliary SP (24-26) is considerably slower due to the equality constraint (26).

Second, updating the core point yields a positive impact on the overall performance, requiring 2.55% less
iterations, on average, to converge. This is probably due to the fact that the updated core point gives a better
measure to emulate the optimal direction at the current iteration. Note that, the core point should be updated only
when no dummy arc is used, i.e., the current solution is feasible according to Property 4.1.

The same observations can be made for the S instances. The three methods seem to have the same average
running time. This is mainly due to the instances in the s02 class. They are larger in scale than those in s01, and
consume the whole running time. The Magnanti and Wong [30] approach fails to find a feasible solution for 3
instances in s02, while this value for the proposed approaches reduces to 2.

We also tested the methods in [37] and [50] to generate Pareto-optimal cuts (results available from the first
author), and observed that the former is less efficient. This is due to the generation of non-exact cuts with respect
to the current master solution, particularly when the algorithm approaches a local optima. On the other hand, [50]
generated stronger cuts than [30], but required higher CPU times. The method we propose alleviates all these
shortcomings.

5.2.3 Warm start

The warm-start strategy was proposed to overcome the ineffective initial iterations. Thus, we first illustrate its
impact for the first phase of the algorithm, as it is deactivated after 15 iterations or when this phase ends. The
initial point in this experiment is set equal to the core point, i.e., yws = y0. The comparative results are depicted in
Figure 1. On average, the algorithm with the warm-start requires 53.32% less time to optimize the first phase for
the R instances and 43.40% less for the S instances. More significant savings are obtained on the larger instances.
It is worth mentioning that the infeasibility rate of the algorithm during this phase dropped by 75.08% and 83.10%
for the R and S instances, respectively.

We next examine the impact of the warm-start strategy on the convergence of the algorithm. Two variants of
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Table 3: Comparing cut generation schemes

Magnanti & Wong [1981] Proposed approach (I) Proposed approach (II)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 86.01 0.65 100.00 68.50 0.63 100.00 77.76 0.65 100.00
r05 190.57 0.76 100.00 136.90 0.72 100.00 158.21 0.69 100.00
r06 2655.89 1.39 72.00 2355.46 1.24 76.00 2391.80 1.26 76.00
r07 618.58 0.85 100.00 511.80 0.80 100.00 431.30 0.81 100.00
r08 2494.79 1.41 76.00 2278.20 1.36 76.00 2386.64 1.34 76.00
r09 5602.56 1.70 36.00 5376.49 1.69 36.00 5248.34 1.69 44.00
r10 5694.71 3.84 24.00 5643.28 3.38 32.00 5501.45 3.23 36.00

s01 56.86 0.15 100.00 53.07 0.12 100.00 10.68 0.03 100.00
s02 7200.00 54.40 0.00 7200.00 52.44 0.00 7200.00 51.17 0.00

Ave. R: 2477.59 1.51 72.57 2338.66 1.41 74.29 2313.64 1.38 76.00
Ave. S: 4342.74 32.70 40.00 4341.23 31.51 40.00 4324.27 30.72 40.00
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Figure 1: CPU time to solve the first phase with warm-start activated (dark bars) or not (light bars)

the algorithm with the warm-start strategy are compared: one in which the initial point is set to the core point
(yws = y0), and a second one in which it is set to the point proposed in section 4.3 (yws = ymax). The numerical
results are summarized in Table 4.

Comparing the results to those reported in Table 3, we can confirm that the warm-start strategy has a positive
impact on the performance of the BD method. The largest gap reduction was observed for the S instances, an
average improvement of 25.74% for the s02 family. The overall time improvement may seem somehow limited
in light of the results depicted in Figure 1. This can be explained by two facts. The time to solve the first phase
compared to the overall time requirement is rather small, this is particularly true for the R instances. Moreover,
many of the previously unsolved instances still remain unsolved, although with lower optimality gaps. This does
not favorably affect the average time.

When the warm-start strategy is initialized with ymax, a larger number of the R instances are solved. For the S
instances, a further optimality gap improvement of 78.63% is observed in the s02 category. The reason we observe
more significant changes for the S instances can be explained by their fully connected network structure. For such
instances, the time spent on the SPs is noticeably larger when the master solution is infeasible. Since using the
warm-start significantly reduces the number of infeasible iterations, the LP phase is optimized faster: 69.97%
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Table 4: The impact of the warm-start strategy on algorithm convergence given initial point setting

WS (yws = y0) WS (yws = ymax)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 63.68 0.64 100.00 72.34 0.62 100.00
r05 94.39 0.70 100.00 95.60 0.58 100.00
r06 2121.76 1.14 80.00 2124.45 1.10 80.00
r07 421.61 0.77 100.00 404.51 0.78 100.00
r08 2392.24 1.24 76.00 2395.59 1.19 76.00
r09 5195.91 1.42 44.00 4992.15 1.32 52.00
r10 5355.16 2.81 36.00 5443.17 2.85 40.00

s01 39.27 0.30 100.00 15.57 0.05 100.00
s02 7200.00 38.00 0.00 7200.00 8.12 0.00

Ave. R: 2234.96 1.24 76.57 2218.26 1.21 78.29
Ave. S: 4335.71 22.91 40.00 4326.23 4.89 40.00

on average. In addition to having a tighter root node relaxation, more time remains for the second phase of the
algorithm to find better incumbent solutions. Last remark, the average time requirement for some instances, e.g.,
r10, has slightly increased. This indicates that although the proposed initialization performs the best on average,
it could be further improved, the algorithm bing sensitive to the initial point. Thus, further research on this subject
would be worthwhile.

5.2.4 Valid inequalities

Next, we examine the impact of the VIs on the performance of the algorithm. We experimented with three versions
of the algorithm. Only the VIs at the SP level are activated in the first version, the VIs are only added to the MP
in the second and, the VIs are applied to the both MP and SPs in the third. The numerical results are summarized
in Table 5.

Table 5: Impact of the VIs on the algorithm performance

VIs for the SPs VIs for the MP VIs for both SPs and MP
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 60.02 0.57 100.00 41.11 0.58 100.00 29.26 0.53 100.00
r05 110.34 0.39 100.00 53.34 0.57 100.00 34.40 0.38 100.00
r06 2765.27 1.29 64.00 1876.71 0.91 80.00 2687.94 0.93 80.00
r07 460.53 0.55 100.00 326.85 0.71 100.00 210.30 0.53 100.00
r08 1337.47 0.70 92.00 1220.91 0.89 96.00 551.66 0.58 100.00
r09 3174.41 1.72 64.00 4233.37 1.17 68.00 2542.66 1.49 76.00
r10 5196.56 2.40 44.00 4229.81 1.52 68.00 3967.93 1.56 64.00

s01 9.99 0.02 100.00 16.52 0.04 100.00 16.33 0.02 100.00
s02 285.93 0.11 100.00 7200.00 6.35 0.00 189.40 0.13 100.00

Ave. R: 1872.08 1.09 80.57 1711.73 0.91 87.43 1432.02 0.86 88.57
Ave. S: 175.55 0.08 100.00 4326.61 3.83 40.00 120.17 0.09 100.00
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The VIs at all levels add significant value to the algorithm, as illustrated by contrasting compare these results
to those reported in Table 4. In all cases, the CPU time and average optimality gaps were reduced, while the
percentage of solved instances increased. The best results are attained when VIs are added at both MP and SP
levels.

VIs at the MP and SP level display different behaviors for the R and S instances. In the former case, the VIs
at the SP level have less impact than those at the MP level, while the opposite appears true for the S instances.
To explain these observations, Figure 2 compares the versions 1 (VIs added to the SPs) and 2 (added to the MP)
displaying on the left the relative improvement (in %) of the LP relaxation at the root node, and on the right the
relative increase (in %) CPU times.
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Figure 2: Comparing LP relaxations (left) and CPU times (right) when VIs are added to the SP and to the MP
only

Figure 2 illustrates that adding VIs to the SPs is more effective, by more than 7.25% (on average), in tightening
the LP relaxation, than adding to the MP. This, however, increases the CPU time to optimize the LP phase for
the R instances by 204.97%. The LP improvement compared to the optimal solution is small, while the increased
time requirement is very large. For the S family, both time and LP relaxation have improved, because the addition
of the stronger optimality cuts reduces the number of iterations to optimize the LP phase by an average of 72.69%.
Worth mentioning, the cutting plane at the SP level has been so effective that the lower bound at the root node is
less than 1.92% and 0% from the final lower bounds for the R and S instances, respectively. The same values for
the cutting plane at the MP level are 8.75% and 0.75%. When both cutting plane methods are activated, the LP
relaxation is further tightened and the CPU time remains reasonably low. This has thus given the best results.

In summary, examining the S and R instances, we conclude that the VIs are more effective in dense networks.
The NCI inequalities are effective only when the number of nodes is larger than the number of commodities.
Moreover, the decomposition provides the capability to efficiently handle an exponential number of the well-
known family of VIs, such as SIs. The LBF cuts can significantly improve the initial lower bound. Figure 3 depicts
the quality of the lower bound during the initial iterations of the algorithm when these cuts are appended to the
master formulation versus the case when they are ignored. To conduct this experiment, all proposed enhancements
are turned off and the algorithm is ran for one iteration only. On average, the initial lower bound is 92.44% higher
than the case where the LBF inequalities are not added to the MP. The average time spend on the generation of
these inequalities is also less than 6.10 seconds.
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Figure 3: Improvement of the initial lower bound when the LBFs are appended

5.2.5 Heuristic

Multiple integer solutions can be extracted at each iteration of the heuristic. All these solutions are valid to
generate both optimality cuts and upper bounds. We have thus examined two versions of the heuristic, using only
the best solution in Heuristic (I), while Heuristic (II) uses all the extracted solutions. Figure 4 depicts the relative
(in %) distance of the upper bounds attained by each version compared to the best known solution.
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Figure 4: Relative distance of the upper bound attained by Heuristic (I) (white bars) and (II) (dark bars) from the
best known value

Heuristics (I) and (II) are able to find solutions that are respectively 0.36% and 0.05% from the best known
upper bound. Heuristic (I) finds a better or equal upper bound for 110 instances out of 175. This value goes up
to 124 for Heuristic (II), which is, however, more time consuming by 36.29% (on average) than Heuristic (I). For
the S instances, both heuristics consistently find the best known incumbents, and Heuristic (II) for two instances
finds even better bounds.

We next examine the impact of the heuristics on the performance of the algorithm. The results for both
versions are summarized in Table 6.

The algorithm with Heuristic (I) improves the average run time, while it solves a larger portion of the instances
with Heuristic (II). The major advantage of the heuristics is that they remove many candidate solutions as well
as a massive part of the branch-and-bound tree. If we compare the number of explored nodes with and without
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Table 6: The impact of the heuristic on algorithm performance

Heuristic (I) Heuristic (II)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 28.77 0.59 100.00 37.12 0.59 100.00
r05 34.85 0.46 100.00 46.79 0.47 100.00
r06 2474.42 1.02 80.00 2633.02 0.98 80.00
r07 174.29 0.64 100.00 218.41 0.63 100.00
r08 490.69 0.64 100.00 791.41 0.58 100.00
r09 2390.35 1.41 76.00 2373.02 1.40 80.00
r10 3990.64 1.42 64.00 4064.08 1.41 64.00

s01 41.47 0.02 100.00 17.22 0.02 100.00
s02 201.00 0.20 100.00 242.76 0.18 100.00

Ave. R: 1369.14 0.88 88.57 1451.98 0.87 89.14
Ave. S: 137.18 0.13 100.00 152.54 0.12 100.00

the heuristic, we observe an average reduction of 23.12% when the heuristic is activated. However, the heuristic
does not always yield a net computational advantage, mainly because of its non-trivial running time. For example,
consider r10 for which using Heuristic (II) yields a better upper bound than the best solution previously found
without the heuristic. This did not positively affect the number of solved instances, although the average optimality
gap is reduced. The time spent on the heuristic accounts for 20.47% of the total running time, on average. For
some instances this value goes up to 50%. Adding this to the time spent on the first phase, very limited time
remains for the second phase. Thus, this time is not enough to close the optimality gap of challenging instances.
When we increase the time limit to 5 hours, we observe that the algorithm with Heuristic (II) not only solves a
wider range of instances but also entails lower CPU times (see Table 10 in Appendix E).

5.2.6 Value of the PDS

The initial motivation for the PDS was alleviating the weak relaxation of the MP. In this paper, this drawback has
also been tackled by means of VIs and a warm-start strategy. In order to verify whether or not it is still beneficial
to use the PDS in our algorithm, we have turned off the PDS feature and ran the best version of our algorithm
once again. The results are presented in Table 7.

We observe that for small and medium instances, the PDS tends to increase the cost of the iterations. This is
clearly due to the additional complexity it inserts into the MP. This observation relates to the instances with very
tight or very loose capacity ratio. However, if the cut generation cycle is much more time consuming than the MP,
the PDS usually improves the performance. This is certainly true for the S instances since the cut generation cycle
is the most time consuming part of the algorithm. Nonetheless, the algorithm with the PDS solves a wider range
of instances. The PDS thus appears a valid and efficient acceleration technique.

5.3 Comparison with other approaches

We assess the performance of our algorithm versus alternate exact approaches, i.e., CPLEX 12.6 and the algorithm
of Crainic et al. [18]. The best strategy for each enhancement, as introduced in the previous section, is included
in our algorithm. In order to examine the efficiency and robustness of the algorithms, a wider range of instances
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Table 7: Impact of the PDS on convergence

Without PDS With PDS
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 25.95 0.59 100.00 37.12 0.59 100.00
r05 48.43 0.51 100.00 46.79 0.47 100.00
r06 2451.07 1.01 76.00 2633.02 0.98 80.00
r07 218.84 0.68 100.00 218.41 0.63 100.00
r08 393.53 0.64 100.00 791.41 0.58 100.00
r09 2197.37 1.71 80.00 2373.02 1.40 80.00
r10 4326.32 1.84 56.00 4064.08 1.41 64.00

s01 18.63 0.14 100.00 17.22 0.02 100.00
s02 1759.21 0.20 100.00 242.76 0.18 100.00

Ave. R: 1380.21 0.99 87.43 1451.98 0.87 89.14
Ave. S: 1062.98 0.17 100.00 152.54 0.12 100.00

was considered: 525 R (r04–r10) and 12 S (s01-s02) instances. The results are summarized in Table 8, where
"TR" and "GR" indicate the time and gap ratios calculated by dividing the results of each approach by those of
our algorithm. The column labeled "SD (%)" gives the number of solved instances by our approach minus the
alternate approaches in %. Consequently, the bigger the value for these measures, the higher the efficiency of our
algorithm.

Table 8: Comparing the proposed BD algorithm to alternate exact methods

CPLEX 12.6 Crainic et al. [2016]
TR GR SD (%) TR GR SD (%)

r04 6.17 1.10 0.00 3.78 1.61 0.00
r05 18.74 1.01 0.00 4.17 6.01 0.00
r06 10.56 3.68 0.00 6.00 2.89 18.67
r07 3.94 1.43 0.00 4.98 2.99 2.67
r08 21.80 2.19 20.00 18.88 9.22 13.33
r09 8.11 3.98 10.67 20.11 1.43 26.67
r10 2.92 8.48 25.33 2.55 5.39 38.67

s01 8.03 3.96 0.00 7.11 8.51 0.00
s02 10.30 6.15 100.00 88.52 298.46 50.00

Ave. R: 10.32 3.12 8.00 8.64 4.22 14.29
Ave. S: 9.39 5.28 60.00 55.95 182.48 30.00

The figures displayed in Table 8 illustrate that the proposed algorithm outperforms other methods for all
criteria. Compared to the [18], our algorithm is 2.55 to 88.52 times faster. Compared to the CPLEX, these values
range from 2.92 to 21.80. The average optimality gaps of our approach are also 1.01 to 8.48 and 1.43 to 298.46
times lower than those of CPLEX and [18], respectively. For R (S) instances, the maximum optimality gap for
CPLEX, [18] and our algorithm are respectively 57.56% (11.87%), 8.88% (100%) and 4.51% (0.49%). Our
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algorithm is then able to solve more instances, e.g., 48 and 78 challenging instances in comparison to CPLEX and
[18] (which cannot find feasible solutions for half the s02 instances), respectively.

It is interesting to observe the convergence behavior of these three exact algorithm over time as illustrated
in Figure 5 for instance 49 from class r10 (stopping criteria was fixed at 10 hours run time and optimality gap
of 0.03%). We see that, while CPLEX starts off with tighter bounds than [18], it terminates with the largest
optimality gap. Our algorithm quickly finds tight bounds. The initial bounds are much tighter than alternate
approaches and it quickly converges to an optimal solution. It is interesting to observe that the alternate methods
also find the optimal solution, although at much slower peace. However, they cannot prove its optimality due to
slow progression of the lower bound.

Figure 5: Convergence behavior of the exact algorithms over time

5.3.1 Large instances

We conclude the experimental study by focusing on the performance of our algorithm on larger instances, when
the available computing time is also larger. We present the results for a time limit of 10 CPU hours, for the largest
instance classes in our sets, r11 - r14 and s03. For a more comprehensive view of the topic, we also included the
instances that remained unsolved in previous sections, i.e., r06, r09 and r10. The numerical results for the BD
algorithm we propose, CPLEX and [18] are summarized in Table 9.

We observe that our algorithm performs better than other exact methods. The average optimality gap for the R
instances for the three methods are 2.35%, 11.55% and 3.66%, respectively, while the average time requirements
are 14721.59, 22017.86 and 17422.54 CPU seconds. Our algorithm is capable of solving 65.90% of the instances,
more than the 50.48% of CPLEX and 59.43% by the method of [18]. It is noticeable that our proposed method
is the only one able to solve all the s03 instances, and to do it in short times, which emphasizes its robustness in
handling different instances.

Looking closely to the convergence behavior of the proposed algorithm on large instances, we observed some
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Table 9: Computational experiments on larger instances

Proposed BD algorithm Cplex 12.6 Crainic et al. [2016]
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r06 2366.40 0.67 100.00 9436.76 0.57 85.33 3494.55 0.80 98.67
r09 4888.16 0.86 94.67 13983.34 1.64 78.67 6238.04 0.98 97.33
r10 10074.77 0.92 88.00 24408.12 4.65 45.33 16021.18 1.35 70.67
r11 14155.99 1.96 62.67 20576.50 11.24 60.00 17436.35 2.86 54.67
r12 13844.30 2.31 74.67 21792.24 11.95 52.00 21124.33 3.80 46.67
r13 28814.03 4.09 20.00 29440.17 19.29 20.00 28155.89 5.38 28.00
r14 28907.46 5.63 21.33 34487.90 31.54 12.00 29487.41 10.45 20.00

s03 4958.44 0.69 100.00 29682.71 5.51 33.33 36000 54.211915 0.00

difficulties for some instances, mainly due to the a less-well-performing second phase inducing long plateaus
without any improvement in the bounds. We examined, in particular, the 187 R instances (out of 525) for which
the algorithm failed to reach optimality. We observed, on average for these unsolved instances, a lower bound
value at the root node of 1108493.01 at time 2043.91, and a final lower bound of 1116109.30 at time 36099.04.
The very low improvement rate corresponding to these figures indicates the need for more research into improving
the second phase of the BD algorithm, in order to broaden its application as an exact method to these challenging
instances of the SND problem.

6 Conclusions and Remarks

We presented various acceleration strategies to boost the convergence of the Benders decomposition method.
The strategies include those already certified in the literature for their positive impact on the algorithm as well
as new techniques. We added two cutting-plane methods to the Benders framework to overcome three main
drawbacks which make its application less effective than alternative approaches, i.e., weak linear relaxation of the
problem at hand, weak optimality cuts, and weak relaxation of the master problem. To overcome the ineffective
initial iterations, a warm-start strategy was used, which allows generating a set of tight cuts quickly. We also
proposed to generate Pareto-optimal cuts through fixing variables in the auxiliary problem of [30] by exploiting
the dual information from the solution of the primary subproblem. A simple heuristic was also developed to find
high-quality incumbent solutions. To avoid extraction and inclusion of feasibility cuts, we developed relatively
complete recourse property for the problem, and proposed strengthened alternate cuts to the classical feasibility
ones to avoid generating optimality cuts with big coefficients.

The proposed algorithm was successfully tested on a wide range of stochastic network design instances. We
observed that the proposed algorithm is at least 10 times faster than the state-of-the-art algorithms and commercial
solvers. We also realized that valid inequalities at both master and subproblem level are very important. The results
indicated that VIs for the SP are even more important when tight inequalities are present. Moreover, we noticed
that carefully updating the core point at each iteration can improve the performance of the BD algorithm through
the generation of better cuts.

There are several directions to be explored to further enhance the proposed algorithm. We observed that the
algorithm is sensitive to the core point in terms of both initialization and updating. Despite the importance of
this subject, there is still no theoretical guiding on how to initiate and update this point. The second phase of the
algorithm takes the largest portion of the running time. Although it starts with a fairly tight upper bound, it hardly
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improves this bound. The lower bound also progresses very slowly. Thus, developing advanced acceleration
strategies specialized for the second phase of the algorithm appears an important subject for future research.
Another line of research revolves around improving the proposed heuristic so as to make it more rapid while
keeping the same level of accuracy. In the same line of research, studies on selection criteria for carefully choosing
solutions from a pool appear promising, in order to avoid using many useless solutions to generate bounds and
cuts. Last but no least, we found great opportunities in improving the proposed algorithm by using parallelization
techniques. We plan to report on this topic in the near future.
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A Feasibility-restoration strategy

In the proposed warm start strategy, the convex combination yws = λ ȳ+(1−λ )yws may yield an infeasible yws

solution. To restore yws to a feasible solution, we solve following linear program:

min
ŷ∈R|A|+

∑
a∈A

faŷa

s.t. ∑
a∈i+

xk
a(ω)− ∑

a∈i−
xk

a(ω) = dk
i (ω) ∀i ∈ N,∀k ∈K

∑
k∈K

xk
a(ω)≤ ua (ȳa + ŷa) ∀a ∈A

ŷa ≤ 1− ȳa ∀a ∈A ,

where ω is the subproblem for which yws has been infeasible. After solving this problem, yws is set equal to
ȳa + ŷa.

B Lower-bound lifting inequality

We consider following formulation, denoted MCNF(ω), to bound the recourse cost of scenario ω ∈ Ω in the
master formulation.

(MCNF(ω)) v(d(ω)) := min
x(ω)∈R|A||K|+

∑
k∈K

∑
a∈A

(
ck

a +
fa

ua

)
xk

a(ω)

s.t. ∑
a∈i+

xk
a(ω)− ∑

a∈i−
xk

a(ω) = dk
i (ω) ∀i ∈ N,∀k ∈K

∑
k∈K

xk
a(ω)≤ ua ∀a ∈A .

This formulation is equivalent to the linear programming (LP) relaxation of the deterministic multicommodity
capacitated fixed-charged network design problem associated to scenario ω , since in the LP relaxation the equality

∑k∈K xk
a(ω) = uaya,∀a ∈A is alway satisfied.

Proposition B.1. Let x̄(ω) and ȳ be the optimal solution of problem MCNF(ω), then

θ(ω)≥ ∑
k∈K

∑
a∈A

ck
ax̄k

a(ω)+ ∑
a∈A

fa (ȳa− ya) , (40)

is a valid cut for the Benders MP.

Proof. MCNF(ω) is a linear relaxation of the deterministic multicommodity capacitated fixed-charged network
design problem associated to scenario ω and thus provides a lower bound on its optimal cost. Therefore, at
any optimal solution according to the property of "wait and see" and "here and now" solutions in stochastic
programming ([2]), following relation among the Benders equivalent reformulation of the extensive form and
MCNF(ω) for scenario ω holds,

∑
a∈A

faya +θ(ω)≥ ∑
k∈K

∑
a∈A

(ck
a +

fa

ua
)x̄k

a(ω) (41)

Accordingly to the variable transformation ȳa =
∑k∈K xk

a(ω)
ua

,∀a ∈A , we have

∑
a∈A

faya +θ(ω)≥ ∑
k∈K

∑
a∈A

ck
ax̄k

a(ω)+ ∑
a∈A

fa
∑k∈K x̄k

a(ω)

ua
= ∑

k∈K
∑

a∈A
ck

ax̄k
a(ω)+ ∑

a∈A
faȳa (42)

→ θ(ω)≥ ∑
k∈K

∑
a∈A

ck
ax̄k

a(ω)+ ∑
a∈A

faȳa− ∑
a∈A

faya = ∑
k∈K

∑
a∈A

ck
ax̄k

a(ω)+ ∑
a∈A

fa (ȳa− ya) , (43)

which translates into the validity of (40).
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Solving a MCNF problem for each scenario may not computationally be interesting. For this reason, we
propose to solve only a single network flow problem with minimum demand, i.e., dmin

k = minω∈Ω

{
dω

k

}
,∀k ∈K .

The benefit of this auxiliary problem is that its solution gives a valid lower bound for all the scenario SPs. The
obtained bound can be further improved for each scenario according to Theorem 4.1. To show the results of this
theorem, we use the sensitivity analysis theory.

Let π̄ be the dual variables associated to the flow conservation constraints and ∆ indicate the set of alternative
optimal dual solutions. The function v(d) is piece-wise linear in d. Thus, v(dmin + d̃) ≥ v(dmin)+max

π∈∆

πT d̃ ≥

v(dmin)+ π̄T d̃. If we set d̃ = d(ω)−dmin for each scenario, we will have

θω ≥ ∑
k∈K

∑
a∈A

ck
ax̄k

a + ∑
a∈A

fa (ȳa− ya)+ ∑
k∈K

(dk(ω)−dmin
k )(π̄k

O(k)− π̄
k
D(k)) ∀ω ∈Ω. (44)

This confirms the validity of the proposed inequality (15).

C Cover inequalities separation and lifting procedure

To generate a CI cut, two subsets of C1 (open arcs) and C0 (closed arcs) in (N̄,N) are determined such that they
satisfy following condition:

∑
a∈(N̄,N)\(C1∪C0)

ua ≥ dmax
(N̄,N)− ∑

a∈C1

ua > 0. (45)

To find the subsets of C1 and C0 which is of crucial importance, Algorithm 3 is used.

Algorithm 3 : OpenCloseArcs algorithm
Initialization: U ← ∑a∈(N̄,N) ua,D← dmax

(N̄,N)
,ε0← 10−5,ε1← 10−5

for all a ∈ (N̄,N) (in arbitrary order) do
if ȳa ≤ ε0 and U−ua ≥ D then

Add a to C0

Close a by setting U ←U−ua

end if
if ȳa ≥ 1− ε1 and D−ua > 0 then

Add a to C1

Open a by setting D← D−ua and U ←U−ua

end if
end for

The algorithm uses U and D to represent the residual capacity and residual demand, respectively. Given the
current fractional solution, ȳ, the procedure attempts to close an arc a with small ȳa (as measured by ε0) such
that the residual capacity after closing that arc still covers the residual demand D, i.e., U − ua ≥ D. Similarly,
the algorithm tries to open arc a with large ȳa (as measured by 1− ε1) and such that there is still some residual
demand to cover. To obtain a violated CI, if there is any, one needs to solve following optimization problem,

Zsep := min ∑
a∈(N̄,N)\(C1∪C0)

ȳaZa (46)

s.t : ∑
a∈(N̄,N)\(C1∪C0)

uaZa ≥ ∑
a∈(N̄,N)\C0

ua−dmax
(N̄,N) (47)

Za ∈ {0,1} ∀a ∈ (N̄,N)\(C1∪C0). (48)
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Which finds a cover set C over the restricted cutset (i.e., (N̄,N)\(C1∪C0)), where Za is 1 if arc a is selected to be
in the cover C, and 0 otherwise. Then, if Zsep < 1 a violated CI is found. Solving this problem may collectively
be quite time consuming as it has to be solved repeatedly. Thus, we use a heuristic which considers the arcs in
non-decreasing order of the ȳa value. Ties are broken by considering the arcs in non-increasing order of their
capacity. Once a violated CI is obtained, it is easy to derive a minimal cover set from it, by removing as many as
possible arcs with large ȳa in order to meet the required condition, i.e., ∑a∈C ȳa < 1.

To ensure the validity and also further strengthen the derived inequality, a lifting procedure is needed to be
applied. The main idea of lifting is to include other variables that are not present in the cover set C. To do so, we
associate a lifting coefficient λa to each a ∈ (N̄,N)\C. Once the set of open and close arcs are determined, the
lifting procedure is applied to the variables one-by-one. The procedure, first applies a lifting down on variables in
(N̄,N)\(C∪C0), and then a lifting up on variables in C0.

At a given step of the procedure, suppose we are lifting yr. Then let L indicate the set of variables in (N̄,N)\C
that has already been lifted; C̃ = (N̄,N)\(C∪C0); λa = 1,∀a∈C; and d̄ = dmax

(N̄,N)
−∑a∈C̃\L ua. To lift down variable

yr ∈ (N̄,N)\(C∪C0), we solve following 0-1 knapsack problem

Zopt := min ∑
a∈C∪L

λaya (49)

s.t. ∑
a∈C∪L

uaya ≥ d̄ +ur (50)

ya ∈ {0,1} ∀a ∈C∪L. (51)

If this problem is feasible, the lifting coefficient is λr = Zopt − 1−∑a∈L\C0 λa, otherwise, λr = ∑a∈L∪C λa −
∑a∈L\C0 λa. To lift up variable yr ∈C0, following 0-1 knapsack has to be solved

Zopt := min ∑
a∈C∪L

λaya (52)

s.t. ∑
a∈C∪L

uaya ≥ d̄−ur (53)

ya ∈ {0,1} ∀a ∈C∪L. (54)

If this problem is feasible, the lifting coefficient is given by λr = 1+∑a∈L\C0 λa−Zopt ; otherwise, we set λr =

∑a∈L\C0 λa−∑a∈C∪L λa.
Since the lifting coefficient have small values, the 0-1 knapsack problems are solved efficiently using a dy-

namic programming algorithm ([32]). Last but not least, the order of lifting has a direct impact on the quality of
the extracted cut. Thus, lifting down the variables in (N̄,N)\(C∪C0) is accomplished before lifting up for the
variables in C0. Also, when lifting down the variables in (N̄,N)\(C∪C0), variables with fractional value are lifted
in non-decreasing order of their current value. Ties are broken by considering the arcs in non-increasing order of
their capacity. When lifting up the variables in C0, the exact opposite is done. As a result, following lifted cover
inequality is obtained

∑
a∈(N̄,N)\C

λaya + ∑
a∈C

ya ≥ 1+ ∑
a∈(N̄,N)\(C∪C0)

λa. (55)

D Minimum cardinality inequalities separation and lifting procedure

Let denote C1 as the set of open arcs and C0 the set of closed arcs as obtained by the OpenCloseArcs Algorithm
3. To find the lest number of arcs in (N̄,N)\(C1∪C0), let l(N̄,N)\(C1∪C0) = max

{
h : ∑a=1,..,h ua < dmax

(N̄,N)\(C1∪C0)

}
+

1 such that arc capacities are ordered in a non-increasing fashion ua ≥ ua+1. We then seek lifting coefficients of λ
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in the following inequality,

∑
a∈C1∪C0

λaya + ∑
a∈(N̄,N)\(C1∪C0)

ya ≥ l(N̄,N)\(C1∪C0)+ ∑
a∈C1

λa. (56)

The lifting procedure is similar to that of LCI. Let L indicate the set of arcs lifted so far; C̃ = (N̄,N)\(C1∪C0);
λa = 1,∀a ∈ C̃; and d̄ = dmax

(N̄,N)
−∑a∈C1\L ua. Then, to lift down variable yr, the following 0-1 knapsack problem

has to be solved,

Zopt := min ∑
a∈C̃∪L

λaya (57)

s.t. ∑
a∈C̃∪L

uaya ≥ d̄ +ur (58)

ya ∈ {0,1} ∀a ∈ C̃∪L. (59)

If this problem is feasible, the lifting coefficient will be λr = Zopt − l(N̄,N)\(C1∪C0)−∑a∈L\C0 λa; otherwise, it is
λr = ∑a∈C̃∪L λa− l(N̄,N)\(C1∪C0)−∑a∈L\C0 λa. To lift up variable yr ∈C0 following 0-1 knapsack problem has to be
solved

Zopt := min ∑
a∈C̃∪L

λaya (60)

s.t. ∑
a∈C̃∪L

uaya ≥ d̄−ur (61)

ya ∈ {0,1} ∀a ∈ C̃∪L. (62)

If it is feasible, the coefficient will be λr = l(N̄,N)\(C1∪C0) +∑a∈L\C0 λa− Zopt ; otherwise, λr = l(N̄,N)\(C1∪C0) +

∑a∈L\C0 λa−∑a∈C̃∪L λa− 1. Note, lifting down the variables in A1 must be accomplished before lifting up those
in C0. When lifting down, those with fractional value at current solution must be lifted first, in non-decreasing
order of their current value. Ties are broken by considering the arcs in order of their capacity in a non-increasing
fashion. To lift up variables in C0, the exact opposite is performed.
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Table 10: Impact of Heuristic (II) on the proposed algorithm for a time limit of 5 hours

Without heuristic With heuristic
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 41.66 0.58 100.00 35.28 0.59 100.00
r05 48.91 0.48 100.00 43.61 0.49 100.00
r06 5328.76 0.84 80.00 4664.60 0.78 92.00
r07 292.84 0.62 100.00 203.75 0.64 100.00
r08 1046.74 0.63 100.00 708.95 0.59 100.00
r09 6194.76 1.35 72.00 4784.35 1.28 80.00
r10 8227.40 1.38 64.00 7783.09 1.25 68.00

s01 18.21 0.14 100.00 16.65 0.14 100.00
s02 223.59 0.15 100.00 214.63 0.18 100.00

Ave. R: 3025.87 0.84 88.00 2603.38 0.80 91.43
Ave. S: 120.90 0.14 100.00 115.64 0.16 100.00

E Additional numerical results
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