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Abstract. Existing research on Electric vehicle routing problems (E-VRPs) assumes that charging 

stations (CSs) can simultaneously charge an unlimited number of electric vehicles. In practice, 

however, CSs have a limited number of chargers. In this research, we investigate the impact of 

considering these capacity restrictions. We focus on the electric vehicle routing problem with 

nonlinear charging function (E-VRP-NL). We first extend existing mixed integer linear programming 

formulations of the E-VRP-NL to deal with capacitated CSs. We then present a route-first 

assemble-second matheuristic to tackle the problem. In the first stage of this method, we rely on 

an existing metaheuristic to generate a pool of high-quality routes while relaxing the capacity 

constraints. In the second stage, we use a Benders' like decomposition to assemble a solution to 

the problem by assembling routes from the pool. We evaluate four different assembling strategies. 

The results suggest that our algorithm performs well on a set of instances adapted from the 

literature. 
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1. Introduction and motivation

Electric vehicle routing problems (E-VRPs) started to be studied by the Operational
Research (OR) community only recently. They consist in designing routes to serve a set
of customers using a fleet of electric vehicles (EVs). Due to their relatively short driving
range the EVs can detour to charging stations (CSs) to replenish their battery. Decisions
in E-VRPs concern not only the sequence in which the customers are to be served, but
also where and how much to charge the batteries. It is safe to say that one of the key
elements in E-VRPs is the modeling of the charging process. For instance, some studies
assume that the vehicle is fully replenished whenever they detour to a CS. In the green
vehicle routing problem (G-VRP) tackled by Erdoğan and Miller-Hooks (2012), Koc̆ and
Karaoglan (2016), Montoya et al. (2016), andBartolini and Andelmin (2017), charging an
EV is done in constant time, while in (Schneider et al., 2014), (Hiermann et al., 2016),
(Keskin and C̆atay, 2016), and (Desaulniers et al., 2016) the charging time linearly depends
on the state of charge (SoC) of the EV at its arrival at the CS. The full charging policy may
be too restrictive. To overcome its drawbacks and to potentially save energy and time, one
possibility is to allow partial recharge. This policy has been investigated in (Bruglieri et al.,
2015), (Desaulniers et al., 2016), (Felipe et al., 2014), (Montoya et al., 2017), and (Froger
et al., 2017). The latter three have studied the case in which, like in practice, CSs may
have different technologies. Additionally, to account for the nonlinear relation between the
time spent charging and the amount of energy charged, Montoya et al. (2017) and Froger
et al. (2017) modeled charging functions using piecewise linear expressions. This results
in the definition of the electric vehicle routing problem with nonlinear charging function
(E-VRP-NL).

It is noteworthy that the above-mentioned assume that the charging infrastructure is
private, that is, that the CSs are always available. This is a plausible assumption, since
large companies can decide to invest in their own Infrastructure to avoid dealing with the
uncertainty in CSs availability (e.g, queues). However, to the best of our knowledge, one
of the key assumptions in the E-VRPs defined in the literature is that the CSs are unca-
pacitated, that is, they are able to simultaneously handle an unlimited number of EVs. In
practice, however, each CS has a limited number of chargers which limits the number of EVs
charging at the same time. Needless to say, neglecting the CS capacity constraints may lead
to poor decisions in practice. For instance we ran a feasibility test on the 120 BKS for the
E-VRP-NL reported in (Montoya et al., 2017) limiting the number of chargers per CS to
1, 2, 3, and 4. According to our results, nearly 50% of the Montoya et al. (2017) solutions
become infeasible when only 1 charger is available. This figure drops to 11% and 2% for the
cases with 2 and 3 chargers. On the other hand, when 4 chargers are available, all solutions
remain feasible. It is worth noting that if a company decides to invest in out-of-the-depot
charging infrastructure, there are few chances that they decide to install more than a couple
of chargers at each CS. AppendixA presents the details of our feasibility test.

In this research we focus on the E-VRP-NL and we extend it to consider capacitated
CSs. We call the resulting problem the E-VRP-NL with capacitated CSs (E-VRP-NL-C).
We first propose several modeling alternatives for the E-VRP-NL-C built on top of existing
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MILP formulations of the E-VRP-NL. Then, we present a two-stage matheuristic to tackle
the problem. The first stage of the algorithm consists in building a pool of routes while not
taking the capacity constraints into account. The second stage of the algorithm assembles the
routes from the pool to build a solution to the E-VRP-NL-C. We propose different strategies
based on a Benders’ like decomposition of the assembling problem. More specifically, the
overall scheme of the approach consists in solving a set partitioning model and discarding,
by means of cuts, all along the branch-and-bound tree, selections of routes that are infeasible
or for which the total time is underestimated.

The remainder of this document is organized as follows. Section 2 formally introduces
the E-VRP-NL-C. Section 3 describes MILP formulations of the problem. Section 4 presents
a two-stage matheuristic approach to tackle the E-VRP-NL-C. Section 5 shows the compu-
tational results of our carried out experiments. Finally, Section 6 concludes and outlines
research perspectives.

2. Problem description

We define the electric vehicle routing problem with nonlinear charging function and
capacitated stations (E-VRP-NL-C) as follows.

Let I be the set of customers that need to be served and F the set of charging stations
(CSs) at which the vehicles can stop to recharge their battery. Each customer i P I has
a service time gi. The customers are served using an unlimited and homogeneous fleet of
EVs. The vehicle driving-range is limited by a route duration limit Tmax. All the EVs have
a battery of capacity Q (expressed in kWh). At the beginning of the planning horizon, the
EVs are located in a single depot that they leave fully charged. Traveling from one location
i (the depot, a customer, or a CS) to another location j incurs a driving time tij ¥ 0 and
an energy consumption eij ¥ 0. Driving times and energy consumption both satisfy the
triangular inequality. Due to their limited battery capacity, EVs may require to stop en
route at CSs. Charging operations can occur at any CS and EVs can be partially recharged.
Each CS i P F has a capacity, given by the number Ci of available chargers. Each CS has
also a piecewise linear charging function Φip∆q that maps for an empty battery the time ∆
spent charging at i to the SoC of the vehicle when it leaves i. If q is the SoC of the EV when
it arrives at i and ∆ the charging time, the SoC of the EV when it departs from i is given by
Φip∆�Φ�1

i pqqq. We denote as Bi � t0, . . . , biu the set of breakpoints of the charging function
at i (sorted in ascending order). We also introduce cik and aik to represent the charging time
and the SoC for breakpoint k P Bi of the CS i. For notational convenience, let ρik denote
the slope of the segment between ci,k�1 and cik (i.e. ρik � paik � ai,k�1q{pcik � ci,k�1q) and
ηik the y-intercept of the segment between ci,k�1 and cik (i.e. ηik � aik � cikρik).

Feasible solutions to the E-VRP-NL-C satisfy the following conditions:
1. each customer is visited exactly once by a single vehicl;
2. each route starts and ends at the depot
3. each route satisfies the maximum-duration limit Tmax
4. each route is energy-feasible (i.e., the SoC of an EV when it arrives at and departs

from any location is between 0 and Q)
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5. no more than Ci EVs simultaneously charge at each CS i P F
The objective of the E-VRP-NL-C is to minimize the total time. The latter takes into

account driving, service, and charging times. Due to the limited availability of CSs, it also
includes the waiting times that may occur at CSs whenever an EV queues for a charger.

3. Mixed-integer linear programming formulations

In this section we extend the formulations propose in (Froger et al., 2017) for the closely-
related E-VRP-NL to deal with CS capacity constraints. Their formulations belong to two
different families: CS replication-based formulations and recharging path-based formula-
tions. The former share the spirit of the MILP formulations that are most typically used in
the E-VRP literature. The latter, on the other hand, correspond to an alternative model-
ing strategy. According to their results recharging path-based formulations outperform CS
replication-based formulations. We, however, decided to explore both types of formulations
for the E-VRP-NL-C.

3.1. CS replication-based formulation

Similarly to the E-VRP-NL, the E-VRP-NL-C can be defined on a digraph G � pV,Aq,
where V � t0u Y I Y F 1 is the set of nodes and A is the set of arcs connecting nodes of V .
The symbol 0 represents the depot. The set F 1 contains βi copies of each CS i P F (i.e.,
|F 1| �

°
iPF

βi). The value of βi corresponds to an upper bound on the number of visits to

CS i. Note that βi must be strictly greater than Ci; otherwise, the capacity constraints are
redundant. In the remainder of this manuscript, depending on the context, we refer to an
element of F 1 or F 1

i as a CS copy or as a charging operation. We denote as F 1
i � F 1 the set

containing the βi copies of CS i (i.e., |F 1
i | � βi and F 1 �

�
iPF F

1
i ). We assume that F 1

i is
an ordered set and that its elements are numbered from 1 to βi. We use the preprocessing
technique presented in (Froger et al., 2017) to reduce the number of arcs in A. In a nutshell,
this technique primarily removes arcs that can never been traveled as regards to the battery
capacity.

3.1.1. The baseline model

According to the experiments carried out in (Froger et al., 2017), the best formulations
of the E-VRP-NL use arc-based tracking variables for the SoC and the time. Binary variable
xij is 1 if and only if an EV travels arc pi, jq P A. Continuous variables τij and yij track
(respectively) the time and SoC of an EV when it departs from vertex i P V to travel arc
pi, jq. If no vehicle travels between nodes i and j, both variables are 0. Continuous variables
qi and oi specify (according to the piecewise linear approximation of the charging function)
the SoC of an EV when it arrives at and departs from CS copy i P F 1. Continuous variable
∆i represents the duration of the charging operation performed at CS copy i P F 1. Let i P F 1

be a CS copy and k P Bizt0u. We introduce the continuous variable φik representing the
amount of energy charged at i on the segment that lies between the points pci,k�1, ai,k�1q
and pcik, aikq. We also introduce the binary variable ωik taking the value of 1 if and only if
an EV charges at i on the segment between the points pci,k�1, ai,k�1q and pcik, aikq. In the
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E-VRP-NL, optimal solutions are left-shifted schedules. Indeed, when minimizing the total
time, there is no advantage to wait before serving any customer or before charging at any
CS. In the E-VRP-NL-C, this does not hold since there are coupling constraints between
the routes. As a matter of fact, it may sometimes be profitable to wait at a CS for an
available charger rather than to go to another CS. Without loss of generality, we restrict
waiting times to occur only before charging operations. We introduce a continuous variable
∇i representing the waiting time of an EV before the start of the charging operation i P F 1.
By adapting the existing CS replication-based formulations of the E-VRP-NL, a baseline
model of the E-VRP-NL-C denoted as rFCSs, is written as follows:

rFCSsmin
¸
i,jPV

tijxij �
¸
iPF 1

p∆i �K∇iq �
¸
iPI

gi (1)

subject to ¸
pi,jqPA

xij � 1, @i P I (2)

¸
pi,jqPA

xij ¤ 1, @i P F 1 (3)

¸
pj,iqPA

xji �
¸

pi,jqPA

xij � 0, @i P V (4)

¸
pi,jqPA

pyij � eijxijq �
¸

pj,lqPA

yjl, @j P I (5)

¸
pi,jqPA

pyij � eijxijq � qj , @j P F 1 (6)

¸
pj,lqPA

yjl � oj , @j P F 1 (7)

yij ¤

�
Q� min

lPFYt0u
eli



xij , @pi, jq P A (8)

yij ¥

�
eij � min

lPFY0
ejl



xij , @pi, jq P A (9)

qi � φik ¤ aikωik �Qp1 � ωikq, @i P F 1,@k P Bizt0u (10)

φik ¤ paik � ai,k�1qωik, @i P F 1,@k P Bizt0u (11)¸
kPBizt0u

ωik ¥
¸

pi,jqPA

xij , @i P F 1 (12)

ωik ¤
¸

pi,jqPA

xij , @i P F 1,@k P Bizt0u (13)

oi � qi �
¸

kPBizt0u

φik, @i P F 1 (14)

∆i �
¸

kPBizt0u

φik{ρik, @i P F 1 (15)

¸
pi,jqPA,i�0

pτij � ptij � pjqxijq �
¸

pj,lqPA

τjl, @j P I (16)

¸
pi,jqPA:i�0

pτij � tijxijq � ∆j �∇j �
¸

pj,lqPA

τjl, @j P F 1 (17)
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τij ¤ pTmax � tij � pj � tj0qxij , @pi, jq P A : i � 0, j P I (18)

τij ¤
�
Tmax � tij � ∆min

j � tj0
�
xij , @pi, jq P A : i � 0, j P F 1 (19)¸

ph,jqPA

xhj ¤
¸

ph,lqPA

xhl, @i P F,@j, l P F 1i , j   l (20)

¸
pj,hqPA:j�0

τjh � ∆j ¥
¸

pl,hqPA:l�0

τlh � ∆l, @i P F,@j, h P F 1i : j   l (21)

xij P t0, 1u, @pi, jq P A (22)

τij ¥ 0, @pi, jq P A : i � 0 (23)

yij ¥ 0, @pi, jq P A (24)

qi ¥ 0, oi ¥ 0,∆i ¥ 0, @i P F 1 (25)

φik ¥ 0 @i P F 1,@k P Bizt0u (26)

ωik P t0, 1u @i P F 1,@k P Bizt0u (27)

Equation (1) gives the objective of the problem. It includes the driving, service, and
charging times, but also a weighted sum (with a parameter K ¡ 0) of the waiting times.
Constraints (2) ensure that each customer is visited once. Constraints 3 ensure that each
CS copy is visited at most once. Constraints (4) impose the flow conservation. Constraints
(5) track the battery level at each customer. Constraints (6) track the battery level of the
EV when it arrives at a CS copy. Constraints (7) track the battery level of the EV when
it leaves a CS copy. Constraints (8) couple the yij and xij variables. Constraints (9) state
that if an EV traverses the arc pi, jq its SoC when leaving i must be enough to traverse the
arc and then to reach the closest CS or the depot. Constraints (10) restrict the segments
on which EVs can charge according to the state of charge they have at their arrival at CS
copies. Constraints (11) restrict the charging amount that can be charged on each segment.
Constraints (12) impose the activation of one segment whenever an EV visits a CS copy.
Constraints (13) are valid inequalities. Constraints (14) define the state of charge after
a charging operation. Constraints (15) define the time spent charging at each CS copy.
Constraints (16) track the departure time at each customer. Constraints (17) track the
departure time at CS copies. Constraints (18) and (19) couple the τij and xij variables.
Specifically, if an EV traverses an arc pi, jq, then its departure time must guarantee that the
EV returns to the depot without exceeding the tour duration limit. Constraints (20) and
(21) break symmetries created by the introduction of CS copies. These constraints ensure
that the copies of CS i are visited in the reverse order they appear in Fi (i.e, a charging
operation j P F 1

i must start after a charging operation l P F 1
i if l ¡ j). The reverse order is

used since departure time and charging duration variables take the value 0 when a CS copy
is not visited. Finally, constraints (22)–(27) define the domain of the decision variables.

The E-VRP-NL-C is a combined routing (the EVs visiting customers) + scheduling
(the charging operations) problem. To extend previous formulations of the E-VRP-NL to
include the CS capacity constraints, we borrowed some ideas from the Resource Constrained
Scheduling Problem (RCPSP) literature. More precisely, we propose two formulations, a
flow-based and an event-based, drawing some inspiration from the models introduced by
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Artigues et al. (2003) and Koné et al. (2011) for the RCPSP. There is, however, a major
difference between our CS scheduling problem and the RCPSP or the related parallel machine
scheduling problem: in our problem i) the duration of each task (i.e., charging operation)
and ii) the number of tasks executed by each resource (i.e., charging station) are decision
variables (they are problem parameters in the RCPSP). To the best of our knowledge this
case has never been addressed in the literature before.

3.1.2. Flow-based modeling of the capacity constraints

In our flow-based formulation (hereafter referred to as FB), we consider Ci parallel ma-
chines for each CS i P F . Each machine can execute at any given time at most one job. Let
i P F be a CS and 0i and βi�1 be two dummy charging operations (acting as the source and

the sink of the flow). We denote as �F 1
i the set F 1

i Y t0i, βi � 1u of charging operations (CS
copies are here considered as charging operations). Without loss of generality, we can en-

force that in any feasible solution, after the completion of an operation j P�F 1
i, the resource

unit (charger) allocated to j is directly transferred to a unique operation l P�F 1
i.

The FB formulation requires the following decision variables. Sequential binary variable
ujl is equal to 1 if and only if charging operation l starts after the completion of charging
operation j ¡ l (symmetry breaking constraints (21) impose that charging operation j starts

before charging operation l   j). Let now j, l P�F 1
i be two charging operations (potentially

dummy) such that j ¡ l. Continuous flow variable fjl denotes the quantity of resource that
is transferred from charging operation j to charging operation l. For notational convenience,
we define rCj :� 1 for all j P F 1

i and rC0i :� rCβi�1 :� Ci.
For the sake of clarity, we provide here one example to illustrate the structure of the flow

network. We consider in this example a CS i with 2 chargers (i.e. Ci � 2) and we create 4
copies of the CS (βi � 4). Figure 1 shows an example of four charging operations occurring
at this CS (hereafter referred to as Example 1). Figure 2 illustrates the structure of the flow
network on this example and describes a feasible flow.

Figure 1: Charging operations at CS i P F

A flow-based formulation of the capacity constraints is as follows:

¸
lP�F 1

i,l¡j

flj �
¸

pl,jqPA

xlj @i P F,@j P F 1i (28)
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Figure 2: Structure of the flow network for CS i (left) and a feasible flow (right)

¸
lP�F 1

i,l¡j

flj �
¸

lP�F 1
i,l j

fjl � 0, @i P F,@j P F 1i (29)

Ci �
¸

lP�F 1
i,l¡0i

fl,0i
� 0, @i P F (30)

¸
lP�F 1

i,l βi�1

fβi�1,l � Ci � 0, @i P F (31)

ujh ¥ ujl � ulh � 1, @i P F,@j, l, h P F 1i : j ¡ l ¡ h (32)¸
pl,hqPA

τlh � ∆l �
¸

pj,hqPA

τjh ¥ pTmax � ti0q pujl � 1q , @i P F,@j, l P F 1i , j ¡ l (33)

fjl ¤ minp rCj , rClqujl, @i P F,@pj, lq P F 1i , j ¡ l (34)

ujl P t0, 1u, @i P F,@j, l P F 1i , j ¡ l (35)

fjl ¥ 0 @i P F,@j, l P �F 1i, j ¡ l (36)

Constraints (28) state that a resource has to be allocated to a charging operation in F 1
i

if an EV reaches the corresponding CS. Constraints (29)-(31) ensure the flow conservation.
Constraints (32) express the transitivity of the precedence relations. Constraints (33) are
the disjunctive constraints coupling the start time of j and l to ujl. The constraint is active
when ujl � 1 and, in that case, it enforces the precedence relation between the charging
operations j and l (i.e., l cannot start before the completion of j). Constraints (34) couple
the flow variables to the sequence variables. Constraints (35) and (36) define the domain of
the decision variables.

3.1.3. Event-based formulation of the capacity constraints

This event-based formulation (hereafter referred to as EB) is inspired by the on/off
event-based formulation introduced by Koné et al. (2011). Consider the start of a charging
operation as an event. The intuition behind the EB formulation is to count the number of
events that overlap with the execution of other charging operations and set a constraint on
that number.

Similarly to the FB formulation, on the EB formulation we can write the CS capacity
constraints independently for each CS i. We define binary variable vjl that is 1 if and only
if the charging operation at j P F 1

i starts at the same time as charging operation l P F 1
i

(j ¥ l) or is still being processed after the start of l. We use the variables pvjlqjPF 1i :j¥l to

count the number of chargers required during each time interval defined by the starting time
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of a charging operation j and j � 1. Figure 3 illustrates the definition of these variables for
Example 1.

Figure 3: Illustration of the definition of variables pvjlqjPF 1
i :j¤l for CS i

An event-based formulation of the capacity constraints is as follows:

vjj �
¸

ph,jqPA

xhj , @i P F,@j P F 1i (37)

¸
pl,hqPA

τlh � ∆l ¥
¸

pj,hqPA

τjh � p1 � vjl � vj,l�1q pTmax � ti0q @i P F,@j, l P F 1i : j ¡ l (38)

j�1̧

h�0

vjh ¤ jp1 � vj,l�1 � vjlq @i P F,@j, l P F 1i : j ¡ l (39)

¸
jPF 1

i :j¥l

vjl ¤ Ci @i P F,@l P F 1i (40)

vjl P t0, 1u, @i P F,@j, l P F 1i : j ¥ l (41)

Constraints (37) forces each charging operation j P F 1
i to activate variable vjj. Constraints

(38) ensure that if charging operation j ends before charging operation l starts, then the
starting time of l is larger than the completion time of j. Constraints (39) enforce contiguity
for the value of the vjl variables. Since charging operations are non-preemptive, we can
safely forbid cases where for j P F 1 there exists l P F 1

i such that vjl � 1, vj,l�1 � 0,
and vj,l�2 � 1. Constraints (40) limit the number of charging operations that can be
simultaneously performed. Constraints (41) define the domain of the newly introduced
decision variables.

3.2. Recharging path-based formulation

One drawback of the previous formulations is the need to replicate the CSs. If we want to
ensure that no optimal solutions are cut off, the number of copies to create has to be large.
However this yields impracticable MILPs. See (Froger et al., 2017) for a detailed discussion
on this issue. To overcome this difficulty, Froger et al. (2017) propose an alternative modeling
of the E-VRP-NL-C based on the concept of recharging paths (hereafter sometimes referred
to simply as paths) between each couple of nodes (either customers or the depot).

The concept of recharging paths leads to the definition of the E-VRP-NL-C on a directed
multigraph rG � prV , rAq, where rV � t0u Y I and rA is the set of arcs associated with paths

connecting nodes of rV . Without preprocessing, the number of paths explodes with the
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number of CSs and the number of customers. However, a large number of these arcs cannot
be part of an optimal solution. A dominance rule can be applied to discard unpromising
recharging paths. To find all the non-dominated paths, we use the procedure described in
AppendixB. Let i, j P rV be two nodes such that i � j. We define Pij as the set of (non-
dominated) recharging paths connecting node i to node j by visiting none or some CSs. Let
P be the set of all recharging paths connecting any couple of nodes in the graph. Specifically,
we have P �

�
i,jPrV ,i�j Pij. We denote oppq and dppq as the origin and destination of a path

p P P . For each path p, we define an arc in rA from oppq to dppq. Let us denote np as the
number of CSs in path p and let Lp � t0, 1..., np � 1u � N be the set of CS positions in the
path p. Let ipp, lq be the CS at position l P Lp in path p. Additionally, if an EV can travel
from i to j without visiting any CS, we create the corresponding path (denoted p0

ij) and add
it to Pij.

A recharging path-based formulation of the E-VRP-NL-C involves the following decisions
variables. Binary variable xp is 1 if and only if an EV travels recharging path p P P .
Continuous variables τp and yp track the time and SoC of an EV when it departs from
node oppq to dppq using path p. Continuous variables qpl and opl specify (according to
the piecewise linear approximation of the charging function) the SoC of an EV when it
arrives at and departs from ipp, lq (i.e. the CS at position l P Lp). Continuous variable ∆pl

represent the duration of the charging operation performed at ipp, lq. Continuous variable
φplk represents the amount of energy charged on the segment that lies between the points
pcipp,lq,k�1, aipp,lq,k�1q and pcipp,lq,k, aipp,lq,kq at the CS ipp, lq. Binary variables ωplk equal to one
if and only if an EV charges at the CS at position l in path p on the segment between the
points pcipp,lq,k�1, aipp,lq,k�1q and pcipp,lq,k, aipp,lq,kq. Let ep and tp be the energy consumption
and the driving time associated with path p P P . Continuous variable ∇pl represents the
waiting time at the CS at position l in path p before charging. We also introduce starting
and completion time for the charging operations. Continuous variables spl and dpl represent
the starting and completion time of the charging operation performed at ipp, lq.

A path-based formulation of the E-VRP-NL-C, denoted as rP paths, is as follows:

rF paths min
¸
pPP

�
�tpxp � ¸

lPLp

p∆pl �∇plq

�
�¸

iPI

gi (42)

subject to¸
jP rV ,i�j

¸
pPPij

xp � 1, @i P I (43)

¸
jP rV ,i�j

¸
pPPji

xp �
¸

jP rV ,i�j

¸
pPPij

xp � 0, @i P rV (44)

¸
lP rV ,l�j

¸
pPPlj

�
�yp � epxp �

¸
lPLp

popl � qplq

�
�

¸
lP rV ,l�j

¸
pPPjl

yp, @j P I (45)

yp � eoppq,ipp,0qxp � qp0, @p P P (46)

op,l�1 � eipp,l�1q,ipp,lqxp � qpl, @p P P,@l P Lpzt0u (47)
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¸
iP rV ,i�0

¸
pPPi0

�
�yp � epxp �

¸
lPLp

popl � qplq

�
¥ 0, @i P I (48)

yp ¤ Qxp, @p P P (49)

qpl � φplk ¤ aipp,lq,kωplk �Qp1 � ωplkq, @p P P,@l P Lp,@k P Bipp,lqzt0u (50)

φplk ¤ paipp,lq,k � aipp,lq,k�1qωplk, @p P P,@l P Lp,@k P Bipp,lqzt0u (51)¸
kPBipp,lqzt0u

ωplk ¥ xp, @p P P,@l P Lp (52)

ωplk ¤ xp, @p P P,@l P Lp,@k P Bipp,lqzt0u (53)

opl � qpl �
¸

kPBipp,lqzt0u

φplk, @p P P,@l P Lp (54)

∆pl �
¸

kPBipp,lqzt0u

φplk{ρilk, @p P P,@l P Lp (55)

¸
iP rV zt0u,i�j

¸
pPPij

τp �
¸

iPV,i�j

¸
pPPij

�
�tpxp � ¸

lPLp

p∆pl �∇plq

�
� pj �

¸
lP rV ,l�j

¸
pPPjl

τp, @j P I (56)

τp �
¸
lPLp

p∆pl �∇plq ¤
�
Tmax � tp � pdppq � tdppq,0

�
xp, @p P P (57)

τp � toppq,ipp,0qxp �∇p0 � sp0, @p P P (58)

dp,l�1 � tipp,l�1q,ipp,lqxp �∇pl � spl, @p P P,@l P Lp, l � 0 (59)

∆pl � dpl � spl, @p P P,@l P Lp (60)

xp P t0, 1u, @p P P (61)

τp ¥ 0, yp ¥ 0 @p P P (62)

qpl, opl, spl, dpl,∆pl,∇pl ¥ 0, @p P P,@l P Lp (63)

φplk ¥ 0 @p P P,@l P Lp,@k P Bipp,lqzt0u (64)

ωplk P t0, 1u @p P P,@l P Lp,@k P Bipp,lqzt0u (65)

Equation (42) gives the objective of the problem: minimizing the total time (driving
times, service times, and charging times). Constraints (43) ensure that each customer is
visited once. Constraints (44) impose the flow conservation. Constraints (45) track the
SoC of EVs at each customer. Constraints (46) track the SoC at the arrival at the first
CS of each recharging path. Constraints (47) couple the SoC of an EV that leaves a CS
to go to another CS. Constraints (48) ensure that if the EV travels between a vertex and
the depot, it has sufficient energy to reach its destination. Constraints (49) couple the SoC
tracking variable to the arc travel variables. Constraints (56) track the departure time at
each vertex. (57) couple the time tracking variable to the arc travel variables, and impose
the tour duration limit. Constraints (50) restrict the segments on which EVs can charge
according to the state of charge they have at their arrival at CSs. Constraints (51) restrict
the charging amount that can be charged on each segment. Constraints (52) impose the
activation of one segment whenever an EV visit a CS. Constraints (53) are valid inequalities.
Constraints (54) define the SoC of an EV after a charging operation. Constraints (55) define
the time spent charging at each CS. Finally, constraints (61)–(65) define the domain of the
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decision variables.
It is worth noting that other authors have proposed recharging path-based formulations

for closely related problems. For instance Andelmin (2014) proposed a refueling path-based
model for the G-VRP. However, his model greatly differs from ours because the author
used node tracking variables and the problem contains several simplifying hypothesis: a full
charging policy and a linear approximation of the charging function.

For each visit to a CS in a path of set P , we associate a charging operation o P O.
Every charging operation o corresponds to the visit of the CS at position lo in a path
that we denote po. Let Oi the set of charging operations at CS i P F . Sequential binary
variable uoo1 is equal to 1 if and only if charging operation o1 is constrained to start after
the completion of charging operation at o. For every CS i P F , we denote ε�i and ε�i
be two dummy charging operations (acting as the source and the sink of the flow). Let
po, o1q P

�
Oi Y tε�i u

�
�
�
Oi Y tε�i u

�
be a couple of charging operations, continuous flow

variable foo1 denotes the quantity of resource that is transferred from charging operation o
to charging operation o1. For notational convenience, we define rCo :� 1 for all o P Oi andrCε�i :� rCε�i :� Ci. A flow-based formulation of the capacity constraints for rP paths is as
follows:

¸
o1POiYtε

�
i u

fo1o � xpo @i P F,@o P Oi (66)

¸
o1POiYtε

�
i u

fo1o �
¸

o1POiYtε
�
i u

foo1 � 0, @i P F,@o P Oi (67)

Ci �
¸

oPOiYtε
�
i u

fε�i ,o
� 0, @i P F (68)

¸
oPOiYtε

�
i u

fo,ε�i
� Ci � 0, @i P F (69)

spo,lo � dpo1 ,lo1 ¥ Tmax puo1o � 1q , @i P F,@o, o1 P Oi (70)

foo1 ¤ minp rCo, rCoquoo1 , @i P F,@po, o1q P
�
Oi Y tε�i u

�
�
�
Oi Y tε�i u

�
(71)

uoo1 P t0, 1u, @i P F,@o, o1 P Oi (72)

foo1 ¥ 0 @i P F,@po, o1q P
�
Oi Y tε�i u

�
�
�
Oi Y tε�i u

�
(73)

Alternatively, to model the capacity constraints, an event-based formulation or one of
the continuous formulations introduced by Kopanos et al. (2014) could be used. Some
preliminary experiments revealed that those formulations are intractable (even for small
instances) because they rely on a large number of binary variables and constraints. We
therefore decided to abandon that path.

4. A two-stage solution method

It is known that directly solving MILP formulations is usually computationally in-
tractable for medium-sized and especially for large-sized instances. The results in Froger
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et al. (2017) confirm the limitation of MILP solvers to provide good-quality solutions to the
E-VRP-NL in a reasonable amount of time even for small instances (up to 20 customers). To
tackle the E-VRP-NL-C we propose a route-first assemble-second approach. The first stage
of our matheuristic intends to build a high-quality and diverse pool Ω of routes. The second
stage assembles solutions by selecting a subset of routes from the pool Ω. This two-stage
method has been successfully applied to several hard vehicle routing problems (VRPs): the
VRP with time windows (Alvarenga et al., 2007), the truck and trailer routing problem
(Villegas et al., 2013), the Swap-Body VRP (Absi et al., 2015), the E-VRP-NL (Montoya
et al., 2017). Traditionally, the second phase builds the best possible solution by solving a
set partitioning (SP) model over the pool of routes. Route-first, assemble-second approaches
have been mostly applied to problems without route coupling constraints. The latter means
that in those problems the feasibility of one route is totally independent of the feasibility
of other routes. Due to the CS capacity constraints, clearly the E-VRP-NL does not fall
into this category. To the best of our knowledge, only two studies have dealt with RFAS
approaches for VRPs with route coupling constraints: Morais et al. (2014) and Grangier
et al. (2017) as an intensification phase of a metaheuristic for the VRP with cross docking.
In both cases, the cross-dock constraints are relaxed in the SP model. Each time the SP
model finds a new better solution Morais et al. (2014) applied a local search to make it meet
the cross-dock constraints, whereas Grangier et al. (2017) used a constraint programming
model to check its feasibility.

We first propose to relax the CS capacity constraints during the first stage and to adapt
the set partitioning model of the second stage to take the limited numbers of chargers at
CSs into account.

4.1. First stage: an iterated local search

The first phase of the matheuristic builds a pool of routes that meet the constraints
2, 3, and 4 described in Section 2 (i.e. all the constraints that need to be satisfied for
a route are satisfied, except the CS capacity constraints). To generate these routes, we
use the approach proposed by Montoya et al. (2017) for the E-VRP-NL. These authors
designed an iterated local search (ILS) initialized with a solution provided by a constructive
heuristic. The metaheuristic first sequences the customers and then takes the charging
decisions. Specifically, at each iteration of the local search, the method builds a giant tour
by concatenating the routes in the current solution. Then, it applies a small perturbation
to the tour based on a randomized double bridge operator. Afterwards, it applies a splitting
procedure to create a feasible solution to the problem. The split procedure works on an
acyclic graph where nodes are customers and there exists an arc between two nodes if there
exists a route where the first and the last visited customers are the origin and the tail
of the arc, respectively. The procedure repairs energy-infeasible routes using a heuristic
procedure that considers the insertion of one CS between each pair of customers. Solving
a shortest path problem in the above graph leads to a feasible solution to the E-VRP-NL.
To improve this latter, a local search is applied. This search uses two classical operators
focusing on sequencing decisions: two-opt and relocate (intra-route and inter-route versions
with best improvement selection). A third operator revises the charging decisions using a
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MILP model. During the procedure, all the local optimum solutions are stored in a pool
Ω. It is noteworthy that in all the routes in Ω do not have any waiting time (i.e. charging
operations are left-shifted). Moreover, the charging decisions inside each route are already
optimized.

4.2. Second stage: a decomposition method to assemble the routes

The second stage of the matheuristic builds the best possible solution from Ω. We
proposed to assemble solutions using a Benders’ like decomposition of the problem into a
route selection master problem and a CS capacity management sub-problem. The master
problem consists in selecting a set of routes such that every customer is covered exactly
by one route. Every selection of routes (output of the route selection problem) yields a
set of charging operations; each operation being defined by a CS, a starting time, and a
recharge amount. The sub-problem checks if the CS capacity constraints can be met. We
proposed three different versions of this CS capacity management sub-problem depending
to the degree of freedom that we allow to modify the routes selected as a solution to the
master problem. In the a first strategy, we do not revise the charging decisions (starting
time and recharging amount) in the routes selection and we only check if the CS capacity
constraints are satisfied for the selected routes. In the second strategy, we can delay the
charging operations (i.e. postpone their starting time) to satisfy the CS capacity constraints.
In other words, contrary to the first strategy, here we allow vehicles to wait for a charger if
a CS is overcrowded. In the third strategy, in addition to the introduction of waiting times,
we also revise the recharging amounts, but not the visited CSs.

To efficiently solve the problem while exploiting this decomposition, we adopt the fol-
lowing approach implemented on top of a commercial solver. We solve the SP model related
to the route selection problem using a branch-and-bound algorithm. At each integer node
of the branch-and-bound tree, the corresponding solution is sent to the CS capacity man-
agement problem. In the three strategies, we introduce cuts to discard infeasible selection
of routes. In the two last strategies we also add cuts to account for the additional waiting
times potentially introduced. Contrary to the classical implementation of Benders decompo-
sition, we dynamically generate cuts in the branch-and-bound tree used to solve the initial
relaxed master problem. More specifically, at each integer node of the branch-and-bound
tree, the corresponding solution is sent to the sub-problem in order to potentially generate
the Benders cuts. This method is referred to as a Benders-based branch-and-cut algorithm
in (Naoum-Sawaya and Elhedhli, 2010) or as a branch-and-Benders-cut method in (Gen-
dron et al., 2014). It also shares a lot of similarities with the Branch&Check framework
– introduced by Thorsteinsson (2001) – and originally designed for linear and constraint
programming (CP) hybridization.

In the following subsections, we provide a detailed description of our three strategies. We
use the following notation. Set Ωi � Ω contains the routes serving customer i P I and tr is
the duration of a route r P Ω. Set OpΩq contains all the charging operations occurring in the
routes belonging to Ω and OipΩq contains the charging operations occurring at CS i P F . Let
∆̄poq, ro, and io be the duration, the route, and the CS associated with charging operation
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o P OpΩq. We define symbols S̄poq and C̄poq as the original starting and completion time of
charging operation o in the route ro of the pool Ω.

4.2.1. First strategy

In the first strategy, we do not revise the charging operations involved in the routes built
during the ILS stage. Let us first define a MILP model for the route selection problem.
We introduce binary variable xr that is 1 if and only if route r P Ω is selected. The MILP
formulation is then the following classical SP model:

rHC1s min
¸
rPΩ

trxr (74)¸
rPΩi

xr � 1, @i P I (75)

xr P t0, 1u, @r P Ω (76)

The objective (74) is to select the subset of routes from Ω that minimizes the total
duration. Constraints (75) ensure that each customer is visited exactly once. Constraints
(76) set the domain of the decision variables.

We now assume that we have a fixed selection Ωpx̄q of routes given by fixing the variables
txrurPΩ. Specifically, we have Ωpx̄q � tr P Ω|x̄r � 1u. Let SHC1px̄q be the resulting
CS capacity management problem that consists in checking the feasibility of the charging
operations at every CS. SHC1px̄q can be decomposed into |I| independent problems, one for
every CS. Let define Oipx̄q � OipΩq as the set of charging operations occurring at CS i P F
in the routes of Ωpx̄q. To solve SHC1px̄q, we apply procedure CheckCapacityCut(Oipx̄q, Ci)
for every CS i P F to check the existence of subsets of operations overloading the CS. If
the set returned by this procedure is non-empty, there exists one or multiple time intervals
during which the number of EVs charging at i is strictly greater than Ci.

To discard the current solution x̄ in the route selection sub-problem, we add the following
cuts to rHC1s: ¸

rPΨipΩpx̄q,Uq

xr ¤ Ci @i P F, @U P U (77)

where ΨipΩpx̄q, Uq � tr P Ωpx̄q|Or X U � Hu.
These cuts simply state that the number of selected routes (according to x̄) that have

charging operations that overlap at a specific CS must be less than or equal to the number
of chargers available at this CS.

We can also imagine to separate cuts for continuous solution x̄. In that case, we check
the satisfaction of the CS capacity constraints by simply considering that for every CS i
every operation o P Oipx̄q requires a fractional number x̄ro of chargers. Another strategy
is to consider only the routes r such that x̄r � 1. In our experiments, this latter strategy
proves to lead to the best results.
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Procedure CheckCapacityCut(O,C)

input : - a list of charging operations L numbered from 1 to n
(Lpiq denotes the operation at position i in the list L)
- an integer number C ¥ 1 representing the maximum number
of operations that can be scheduled simultaneously

output: a set containing all the maximal subsets of charging operations leading to a
violation of the CS capacity constraint

1 Sort the operations in L in non-decreasing order of starting time
2 U ÐH
3 U Ð tLp1qu
4 k Ð 2
5 excessÐ false
6 while k ¤ n do
7 for every operation o P U do
8 if S̄pLpkqq ¥ C̄poq then
9 if excess then

10 U Ð U Y tUu
11 excessÐ false

12 end
13 U Ð Uztou

14 end

15 end
16 U Ð U Y tLpkqu
17 if |U | ¡ C then
18 excessÐ true
19 end

20 end
21 if excess then
22 U Ð U Y tUu
23 end
24 return U

4.2.2. Second and third strategies

One possible drawback of the first strategy is that it may reject solutions that could
be repaired by simply allowing the EV to wait a few minutes for a charger. As mentioned
earlier, the second and third strategies consider the possibility of introducing waiting times
before the charging operations. Delaying a charging operation in a route r P Ω necessarily
increases the duration of the route. Therefore, allowing the introducing of waiting times
when solving the CS capacity management sub-problem may change the objective function
of the solution computed when solving the route selection problem. Let θ be a non-negative
variable estimating the delay added when solving the CS capacity management sub-problem.
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A MILP formulation of the route selection problem (derived directly from rHC1s) follows:

rHC2s min
¸
rPΩ

trxr � θ (78)¸
rPΩi

xr � 1, @i P I (79)

θ ¥ 0 (80)

xr P t0, 1u, @r P Ω (81)

Given a solution x̄ of rHC2s, we define Ωpx̄q as the set of routes r selected according to x̄
(i.e. Ωpx̄q � tr P Ω|x̄r � 1u). We also define Ω�px̄q as the subset of Ωpx̄q that contains only
the routes including at least one charging operation (i.e. Ω�px̄q � tr P Ωpx̄q|Oprq � Hu).
For convenience, we denote as Oprq the list of charging operations occurring in route r. We
assume that the operations in Oprq are sorted in non-decreasing order of their starting times.
We denote as π�poq and π�poq the charging operations preceding and following o in route ro.
If no charging operation precedes or follows before or after o, we set π�poq � π�poq � �1.
For every route r P Ωpx̄q and for each charging operation o P Oprq in a route we denote
as t�poq the travel time of the EV between the completion of o and the start of π�poq if
o is not the last operation of the route or the arrival at the depot. More specifically, this
time corresponds to the total time spent by the vehicle covering its route between the CS
associated with o and the CS associated with pi�poq or the depot. Similarly, we define as
t�poq the time elapsed between the EV’s departure from the depot (if o is the first operation
of the route) or the completion of π�poq and the beginning of o. We denote as Π�poq and
Π�poq the set of charging operations preceding and following charging operation o.

Second strategy: Let SHC2px̄q be the problem where we want to schedule – while
considering the capacity of the CSs – the charging operations occurring in the routes Ωpx̄q
in order to minimize the addition of waiting times. Contrary to SHC1px̄q, SHC2px̄q does
not decompose into an independent problem for each CS. For each operation o, we introduce
two parameters ESo and LSo representing its earliest and latest possible starting time. The
parameter ESo is equal to S̄poq since by definition the operations are left shifted in each
route of the pool. The parameter LSo is computed by subtracting to Tmax the time needed
to complete the route (considering the duration of the next operations, the driving times,
and no waiting times). Specifically LSo � Tmax � ∆̄poq � t�poq �

°
o1PΠ�poqpt

�po1q � ∆̄po1qq.

A MILP formulation of SHC2px̄q requires several types of decision variables. We define
the continuous variable So defining the starting time of operation o. We model the capacity
constraints using a flow-based formulation. For each CS i P F , we consider two dummy
operations ε�i and ε�i , and we define rCo :� 1 for all o P Oipx̄q and rCε�i :� rCε�i :� Ci. We

then introduce continuous variable foo1 representing the quantity of resource (i.e. chargers)
that is transferred from charging operation o to charging operation o1. We also define the
sequential binary variable uoo1 taking the value of 1 if operation o is processed before activity
o1. A MILP formulation of SHC2px̄q reads:
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rSHC2px̄qs min
¸

rPΩpx̄q s.t. Oprq�H

�
Solast

r
� ESolast

r

�
(82)

uoo1 � uo1o ¤ 1 @i P F,@o, o1 P Oipx̄q : o   o1 (83)

uoo2 ¥ uoo1 � uo1o2 � 1 @i P F,@o, o1, o2 P Oipx̄q (84)

So1 � So ¥ ∆̄poquoo1 � pLSo � ESo1qpuoo1 � 1q @i P F,@po, o1q P
�
Oipx̄q Y tε�i u

�
Y
�
Oipx̄q Y tε�i u

�
(85)

Sπ�poq � So ¥ ∆̄poq � t�poq @r P Ωpx̄q,@o P Oprq : π�poq � �1 (86)¸
o1POipx̄qYtε

�
i u

fo1o � 1, @i P F,@o P Oipx̄q (87)

¸
o1POipx̄qYtε

�
i u

fo1o �
¸

o1POipx̄qYtε
�
i u

foo1 � 0, @i P F,@o P Oipx̄q (88)

Ci �
¸

oPOipx̄qYtε
�
i u

fε�i ,o
� 0, @i P F (89)

¸
oPOipx̄qYtε

�
i u

fo,ε�i
� Ci � 0, @i P F (90)

foo1 ¤ max
��Co, �Co1	uoo1 @i P F,@o, o1 P Oipx̄q (91)

ESo ¤ So ¤ LSo @i P F,@o P Oipx̄q (92)

foo1 ¥ 0 @i P F,@po, o1q P
�
Oipx̄q Y tε�i u

�
Y
�
Oipx̄q Y tε�i u

�
(93)

uoo1 P t0, 1u, @i P F,@o, o1 P Oipx̄q (94)

The objective (82) is to minimize the waiting time inserted in each route (olastr represents
the last charging operation of route r). Constraints (83) state that for two distinct operations
o and o1, either o precedes o1, o1 precedes o, or o and o1 are processed in parallel. Constraints
(84) express the transitivity of the precedence relations. Constraints (85) are the disjunctive
constraints on the operations related to the same CS. The constraint is active when uoo1 � 1
and, in that case, it enforces the precedence relation between charging operations o and
o1. Constraints (86) enforce the precedence relation and the time lag between the charging
operations occurring in the same route. Constraints (87) state that a charger has to be
allocated to each charging operation. Constraints (88)-(90) ensure the flow conservation.
Constraints (91) couple the flow variables to the sequence variables. Constraints (92) and
(94) define the domain of the decision variables.

To reduce the size of the previous model, we applied the following procedure. For every
CS i and every couple of operations po, o1q P Oipx̄q

2, we created only the variables uoo1 and foo1
if the charger used by operation o can be transferred to operation o1 (i.e., ESo�∆̄poq ¤ LSo1).

One can notice that SHC2px̄q is a particular parallel machine scheduling problem where
the objective is to minimize the total tardiness. Indeed, one can see ESo as the release date
of each charging operation o and ESo� ∆̄poq as its due date if o if it is the last operation of
route ro (the due date is equal to LSo � ∆̄poq otherwise). The particularity of SHC2px̄q is
that there is a minimum time lag between charging operations of the same route. Moreover,
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the last charging operation of the route is late if it does not start exactly at its release date.

Third strategy: In addition to the introduction of waiting times, reducing congestion
at CSs can come from the revision of the amounts of energy charged at each CS in every
route. For example, if an EV leaves a CS i not fully charged and visits another CS j in the
route, one can decide to charge more at CS i to delay the arrival of the EV at j if this latter
is overcrowded. Alternatively, one can decide to charge more at CS j (if possible) to reduce
the time spent at CS i. Let px̄rqrPΩ be a fixed selection of routes (resulting in Ωpx̄q), we
denote SHC3px̄q the sub-problem where we want to minimize the increase in the duration
of the selected routes.

We denote as e�poq the energy consumption of the EV from its departure from io to its
arrival at iπ�poq if o is not the last charging operation of ro or its arrival at the depot. This
takes into account the energy consumed to visit all the customers scheduled in the route
between charging operations o and π�poq or the depot. Similarly, we denote as e�poq the
energy consumption of the EV from its departure from iπ�poq if o is not the first charging
operation of the route or from the depot to its arrival at io. Since a charging operation can
be skipped by shifting energy to previous or next charging operations of the same route, we
define rtpoq and repoq as the time and energy saved if the EV does not detour to perform the
charging operation o.

Our modelization of SHC3px̄q draws very broadly on the formulation rSHC2px̄qs. We
therefore use the decision variables So, foo1 , uoo1 defined in this latter formulation. Let i be
a CS. First, we introduce binary variable zo that is 1 if and only if the charging operation
o P Oipx̄q is not executed anymore and the detour to the corresponding CS is not needed
anymore. Specifically, zo allows to account for special cases where shifting the charging
amount to the other operations of the route can avoid charging operation o. To evaluate
the impact of the revision of the charging operations, we introduce for each route r P Ω�px̄q
a continuous variable Tr that is the new duration of route r. We model the piecewise linear
approximation of the charging function as in the formulation presented in Section 3. Let o
be a charging operation and k P Bizt0u. We define continuous variable φok as the amount
of energy charged during o on the segment that lies between the points pci,k�1, ai,k�1q and
pcik, aikq k P Bi. We also define the binary variable ωok that is equal to 1 if and only if during
the charging operation o the EV charges on the segment between the points pci,k�1, ai,k�1q
and pcik, aikq. We introduce continuous variables y1

o and y2
o that represent the SoC of the

EV before and after charging operation o. Let AEmin
o and AEmax

o be the minimum and
maximum possible SoC before the beginning of o. The value of AEmin

o and AEmax
o are

set considering that the EV charges the minimum (the maximum between the energy to
reach the current CS and the energy needed for the detour) and maximum (the EV left
the previous CS fully charged or with the energy necessary to finish the route) amount of
energy at the previous CSs (if any). Similarly, let DEmin

o and DEmax
o be the minimum and

maximum possible SoC after the completion of o. The value of DEmin
o corresponds either to

the maximum between the energy to reach the next CS if any or the depot and the energy
remaining after leaving the depot fully charged and visiting the previous customers and CSs
in the route. The value of DEmax

o is the minimum between the energy that is needed to
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finish the route after o and the battery capacity Q. A MILP formulation of SHC3px̄q reads:

rSHC3px̄qs min
¸

rPΩpx̄q s.t. Oprq�H

pTr � trq (95)

y1
o � φok ¤ aikwok �Qp1 � wokq, @i P F,@o P Oipx̄q,@k P Bizt0u (96)

φok ¤ paik � ai,k�1qwok, @i P F,@o P Oipx̄q,@k P Bizt0u (97)¸
kPBizt0u

wok ¥ 1, @i P F,@o P Oipx̄q (98)

y2
o � y1

o �
¸

kPBizt0u

φok, @i P F,@o P Oipx̄q (99)

∆o �
¸

kPBizt0u

φok{ρik, @i P F,@o P Oipx̄q (100)

∆o ¤ cibip1 � zoq, @i P F,@o P Oipx̄q (101)

y1
π�poq � y2

o � e�poq � repoqzo @r P Ωpx̄q,@o P Oprq, π�poq � �1 (102)

y2
olast
r

� e�polastr q � repolastr qzolast
r

¥ 0 @r P Ωpx̄q (103)

uoo1 � uo1o ¤ 1 @i P F,@o, o1 P Oipx̄q : o   o1 (104)

uoo2 ¥ uoo1 � uo1o2 � 1 @i P F,@o, o1, o2 P Oipx̄q (105)

So1 � So ¥ ∆o � pESo1 � LEoqp1 � uoo1q @i P F,@o, o1 P Oipx̄q (106)

Sπ�poq � So ¥ ∆o � t�poq � rtpoqzo @r P Ωpx̄q,@o P Oprq, π�poq � �1 (107)¸
o1POipx̄qYtε

�
i u

fo1o � 1 � zo, @i P F,@o P Oipx̄q (108)

¸
o1POipx̄qYtε

�
i u

fo1o �
¸

o1POipx̄qYtε
�
i u

foo1 � 0, @i P F,@o P Oipx̄q (109)

Ci �
¸

oPOipx̄qYtε
�
i u

fε�i ,o
� 0, @i P F (110)

¸
oPOipx̄qYtε

�
i u

fo,ε�i
� Ci � 0, @i P F (111)

foo1 ¤ max
��Co, �Co1	uoo1 @i P F,@o, o1 P Oipx̄q (112)

Tr � Solast
r

� ∆olast
r

� rtpolastr q � t�polastr q @r P Ωpx̄q, (113)

Tr ¤ Tmax @r P Ωpx̄q, (114)

ESo ¤ So ¤ LEo @i P F,@o P Oipx̄q (115)

AEmino ¤ y1
o ¤ AEmaxo @i P F,@o P Oipx̄q (116)

DEmino ¤ y2
o ¤ DEmaxo @i P F,@o P Oipx̄q (117)

φok ¥ 0 @i P F,@o P Oipx̄q,@k P Bizt0u (118)

wok P t0, 1u @i P F,@o P Oipx̄q,@k P Bizt0u (119)

foo1 ¥ 0 @i P F,@po, o1q P
�
Oipx̄q Y tε�i u

�
Y
�
Oipx̄q Y tε�i u

�
(120)

uoo1 P t0, 1u, @i P F,@o, o1 P Oipx̄q (121)

zo P t0, 1u, @i P F,@o P Oipx̄q (122)

Tr ¥ 0, @r P Ωpx̄q (123)
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The objective (95) is to minimize the additional time inserted in each route. Constraints
(96)-(100) model the piecewise linear approximation of the charging function. Constraints
(101) impose a duration equal to 0 for each charging operation that is removed (Smax is
the maximum possible charging time in any CS of F ). Constraints (102) couple the SoC of
the EV after finishing a charging operation with its SoC when starting the next charging
operation occurring in the route. Notice that if zo is equal to 1, then the SoC y1

o � y2
o still

takes into account the energy consumed to detour to CS io. The energy saved by not visiting
this CS is subtracted when computing the SoC at the beginning of the next operation of the
route or at the arrival at the depot (see (103)). For each route, constraints (103) enforce the
corresponding EV to have enough SoC at the end of the last charging operation to reach
the depot. Constraints (104), (105), and (106) define the precedence relationships between
the operations. Constraints (107) enforces the precedence relation and the time lag between
the charging operations occurring in the same route. Notice that if zo is equal to 1, then the
starting time So still takes into account the detour to CS io. The time saved by not visiting
this CS is subtracted during the computation of the departure time for the next operation
of the route or at the arrival at the depot (see (114)). Constraints (108) set if a charging
operation requires a charger or not. Constraints (109) - (112) define the flow constraints.
Constraints (113) compute the duration of each route. Constraints (114) enforce the tour
duration limit. Constraints (115) and (122) define the domain of the decision variables.

Cut generation: The efficiency of the approach is primarily based on the constraints
we generate to cut off infeasible solutions and to bound the variable θ.

When the CS capacity management sub-problem (SHC2px̄q or SHC3px̄q) is infeasible,
we generate an integer Benders cut, also called combinatorial Benders cuts (Codato and
Fischetti, 2006) to invalidate the current solution to the restricted master problem. Let C
be the set of indices of the variables x restricted to be binary and x� the current solution to
the restricted master problem. Denoting Ωpx̄q � tr P Ω|x̄r � 1u, a combinatorial Benders
cut can be defined as follows: ¸

rPΩzΩpx̄q

xr �
¸

rPΩpx̄q

p1� xrq ¥ 1 (124)

Clearly, this cut states that at least one of the variables of the master problem must change
its value with respect to the current solution x̄. This cut is also known as a no-good cut.
Since every selection of routes Ω̄ such that Ωpx̄q � Ω̄ also leads to an infeasible solution, we
can reformulate the cut (124) as follows:¸

rPΩpx̄q

xr ¤ |Ωpx̄q| � 1 (125)

If the sub-problem is feasible, we compare the value of θ (denoted θ̄) to the sub-problem
objective value denoted zSP px̄q. If the objective value of the sub-problem is underestimated
(i.e. θ̄   zSP px̄q), we generate integer optimality cuts to ensure that the value of the variable
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θ is larger than or equal to the value of the sub-problem for the current selection of routes.
Specifically, we add the following cut:

zSP px̄q

�� ¸
rPΩpx̄q

xr �
¸

rPΩzΩpx̄q

xr

�� zSP px̄q p|Ωpx̄q| � 1q � LB ¤ θ (126)

These cuts are similar to those introduced by Laporte and Louveaux (1993) for the integer
L-shaped method. Since every selection of routes Ω̄ such that Ωpx̄q � Ω̄ leads to a solution
with a larger objective value, we can reformulate the cut (126) as follows:

zSP px̄q

��1�
¸

rPΩpx̄q

xr � |Ωpx̄q|

�¤ θ (127)

In order to produce stronger cuts, it is noteworthy that the sub-problem may often be
decomposed into several independents smaller sub-problems. Let Gpx̄q be a graph where
each node represents a CS and there exists an edge between 2 CSs if there exists a route in
Ωpx̄q with charging operations at these 2 CSs. Let ΥpGpx̄qq be the connected components
of graph Gpx̄q. The sub-problem can be decomposed into an independent problem for
each connected component υ P ΥpGpx̄qq (where we consider only the routes with charging
operations associated with CSs in υ). Let Ωpx̄, υq � Ωpx̄q be the routes visiting the CSs
that are part of υ. We can strengthen the cut (125) by replacing it by the following cuts:¸

rPΩpx̄,υq

xr ¤ |Ωpx̄, υq| � 1 @υ P ΥpGpx̄qq (128)

Quite similarly, we can strengthen the cut (127) by replacing it by the following cuts:�¸
υPU

zSP px̄, υq

���1�
¸
υPU

�� ¸
rPΩpx̄,υq

xr � |Ωpx̄, υq|

��¤ θ @U P P pΥpGpx̄qqq ztHu (129)

Notice that the number of these cuts can become large. In that case, we can generate
the cuts (129) only for the sets U such that |U | � 1 or U � ΥpGpx̄qq.

4.2.3. Implementation details

From an implementation point of view, we start the second stage by simply forwarding
the formulation rHC1s or rHC2s to the MILP solver. The cut generation procedure is
implemented inside a callback routine that is invoked by the solver at every node of the
branch-and-bound tree. The cuts computed during this stage are provided to the solver as
lazy constraints if the node is integer or as classical cuts otherwise. After adding them at
a node, the solver also checks the feasibility of the solutions in terms of these constraints.
If the candidate solution is not feasible, the solver discards it and adds the violated lazy
constraints or cuts to the active nodes of the branch-and-bound tree.
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5. Computational results

We tested the different models developed for the E-VRP-NL-C. We used Gurobi 7.0.2 to
solve the ILP models through its Java API. All experiments were performed, using a single
thread with 12 GB, on a cluster of 27 computers, each of which having 12 cores and two
Intel(R) Xeon R© X5675 3.07 GHz processors. We set a 3-hour time limit (the CPU times
are reported in seconds and rounded to the nearest integer). We performed our tests on
100 instances adapted from the 120-instances testbed proposed by Montoya et al. (2017)
(we adapted only the instances that contained at most 160 customers). We adapted each
instance by fixing a number of chargers for each CS. We decided to consider instances in
which all the CSs have the same number of chargers (1, 2, or 3). We penalized the waiting
time in the objective using K � 1.

5.1. Mixed integer linear programming formulations

In order to assess the performance of the proposed MILP formulations, we performed our
tests on small-sized instances. We restrict our tests on the 20 instances of the 120-instances
testbed proposed by Montoya et al. (2017) that contains 10 customers. For CS replication-
based models, the number of copies of each CS i P F is set to β P rCi � 1,�8rXN (i.e.
βi � β, @i P F ). We assume in our tests that in every instance each CS has only one charger
(i.e. Ci � 1, @i P F ). Adapting the terminology used in (Froger et al., 2017), we refer to each
model via “a b c” where a, b, and c refer to the modeling of the SoC and time tracking (A:
arc-based tracking constraints), of the charging function (C: CB piecewise linear constraints
/ R: R piecewise linear constraints), and of the CS capacity constraints (F: flow-based /
E: event-based). If the formulation uses the concept of recharging path, we add the prefix
“Path”. The baseline formulations rFCSs and rF paths correspond to notation “A R” and
“Path A R”. We refer the reader to (Froger et al., 2017) for the detailed explanations of
formulations “A C” and “Path A C”.

Table 1 present the results of the direct solution of the MILP formulations. Specifically,
Table 1a and Table 1b show the results obtained when running CS-replication based and
recharging path-based formulations on the MILP solver. See AppendixC for the detailed
results for each instance. We report for each formulation and each value of β the number of
instances optimally solved to the number of instances with a feasible solution (#Opt/#Feas),
the average solution time for the instances solved to optimality (Time), and the average gap
for the unsolved instances (Gap). We compute the gap pz� zLBq{z where z is the objective
of the computed solution and zLB is the lower bound retrieved by the solver running the
corresponding model. Moreover, since average values do not provide sufficient information,
Figure 4 and Figure 5 show the number of instances optimally solved according to the
solution time for all the formulations we tested.

First, we observe that, on the considered instances, the modeling of the charging func-
tion and the capacity constraints has very little impact on the results. Second, results
tend to show the difficulty to optimally solve even small instances running MILP solver on
CS replication-based and recharging path-based formulations. If we compare these results
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Table 1: Computational results of the different models

β A C E A C F A R E A R F

2
#Opt/#Feas 15/15 15/15 15/15 15/15
Temps (s) 486 861 131 807

3
#Opt/#Feas 18/20 18/20 19/20 17/20
Temps (s) 764 801 1048 959
Gap 8.6% 9.8% 7.2% 9.9%

4
#Opt/#Feas 16/20 16/20 17/20 16/20
Temps (s) 414 719 853 764
Gap 10.9% 13.0% 12.7% 12.8%

(a) CS-replication based formulations

Path A R F Path A C F
#Opt 14/20 16/20
Temps (s) 1468 493
Gap 15.7% 19.4%

(b) Recharging paths-based formulations

with those obtained by Froger et al. (2017) for the E-VRP-NL, the addition of the CS ca-
pacity constraints makes more complex solving the recharging-paths formulations (all the
10-customer instances are optimally solved when dropping these constraints in less than 10
minutes on average). Finally, MILP solver tends to perform slightly better on the path-based
models rather than on the classical models based on the replication of the CS nodes.

(a) β � 3 (b) β � 4

Figure 4: the different CS replication-based formulations for different values of β
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Figure 5: the different recharging path-based formulations

5.2. Two-stage algorithm

Since our contributions are solely focused on the second stage of the matheuristic, we
focus our experiments only on this stage. We tested the different strategies presented in
Section 4.2. For these strategies, we tested two different cutting schemes: only at every
integer node (C1) or at every node1(C2). We report in Table 2 the results obtained when
using Strategy 1, Strategy 2, or Strategy 3. We also conducted another test (Strategy 4 -
Post-processing) in which we solve the second stage in two steps: (1) we solve the SP model
rHC1s without taking the capacity constraints into account, yielding an optimal solution
x̄, and then (2) if x̄ violates the capacity constraints, we solve the model rSHC3px̄qs to
potentially repair it. For each value of the capacity (1, 2, and 3), we report the number
of instances for which we obtained a feasible solution (#Feas), the number of best known
solution reported (#BKSs), and the average solution time (Time). Notice that the solution
time reported takes only the second stage of the matheuristic into account. For a meaningful
comparison, we report two different gaps: the gap to the best known solutions considering
only the instances for which the solution is different from the BKS (Gap�) and the gap to the
BKSs considering all the instances (Gap). We also show the number of feasibility (#Cuts
Feas) and optimality (#Cuts Opt) cuts generated by the algorithm.

First, if the capacity constraints are not binding, it is not very surprising to see that
all the different strategies yield very similar results. We observe that Strategy 4 (and to a
less extend Strategy 1) do not always provide a feasible solutions to the e-VRP-NL-C. This
show the relevance of our Benders’ like decomposition algorithm. Checking only the capacity
constraints in a third stage could either lead to infeasibility or to worst solutions. For one
instance we do not obtain a feasible solution by any of our strategies. It points out the
potential need for taking the capacity constraints into account during the first stage of the
algorithm. Results show that allowing delays when solving the CS capacity management
sub-problem (Strategy 2 and 3) is the most suitable and efficient approach to assemble
solutions in the second stage of the matheuristic. In our tests, it can be noticed that it is

1In the sub-problem, we only consider the routes r such that x̄r � 1
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Table 2: Computational results according to the strategy used for the second stage of the matheuristic

Capacity
Strategy 1 Strategy 2 Strategy 3 Strategy 4
C1 C2 C1 C2 C1 C2 Post-processing

1

#Feas 97 97 99 99 99 99 90
#BKS 83 83 95 95 99 99 77
Time (s) 23 20 6 5 6 5 2
Gap 0.24% 0.24% 0.02% 0.02% - - 0.12%
Gap� 1.65% 1.65% 0.41% 0.41% - - 0.82%
#Cuts Feas 20.2 27.2 9.4 8.5 4 2.4 -
#Cuts Opt - - 32 26 38.1 30.3 -

2

#Feas 99 99 99 99 99 99 99
#BKS 97 97 99 99 99 99 97
Time (s) 3 3 3 3 2 2 2
Gap 0.01% 0.01% - - - - 0.01%
Gap� 0.29% 0.29% - - - - 0.42%
#Cuts Feas 0.5 0.7 0.1 0.1 0 0 -
#Cuts Opt - - 0.7 0.6 0.7 0.7 -

3

#Feas 100 100 100 100 100 100 100
#BKS 100 100 100 100 100 100 100
Time (s) 3 2 2 3 2 2 2
#Cuts Feas 0.1 0.1 0 0 0 0 -
#Cuts Opt - - 0.3 0.3 0.3 0.3 -

not more computationally expensive than just checking the CS capacity constraints. When
all CSs have a unique charger, compared to Strategy 1, using Strategy 2 and 3 improves
the BKs for 12 and 14 instances out of 99, respectively. Moreover, the gap can be quite
important (up to almost 15% for one instance). Last but not least, although revising the
charging amounts improves only slightly the results, results show that using Strategy 3 is
the best assembling method on the considered instances.

To allow future comparisons with our method, we report detailed results for each of the
120 instances in AppendixC.

6. Conclusion and perspectives

In this research, we have extended the E-VRP-NL by introducing capacity constraints
at CSs. In the resulting problem (E-VRP-NL-C), the number of vehicles simultaneously
charging at every CS is limited by the number of chargers.

We have introduced two modeling approaches of these constraints (flow-based and event-
based). Based on this, we have proposed several CS replication-based and recharging path-
based formulations of the E-VRP-NL-C. Results show that optimally solving small-sized
instances is already challenging.

To tackle the E-VRP-NL-C, we have proposed a two-stage matheuristic. During the
first stage, we build a set of routes using an existing metaheuristic based on iterated local
search. During the second stage, we assemble these routes to build a solution to the problem
using a Benders’ like decomposition method. While solving the route selection problem, we
consider the capacity constraints at the nodes of the branch-and-bound tree. We discard
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infeasible solutions or solutions for which the objective is underestimated using cuts. We
have investigated three different versions of the CS capacity management problem ranging
from a simple check of the capacity constraints to the introduction of waiting times to
the revision of the charging amounts in the selected routes. Results show that using more
complex strategies to solve bottleneck issues at CSs does not increase on the considered
instances the solution time while leading to better solutions. Results also show that the
algorithm finds some optimal solutions for small-sized instances.

Future works include the revision of the first stage to include the capacity constraints
and to generate routes that can be better assembled. Finally, it might be interesting to
investigate if the two-stage method can provide an efficient heuristic framework to solve
routing problems where dependency arise between routes.
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AppendixA. Experiments on the feasibility of solutions from the literature when
considering capacitated CSs

AppendixA.1. Checking the capacity constraints in a solution to the E-VRP-NL

Checking the feasibility of a solution consists in verifying that no more than Ci electric
vehicles are simultaneously charged at every CS i. Let Oi be the list of charging operations
occurring at CS i in the solution and Ci the number of chargers available at i. We also
introduce S̄poq and C̄poq that define the starting time and completion time of a charging
operation o P Oi. The feasibility of a solution at CS i can be checked in Op|Oi|

2q time by
applying procedure CheckCapacity(Oi, Ci).

Procedure CheckCapacity(O,C)

input : - a list of charging operations L numbered from 1 to n
(Lpiq denotes the operation at position i in the list L)
- an integer number C ¥ 1 representing the maximum number
of operations that can be scheduled simultaneously

output: true if no more than C operations overlap, false otherwise
1 Sort the operations in L in non-decreasing order of starting time
2 k Ð 2
3 QÐ tLp1qu (Q is a set storing the operations in execution)
4 while k ¤ n do
5 for every operation o P Q do
6 if S̄pLpkqq ¥ C̄poq then
7 QÐ Qztou
8 end

9 end
10 QÐ QY tLpkqu
11 if |Q| ¡ C then
12 return false
13 end
14 k Ð k � 1

15 end
16 return true

AppendixA.2. Detailed results of the experiments on the best known solutions to the E-VRP-
NL

Table A.3a presents the results of our experiments where we consider CSs with identical
capacity. We observe that, if there exists only one charger at each CS, almost half of the
solutions are infeasible. This proportion drops to 11% when considering two chargers per
station, and we need to have four chargers at each CS to ensure the feasibility of all solutions.
In practice, however, there are usually only one or two chargers available at each CS.
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We also conducted another experiment in which we considered CSs with different capac-
ity. We generated the number of chargers at each CS using a two-step procedure. First, we
assume that the capacity of each CS independently follows a discrete uniform distribution
Upa, bq (we denote as ξi the random variable associated with the capacity of CS i). We
tested different distributions: Up1, 2q, Up1, 3q, Up1, 4q, Up2, 3q, and Up2, 4q. Using a Monte-
Carlo scheme, we then generated a sample of n � 1000 realizations (i.e., scenarios) of the
random vector ξ � pξ1, ..., ξnrq, where nr denotes the number of CSs in the instance. Second,
we computed the proportion of realizations (in the set of all the possible realizations of ξ)
for which the solution is feasible. Table A.3b shows that there is also a significant number
of cases for which the solutions are infeasible even if we consider CSs with heterogenous
capacity.

Experiment C1 C2 C3 C4

Proportion of feasible solutions 54% 89% 98% 100%

(a) All CSs have the same number of chargers.

Experiment C12 C13 C14 C23 C24

Average proportion of simula-
tions with feasible solutions

69% 76% 81% 92% 94%

(b) The number of chargers at each CS are generated according to an uniform distribution

Table A.3: Results of the feasibility tests performed on the best solutions obtained in (Montoya et al., 2017)

AppendixB. Generation of non-dominated recharging paths

To compute the set Pij for each couple of nodes i, j P rV , i � j, we apply the procedure
described in Algorithm 1. Let us first introduce some notation. Let p and q be a path and
an initial SoC of the EV, we define function SoCq

p that maps a duration t P R to a final SoC
at the destination dppq. Since the charging functions we consider are piecewise linear, the
function SoCq

p also has this property. To understand the procedure, we recall the following
result demonstrated in (Froger et al., 2017):

Proposition. Let i, j P rV , i � j be two nodes of the multigraph and p, p1 P Pij be two
paths. Path p dominates path p1 if SoCq

pptq ¥ SoCp1qptq for every t ¥ 0 and for every
q P teij|j P F piqu.

Using this proposition, we first fix the SoC q at the departure of i before using a label-
correcting algorithm to compute all the non-dominated paths between i and j if the initial
SoC is q. The underlying directed graph simply consists of a graph containing nodes i and
j and every CS node. For each CS node l, we create the arcs pl, l1q where l1 is another CS
different from l and the arcs pi, lq and pl, jq. We also create the arc pi, jq. The idea of the
algorithm is to delay the decision about how much energy should be charge at a CS as long
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as we reach j or another CS node. For this purpose, it uses SoC-functions as labels. When
the EV traverses an arc, the missing energy (if there is some) is charged retroactively at the
previous CS (if possible). Otherwise traversing the edge is impossible when extending the
label. When we set a CS node, we create one new label for each supporting point of the
current SoC-function in order to explore the possibility of switching over to the new CS at
that point.

Algorithm 1: ComputeRechargingPaths(i,j)

input : two nodes i, j P rV , i � j
output: a set containing all the non-dominated recharging paths between i and j

1 P ÐH (P stores the non-dominated recharging paths)

2 if
�
eij �minlPFYt0u eli �minlPFYt0u ejl ¤ Q

�
then

3 P Ð P Y tp0
iju

4 end
5 for l P F piq do
6 Use a label-correcting algorithm to compute all the non-dominated paths with

respect of an initial SoC of eil.
7 for each non-dominated label at j do
8 Let p be the recharging path associated with the label
9 if p R P then

10 P Ð P Y tpu
11 end

12 end

13 end
14 return P

AppendixC. Detailed computational results

We write each instance using the symbol tcγ1cγ2sγ3cγ4# where γ1 is the method used to
place the customers (i.e., 0: randomization, 1: mixture of randomization and clustering, 2:
clustering), γ2 is the number of customers, γ3 is the number of the CSs, γ4 is ’t’ if we use a
p-median heuristic to locate the CSs and ’f’ otherwise, and # is the number of the instance
for each combination of parameters (i.e., # = 0 , 1 , 2 , 3 , 4). The symbol ”Inf” means
that the instance has been proven infeasible, whereas the symbol ”-” means that no feasible
solution has been found by the solver.

AppendixC.1. MILP formulations
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Table C.4: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 2)

Instance
A C E A R E A C F A R F

Obj Time Obj Time Obj Time Obj Time
tc0c10s2cf1 Inf 8 Inf 1 Inf 6 Inf 5
tc0c10s2ct1 17.30 17 17.30 39 17.30 12 17.30 17
tc0c10s3cf1 25.50 74 25.50 90 25.50 203 25.50 194
tc0c10s3ct1 15.80 5 15.80 4 15.80 13 15.80 18
tc1c10s2cf2 14.03 4 14.03 4 14.03 2 14.03 4
tc1c10s2cf3 Inf 24 Inf 35 Inf 47 Inf 129
tc1c10s2cf4 21.14 7 21.14 7 21.14 4 21.14 7
tc1c10s2ct2 15.75 49 15.75 53 15.75 60 15.75 42
tc1c10s2ct3 Inf 92 Inf 84 Inf 74 Inf 105
tc1c10s2ct4 18.83 7 18.83 2 18.83 6 18.83 2
tc1c10s3cf2 14.03 3 14.03 4 14.03 7 14.03 2
tc1c10s3cf3 21.94 247 21.94 141 21.94 138 21.94 64
tc1c10s3cf4 19.90 20 19.90 17 19.90 27 19.90 21
tc1c10s3ct2 14.20 64 14.20 27 14.20 103 14.20 94
tc1c10s3ct3 18.02 203 18.02 31 18.02 298 18.02 101
tc1c10s3ct4 18.21 22 18.21 9 18.21 34 18.21 14
tc2c10s2cf0 Inf 131 Inf 144 Inf 245 Inf 174
tc2c10s2ct0 18.89 993 18.89 873 18.89 1564 18.89 1553
tc2c10s3cf0 Inf 2033 Inf 2618 Inf 1298 Inf 2254
tc2c10s3ct0 16.51 5583 16.51 672 16.51 10451 16.51 9968

Table C.5: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 3)

Instance
A C E A R E A C F A R F

Obj Time Obj Time Obj Time Obj Time
tc0c10s2cf1 24.75 27 24.75 48 24.75 87 24.75 38
tc0c10s2ct1 17.30 77 17.30 82 17.30 79 17.30 55
tc0c10s3cf1 24.75 4715 24.75 3340 24.75 1906 24.75 10800
tc0c10s3ct1 15.80 20 15.80 14 15.80 28 15.80 17
tc1c10s2cf2 14.03 12 14.03 7 14.03 7 14.03 4
tc1c10s2cf3 21.37 32 21.37 44 21.37 38 21.37 44
tc1c10s2cf4 21.10 23 21.10 14 21.10 32 21.10 48
tc1c10s2ct2 15.75 112 15.75 147 15.75 268 15.75 390
tc1c10s2ct3 18.24 15 18.24 25 18.24 16 18.24 39
tc1c10s2ct4 18.83 10 18.83 4 18.83 15 18.83 19
tc1c10s3cf2 14.03 13 14.03 6 14.03 11 14.03 21
tc1c10s3cf3 21.37 989 21.37 1513 21.37 1167 21.37 2575
tc1c10s3cf4 19.90 80 19.90 47 19.90 59 19.90 111
tc1c10s3ct2 14.20 167 14.20 155 14.20 567 14.20 182
tc1c10s3ct3 18.02 1243 18.02 226 18.02 566 18.02 201
tc1c10s3ct4 18.21 65 18.21 20 18.21 123 18.21 27
tc2c10s2cf0 27.12 4158 27.12 6038 27.12 7623 27.12 10616
tc2c10s2ct0 17.45 1990 17.45 2182 17.45 1823 17.45 1925
tc2c10s3cf0 27.12 10800 27.12 10800 27.12 10800 27.12 10800
tc2c10s3ct0 16.51 10800 16.51 6010 16.51 10800 16.51 10800
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Table C.6: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 4)

Instance
A C E A R E A C F A R F

Obj Time Obj Time Obj Time Obj Time
tc0c10s2cf1 24.75 164 24.75 161 24.75 116 24.75 228
tc0c10s2ct1 17.30 90 17.30 269 17.30 106 17.30 164
tc0c10s3cf1 24.75 10800 24.75 10800 24.75 10800 24.75 10800
tc0c10s3ct1 15.80 28 15.80 109 15.80 39 15.80 82
tc1c10s2cf2 14.03 10 14.03 13 14.03 15 14.03 21
tc1c10s2cf3 21.37 106 21.37 74 21.37 361 21.37 97
tc1c10s2cf4 21.10 40 21.10 23 21.10 49 21.10 106
tc1c10s2ct2 15.75 144 15.75 340 15.75 290 15.75 470
tc1c10s2ct3 18.24 25 18.24 44 18.24 151 18.24 48
tc1c10s2ct4 18.83 31 18.83 6 18.83 18 18.83 16
tc1c10s3cf2 14.03 13 14.03 15 14.03 28 14.03 27
tc1c10s3cf3 21.37 421 21.37 4881 21.37 4726 21.37 6999
tc1c10s3cf4 19.90 127 19.90 75 19.90 197 19.90 180
tc1c10s3ct2 14.20 494 14.20 366 14.20 350 14.20 329
tc1c10s3ct3 18.02 2371 18.02 345 18.02 2693 18.02 507
tc1c10s3ct4 18.21 83 18.21 44 18.21 224 18.21 50
tc2c10s2cf0 26.83 10800 26.83 10800 26.83 10800 26.83 10800
tc2c10s2ct0 17.45 2474 17.45 1402 17.45 2151 17.45 2909
tc2c10s3cf0 26.83 10800 26.83 10800 27.26 10800 26.83 10800
tc2c10s3ct0 16.51 10800 16.51 6338 16.51 10800 16.51 10800

Table C.7: Detailed computational results on the 10-customer instances for the recharging path-based
formulations

Instance
Path A C F Path A R F
Obj Time Obj Time

tc0c10s2cf1 24.75 148 24.75 100
tc0c10s2ct1 17.30 951 17.30 1431
tc0c10s3cf1 24.75 190 24.75 92
tc0c10s3ct1 15.80 229 15.80 176
tc1c10s2cf2 14.03 95 14.03 54
tc1c10s2cf3 21.37 863 21.37 699
tc1c10s2cf4 21.10 1376 21.10 486
tc1c10s2ct2 15.75 5324 15.75 10800
tc1c10s2ct3 18.24 309 18.24 294
tc1c10s2ct4 18.83 131 18.83 84
tc1c10s3cf2 14.03 68 14.03 52
tc1c10s3cf3 21.37 4965 21.37 1227
tc1c10s3cf4 19.90 486 19.90 648
tc1c10s3ct2 14.20 6195 14.20 10800
tc1c10s3ct3 18.02 1655 18.02 1246
tc1c10s3ct4 18.21 499 18.21 310
tc2c10s2cf0 26.83 10800 26.83 10800
tc2c10s2ct0 17.45 10800 17.45 10800
tc2c10s3cf0 26.83 10800 26.83 10800
tc2c10s3ct0 16.51 10800 16.51 10800

32

A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations

CIRRELT-2017-31



AppendixC.2. Two-stage matheuristic

Table C.8: Number of routes considered during the second stage

Instance #Routes
tc0c10s2cf1 22
tc0c10s2ct1 35
tc0c10s3cf1 22
tc0c10s3ct1 40
tc1c10s2cf2 91
tc1c10s2cf3 25
tc1c10s2cf4 42
tc1c10s2ct2 97
tc1c10s2ct3 28
tc1c10s2ct4 31
tc1c10s3cf2 91
tc1c10s3cf3 25
tc1c10s3cf4 36
tc1c10s3ct2 97
tc1c10s3ct3 45
tc1c10s3ct4 31
tc2c10s2cf0 28
tc2c10s2ct0 71
tc2c10s3cf0 28
tc2c10s3ct0 62
tc0c20s3cf2 93
tc0c20s3ct2 117
tc0c20s4cf2 110
tc0c20s4ct2 128
tc1c20s3cf1 145
tc1c20s3cf3 127
tc1c20s3cf4 95
tc1c20s3ct1 151
tc1c20s3ct3 185
tc1c20s3ct4 125
tc1c20s4cf1 156
tc1c20s4cf3 158
tc1c20s4cf4 101
tc1c20s4ct1 153
tc1c20s4ct3 125
tc1c20s4ct4 97
tc2c20s3cf0 92
tc2c20s3ct0 171
tc2c20s4cf0 110
tc2c20s4ct0 129
tc0c40s5cf0 166
tc0c40s5cf4 367
tc0c40s5ct0 127
tc0c40s5ct4 281
tc0c40s8cf0 177
tc0c40s8cf4 342
tc0c40s8ct0 146
tc0c40s8ct4 316
tc1c40s5cf1 274
tc1c40s5ct1 333
tc1c40s8cf1 233
tc1c40s8ct1 310
tc2c40s5cf2 212
tc2c40s5cf3 231
tc2c40s5ct2 224
tc2c40s5ct3 274
tc2c40s8cf2 223
tc2c40s8cf3 260
tc2c40s8ct2 255
tc2c40s8ct3 235
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tc0c80s12cf0 431
tc0c80s12cf1 427
tc0c80s12ct0 442
tc0c80s12ct1 468
tc0c80s8cf0 375
tc0c80s8cf1 547
tc0c80s8ct0 385
tc0c80s8ct1 635
tc1c80s12cf2 512
tc1c80s12ct2 474
tc1c80s8cf2 506
tc1c80s8ct2 509
tc2c80s12cf3 372
tc2c80s12cf4 642
tc2c80s12ct3 373
tc2c80s12ct4 616
tc2c80s8cf3 370
tc2c80s8cf4 641
tc2c80s8ct3 335
tc2c80s8ct4 681
tc0c160s16cf2 1014
tc0c160s16cf4 1318
tc0c160s16ct2 860
tc0c160s16ct4 1254
tc0c160s24cf2 918
tc0c160s24cf4 1308
tc0c160s24ct2 953
tc0c160s24ct4 1280
tc1c160s16cf0 1282
tc1c160s16cf3 1031
tc1c160s16ct0 1277
tc1c160s16ct3 854
tc1c160s24cf0 1236
tc1c160s24cf3 1095
tc1c160s24ct0 1210
tc1c160s24ct3 974
tc2c160s16cf1 930
tc2c160s16ct1 794
tc2c160s24cf1 773
tc2c160s24ct1 855

Table C.9: Detailed computational results on the 10-customer instances for the two-stage matheuristic
(Capacity = 1)

Instance
Strategy 1 (C1) Strategy 2 (C1) Strategy 3 (C1) Strategy 4
Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s)

tc0c10s2cf1 25.22 0.1 25.22 0.1 25.22 0.1 25.22 51
tc0c10s2ct1 17.30 0.1 17.30 0.1 17.30 0.1 17.30 1
tc0c10s3cf1 25.22 0.1 25.22 0.1 25.22 0.1 25.22 1
tc0c10s3ct1 15.80 0 15.80 0 15.80 0.1 15.80 2
tc1c10s2cf2 14.07 0.1 14.07 0.1 14.07 0.1 14.07 0
tc1c10s2cf3 21.37 0.1 21.37 0.2 21.37 0.1 21.37 0
tc1c10s2cf4 21.10 0.1 21.10 0.2 21.10 0.1 Inf 1
tc1c10s2ct2 15.78 0.2 15.78 0.1 15.78 0.1 15.78 0
tc1c10s2ct3 21.40 0.2 18.24 0.2 18.24 0.1 18.24 5
tc1c10s2ct4 18.85 0.2 18.85 0.2 18.85 0.2 18.85 0
tc1c10s3cf2 14.07 0.1 14.07 0.2 14.07 0.1 14.07 0
tc1c10s3cf3 21.37 0.1 21.37 0.2 21.37 0.1 21.37 0
tc1c10s3cf4 19.90 0.2 19.90 0.2 19.90 0.1 20.32 5
tc1c10s3ct2 15.62 0 15.62 0 15.62 0.1 15.62 1
tc1c10s3ct3 18.02 0.1 18.02 0.1 18.02 0.1 18.02 0
tc1c10s3ct4 18.21 0.1 18.21 0.1 18.21 0.1 18.21 0
tc2c10s2cf0 Inf 0.1 27.67 1 27.58 0.8 27.81 6
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tc2c10s2ct0 17.45 0.1 17.45 0.3 17.45 0.3 17.45 2
tc2c10s3cf0 Inf 0.1 27.67 0.8 27.58 0.6 27.81 5
tc2c10s3ct0 16.54 0.1 16.54 0.1 16.54 0.1 16.54 0
tc0c20s3cf2 37.81 0.2 37.81 0.5 37.81 0.5 38.00 10
tc0c20s3ct2 27.11 0.1 27.11 0.1 27.11 0.1 27.11 1
tc0c20s4cf2 37.81 0.2 37.81 0.5 37.81 0.4 37.85 11
tc0c20s4ct2 26.99 0.1 26.99 0.1 26.99 0.1 26.99 1
tc1c20s3cf1 27.53 0.1 27.53 0.2 27.53 0.2 27.53 0
tc1c20s3cf3 26.86 0 26.86 0.1 26.86 0.2 26.86 0
tc1c20s3cf4 27.00 0.1 27.00 0.1 27.00 0.1 27.00 0
tc1c20s3ct1 29.41 0.1 29.41 0.1 29.41 0.1 29.41 0
tc1c20s3ct3 22.68 0.1 22.68 0.1 22.68 0.1 22.68 0
tc1c20s3ct4 26.25 0.1 26.25 0.1 26.25 0.2 26.25 1
tc1c20s4cf1 26.39 0.1 26.39 0.2 26.39 0.1 26.39 1
tc1c20s4cf3 26.81 0.1 26.81 0.1 26.81 0.1 26.81 0
tc1c20s4cf4 27.00 0.1 27.00 0.1 27.00 0.1 27.00 0
tc1c20s4ct1 28.25 0.1 28.25 0.1 28.25 0.1 28.25 0
tc1c20s4ct3 24.43 0.1 24.43 0.2 24.43 0.1 24.43 0
tc1c20s4ct4 27.01 0.1 27.01 0.1 27.01 0.1 27.01 0
tc2c20s3cf0 34.68 0.2 34.68 0.4 34.68 0.4 35.49 19
tc2c20s3ct0 35.80 0.1 35.80 0.3 35.80 0.3 36.39 11
tc2c20s4cf0 34.74 0.2 34.74 0.3 34.74 0.4 34.98 13
tc2c20s4ct0 36.25 0.2 36.25 6.2 36.22 6.7 36.40 8
tc0c40s5cf0 53.04 0.1 53.04 0.1 53.04 0.2 53.04 1
tc0c40s5cf4 51.24 0.1 51.24 0.1 51.24 0.1 51.24 1
tc0c40s5ct0 49.23 0.2 49.23 0.1 49.23 0.1 49.23 1
tc0c40s5ct4 48.70 0.1 48.70 0.1 48.70 0.1 48.70 1
tc0c40s8cf0 53.31 0.1 53.18 0.3 53.18 0.2 53.18 10
tc0c40s8cf4 49.25 0.1 49.25 0.1 49.25 0.1 49.29 8
tc0c40s8ct0 46.79 0.1 46.79 0.1 46.79 0.1 46.79 1
tc0c40s8ct4 49.24 0.1 49.24 0.1 49.24 0.1 49.24 1
tc1c40s5cf1 Inf 0.1 - 10800 - 10800 Inf 7
tc1c40s5ct1 72.92 0.1 72.92 0.3 72.92 0.2 72.92 1
tc1c40s8cf1 63.64 0.6 62.71 1.7 62.71 1.5 Inf 4
tc1c40s8ct1 61.62 0.3 61.46 1.4 61.46 1 Inf 4
tc2c40s5cf2 47.63 0.1 47.63 0.4 47.63 0.2 47.99 6
tc2c40s5cf3 40.20 0.1 40.20 0.3 40.20 0.2 40.20 1
tc2c40s5ct2 47.03 0.1 47.03 0.8 46.99 0.5 46.99 8
tc2c40s5ct3 43.8 0.1 43.80 0.2 43.80 0.1 43.80 0
tc2c40s8cf2 47.31 0.2 47.28 0.2 47.28 0.2 47.28 6
tc2c40s8cf3 39.70 0.1 39.70 0.1 39.70 0.1 39.70 0
tc2c40s8ct2 46.66 0.1 46.66 0.2 46.66 0.2 46.66 0
tc2c40s8ct3 42.67 0 42.67 0.1 42.67 0.1 42.67 1
tc0c80s12cf0 76.18 0.2 76.18 0.2 76.18 0.1 76.18 1
tc0c80s12cf1 85.41 0.2 85.41 0.3 85.41 0.2 85.41 8
tc0c80s12ct0 79.87 0.1 79.87 0.2 79.87 0.1 79.87 2
tc0c80s12ct1 83.42 0.1 83.42 0.2 83.42 0.1 83.42 6
tc0c80s8cf0 79.64 0.1 79.64 0.2 79.64 0.1 79.76 9
tc0c80s8cf1 85.77 0.2 85.77 0.3 85.77 0.3 85.83 22
tc0c80s8ct0 81.83 0.1 81.83 0.3 81.83 0.2 81.83 1
tc0c80s8ct1 86.69 0.2 86.69 0.3 86.69 0.3 86.72 3
tc1c80s12cf2 69.20 0.1 69.20 0.2 69.20 0.2 69.20 0
tc1c80s12ct2 70.67 0.1 70.67 0.2 70.67 0.1 70.67 0
tc1c80s8cf2 71.94 0.2 71.94 0.3 71.94 0.2 71.94 0
tc1c80s8ct2 72.49 0.2 72.49 0.2 72.49 0.2 72.49 1
tc2c80s12cf3 72.53 0.1 72.53 0.2 72.53 0.1 72.53 1
tc2c80s12cf4 85.63 0.5 85.63 1.3 85.63 0.5 Inf 13
tc2c80s12ct3 71.61 0.1 71.61 0.1 71.61 0.1 71.61 0
tc2c80s12ct4 83.70 0.4 83.70 0.4 83.70 0.4 83.82 2
tc2c80s8cf3 72.76 0.1 72.76 0.1 72.75 0.2 72.75 2
tc2c80s8cf4 90.43 0.6 90.43 0.5 90.43 0.7 Inf 1
tc2c80s8ct3 72.47 0.1 72.47 0.2 72.47 0.1 72.47 1
tc2c80s8ct4 85.83 0.3 85.83 0.4 85.83 0.3 85.83 1
tc0c160s16cf2 143.65 4 143.36 1.1 143.34 0.9 143.34 33
tc0c160s16cf4 165.72 1170.6 164.04 163.9 164.02 231.3 164.1 135
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tc0c160s16ct2 143.43 0.8 143.43 1.3 143.43 1.1 143.43 2
tc0c160s16ct4 163.23 137.3 162.57 48.3 162.51 84.3 Inf 39
tc0c160s24cf2 140.59 0.8 140.59 1.4 140.59 1.3 140.59 2
tc0c160s24cf4 163.40 231.8 162.75 102 162.75 125.6 Inf 22
tc0c160s24ct2 139.84 0.5 139.84 0.5 139.84 0.4 139.85 8
tc0c160s24ct4 163.69 327.9 162.60 72.2 162.58 81.6 Inf 26
tc1c160s16cf0 162.03 88.6 160.95 12.7 160.83 7.4 160.83 86
tc1c160s16cf3 153.13 26.1 153.13 23 153.13 24.1 153.37 21
tc1c160s16ct0 159.90 18.3 159.76 3.1 159.74 2.8 159.79 46
tc1c160s16ct3 156.19 2.8 156.19 10.7 154.74 1.2 154.74 18
tc1c160s24cf0 161.20 118.6 158.80 13.9 158.66 12.1 Inf 13
tc1c160s24cf3 150.79 30.2 150.79 42.6 150.79 34 150.79 1
tc1c160s24ct0 160.26 38 159.94 24.3 159.77 22.1 159.77 39
tc1c160s24ct3 149.38 0.8 149.38 0.6 149.38 0.6 149.38 1
tc2c160s16cf1 141.06 0.6 141.06 0.4 141.06 0.5 141.14 7
tc2c160s16ct1 141.43 0.8 141.39 0.6 141.39 0.5 141.39 3
tc2c160s24cf1 141.18 0.4 141.18 0.4 141.18 0.4 141.29 5
tc2c160s24ct1 141.15 1.6 141.15 1.8 141.15 1.6 141.15 1

Table C.10: Detailed computational results on the 10-customer instances for the two-stage matheuristic
(Capacity = 1)

Instance
Strategy 1 (C2) Strategy 2 (C2) Strategy 3 (C2)
Obj Time (s) Obj Time (s) Obj Time (s)

tc0c10s2cf1 25.22 0.1 25.22 0.2 25.22 0.1
tc0c10s2ct1 17.30 0.1 17.30 0.2 17.30 0.1
tc0c10s3cf1 25.22 0.1 25.22 0.1 25.22 0.1
tc0c10s3ct1 15.80 0 15.80 0 15.80 0
tc1c10s2cf2 14.07 0.1 14.07 0.1 14.07 0.1
tc1c10s2cf3 21.37 0.1 21.37 0.2 21.37 0.1
tc1c10s2cf4 21.10 0.1 21.10 0.2 21.10 0.1
tc1c10s2ct2 15.78 0.1 15.78 0.1 15.78 0.1
tc1c10s2ct3 21.40 0.1 18.24 0.1 18.24 0.1
tc1c10s2ct4 18.85 0.1 18.85 0.1 18.85 0.1
tc1c10s3cf2 14.07 0.1 14.07 0.1 14.07 0.1
tc1c10s3cf3 21.37 0.1 21.37 0.2 21.37 0.1
tc1c10s3cf4 19.90 0.1 19.90 0.1 19.90 0.1
tc1c10s3ct2 15.62 0 15.62 0 15.62 0
tc1c10s3ct3 18.02 0.1 18.02 0.1 18.02 0.1
tc1c10s3ct4 18.21 0.1 18.21 0.2 18.21 0.1
tc2c10s2cf0 Inf 0.1 27.67 0.5 27.58 0.6
tc2c10s2ct0 17.45 0.1 17.45 0.2 17.45 0.1
tc2c10s3cf0 Inf 0.1 27.67 0.9 27.58 0.5
tc2c10s3ct0 16.54 0.1 16.54 0.1 16.54 0.1
tc0c20s3cf2 37.81 0.1 37.81 0.4 37.81 0.5
tc0c20s3ct2 27.11 0.1 27.11 0.1 27.11 0.1
tc0c20s4cf2 37.81 0.1 37.81 0.4 37.81 0.4
tc0c20s4ct2 26.99 0.1 26.99 0.1 26.99 0.1
tc1c20s3cf1 27.53 0.1 27.53 0.2 27.53 0.1
tc1c20s3cf3 26.86 0 26.86 0.2 26.86 0.1
tc1c20s3cf4 27.00 0.1 27.00 0.1 27.00 0.1
tc1c20s3ct1 29.41 0.1 29.41 0.2 29.41 0.1
tc1c20s3ct3 22.68 0.1 22.68 0.1 22.68 0.1
tc1c20s3ct4 26.25 0.1 26.25 0.1 26.25 0.1
tc1c20s4cf1 26.39 0.1 26.39 0.1 26.39 0.1
tc1c20s4cf3 26.81 0.1 26.81 0.1 26.81 0.1
tc1c20s4cf4 27.00 0.1 27.00 0.1 27.00 0.1
tc1c20s4ct1 28.25 0.1 28.25 0.1 28.25 0.1
tc1c20s4ct3 24.43 0.1 24.43 0.1 24.43 0.1
tc1c20s4ct4 27.01 0.1 27.01 0.1 27.01 0.1
tc2c20s3cf0 34.68 0.1 34.68 0.3 34.68 0.4
tc2c20s3ct0 35.80 0.1 35.80 0.3 35.80 0.3
tc2c20s4cf0 34.74 0.1 34.74 0.2 34.74 0.3
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tc2c20s4ct0 36.25 0.2 36.25 4 36.22 7.1
tc0c40s5cf0 53.04 0.1 53.04 0.1 53.04 0.1
tc0c40s5cf4 51.24 0.1 51.24 0.1 51.24 0.1
tc0c40s5ct0 49.23 0.1 49.23 0.1 49.23 0.1
tc0c40s5ct4 48.70 0.1 48.70 0.2 48.70 0.1
tc0c40s8cf0 53.31 0.1 53.18 0.2 53.18 0.2
tc0c40s8cf4 49.25 0.1 49.25 0.1 49.25 0.1
tc0c40s8ct0 46.79 0.1 46.79 0.1 46.79 0.1
tc0c40s8ct4 49.24 0.1 49.24 0.1 49.24 0.1
tc1c40s5cf1 Inf 0.1 Inf 3 Inf 191.5
tc1c40s5ct1 72.92 0.1 72.92 0.2 72.92 0.2
tc1c40s8cf1 63.64 0.4 62.71 1.3 62.71 1.8
tc1c40s8ct1 61.62 0.2 61.46 0.6 61.46 0.9
tc2c40s5cf2 47.63 0.1 47.63 0.2 47.63 0.1
tc2c40s5cf3 40.20 0.1 40.20 0.1 40.20 0.2
tc2c40s5ct2 47.03 0.1 47.03 0.5 46.99 0.5
tc2c40s5ct3 43.80 0.1 43.80 0.2 43.80 0.1
tc2c40s8cf2 47.31 0.1 47.28 0.1 47.28 0.1
tc2c40s8cf3 39.70 0.1 39.70 0.3 39.70 0.1
tc2c40s8ct2 46.66 0.1 46.66 0.1 46.66 0.1
tc2c40s8ct3 42.67 0 42.67 0 42.67 0
tc0c80s12cf0 76.18 0.1 76.18 0.2 76.18 0.1
tc0c80s12cf1 85.41 0.1 85.41 0.2 85.41 0.2
tc0c80s12ct0 79.87 0.1 79.87 0.2 79.87 0.1
tc0c80s12ct1 83.42 0.1 83.42 0.1 83.42 0.1
tc0c80s8cf0 79.64 0.1 79.64 0.1 79.64 0.1
tc0c80s8cf1 85.77 0.2 85.77 0.3 85.77 0.3
tc0c80s8ct0 81.83 0.1 81.83 0.2 81.83 0.2
tc0c80s8ct1 86.69 0.2 86.69 0.3 86.69 0.2
tc1c80s12cf2 69.20 0.1 69.20 0.1 69.20 0.1
tc1c80s12ct2 70.67 0.1 70.67 0.2 70.67 0.1
tc1c80s8cf2 71.94 0.2 71.94 0.3 71.94 0.2
tc1c80s8ct2 72.49 0.2 72.49 0.2 72.49 0.2
tc2c80s12cf3 72.53 0.1 72.53 0.2 72.53 0.1
tc2c80s12cf4 85.63 0.4 85.63 1.1 85.63 0.6
tc2c80s12ct3 71.61 0.1 71.61 0.2 71.61 0.1
tc2c80s12ct4 83.70 0.3 83.70 0.3 83.70 0.3
tc2c80s8cf3 72.76 0.1 72.76 0.1 72.75 0.1
tc2c80s8cf4 90.43 0.5 90.43 0.6 90.43 0.6
tc2c80s8ct3 72.47 0.1 72.47 0.2 72.47 0.1
tc2c80s8ct4 85.83 0.3 85.83 0.4 85.83 0.3
tc0c160s16cf2 143.65 2.6 143.36 1 143.34 0.9
tc0c160s16cf4 165.72 1077.8 164.04 112 164.02 91.3
tc0c160s16ct2 143.43 0.6 143.43 1.1 143.43 1
tc0c160s16ct4 163.23 94.4 162.57 71.2 162.51 78.7
tc0c160s24cf2 140.59 0.7 140.59 1.5 140.59 1.1
tc0c160s24cf4 163.40 294.7 162.75 129.7 162.75 108.1
tc0c160s24ct2 139.84 0.4 139.84 0.5 139.84 0.4
tc0c160s24ct4 163.69 199.4 162.60 65.7 162.58 111.4
tc1c160s16cf0 162.03 71.1 160.95 10.2 160.83 7.2
tc1c160s16cf3 153.13 24.2 153.13 19.5 153.13 13.9
tc1c160s16ct0 159.90 19.3 159.76 3 159.74 2.8
tc1c160s16ct3 156.19 2.2 156.19 9.5 154.74 1.2
tc1c160s24cf0 161.20 67.4 158.80 11.4 158.66 8.5
tc1c160s24cf3 150.79 25.8 150.79 34.1 150.79 27.4
tc1c160s24ct0 160.26 28.4 159.94 14.6 159.77 18.2
tc1c160s24ct3 149.38 0.5 149.38 0.5 149.38 0.5
tc2c160s16cf1 141.06 0.5 141.06 0.4 141.06 0.4
tc2c160s16ct1 141.43 0.7 141.39 0.5 141.39 0.4
tc2c160s24cf1 141.18 0.3 141.18 0.4 141.18 0.3
tc2c160s24ct1 141.15 1.3 141.15 2.6 141.15 1.9
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Table C.11: Detailed computational results on the 10-customer instances for the two-stage matheuristic
(Capacity = 2)

Instance
Strategy 1 (C1) Strategy 2 (C1) Strategy 3 (C1) Strategy 4
Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s)

tc0c10s2cf1 25.22 0.1 25.22 0.1 25.22 0.1 25.22 0.1
tc0c10s2ct1 17.30 0 17.30 0 17.30 0.1 17.30 0
tc0c10s3cf1 25.22 0.1 25.22 0.1 25.22 0.1 25.22 0
tc0c10s3ct1 15.80 0 15.80 0 15.80 0.1 15.80 0
tc1c10s2cf2 14.07 0 14.07 0 14.07 0.1 14.07 0
tc1c10s2cf3 21.37 0.1 21.37 0.1 21.37 0.1 21.37 0
tc1c10s2cf4 21.10 0.1 21.10 0.1 21.10 0.1 21.10 0
tc1c10s2ct2 15.78 0.1 15.78 0.1 15.78 0.1 15.78 0
tc1c10s2ct3 18.17 0.1 18.17 0.2 18.17 0.1 18.17 0
tc1c10s2ct4 18.85 0.1 18.85 0.1 18.85 0.1 18.85 0
tc1c10s3cf2 14.07 0 14.07 0 14.07 0.1 14.07 0
tc1c10s3cf3 21.37 0.1 21.37 0.1 21.37 0.1 21.37 0
tc1c10s3cf4 19.90 0 19.90 0 19.90 0.1 19.90 0
tc1c10s3ct2 15.62 0 15.62 0 15.62 0.1 15.62 0
tc1c10s3ct3 18.02 0.1 18.02 0.2 18.02 0.1 18.02 0
tc1c10s3ct4 18.21 0 18.21 0 18.21 0.1 18.21 0
tc2c10s2cf0 26.77 0.1 26.77 0.1 26.77 0.1 26.77 0
tc2c10s2ct0 17.45 0.1 17.45 0.2 17.45 0.1 17.45 0
tc2c10s3cf0 26.77 0.1 26.77 0.1 26.77 0.1 26.77 0
tc2c10s3ct0 16.54 0.1 16.54 0 16.54 0.1 16.54 0
tc0c20s3cf2 37.60 0.1 37.60 0.1 37.60 0.1 37.60 0
tc0c20s3ct2 27.11 0 27.11 0 27.11 0.1 27.11 0
tc0c20s4cf2 37.68 0.1 37.68 0.1 37.68 0.1 37.68 0
tc0c20s4ct2 26.99 0.1 26.99 0.2 26.99 0.1 26.99 0
tc1c20s3cf1 27.53 0.2 27.53 0.1 27.53 0.1 27.53 0
tc1c20s3cf3 26.86 0 26.86 0.2 26.86 0.1 26.86 0
tc1c20s3cf4 27.00 0 27.00 0 27.00 0.10 27.00 0
tc1c20s3ct1 29.41 0.2 29.41 0.2 29.41 0.1 29.41 0
tc1c20s3ct3 22.68 0 22.68 0 22.68 0.1 22.68 0
tc1c20s3ct4 26.25 0 26.25 0 26.25 0.1 26.25 0
tc1c20s4cf1 26.39 0.1 26.39 0.2 26.39 0.1 26.39 0
tc1c20s4cf3 26.81 0.1 26.81 0.1 26.81 0.1 26.81 0
tc1c20s4cf4 27.00 0 27.00 0 27.00 0.10 27.00 0
tc1c20s4ct1 28.25 0.1 28.25 0.1 28.25 0.1 28.25 0
tc1c20s4ct3 24.43 0 24.43 0.1 24.43 0.1 24.43 0
tc1c20s4ct4 27.01 0 27.01 0 27.01 0.1 27.01 0
tc2c20s3cf0 34.68 0.1 34.68 0.4 34.68 0.4 34.88 0
tc2c20s3ct0 35.80 0.2 35.80 0.3 35.80 0.2 35.89 0
tc2c20s4cf0 34.73 0.1 34.73 0.1 34.73 0.1 34.73 0
tc2c20s4ct0 36.03 0.1 36.03 0.1 36.03 0.1 36.03 0
tc0c40s5cf0 53.04 0.2 53.04 0.1 53.04 0.1 53.04 0
tc0c40s5cf4 51.24 0.2 51.24 0.1 51.24 0.1 51.24 0
tc0c40s5ct0 49.23 0 49.23 0 49.23 0.2 49.23 0
tc0c40s5ct4 48.70 0.1 48.70 0.2 48.70 0.1 48.70 0
tc0c40s8cf0 53.14 0.1 53.14 0.2 53.14 0.1 53.14 0
tc0c40s8cf4 49.25 0.1 49.25 0.2 49.25 0.2 49.25 0
tc0c40s8ct0 46.79 0.1 46.79 0.1 46.79 0.1 46.79 0
tc0c40s8ct4 49.24 0.1 49.24 0.1 49.24 0.1 49.24 0
tc1c40s5cf1 Inf 0.2 - 10800 - 10800 Inf 0
tc1c40s5ct1 72.92 0.1 72.92 0.1 72.92 0.3 72.92 0
tc1c40s8cf1 61.59 0.1 61.59 0.2 61.59 0.3 61.59 0
tc1c40s8ct1 61.29 0.2 61.30 0.3 61.30 0.3 61.30 0.1
tc2c40s5cf2 47.60 0.1 47.60 0.1 47.60 0.1 47.60 0
tc2c40s5cf3 40.20 0.1 40.20 0.3 40.20 0.2 40.20 0
tc2c40s5ct2 46.97 0.1 46.97 0.1 46.97 0.1 46.97 0
tc2c40s5ct3 43.80 0.2 43.80 0.2 43.80 0.1 43.80 0
tc2c40s8cf2 47.19 0 47.19 0 47.19 0.1 47.19 0
tc2c40s8cf3 39.70 0.1 39.70 0.1 39.70 0.1 39.70 0
tc2c40s8ct2 46.66 0.1 46.66 0.1 46.66 0.1 46.66 0
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tc2c40s8ct3 42.67 0 42.67 0 42.67 0.1 42.67 0
tc0c80s12cf0 76.18 0.1 76.18 0.1 76.18 0.2 76.18 0.1
tc0c80s12cf1 85.41 0.2 85.41 0.1 85.41 0.2 85.41 0.1
tc0c80s12ct0 79.87 0.1 79.87 0.2 79.87 0.1 79.87 0
tc0c80s12ct1 83.42 0 83.42 0 83.42 0.1 83.42 0
tc0c80s8cf0 79.64 0.1 79.64 0.2 79.64 0.1 79.64 0
tc0c80s8cf1 85.69 0.2 85.70 0.2 85.70 0.2 85.70 0.1
tc0c80s8ct0 81.83 0.1 81.83 0.2 81.83 0.1 81.83 0
tc0c80s8ct1 86.64 0.2 86.64 0.3 86.64 0.2 86.64 0.1
tc1c80s12cf2 69.20 0 69.20 0.1 69.20 0.1 69.20 0
tc1c80s12ct2 70.67 0.2 70.67 0.1 70.67 0.1 70.67 0.1
tc1c80s8cf2 71.94 0.2 71.94 0.3 71.94 0.3 71.94 0.1
tc1c80s8ct2 72.49 0.2 72.49 0.2 72.49 0.2 72.49 0.1
tc2c80s12cf3 72.53 0.1 72.53 0.2 72.53 0.1 72.53 0
tc2c80s12cf4 85.59 0.4 85.59 0.8 85.59 0.7 85.59 0.4
tc2c80s12ct3 71.61 0 71.61 0.1 71.61 0.1 71.61 0
tc2c80s12ct4 83.67 0.3 83.67 0.4 83.67 0.3 83.67 0.2
tc2c80s8cf3 72.75 0.2 72.75 0.1 72.75 0.1 72.75 0
tc2c80s8cf4 90.37 0.6 90.38 0.6 90.38 0.7 90.38 0.4
tc2c80s8ct3 72.47 0.1 72.47 0.1 72.47 0.1 72.47 0
tc2c80s8ct4 85.83 0.3 85.83 0.4 85.83 0.3 85.83 0.2
tc0c160s16cf2 143.20 0.6 143.20 0.9 143.20 0.8 143.20 0.5
tc0c160s16cf4 163.76 62.6 163.74 72.4 163.74 54.6 163.74 48.7
tc0c160s16ct2 143.43 1.1 143.43 1.4 143.43 1.2 143.43 1
tc0c160s16ct4 161.74 30.8 161.74 5.4 161.74 5.4 161.74 18
tc0c160s24cf2 140.59 0.7 140.59 1.4 140.59 1.3 140.59 0.7
tc0c160s24cf4 162.19 44.9 162.19 46.2 162.19 41.5 162.19 41.4
tc0c160s24ct2 139.83 0.4 139.83 0.3 139.83 0.4 139.83 0.3
tc0c160s24ct4 162.40 42.1 162.40 48.3 162.40 44.1 162.40 40.1
tc1c160s16cf0 160.78 25.3 160.45 2.4 160.45 2.4 160.45 1.6
tc1c160s16cf3 152.99 6.6 152.99 17.6 152.99 8.9 152.99 5.1
tc1c160s16ct0 159.73 21 159.73 7.3 159.73 6.4 159.73 18.2
tc1c160s16ct3 154.64 0.8 154.64 1.1 154.64 0.9 154.64 0.7
tc1c160s24cf0 158.36 2.4 158.36 3.8 158.36 4.1 158.41 1.9
tc1c160s24cf3 150.79 26.6 150.79 20.9 150.79 20.7 150.79 24
tc1c160s24ct0 160.26 28.4 159.71 9.9 159.66 9.1 159.66 18
tc1c160s24ct3 149.38 0.7 149.38 0.7 149.38 0.5 149.38 0.5
tc2c160s16cf1 140.94 0.5 140.94 0.6 140.94 0.4 140.94 0.3
tc2c160s16ct1 141.32 0.5 141.32 0.4 141.32 0.4 141.32 0.4
tc2c160s24cf1 141.16 0.3 141.16 0.3 141.16 0.3 141.16 0.2
tc2c160s24ct1 141.15 1.5 141.15 1.8 141.15 1.5 141.15 1.2

Table C.12: Detailed computational results on the 10-customer instances for the two-stage matheuristic
(Capacity = 2)

Instance
Strategy 1 (C2) Strategy 2 (C2) Strategy 3 (C2)
Obj Time (s) Obj Time (s) Obj Time (s)

tc0c10s2cf1 25.22 0.1 25.22 0.1 25.22 0.1
tc0c10s2ct1 17.30 0 17.30 0 17.30 0
tc0c10s3cf1 25.22 0.1 25.22 0.1 25.22 0.1
tc0c10s3ct1 15.80 0 15.80 0 15.80 0
tc1c10s2cf2 14.07 0 14.07 0 14.07 0
tc1c10s2cf3 21.37 0.1 21.37 0.1 21.37 0.1
tc1c10s2cf4 21.10 0.1 21.10 0.2 21.10 0.1
tc1c10s2ct2 15.78 0.1 15.78 0.1 15.78 0.1
tc1c10s2ct3 18.17 0.1 18.17 0.2 18.17 0.1
tc1c10s2ct4 18.85 0.1 18.85 0.1 18.85 0.1
tc1c10s3cf2 14.07 0 14.07 0 14.07 0
tc1c10s3cf3 21.37 0.1 21.37 0.1 21.37 0.1
tc1c10s3cf4 19.90 0 19.90 0 19.90 0
tc1c10s3ct2 15.62 0 15.62 0 15.62 0
tc1c10s3ct3 18.02 0.1 18.02 0.2 18.02 0.1
tc1c10s3ct4 18.21 0 18.21 0 18.21 0
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tc2c10s2cf0 26.77 0.1 26.77 0.1 26.77 0.1
tc2c10s2ct0 17.45 0.1 17.45 0.1 17.45 0.1
tc2c10s3cf0 26.77 0.1 26.77 0.1 26.77 0.1
tc2c10s3ct0 16.54 0.1 16.54 0 16.54 0
tc0c20s3cf2 37.60 0.1 37.60 0.1 37.60 0.1
tc0c20s3ct2 27.11 0 27.11 0 27.11 0
tc0c20s4cf2 37.68 0.1 37.68 0.2 37.68 0.1
tc0c20s4ct2 26.99 0.1 26.99 0.1 26.99 0.1
tc1c20s3cf1 27.53 0.1 27.53 0.1 27.53 0.1
tc1c20s3cf3 26.86 0 26.86 0.1 26.86 0.1
tc1c20s3cf4 27.00 0 27.00 0 27.00 0
tc1c20s3ct1 29.41 0.1 29.41 0.1 29.41 0.1
tc1c20s3ct3 22.68 0 22.68 0 22.68 0
tc1c20s3ct4 26.25 0 26.25 0 26.25 0
tc1c20s4cf1 26.39 0.1 26.39 0.2 26.39 0.1
tc1c20s4cf3 26.81 0.1 26.81 0.1 26.81 0.1
tc1c20s4cf4 27.00 0 27.00 0 27.00 0
tc1c20s4ct1 28.25 0.1 28.25 0.2 28.25 0.1
tc1c20s4ct3 24.43 0 24.43 0 24.43 0
tc1c20s4ct4 27.01 0 27.01 0 27.01 0
tc2c20s3cf0 34.68 0.1 34.68 0.2 34.68 0.3
tc2c20s3ct0 35.80 0.1 35.80 0.2 35.80 0.1
tc2c20s4cf0 34.73 0.1 34.73 0.1 34.73 0.1
tc2c20s4ct0 36.03 0.1 36.03 0.1 36.03 0.1
tc0c40s5cf0 53.04 0.1 53.04 0.1 53.04 0.1
tc0c40s5cf4 51.24 0.1 51.24 0.1 51.24 0.1
tc0c40s5ct0 49.23 0 49.23 0 49.23 0
tc0c40s5ct4 48.70 0.1 48.70 0.1 48.70 0.1
tc0c40s8cf0 53.14 0.1 53.14 0.1 53.14 0.1
tc0c40s8cf4 49.25 0.1 49.25 0.2 49.25 0.1
tc0c40s8ct0 46.79 0.1 46.79 0.1 46.79 0.1
tc0c40s8ct4 49.24 0.1 49.24 0.1 49.24 0.1
tc1c40s5cf1 Inf 0.2 Inf 13.30 Inf 57.50
tc1c40s5ct1 72.92 0.1 72.92 0.2 72.92 0.2
tc1c40s8cf1 61.59 0.1 61.59 0.2 61.59 0.3
tc1c40s8ct1 61.29 0.1 61.30 0.2 61.30 0.3
tc2c40s5cf2 47.60 0.1 47.60 0.1 47.60 0.1
tc2c40s5cf3 40.20 0.1 40.20 0.2 40.20 0.1
tc2c40s5ct2 46.97 0.1 46.97 0.1 46.97 0.1
tc2c40s5ct3 43.80 0.1 43.80 0.2 43.80 0.1
tc2c40s8cf2 47.19 0 47.19 0 47.19 0
tc2c40s8cf3 39.70 0.1 39.70 0.1 39.70 0.1
tc2c40s8ct2 46.66 0.1 46.66 0.1 46.66 0.1
tc2c40s8ct3 42.67 0 42.67 0 42.67 0
tc0c80s12cf0 76.18 0.1 76.18 0.1 76.18 0.1
tc0c80s12cf1 85.41 0.1 85.41 0.1 85.41 0.1
tc0c80s12ct0 79.87 0.1 79.87 0.2 79.87 0.1
tc0c80s12ct1 83.42 0 83.42 0 83.42 0
tc0c80s8cf0 79.64 0.1 79.64 0.1 79.64 0.1
tc0c80s8cf1 85.69 0.2 85.70 0.2 85.70 0.2
tc0c80s8ct0 81.83 0.1 81.83 0.1 81.83 0.1
tc0c80s8ct1 86.64 0.2 86.64 0.3 86.64 0.2
tc1c80s12cf2 69.20 0 69.20 0.1 69.20 0
tc1c80s12ct2 70.67 0.1 70.67 0.2 70.67 0.1
tc1c80s8cf2 71.94 0.2 71.94 0.2 71.94 0.2
tc1c80s8ct2 72.49 0.1 72.49 0.1 72.49 0.1
tc2c80s12cf3 72.53 0.1 72.53 0.1 72.53 0.1
tc2c80s12cf4 85.59 0.4 85.59 0.8 85.59 0.6
tc2c80s12ct3 71.61 0 71.61 0.1 71.61 0
tc2c80s12ct4 83.67 0.3 83.67 0.3 83.67 0.2
tc2c80s8cf3 72.75 0.1 72.75 0.1 72.75 0.1
tc2c80s8cf4 90.37 0.5 90.38 0.7 90.38 0.6
tc2c80s8ct3 72.47 0.1 72.47 0.2 72.47 0.1
tc2c80s8ct4 85.83 0.3 85.83 0.4 85.83 0.3
tc0c160s16cf2 143.20 0.6 143.20 0.8 143.20 0.7

40

A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations

CIRRELT-2017-31



tc0c160s16cf4 163.76 59.5 163.74 107.8 163.74 73.6
tc0c160s16ct2 143.43 1 143.43 1.2 143.43 1.1
tc0c160s16ct4 161.74 21 161.74 7.7 161.74 6.5
tc0c160s24cf2 140.59 0.6 140.59 1.3 140.59 1.1
tc0c160s24cf4 162.19 42.2 162.19 44.6 162.19 39.8
tc0c160s24ct2 139.83 0.3 139.83 0.4 139.83 0.3
tc0c160s24ct4 162.40 48.4 162.40 48.9 162.40 43.8
tc1c160s16cf0 160.78 24.9 160.45 2.8 160.45 2.3
tc1c160s16cf3 152.99 5.6 152.99 16.9 152.99 8.9
tc1c160s16ct0 159.73 5.1 159.73 7.1 159.73 6
tc1c160s16ct3 154.64 0.7 154.64 0.8 154.64 0.7
tc1c160s24cf0 158.36 1.9 158.36 4.8 158.36 3.5
tc1c160s24cf3 150.79 24 150.79 20.5 150.79 19.5
tc1c160s24ct0 160.26 23.5 159.71 10.7 159.66 9.4
tc1c160s24ct3 149.38 0.6 149.38 0.5 149.38 0.5
tc2c160s16cf1 140.94 0.4 140.94 0.5 140.94 0.4
tc2c160s16ct1 141.32 0.4 141.32 0.4 141.32 0.3
tc2c160s24cf1 141.16 0.3 141.16 0.4 141.16 0.3
tc2c160s24ct1 141.15 1.3 141.15 1.7 141.15 1.6

Table C.13: Detailed computational results on the 10-customer instances for the two-stage matheuristic
(Capacity = 3)

Instance
Strategy 1 (C1) Strategy 2 (C1) Strategy 3 (C1) Strategy 4
Obj Time (s) Obj Time (s) Obj Time (s) Obj Time (s)

tc0c10s2cf1 25.22 0 25.22 0 25.22 0.1 25.22 0.1
tc0c10s2ct1 17.30 0 17.30 0 17.30 0.2 17.30 0
tc0c10s3cf1 25.22 0 25.22 0 25.22 0.1 25.22 0
tc0c10s3ct1 15.80 0 15.80 0 15.80 0.1 15.80 0
tc1c10s2cf2 14.07 0 14.07 0 14.07 0.1 14.07 0
tc1c10s2cf3 21.37 0 21.37 0 21.37 0.1 21.37 0
tc1c10s2cf4 21.10 0 21.10 0 21.10 0.1 21.10 0
tc1c10s2ct2 15.78 0 15.78 0 15.78 0.1 15.78 0
tc1c10s2ct3 18.17 0 18.17 0 18.17 0.1 18.17 0
tc1c10s2ct4 18.85 0 18.85 0 18.85 0.1 18.85 0
tc1c10s3cf2 14.07 0 14.07 0 14.07 0.1 14.07 0
tc1c10s3cf3 21.37 0 21.37 0 21.37 0.1 21.37 0
tc1c10s3cf4 19.90 0 19.90 0 19.90 0.1 19.90 0
tc1c10s3ct2 15.62 0 15.62 0 15.62 0.1 15.62 0
tc1c10s3ct3 18.02 0 18.02 0 18.02 0.1 18.02 0
tc1c10s3ct4 18.21 0 18.21 0 18.21 0.1 18.21 0
tc2c10s2cf0 26.77 0.1 26.77 0.1 26.77 0.1 26.77 0
tc2c10s2ct0 17.45 0 17.45 0 17.45 0.1 17.45 0
tc2c10s3cf0 26.77 0.1 26.77 0.1 26.77 0.1 26.77 0
tc2c10s3ct0 16.54 0 16.54 0 16.54 0.1 16.54 0
tc0c20s3cf2 37.60 0.1 37.60 0.2 37.60 0.1 37.60 0
tc0c20s3ct2 27.11 0 27.11 0 27.11 0.1 27.11 0
tc0c20s4cf2 37.68 0.1 37.68 0.1 37.68 0.1 37.68 0
tc0c20s4ct2 26.99 0 26.99 0 26.99 0.1 26.99 0
tc1c20s3cf1 27.53 0 27.53 0 27.53 0.1 27.53 0
tc1c20s3cf3 26.86 0 26.86 0 26.86 0.1 26.86 0
tc1c20s3cf4 27.00 0 27.00 0 27.00 0.1 27.00 0
tc1c20s3ct1 29.41 0 29.41 0 29.41 0.1 29.41 0
tc1c20s3ct3 22.68 0 22.68 0 22.68 0.1 22.68 0
tc1c20s3ct4 26.25 0 26.25 0 26.25 0.1 26.25 0
tc1c20s4cf1 26.39 0.1 26.39 0.1 26.39 0.1 26.39 0
tc1c20s4cf3 26.81 0 26.81 0 26.81 0.1 26.81 0
tc1c20s4cf4 27.00 0 27.00 0 27.00 0.1 27.00 0
tc1c20s4ct1 28.25 0.1 28.25 0.2 28.25 0.1 28.25 0
tc1c20s4ct3 24.43 0 24.43 0 24.43 0.1 24.43 0
tc1c20s4ct4 27.01 0 27.01 0 27.01 0.1 27.01 0
tc2c20s3cf0 34.68 0.1 34.68 0.2 34.68 0.1 34.68 0
tc2c20s3ct0 35.80 0.2 35.80 0.2 35.80 0.1 35.80 0
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tc2c20s4cf0 34.73 0.1 34.73 0.1 34.73 0.1 34.73 0
tc2c20s4ct0 36.03 0.1 36.03 0.1 36.03 0.1 36.03 0
tc0c40s5cf0 53.04 0.2 53.04 0.1 53.04 0.1 53.04 0
tc0c40s5cf4 51.24 0 51.24 0.1 51.24 0.1 51.24 0
tc0c40s5ct0 49.23 0 49.23 0 49.23 0.1 49.23 0
tc0c40s5ct4 48.70 0 48.70 0 48.70 0.1 48.70 0
tc0c40s8cf0 53.14 0 53.14 0.2 53.14 0.1 53.14 0
tc0c40s8cf4 49.25 0 49.25 0 49.25 0.1 49.25 0
tc0c40s8ct0 46.79 0 46.79 0 46.79 0.1 46.79 0
tc0c40s8ct4 49.24 0 49.24 0.1 49.24 0.2 49.24 0
tc1c40s5cf1 85.37 0.1 85.37 0.5 85.37 0.5 85.43 0.1
tc1c40s5ct1 72.92 0.1 72.92 0.1 72.92 0.1 72.92 0
tc1c40s8cf1 61.59 0.1 61.59 0.3 61.59 0.3 61.59 0
tc1c40s8ct1 61.29 0.1 61.30 0.1 61.30 0.2 61.30 0.1
tc2c40s5cf2 47.60 0 47.60 0 47.60 0.1 47.60 0
tc2c40s5cf3 40.20 0.1 40.20 0.2 40.20 0.1 40.20 0
tc2c40s5ct2 46.97 0.2 46.97 0.1 46.97 0.1 46.97 0
tc2c40s5ct3 43.80 0.1 43.80 0.2 43.80 0.1 43.80 0
tc2c40s8cf2 47.19 0 47.19 0 47.19 0.1 47.19 0
tc2c40s8cf3 39.70 0 39.70 0.1 39.70 0.1 39.70 0
tc2c40s8ct2 46.66 0.1 46.66 0.1 46.66 0.1 46.66 0
tc2c40s8ct3 42.67 0 42.67 0 42.67 0.1 42.67 0
tc0c80s12cf0 76.18 0.1 76.18 0.1 76.18 0.1 76.18 0.1
tc0c80s12cf1 85.41 0.1 85.41 0.1 85.41 0.2 85.41 0.1
tc0c80s12ct0 79.87 0.1 79.87 0.1 79.87 0.1 79.87 0
tc0c80s12ct1 83.42 0 83.42 0 83.42 0.1 83.42 0
tc0c80s8cf0 79.64 0.1 79.64 0.1 79.64 0.1 79.64 0
tc0c80s8cf1 85.69 0.2 85.70 0.2 85.70 0.2 85.70 0.1
tc0c80s8ct0 81.83 0.1 81.83 0.1 81.83 0.1 81.83 0
tc0c80s8ct1 86.64 0.1 86.64 0.2 86.64 0.3 86.64 0.1
tc1c80s12cf2 69.20 0 69.20 0.1 69.20 0.1 69.20 0
tc1c80s12ct2 70.67 0.1 70.67 0.1 70.67 0.1 70.67 0.1
tc1c80s8cf2 71.94 0.2 71.94 0.2 71.94 0.2 71.94 0.1
tc1c80s8ct2 72.49 0.1 72.49 0.2 72.49 0.2 72.49 0.1
tc2c80s12cf3 72.53 0.1 72.53 0.1 72.53 0.1 72.53 0
tc2c80s12cf4 85.59 0.5 85.59 0.8 85.59 0.7 85.59 0.4
tc2c80s12ct3 71.61 0 71.61 0 71.61 0.2 71.61 0
tc2c80s12ct4 83.67 0.3 83.67 0.4 83.67 0.3 83.67 0.2
tc2c80s8cf3 72.75 0.1 72.75 0.1 72.75 0.1 72.75 0
tc2c80s8cf4 90.37 0.5 90.38 0.6 90.38 0.6 90.38 0.4
tc2c80s8ct3 72.47 0 72.47 0 72.47 0.1 72.47 0
tc2c80s8ct4 85.83 0.3 85.83 0.3 85.83 0.3 85.83 0.2
tc0c160s16cf2 143.2 0.6 143.20 0.7 143.20 0.8 143.20 0.5
tc0c160s16cf4 163.69 52.3 163.69 46.4 163.69 42.4 163.69 48.6
tc0c160s16ct2 143.43 1.3 143.43 1.3 143.43 1.1 143.43 1
tc0c160s16ct4 161.74 20.3 161.74 5.9 161.74 5.3 161.74 18
tc0c160s24cf2 140.59 0.7 140.59 1.3 140.59 1.3 140.59 0.7
tc0c160s24cf4 162.19 44.7 162.19 76.2 162.19 73.3 162.19 41.4
tc0c160s24ct2 139.83 0.3 139.83 0.3 139.83 0.4 139.83 0.3
tc0c160s24ct4 162.4 46.9 162.40 50.3 162.40 50.2 162.40 40.1
tc1c160s16cf0 160.44 2.1 160.44 2.4 160.44 2.3 160.44 1.6
tc1c160s16cf3 152.99 6.4 152.99 10 152.99 9 152.99 5.1
tc1c160s16ct0 159.73 19 159.73 6.3 159.73 6.6 159.73 18.2
tc1c160s16ct3 154.64 0.8 154.64 0.8 154.64 0.8 154.64 0.7
tc1c160s24cf0 158.36 2.4 158.36 3.6 158.36 3 158.36 1.8
tc1c160s24cf3 150.79 27.4 150.79 22.9 150.79 20.4 150.79 24
tc1c160s24ct0 159.60 20.7 159.60 9 159.60 9.2 159.60 18
tc1c160s24ct3 149.38 0.6 149.38 0.5 149.38 0.5 149.38 0.5
tc2c160s16cf1 140.94 0.4 140.94 0.3 140.94 0.4 140.94 0.3
tc2c160s16ct1 141.32 0.4 141.32 0.3 141.32 0.4 141.32 0.4
tc2c160s24cf1 141.16 0.2 141.16 0.2 141.16 0.3 141.16 0.2
tc2c160s24ct1 141.15 1.4 141.15 1.5 141.15 1.6 141.15 1.2
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Table C.14: Detailed computational results on the 10-customer instances for the two-stage matheuristic
(Capacity = 3)

Instance
Strategy 1 (C2) Strategy 2 (C2) Strategy 3 (C2)
Obj Time (s) Obj Time (s) Obj Time (s)

tc0c10s2cf1 25.22 0 25.22 0 25.22 0
tc0c10s2ct1 17.30 0 17.30 0 17.30 0
tc0c10s3cf1 25.22 0 25.22 0 25.22 0
tc0c10s3ct1 15.80 0 15.80 0 15.80 0
tc1c10s2cf2 14.07 0 14.07 0 14.07 0
tc1c10s2cf3 21.37 0 21.37 0 21.37 0
tc1c10s2cf4 21.10 0 21.10 0 21.10 0
tc1c10s2ct2 15.78 0 15.78 0 15.78 0
tc1c10s2ct3 18.17 0 18.17 0 18.17 0
tc1c10s2ct4 18.85 0 18.85 0 18.85 0
tc1c10s3cf2 14.07 0 14.07 0 14.07 0
tc1c10s3cf3 21.37 0 21.37 0 21.37 0
tc1c10s3cf4 19.90 0 19.90 0 19.90 0
tc1c10s3ct2 15.62 0 15.62 0 15.62 0
tc1c10s3ct3 18.02 0 18.02 0 18.02 0
tc1c10s3ct4 18.21 0 18.21 0 18.21 0
tc2c10s2cf0 26.77 0 26.77 0.1 26.77 0.1
tc2c10s2ct0 17.45 0 17.45 0 17.45 0
tc2c10s3cf0 26.77 0 26.77 0.1 26.77 0.1
tc2c10s3ct0 16.54 0 16.54 0 16.54 0
tc0c20s3cf2 37.60 0 37.60 0.1 37.60 0.1
tc0c20s3ct2 27.11 0 27.11 0 27.11 0
tc0c20s4cf2 37.68 0 37.68 0.1 37.68 0.1
tc0c20s4ct2 26.99 0 26.99 0 26.99 0
tc1c20s3cf1 27.53 0 27.53 0 27.53 0
tc1c20s3cf3 26.86 0 26.86 0 26.86 0
tc1c20s3cf4 27.00 0 27.00 0 27.00 0
tc1c20s3ct1 29.41 0 29.41 0 29.41 0
tc1c20s3ct3 22.68 0 22.68 0 22.68 0
tc1c20s3ct4 26.25 0 26.25 0 26.25 0
tc1c20s4cf1 26.39 0 26.39 0.1 26.39 0.1
tc1c20s4cf3 26.81 0 26.81 0 26.81 0
tc1c20s4cf4 27.00 0 27.00 0 27.00 0
tc1c20s4ct1 28.25 0 28.25 0.1 28.25 0.1
tc1c20s4ct3 24.43 0 24.43 0 24.43 0
tc1c20s4ct4 27.01 0 27.01 0 27.01 0
tc2c20s3cf0 34.68 0 34.68 0.1 34.68 0.1
tc2c20s3ct0 35.80 0 35.80 0.2 35.80 0.1
tc2c20s4cf0 34.73 0 34.73 0.1 34.73 0.1
tc2c20s4ct0 36.03 0 36.03 0.1 36.03 0.1
tc0c40s5cf0 53.04 0.1 53.04 0.1 53.04 0.1
tc0c40s5cf4 51.24 0.1 51.24 0.1 51.24 0
tc0c40s5ct0 49.23 0 49.23 0 49.23 0
tc0c40s5ct4 48.70 0 48.70 0.1 48.70 0
tc0c40s8cf0 53.14 0.1 53.14 0.1 53.14 0.1
tc0c40s8cf4 49.25 0 49.25 0 49.25 0
tc0c40s8ct0 46.79 0 46.79 0 46.79 0
tc0c40s8ct4 49.24 0 49.24 0.1 49.24 0.1
tc1c40s5cf1 85.37 0.1 85.37 0.6 85.37 0.6
tc1c40s5ct1 72.92 0.1 72.92 0.1 72.92 0.1
tc1c40s8cf1 61.59 0.1 61.59 0.3 61.59 0.2
tc1c40s8ct1 61.29 0.1 61.30 0.1 61.30 0.1
tc2c40s5cf2 47.60 0 47.60 0 47.60 0
tc2c40s5cf3 40.20 0 40.20 0.1 40.20 0.1
tc2c40s5ct2 46.97 0 46.97 0.1 46.97 0.1
tc2c40s5ct3 43.80 0 43.80 0.2 43.80 0.1
tc2c40s8cf2 47.19 0 47.19 0 47.19 0
tc2c40s8cf3 39.70 0 39.70 0.1 39.70 0.1
tc2c40s8ct2 46.66 0 46.66 0.2 46.66 0.1
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tc2c40s8ct3 42.67 0 42.67 0 42.67 0
tc0c80s12cf0 76.18 0.1 76.18 0.1 76.18 0.1
tc0c80s12cf1 85.41 0.1 85.41 0.1 85.41 0.1
tc0c80s12ct0 79.87 0.1 79.87 0.1 79.87 0
tc0c80s12ct1 83.42 0.1 83.42 0 83.42 0
tc0c80s8cf0 79.64 0.1 79.64 0.1 79.64 0.1
tc0c80s8cf1 85.69 0.1 85.70 0.3 85.70 0.2
tc0c80s8ct0 81.83 0.1 81.83 0.2 81.83 0.1
tc0c80s8ct1 86.64 0.1 86.64 0.2 86.64 0.2
tc1c80s12cf2 69.20 0.1 69.20 0.1 69.20 0
tc1c80s12ct2 70.67 0.1 70.67 0.1 70.67 0
tc1c80s8cf2 71.94 0.1 71.94 0.2 71.94 0.1
tc1c80s8ct2 72.49 0.1 72.49 0.1 72.49 0.1
tc2c80s12cf3 72.53 0.1 72.53 0.1 72.53 0.1
tc2c80s12cf4 85.59 0.1 85.59 0.7 85.59 0.6
tc2c80s12ct3 71.61 0.1 71.61 0.1 71.61 0
tc2c80s12ct4 83.67 0.1 83.67 0.3 83.67 0.2
tc2c80s8cf3 72.75 0.1 72.75 0.1 72.75 0.1
tc2c80s8cf4 90.37 0.1 90.38 0.6 90.38 0.6
tc2c80s8ct3 72.47 0.1 72.47 0 72.47 0
tc2c80s8ct4 85.83 0.1 85.83 0.3 85.83 0.2
tc0c160s16cf2 143.20 0.1 143.20 0.7 143.20 0.6
tc0c160s16cf4 163.69 0.2 163.69 43 163.69 41.2
tc0c160s16ct2 143.43 0.1 143.43 1.3 143.43 1.1
tc0c160s16ct4 161.74 0.2 161.74 5.9 161.74 4.7
tc0c160s24cf2 140.59 0.1 140.59 1.3 140.59 1.1
tc0c160s24cf4 162.19 0.2 162.19 89.2 162.19 70
tc0c160s24ct2 139.83 0.1 139.83 0.3 139.83 0.3
tc0c160s24ct4 162.40 0.2 162.40 45.4 162.40 41.8
tc1c160s16cf0 160.44 0.2 160.44 2.7 160.44 2.2
tc1c160s16cf3 152.99 0.2 152.99 10.4 152.99 8.7
tc1c160s16ct0 159.73 0.2 159.73 7.1 159.73 5.8
tc1c160s16ct3 154.64 0.2 154.64 0.8 154.64 0.7
tc1c160s24cf0 158.36 0.2 158.36 3.7 158.36 2.9
tc1c160s24cf3 150.79 0.2 150.79 21.9 150.79 20.1
tc1c160s24ct0 159.60 0.2 159.60 9.8 159.60 8.5
tc1c160s24ct3 149.38 0.1 149.38 0.5 149.38 0.4
tc2c160s16cf1 140.94 0.1 140.94 0.4 140.94 0.3
tc2c160s16ct1 141.32 0.1 141.32 0.3 141.32 0.3
tc2c160s24cf1 141.16 0.1 141.16 0.2 141.16 0.2
tc2c160s24ct1 141.15 0.1 141.15 1.7 141.15 1.5
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