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Abstract. In this paper we consider the vehicle routing problem with stochastic demands (VRPSD). 
We consider that customer demands are only revealed when a vehicle arrives at customer 
locations. Failures occur whenever the residual capacity of the vehicle is insufficient to serve the 
observed demand of a customer. Such failures entail that recourse actions be taken to recover 
route feasibility. These recourse actions usually take the form of return trips to the depot, which 
can be either done in a reactive or proactive fashion. Over the years, there have been various 
policies defined to perform these recourse actions in either a static or a dynamic setting. In the 
present paper, we propose policies that better reflect the fixed operational rules that can be 
observed in practice, and that also enable implementing preventive recourse actions. We define 
the considered operational rules and show how, for a planned route, these operational rules can 
be implemented using a fixed threshold-based policy to govern the recourse actions. An exact 
solution algorithm is developed to solve the VRPSD under the considered policies. Finally, we 
conduct an extensive computational study, which shows that significantly better solutions can be 
obtained when using the proposed policies compared to solving the problem under the classical 
recourse definition. 
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1 Introduction

Since the seminal paper of Dantzig and Ramser (1959), thousands of papers have been
published on the vehicle routing problem (VRP), which is central to distribution activities.
In its simplest version, the VRP consists in designing a set of routes, starting and ending at
a given depot location, to serve a set of customers with known demands by a fleet of iden-
tical vehicles of finite capacity, with the objective of minimizing the total distance traveled.
In the deterministic version of the problem, which has been widely studied, all problem
parameters are known precisely and each customer must be visited exactly once (see Toth
and Vigo (2014) for a thorough overview of the problem and its main variants). In reality,
however, routing problems involve several sources of uncertainty: demands, travel and
service times, etc. Routing problems in which some parameters are uncertain are called
Stochastic VRPs (SVRPs). Although, deterministic approximation models can be solved as
proxies for SVRP models, such approximations generally lead to arbitrarily bad solutions,
see Louveaux (1998). Therefore, there is a need to develop specialized optimization models
that explicitly account for the stochastic nature of VRPs. While they have received much
less attention than deterministic VRPs, SVRPs have nonetheless been investigated by sev-
eral authors; see Gendreau et al. (2014) for a survey of the SVRP literature.

In this paper, we focus on a variant of the SVRP in which customer demands are un-
certain. In this variant, which is called the vehicle routing problem with stochastic demands
(VRPSD), the demand of each customer is assumed to follow a known, customer-specific
probability distribution. It is further assumed that each customer’s demand is revealed
upon the arrival of a vehicle at its location. When demands are stochastic, one could ob-
viously plan routes in such a way that they can handle the maximum possible demand of
each customer assigned to it, but in almost all cases, this is extremely inefficient and often
times infeasible in terms of the available number of vehicles. To circumvent this difficulty,
optimization approaches relying on different modeling paradigms have been proposed
(see Gendreau et al. (2014) for a thorough discussion of these paradigms). In this paper, we
adopt the a priori optimization paradigm, originally proposed by Bertsimas et al. (1990). In
this approach, the problem is decomposed into two stages, as in two-stage stochastic pro-
gramming with recourse. In the first-stage, an a priori solution (i.e., a complete set of routes
as in a deterministic VRP) is planned. Then, in the second-stage, this first-stage solution is
“executed”, i.e., each route is followed and the actual values of the uncertain parameters
(the customer demands in the case of VRPSD) are gradually revealed.

In the second-stage of the problem, failures may be observed when a route is executed.
Such failures occur when the vehicle performing the route arrives at a customer’s location
without sufficient residual capacity to service the observed demand. These occurrences are
simply referred to as route failures, see Dror and Trudeau (1986). To recover route feasibility,
recourse actions must be taken. As presented in Gendreau et al. (2014), various studies
have been conducted to formulate and assess the efficiency of the possible recourse actions
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that can be applied to the VRPSD.

In the present paper, we focus on the recourse actions that can be implemented indepen-
dently by the vehicles performing the routes determined in the first-stage of the problem.
These recourse actions can either be reactive (i.e., implemented only after a route failure
occurs) or proactive (i.e., made in anticipation of possible failures that could take place
along the route). A reactive recourse action takes the form of a back-and-forth (BF) trip to
the depot, where the vehicle is able to restock and then serve the remaining demand at the
customer location where the failure occurred. Following a BF trip, the vehicle simply pro-
ceeds to the next scheduled customer on the route. In the case of an exact stockout, where
the revealed demand matches exactly the residual capacity of the vehicle, a restocking trip
is performed, entailing that the vehicle visits the depot before proceeding to the next cus-
tomer along the route, see Gendreau et al. (1995) and Hjorring and Holt (1999). In an effort
to simplify the presentation of the concepts proposed in this paper, we will refer to BF trips
as all reactive recourse actions taken following route failures, be it as the consequence of
insufficient residual capacity or an exact stockout. Finally, to avoid route failures, a vehicle
may execute a preventive restocking (PR) trip whenever its residual capacity becomes too
low, see Yee and Golden (1980) and Yang et al. (2000). Considering that such recourse ac-
tions are applied before an actual failure is observed, they are regarded as being proactive.

To formulate the VRPSD, a policy, which governs how the recourse actions are applied,
must be determined. While a wide variety of recourse policies can be envisioned (see Gen-
dreau et al. (2016)), research has been performed primarily on two categories of recourse
actions. In the case where only reactive recourse actions are considered, the classical re-
course policy is used to model the VRPSD. Following this policy each route is executed un-
til it either fails or faces an exact stockout, at which point an appropriate reactive recourse
action is implemented. Several authors have considered this policy and proposed exact
solution procedures (e.g., Laporte et al. (2002), Christiansen and Lysgaard (2007), Gauvin
et al. (2014), and Jabali et al. (2014)) and heuristics (e.g., Gendreau et al. (1996), Rei et al.
(2010), and Mendoza and Villegas (2013)) to solve the resulting model. As an alternative
to the classical recourse policy for the VRPSD, Yang et al. (2000) showed that an optimal re-
stocking policy can be derived for a given route using dynamic programming. Such a policy
takes the form of customer-specific thresholds that, when compared to the residual capac-
ity of the vehicle leaving the customers along the route, specify when a PR trip should be
performed. Thus, in Yang et al. (2000), given a route, these customer-specific thresholds
are optimized to yield the minimum route cost. It should be noted that, in this case, BF
trips are still implemented when failures occur. However, by applying PR trips, the risk of
observing route failures is reduced. This approach to formulate the VRPSD coupled with
suitable heuristics or metaheuristics to design the a priori routes, was shown to yield more
cost-effective solutions, see Bertsimas et al. (1995), Yang et al. (2000) and Bianchi (2006).

The use of both the classical recourse or the optimal restocking policies implies that, in
the first-stage of the model, the routing decisions be made statically (i.e., a set of a priori
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fixed routes are obtained). However, both the routing and recourse decisions (i.e., BF and
PR trips) can also be made dynamically. In this case, the VRPSD is formulated using the
reoptimization approach, see Secomandi (2001), Novoa and Storer (2009) and Secomandi
and Margot (2009). It should be noted that, if reoptimization is applied, the VRPSD is no
longer formulated as a two-stage stochastic model. Instead, it can be expressed as a Markov
Decision Process, see Dror et al. (1989), or it can be modelled as a stochastic shortest path
problem, as detailed in Secomandi (2000).

As a formulation paradigm applied to the VRPSD, the a priori approach is applicable in
cases where an organization facing the problem aims to achieve a high level of consistency
in its routing operations. Hence, a set of fixed a priori routes are determined, which can
then be easily repeated on a daily basis. While the classical recourse policy meets these
criteria, its implementation is likely to be costly. The optimal restocking policy provides
a better theoretical alternative, however its solution is challenging. Existing heuristics for
this policy may exactly evaluate the recourse cost of a given route, however the overall
quality of the solutions is not guaranteed. Moreover, many companies employ preset op-
erational conventions when operating in uncertain environments. These are translated into
preset rules, which streamline the operations in a manner that greatly simplifies recourse
policies. Preset rules can be implemented as a set of fixed rule-based policies. Therefore,
we propose a fixed rule-based policy for the VRPSD, according to which the PR trips are
governed by preset rules which establish customer-specific thresholds. A detailed motiva-
tion for the use of rule-based policies in the VRPSD is provided in Section 2.

In the present paper, we introduce the concept of a rule-based recourse policy for the
VRPSD and provide its formulation. We propose an exact solution algorithm for a partic-
ular family of volume rule-based recourse policies. We note that to-date exact algorithms
for the VRPSD have only been proposed for the VRPSD with classical recourse (e.g., see
Gauvin et al. (2014) and Jabali et al. (2014) for recent studies). Finally, by performing an
extensive computational study, we demonstrate that significantly better solutions can be
obtained using the proposed policies when compared to the classical recourse one, while
remaining cost-effective with regards to optimal restocking.

The remainder of this paper is organized as follows. Section §2 discusses general moti-
vations for using rule-based policies in the context of VRPSD. Section §3 lays out the model
using a rule-based recourse, then three volume-based rules are defined. Section §4 is de-
voted to presenting an exact solution methodology to solve the VRPSD under these rules.
Various lower bounding procedures are developed to enhance the efficiency of proposed
algorithm. Section §5 is dedicated to numerical results and compares rule-based policies in
different aspects. Section §6 summarizes the contribution of the paper and points out some
future work.
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2 Motivation for Rule-Based Policies

In this section, we present the general ideas and observations that warranted the present
work. As we will detail, the proposed rule-based recourse approach for the VRPSD is mo-
tivated by both practical and methodological considerations. In recent years, the concept
of consistency in VRPs has been proposed to improve the overall quality of the service
that companies provide to their customers. As presented in Kovacs et al. (2014), there are
three dimensions to consistency in the VRP context: 1) arrival time consistency (i.e., cus-
tomers are visited at approximately the same time whenever deliveries, or pickups, are
performed); 2) person-oriented consistency (i.e., customers are assigned to specific drivers
that perform the services whenever they are required); 3) delivery consistency (i.e., the ac-
tual quantities that are delivered, or collected, reflect the demands of the customers). In
the VRPSD literature delivery consistency is predominantly ensured. However, depend-
ing on which modelling paradigm is adopted, the first two consistency dimensions may
not be guaranteed. In the previously discussed reoptimization paradigm both the routing
and the recourse decisions are made dynamically. Therefore, time consistency is not guar-
anteed. Moreover, person-oriented consistency, may not be enforced if the customers are
not clustered and assigned to drivers beforehand.

The a priori paradigm for the VRPSD is a suitable strategy for practical settings where
consistency is an important factor. This paradigm guarantees delivery consistency. More-
over, the assumption that vehicles independently perform routes entails that person-oriented
consistency is preserved. By allowing PR trips to be performed as part of the recourse deci-
sions, one can further reduce the risk of observing costly failures that significantly lengthen
the actual routes that are performed, thus causing arrival time consistency issues.

Using optimal restocking policies for the VRPSD entails using customer-specific thresh-
olds, which are optimized as function of a route. This leaves little control for companies
to systematically adjust the customer-specific thresholds. As such, optimal restocking may
not reflect a company’s operational policies and does not allow it to control the risk of
encountering failures. To govern when PR trips are applied, companies may consider a
specific set of controllable preset rules to perform the PR trips, e.g., executing a PR trip
once the available vehicle capacity is below a preset percentage of its total capacity. Such
fixed rules are defined to reflect the overall operational conventions of a company, they
preserve consistency and simplify the implementation of the routing plan. As we will de-
tail in the present paper, the ruled-based recourse approach that is developed offers an
efficient way to both formulate and apply such fixed rules in the context of the VRPSD.

There are also methodological considerations that motivate the use of the proposed
ruled-based recourse. Under the classical recourse policy, the problem of finding a set of
a priori routes for the VRPSD is already a complex combinatorial problem (i.e., NP-hard).
When PR trips are introduced in the definition of the recourse, this complexity is only
compounded. As reported in Yang et al. (2000), solving the dynamic program to obtain
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an optimal restocking policy for a given route, becomes numerically intractable for routes
involving more than 15 customers, which considerably limits the applicability of this ap-
proach to practical settings. Therefore, as previously mentioned, the solution methodolo-
gies that have been proposed in this case have been either heuristics or metaheuristics that
involve the use of an approximation cost function to evaluate the solutions. In the case of
Yang et al. (2000) two heuristics were proposed for the VRPSD with PR trips.

The numerical tests performed in Bianchi (2006) show that, when designing solution
approaches for the VRPSD with PR trips being included as possible recourse actions, it is
clearly preferable to approximate the cost of solutions when the available solution time for
the problem is restricted. Good results are obtainable even when the approximation used
is based on a function that does not explicitly consider the recourse cost. It was further ob-
served in Rei et al. (2010) that, when solving the VRPSD under the classical recourse policy,
with the exception of extreme cases where failures are observed at each customer along a
route, the a priori routing cost of the optimal solution clearly outweighs the recourse cost
(e.g., the relative weight of the recourse cost being approximately 5% of the total cost for a
subset of instances that were described as challenging to solve, see Rei et al. (2010)). There-
fore, when assessing the overall effort needed to solve the VRPSD, an important part of this
effort should be devoted to finding good a priori routes. This being said, the stochastic na-
ture of the problem cannot be simply ignored (i.e., the recourse cost remains appreciable).
This is especially true in a context where VRP consistency is promoted by repeatedly ap-
plying the same a priori solution and, consequently, incurring the recourse cost each time
the solution is used. Hence, there is a need to develop numerically efficient approximation
functions for the recourse cost.

The general rule-based recourse approach that is proposed also serves this methodolog-
ical purpose. Any ruled-based recourse, specified on a particular set of fixed rules, defines
an upper bound on the recourse cost associated to the optimal restocking policy. Therefore,
it can be used as a proxy to evaluate the cost of the a priori solutions in an overall solution
process for the VRPSD. In the present paper, we will show that it can be effectively used to
develop an efficient exact algorithm for the VRPSD.

3 A Rule-Based Recourse A Priori Model for the VRPSD

This section is dedicated to the presentation of the overall formulation applied to the
VRPSD. Therefore, we first recall the a priori model that is used (Subsection 3.1). We then
detail the recourse function defined to measure the expected routing costs involved in per-
forming both the BF and PR trips in the second-stage following a fixed rule-based recourse
policy. Thus, for a given a priori route and its policy, we show how the associated recourse
cost can be efficiently computed using a recursive function (Subsection 3.2). Finally, we in-
troduce a general class of volume-based recourse policies for the VRPSD (Subsection 3.3).
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3.1 A Priori Model

Let G = (V , E) be a complete undirected graph, where V = {v1, v2, . . . , vn} is the set of
vertices and E = {(vi, vj)|vi, vj ∈ V , i < j} is the set of edges. Vertex v1 is the depot, where
a fleet of m vehicles of capacity Q is based. Let vertex vi (i = 2, . . . , n) represent a customer
whose demand ξi follows a discrete probability distribution with a finite support defined
as {ξ1

i , ξ2
i , . . . , ξ l

i , . . . , ξsi

i }. We denote by pl
i the probability that the lth demand level (i.e.,

value ξ l
i) occurs for ξi, i.e., P[ξi = ξ l

i ] = pl
i . Let cij denote the distance associated to edge

(vi, vj).

As in Laporte et al. (2002), we assume that the expected demand of an a priori route does
not exceed the vehicle capacity. The a priori model for the VRPSD can then be formulated
as follows (we use here the original notation defined by Laporte et al. (2002)):

minimize
x ∑

i<j
cijxij +Q(x) (1)

subject to
n

∑
j=2

x1j = 2m, (2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (3)

∑
vi,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2) (4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (6)

x = (xij), integer (7)

where,

Q(x) =
m

∑
k=1

min{Qk,1,Qk,2}. (8)

Function Qk,ρ defines the expected recourse cost of the kth vehicle-route when performed
according to orientation ρ (ρ = 1, 2). As described in Dror and Trudeau (1986), the expected
recourse cost of a route varies according to its orientation. Therefore, for each route in the
a priori solution a specific orientation must be selected. As indicated in function (8), each
route is evaluated using the two orientations and the one that minimizes the expected re-
course cost is chosen. The specific computation ofQk,ρ will be the subject of Subsection 3.2.

As for the overall formulation, the objective function (1) is defined as the total expected
distance traveled by the vehicles (i.e., the sum of the distance traveled in performing the
a priori routes and the expected distance traveled in performing the recourse actions con-
sidered). Constraints (2) and (3) define the structure of the a priori routes: each route starts
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and ends at the depot and each customer must be visited once. Inequalities (4) are the sub-
tour elimination constraints, which also guarantee that the total expected demand of each
route does not exceed a vehicle’s capacity. Finally, constraints (5), (6) and (7) impose the
necessary bounds and integrality restrictions on the decision variables.

3.2 The Recourse Function

In this subsection, we present the recourse function that is used for the VRPSD. Consider-
ing the set of a priori routes R, let us first consider an a priori route i ∈ R expressed as vec-
tor ~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1). In addition, let us define vector ~θ = (θi2 , . . . , θit),
where 0 ≤ θij ≤ Q for j = 2, . . . , t, as the rule-based recourse policy associated with route

~v. The process by which policy ~θ is obtained will be the subject of the next subsection. For
now, we simply assume that such a policy is given. The values in~θ are the residual capacity
thresholds that specify when a vehicle performing ~v should carry out a PR trip. Therefore,
when the vehicle leaves a scheduled customer vij in ~v (i.e., after serving its demand ξij), it
will perform a PR trip if its residual capacity is strictly below value θij , as illustrated in Fig-
ure 1. Considering that vit is the last visited customer on route ~v, value θit is simply set to
zero. A numerical example of a threshold-based policy for route ~v is provided in Figure 1.
In addition, as shown in the figure, a Daily log-trip sheet can be used to efficiently imple-
ment and record the necessary recourse actions (both the BF and PR trips) by the driver
performing route ~v and to note the total distance traveled by the vehicle (i.e., the Mileage
entry). When the vehicle performing ~v arrives at a customer vij with a residual capacity
of q, there are three mutually exclusive cases that can be observed. First, the demand real-
ization of ξij exceeds value q (i.e., q− ξij < 0), which implies that a route failure occurs at
vij . In this case, the vehicle completes the service at the customer, via a split delivery, by
performing a BF trip. It should be noted that this first case is independent of the threshold
value of the considered customer (i.e., θij). Second, the demand realization of ξij does not
exceed value q but 0 ≤ q − ξij < θij . In this case, when q − ξij = 0, an exact stockout
is observed, thus requiring a reactive recourse action (i.e., a BF trip). However, given the
specific nature of this failure, the observed demand can still be served completely upon
the arrival of the vehicle at the customer’s location (i.e., a split delivery is not necessary).
Therefore, following the return to the depot to restock, the vehicle proceeds to the next
customer along the route (i.e., vij+1). When 0 < q− ξij < θij , no failure is observed. How-
ever, the residual capacity of the vehicle, upon completion of the service of ξij , falls below
the threshold value θij . Thus, a PR trip is performed and the route is resumed. Third, the
demand realization of ξij does not exceed q and the difference between the two values is
greater than θij (i.e., q− ξij ≥ θij). In this case, once the service of the demand is done, the
vehicle directly proceeds to the next customer along the route (i.e., vij+1).

It should be noted that, whenever a route failure occurs the overall service at the cus-
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tomer is split. In turn, this entails that the loading/unloading process is duplicated and
additional delays (e.g., stemming from the BF trips and the interruption of the service) are
observed. It is assumed that such disruptions at a customer location generate an additional
cost. This cost is defined as value b, and was also assumed by Yang et al. (2000).

We now develop the recourse function that is used in model (1)-(7). For a given route ~v
and its associated policy~θ, let us first define function Fij(q) as the expected recourse cost of
completing route ~v starting from vertex vij (for j = 1, . . . , t + 1) assuming that the vehicle
arrives at the customer’s location with a residual capacity of q (where θij−1 ≤ q ≤ Q). In
view of the three cases previously described, function Fij(q) is computed by applying the
following recursive equation:

Fij(q) =



Fij+1(q) if j = 1

P[q− ξij < 0]
(

b + 2c1ij + Fij+1(Q + q− ξij)
)
+

P[0 ≤ q− ξij < θij ]
(

c1ij + c1ij+1 − cijij+1 + Fij+1(Q)
)
+

P[q− ξij ≥ θij ]Fij+1(q− ξij) if j = 2, . . . , t
0 if j = t + 1.

(9)

Given equation (9) and assuming that the kth vehicle performs route ~v, the expected re-
course cost of the route can now be computed for the first orientation (i.e., ρ = 1) as fol-
lows:

Qk,1 = Fi1(Q). (10)

DEPOT

vi2

vi3

vij

vij+1

vij+2

vit−1

vit

q

q−
ξ

ij

(a)

Daily log-trip sheet

Cust. # Thresh Rec. Act.

DEPOT −
vi2 5
vi3 10
...

...
vij θij PR trip

vij+1 θij+1

...
...

vit−1 8
vit 0

DEPOT −
Mileage

(b)

Figure 1: The vehicle is executing the a priori route ~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1);
the vehicle carries q units upon arrival at customer vij ; the residual capacity after demand
realization satisfies the condition 0 ≤ q− ξij < θij . Then, with a policy-based recourse the
driver performs a preventive restocking trip.
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Finally, to evaluate the expected recourse cost of the route for the second orientation (i.e.,
Qk,2), one simply needs to reverse the order of the vertices of ~v and reapply function (10).

3.3 Volume Based Recourse Policies for the VRPSD

In Subsection 3.2, we presented how the recourse function can be efficiently computed
using the recursive equation (9). However, to evaluate (10) for a given route ~v, one first
needs to determine its associated rule-based recourse policy~θ. Therefore, we now describe
how such policies can be derived on the basis of a set of fixed operational rules that are
prescribed by the company tasked with solving the VRPSD. In particular we consider a
family of three volume-based policies.

Volume-based policies define the thresholds as a function of the demands of the cus-
tomers or the capacity of the vehicles performing the routes. For a given route, such poli-
cies can implement straightforward operational rules that set the thresholds as a percentage
of either the capacity of the vehicle, or, estimates obtained for the demands of the customers
scheduled on the route. Given an a priori route i defined as~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 =

v1), three such policies are proposed. Let functions πp = ~v → ~θ (for p = 1, 2, 3), define
them. The first policy π1 applies the following operational rule: PR trips occur whenever
the residual capacity of the vehicle performing the route falls below a preset percentage
δ ∈ [0, 1] of its total capacity Q. In this case, the thresholds are all set to the same value:
π1(~v) = (θi2 = δQ, . . . , θij = δQ, . . . , θit = 0). This policy has the advantage of being
straightforward to implement and allows an organization to easily adjust the operational
rule to either be more conservative (i.e., higher values of δ, which tend to increase the
number of PR trips performed) or less so (i.e., lower values of δ, which tend to decrease the
number of PR trips performed).

In contrast with π1, policies π2 and π3 tailor the threshold values according to the cus-
tomers scheduled on a route. This is done by first generating point estimates for the de-
mands. In the present case, the point estimates considered are the expected demand values:
E(ξi), for i = 1, . . . , n. This being said, any demand estimates can be used to define π2 and
π3. The second policy π2 then applies the following operational rule: when leaving a cus-
tomer vij , that is scheduled on route ~v, a PR trip is performed if the residual capacity of the

vehicle is less than ηE(ξij+1), where η ∈
[

0,
Q

E(ξij+1)

]
. Therefore, the threshold value for

a specific customer is set according to the demand estimate of the customer that immedi-
ately follows him in the sequence specified by the route~v: π2(~v) = (θi2 = ηE(ξi3), . . . , θij =

ηE(ξij+1), . . . , θit = 0). As it is stated, policy π2 computes the thresholds by applying a pre-
set value η for all customers. However, this need not be the case and different values can
also be applied to further tailor the thresholds for the customers. For example, based on
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the available information regarding the distributions of the demands, a company may ad-
just its operational rule by doing the following: increase the value η for a customer whose
demand variance is high (i.e., thus being more conservative with respect to its recourse
actions) and perform the reverse for a case where the variance is low (i.e., thus being less
conservative with respect to the recourse actions). In an effort to simplify the analysis of
the proposed policies, a single value will be used to perform the numerical experiments in
Section 5.

Finally, the third policy π3 applies the following operational rule: when leaving a cus-
tomer vij , that is scheduled on route ~v, a PR trip is performed if the residual capacity of the

vehicle is less than λ ∑it
r=ij+1

E(ξr), where λ ∈
0,

Q

∑it
r=ij+1

E(ξr)

. Similar to π2, demand

estimates are again used to compute π3. However, the demand estimates of all remain-
ing customers along the route are used here to define the value of a specific threshold:
π3(~v) = (θi2 = λ ∑it

r=i3
E(ξr), . . . , θij = λ ∑it

r=ij+1
E(ξr), . . . , θit = 0). Once more, it should

be noted that a single fixed preset value λ is used to define π3. However, different values
can again be used in the operational rule, in this case, such values need to be set according
to the subsequences of customers scheduled in ~v. As previously stated, a single value will
be applied here to simplify the numerical analysis of the policies.

4 The Solution Method

To solve model (1)-(7), defined under policies π1, π2 and π3, we apply the Integer L-shaped
algorithm, which has been shown to efficiently solve the VRPSD under the classical re-
course policy (see Gendreau et al. (1995), Laporte et al. (2002) and Jabali et al. (2014)). This
algorithm, which is based on the branch-and-cut paradigm, applies an exhaustive search
of the first-stage decisional space while generating cuts that either enforce first-stage fea-
sibility requirements to obtain the a priori routes (i.e., subtour elimination and capacity
constraints), or, provide a lower bound on the recourse cost for both feasible and partial
routes through the use of lower bounding functional (LBF) cuts. In order to present how
this solution approach applies to the present model, we recall the general principles of the
Integer L-shaped algorithm (Subsection 4.1), and the definition of partial routes and the
lower bounding functional cuts (Subsection 4.2). We then develop lower bounding strate-
gies that enable the application of the LBF cuts for the present problem (Section 4.3).
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4.1 The Integer L-shaped Algorithm

Model (1)-(7) cannot be efficiently solved directly given the extremely large number of
constraints involved in eliminating all possible subtours from the considered feasible set
of routes and enforcing the capacity restrictions imposed (i.e., constraint set (4)). We recall
that the computation of the recourse cost for a given route was discussed in section 3.2. To
efficiently solve the model, the Integer L-shaped algorithm, which was originally proposed
by Laporte and Louveaux (1993), applies a branch-and-cut strategy. This strategy entails
the relaxation of the integrality constraints imposed on the decision variables, the subtour
elimination and capacity restrictions, and the replacement of the recourse cost Q(x) by a
valid lower bound Θ. Therefore, at a given iteration ν, the algorithm solves the following
current problem (CPν):

CPν : min
x,Θ

∑
i<j

cijxij + Θ (11)

subject to (2), (3), (5), (6),

∑
vi,vj∈Sk

xij ≤ |Sk| −
⌈∑vi∈Sk E(ξi)

Q

⌉
∀k ∈ STν−1, Sk ⊂ V \ {v1}, 2 ≤ |Sk| ≤ n− 2,

(12)

L + (Θq
p − L)

(
∑

h∈PRq
Wh

p (x)− |PRq|+ 1

)
≤ Θ ∀q ∈ PSν−1, p ∈ {α, β, γ},

(13)

L ≤ Θ (14)

∑
1≤i≤j
xm

ij =1

xij ≤ ∑
1≤i≤j

x f
ij − 1 ∀ f ∈ OCν−1. (15)

Let (xν, Θν) define the solution obtained for CPν. The first-stage solution xν is feasible
for the original constraint sets (2), (3), (5) and (6). Thus, each route starts and ends at
the depot, each customer is visited once and the necessary bounds are imposed on the
first-stage variables. Let STν−1 be an index set for all the subsets of vertices previously
identified (i.e., throughout the first ν− 1 iterations of the algorithm) and used to produce
the cuts in (12). Thus, the routes defined by xν are also feasible for a subset of subtour
elimination or capacity constraints, which are included in the cut set (12).

As for value Θν, it defines a lower bound associated with the current first-stage solution
xν (which may or may not be feasible). Value Θν is determined according to the LBF cuts
that have been added to CPν, constraints (13), and a general lower bound L that is valid
over all feasible first-stage solutions, constraint (14). As will be detailed in Sections 4.2, the
LBF cuts are defined according to general partial routes identified in partial solutions. We
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define PSν−1 as an index set for the partial solutions identified in the first ν− 1 iterations
of the algorithm. Furthermore, for a given partial solution q ∈ PSν−1, let h ∈ PRq be
the set of partial routes contained in solution q (see Section 4.2). Lastly, we consider three
topologies p ∈ {α, β, γ} for a general partial route, each yielding a valid lower bound Θq

p
for all first-stage solutions.

Finally, constraint set (15) includes identified optimality cuts. Set OCν−1 includes an
index for each feasible first-stage solution identified in the first ν− 1 iterations. Therefore,
for each f ∈ OCν−1, a cut of type (15) is included in CPν to eliminate the feasible solution
from further consideration.

The cut identification strategy applied at iteration ν then proceeds by first attempting
to find violated subtour elimination and capacity constraints in solution xν. This is done
by applying the separation heuristic procedures developed by Lysgaard et al. (2004) to
identify these violated constraints. If such a constraint is identified, it is then added to the
current problem and STν = STν−1 ∪ {k′}, where k′ is the index associated with the subset
of vertices defining the cut. In addition, a search for violated LBF cuts is also performed
on solution xν. To do so, the exact separation procedure developed by Jabali et al. (2014) is
applied to first search for general partial routes present in xν. Let h′ ∈ PRν be the general
partial routes identified. A violated LBF cut is then obtained for p ∈ {α, β, γ} whenever
Θν

p > Θν. In such a case, the cut is added to the current problem and PSν is updated
accordingly. When all of these separation procedures fail to identify violated cuts, a feasi-
bility test is applied on solution xν. If the current solution is feasible, let f ′ be its associated
index, an optimality cut is then added to the current problem and OCν = OCν−1 ∪ { f ′}.
Finally, the Integer L-shaped algorithm embeds this cut identification strategy in a branch-
ing procedure that terminates when optimality is established (see Jabali et al. (2014) for
further details).

4.2 Lower Bounding Functionals

The LBFs (13) are generated based on general partial routes. These were initially proposed
by Hjorring and Holt (1999) for the single-VRPSD, where a partial route was defined by a
set of sequenced customers connected to a set of unsequenced customers that is connected
to a set of sequenced customers. This structure was employed for the multi-VRPSD by
Laporte et al. (2002). The concept of partial routes was further elaborated by Jabali et al.
(2014), who treated partial routes as an alternating succession of sequenced sets and non-
sequenced sets of customers. According to this definition, three topologies of LBFs were
identified, one of which corresponds to the initial partial route defined by Hjorring and
Holt (1999). In this paper, we employ the LBFs proposed by Jabali et al. (2014). In what
follows, we define the LBFs using the notation proposed by Jabali et al. (2014), we then
present the bounds used for the VRPSD under the policies π1, π2 and π3.
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General partial routes are identified based on partial solutions (i.e., solutions which do
not yet include m feasible routes) of the CPν, solution xν. An illustration of a general partial
route can be found in Figure (2), where the depot is duplicated for convenience. Let Ḡν be
the graph induced by the nonzero variables of the solution to CPν. A general partial route
includes two types of components: 1) Chains, whose vertex sets are called chain vertex
sets (CVSs), in which the vertices of a chain are connected to each other by edges (vi, vj),
i.e., xν

ij = 1 in Ḡν; 2) Unstructured components, whose vertex set are called unstructured
vertex sets (UVSs). A chain is connected to a UVS by an articulation vertex. As previously
mentioned, the exact separation procedure proposed by Jabali et al. (2014) is used in this
paper to detect such partial routes. For h ∈ PRν, let κ denote the number of chains and

Unstructured
component

Unstructured
component

Chain Chain Chain

Figure 2: A general partial route h composed of sequenced and unsequenced sets.

κ − 1 denote the number of UVSs in partial route h. We denote by St
h = {vt

h1
, . . . , vt

hl
} the

tth chain in partial route h, where vt
hk

is the kth vertex in St
h, and hl is the number of vertices

in St
h. Therefore,

∑
(vi,vj)∈St

h

xν
ij = |St

h| − 1, ∀t = 1, . . . , κ. (16)

Let Ut
h be the tth UVS in partial route h. Then,

∑
vi,vj∈Ut

h

xν
ij = |Ut

h| − 1, ∀t = 1, . . . , κ − 1. (17)

A UVS is preceded by a chain and proceeded by another. Therefore,

∑
vj∈Ut

h

xν
ht

l ,j
= 1, ∀t ≤ κ − 1, (18)

and
∑

vj∈Ut−1
h

xν
ht

1,j = 1, ∀t ≥ 2 (19)

The interest to generalize the structure of a partial route h is motivated by the fact that
each chain may be viewed as a special case of a UVS, and each articulation vertex can be
assumed as a single-CVS. Based on these observations, three partial route topologies were
derived.
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Figure (3a) shows an example of an α-route topology, where the first and last chains are
viewed as CVSs, while the intermediate component containing multiple chains and UVSs
is viewed as a single-UVS. This case corresponds to the partial route topology proposed
by Hjorring and Holt (1999). Figure (3b) illustrates the case of a β-route topology, where
the actual alternation of CVSs and UVSs is maintained. Figure (3c) shows an example of a
γ-route topology, where each chain is viewed as a UVS and articulation vertices are viewed
as single-CVSs.

We now present the definition of the functional Wh
p (x), which is stated in equation

(20), and recall its purpose in the LBF cuts, i.e., constraints (13). Finally, in Section 4.3 we
develop lower bounding strategies to obtain the values Θq

p, tailored to the recourse cost
defined according to policies π1, π2 and π3.

Given a general partial route h, the choice of a topology p ∈ {α, β, γ} defines the specific
succession of CVSs and UVSs that are used to produce the LBF cut. Specifically, a topology
fixes the vertices that are included in sets St

h, for t = 1, . . . , κ, and Ut
h, for t = 1, . . . , κ − 1.

The functional Wh
p (x), introduced by Jabali et al. (2014), is defined as follows,

Wh
p (x) =

κ

∑
t=1

∑
(vi,vj)∈St

h
vi 6=v1

3xij + ∑
(v1,vj)∈S1

h

x1j + ∑
(v1,vj)∈Sκ

h

x1j +
κ−1

∑
t=1

∑
vi,vj∈Ut

h

3xij (20)

+
κ−1

∑
t=1

∑
vj∈Ut

h
vt

hl
6=v1

3xht
l j +

κ

∑
t=2

∑
vj∈Ut−1

h
vt

h1
6=v1

3xht
1 j + ∑

vj∈U1
h

v1
hl
=v1

xh1
l j + ∑

vj∈Ub−1
h

vκ
h1
=v1

vκ−1
h1
6=v1

xhκ
1 j

− (3|Rh| − 5).

We refer the reader to Jabali et al. (2014) for the proof of validity of equation (20) as a
component of the LBF cut (13). We simply summarize that, for a given topology p, if
a solution x follows the succession of CVSs and UVSs prescribed for the general partial
route h, then Wh

p (x) = 1, otherwise Wh
p (x) ≤ 0. Therefore, considering a partial solution q,

∑
h∈PRq

Wh
p (x) = |PRq| if and only if x follows the succession of CVSs and UVSs prescribed

for all the partial routes included in PRq. This entails that Θq
p ≤ Θ.

4.3 Bounding the Recourse Cost

Considering a specific partial solution q that includes a partial route h ∈ PRq, in the present
section, we describe the computation of Θqh

p , which is the lower bound associated to h
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v1
h1

v1
hl

v2
h1

v2
hl

(a) α-routes

v1
h1

v1
hl

v2
h1

v2
hl

(b) β-routes

(c) γ-routes

Figure 3: Partial route topologies.

when topology p ∈ {α, β, γ} is applied to generate an LBF cut (13). Moreover, the bound
Θq

p, which is included in (13), is fixed to the sum of the lower bounds associated with

the different partial routes associated with q, i.e., Θq
p = ∑

h∈PRq
Θqh

p . In the following, to

alleviate the notation, we will drop the index q and simply refer to the lower bound Θh
p

(i.e., a partial route is always associated with a partial solution). Furthermore, we focus
on deriving value Θh

α (i.e., the specific topology p = α). This is motivated by the fact that
the computation of Θh

α can be easily generalized to evaluate both Θh
β and Θh

γ, considering
that topologies β and γ can be viewed as containing successive α-route structures. We next
present the strategy to compute Θh

α under the first two policies (i.e., π1 and π2), which
can be done in a unified way. We then conclude the present subsection by detailing the
specificities of evaluating Θh

α when the third policy is applied (i.e., π3).

Bounding the Policies π1 and π2
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Let h be a partial route that is assumed to follow topology α. We denote the ordered
vertex sets in chain S1

h and S2
h as {v1

h1
, . . . , v1

|S1
h|
} and {v2

h1
, . . . , v2

|S2
h|
}, respectively. We recall

that in topology α there is a single UVS, i.e., U1
h . Partial route h can then be represented as

follows (v1 = v1
h1

, . . . , v1
|S1

h|
, U1

h , v2
h1

, . . . , v2
|S2

h|
= v1). Let l = |U1

h |, for the sake of simplifying

the subsequent recursion formulas, we redefine the partial route h, in similar terms as route
i, as follows

h = (v1 = vi1 , . . . , vij−l , {viu1
, viu2

, . . . , viul
}, vij+1 , . . . , vit+1 = v1),

where the articulation vertices v1
|S1

h|
and v2

|S2
h|

are now denoted by vij−l and vij+1 , respectively.

Using partial route h, we define an artificial route h̃ as follows,

h̃ = (v1 = vi1 , . . . , vij−l , ij−l+1 , ij−l+2 , . . . , ij , vij+1 , . . . , vit+1 = v1), (21)

where each possible ordering of the l unsequenced customers included in U1
h can be as-

signed to the positions ij−l+1 , . . . , ij . In what follows, we refer to ij as the jth position
in artificial route h̃, and we develop a bounding procedure for h̃ which essentially bounds
positions ij−l+1 , . . . , ij .

To introduce the notation used to derive the proposed lower bounding procedure, let us
recall that function Fij(.), as previously defined in (9), provides the exact computation of the

expected recourse cost onward from the jth customer when both customers jth and j + 1th

are known, e.g., for two consecutive customers in a chain. In what follows, we primarily
reconstruct recursive formula (9) in a manner that yields a bound on the unsequenced
customers in U1

h . Let F̃ij(.) represent an absolute lower bound for the expected recourse
cost of the jth position of artificial route h̃. Let F̂ij(.)|ij :=ue

be the lower bound for a specific

unsequenced customer vue ∈ U1
h that would be assigned to the jth position of the artificial

route h̃.

Considering a sequenced route, we introduce a bounding structure in Lemma 4.1 for
F̂ik(.)|ik :=ue

, which is constructed based on the knowledge of the absolute bounds on cus-

tomer k, i.e. F̃ik(.), for k > j. We then develop the bounding structure proposed in Lemma
4.1 to bound artificial route h̃. This is done in two main steps, in Lemma 4.2 an absolute
lower bound on the expected recourse cost for the jth position in the artificial route is es-
tablished. This is then recursively embedded in Lemma 4.3 to obtain bounds for positions
j− l + 1 ≤ k < j in artificial route h̃.

We begin by showing how a valid lower bound can be computed for a feasible route
~v = (v1 = vi1 , vi2 , . . . , vik , vik+1 , . . . , vit , vit+1 = v1) under policies π1 and π2. We recall
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that π1(~v) = (θi2 = δQ, . . . , θij = δQ, . . . , θit = 0) and π2(~v) = (θi2 = ηE(ξi3), . . . , θij =

ηE(ξij+1), . . . , θit = 0). By defining the minimum and maximum threshold values of the
route ~v as θ~v = min{θi2 , . . . , θik , θik+1 , . . . , θit−1} and θ~v = max{θi2 , . . . , θik , θik+1 , . . . , θit−1},
respectively, then the following result stands.

Lemma 4.1. Let q denote the residual capacity of the vehicle upon arriving at vik . Let

F̂ik(q) =



F̃ik+1(q) if k = 1

P[q− ξik < 0]
(

b + 2c1ik + F̃ik+1(Q + q− ξik)
)
+

P[0 ≤ q− ξik < θ~v]
(

c̃ik + F̃ik+1(Q)
)
+

P[q− ξik ≥ θ~v]F̃ik+1(q− ξik) if k = 2, . . . , t
0 if k = t + 1,

(22)

where c̃ik = min
a=k+1,...,t

{c1,ik + c1,ia − cik,ia} and F̃ik+1(.) ≤ Fik+1(.), then F̂ik(q) ≤ Fik(q) for all q.

Proof. We recall Fik(q) from (9) as

Fik(q) =



Fik+1(q) if k = 1
P[q− ξik < 0]

(
b + 2c1ik + Fik+1(Q + q− ξik)

)
+

P[0 ≤ q− ξik < θik ]
(
c1ik + c1ik+1 − cikik+1 + Fik+1(Q)

)
+

P[q− ξik ≥ θik ]Fik+1(q− ξik) if k = 2, . . . , t
0 if k = t + 1.

Since each term in F̂ik(q) is a direct lower bound value for its counterpart term in the Fik(q)
then F̂ik(q) ≤ Fik(q).

It should first be noted that h̃ includes two sequenced parts (i.e., chains S1
h and S2

h).
Therefore, for all possible values q, the onward expected recourse cost after the jth position
can be computed exactly using (9) (i.e., F̃ik(q) = Fik(q) for j < k ≤ t + 1). We now present a
lower bound on the onward recourse cost for the jth position in h̃.

Lemma 4.2. A lower bound on the expected recourse cost for the jth position in the artificial route
h̃ can be defined as follows:

F̃ij(q) = min
vue∈U1

h

Fij(q)|ij :=ue
∀q (23)

where Fij(q)|ij :=ue
is computed by assigning vue ∈ U1

h at the jth position in h̃, and then applying

the recourse function (9).
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Proof. Since the jth position is unsequenced in h̃, and considering that it can potentially
be assigned to each vue ∈ U1

h , a valid lower bound for the onward expected recourse cost
at the jth position is obtained by minimizing the recourse cost over U1

h for each q. Then,
F̃ij(.) ≤ Fij(.)|ij :=ue

is implied by the definitions.

By embedding Lemma 4.2 within Lemma 4.1, a valid lower bound can be derived for
the positions not yet sequenced in h̃, i.e., ( ij−l+1 , ij−l+2 , . . . , ij−1). Therefore, at the j− 1th

position, Lemma 4.2 is used to obtain a lower bound for each vue ∈ U1
h . This process is then

sequentially applied to bound the remaining positions.

Lemma 4.3. A lower bound for the expected recourse cost at kth position of artificial route h̃ for
j− l + 1 ≤ k < j can be computed as follows:

F̃ik(q) = min
vue∈U1

h

F̂ik(q)|ik :=ue
∀q, (24)

in which F̂ik(q)|ik :=ue
is defined as

F̂ik(q)|ik :=ue
=


P[q− ξue < 0]

(
b + 2c1ue + F̃ik+1(Q + q− ξue)

)
+

P[0 ≤ q− ξue < θU1
h
]
(

c̃ue + F̃ik+1(Q)
)
+

P[q− ξue ≥ θU1
h
]F̃ik+1(q− ξue)

(25)

where, θU1
h
= min

vue∈U1
h

θue , θU1
h
= max

vue∈U1
h

θue and

c̃ue = min
vue′∈U1

h :vue′ 6=vue

{c1,ue + c1ue′ − cue,ue′}

defines the minimum PR trip cost that can be done from vue within U1
h , given F̃ik+1(q), . . . , F̃ij(q),

∀q.

Proof. Let us consider position ij−1, where the valid lower bound F̃ij(.) is assumed known,
considering Lemma 4.2. Let

F̂ij−1(q)|ij−1:=ue
=


P[q− ξue < 0]

(
b + 2c1ue + F̃ij(Q + q− ξue)

)
+

P[0 ≤ q− ξue < θU1
h
]
(

c̃ue + F̃ij(Q)
)
+

P[q− ξue ≥ θU1
h
]F̃ij(q− ξue)

define the intermediate lower bound for the onward expected recourse cost at position ij−1

if customer vue is placed there (see Lemma 4.1). By defining F̃ij−1(q) = min
vue∈U1

h

F̂ij−1(q)|ij−1:=ue
,

value F̃ij−1(q) clearly defines a lower bound for Fij−1(q). Furthermore, this result holds for
all positions k, where j− l + 1 ≤ k < j− 1.
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For the ij−l
th customer (i.e., articulation vertex in S1

h), a lower bound for the expected
recourse cost can be computed as follows:

F̃ij−l(q) = F̂ij−l(q) ∀q,

where

F̂ij−l(q) =


P[q− ξij−l < 0]

(
b + 2c1ij−l + F̃ij−l+1(Q + q− ξij−l)

)
+

P[0 ≤ q− ξij−l < θU1
h
]
(

c̃ij−l + F̃ij−l+1(Q)
)
+

P[q− ξij−l ≥ θU1
h
]F̃ij−l+1(q− ξij−l)

(26)

given that F̃ij−l+1(q) for all q is computed using Lemma 4.3 and where c̃ij−l = min
vue∈Ur

{c1,ij−l +

c1,ue − cij−l ,ue} defines the minimum PR trip cost that could be incurred from vij−l into U1
h .

Finally, for the remaining portion of the artificial route h̃, i.e., vi1 , . . . , vij−l−1 , we note
that the recourse function (9) can be used to successively compute Fij−l−1(.),. . . , Fi1(.) (i.e.,

F̃ik(q) = Fik(q) for 1 < k ≤ j − l − 1). Then F̃i1(Q) = Q̃k,1
h̃

, can be used to complete the

computation of the lower bound value. As for obtaining value Q̃k,2
h̃

, we simply reverse the

artificial route and apply the same computation. Therefore, Θh
α = min{Q̃k,1

h̃
, Q̃k,2

h̃
} results

in a lower bound value for recourse cost for the partial route h.
Bounding the Policy π3
In the case of policy π3, the computation of the recourse cost for the artificial route h̃ re-
mains unchanged with the exception of the threshold values used (i.e., θU1

h
and θU1

h
in

Lemma 4.3). These threshold values now need to be determined according to the specific

positions associated with U1
h . Let us define θk

U1
h

and θ
k
U1

h
as the aforementioned threshold

values associated with position k, for j− l + 1 ≤ k < j. To express these values, we de-
fine 1st, 2nd, . . . , l − 1th minimum and maximum expected demands associated with the
customers included in U1

h as follows,:

y1 =
vue∈U1

h

E(ξvue ), y2 =
vue∈U1

h\{vuy1
}

E(ξvue ), . . . , yl−1 =
vue∈U1

h\{vuy1
,...,vuyl−2

}
E(ξvue )

z1 =
vue∈U1

h

E(ξvue ), z2 =
vue∈U1

h\{vuz1
}

E(ξvue ), . . . , zl−1 =
vue∈U1

h\{vuz1
,...,vuzl−2

}
E(ξvue )

Let us recall that policy π3 is defined as π3(~v) = (θi2 = λ ∑it
r=i3

E(ξr), . . . , θij = λ ∑it
r=ij+1

E(ξr), . . . , θit =

0) for a given route ~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1). Considering that the artifi-

cial route h̃ = (v1 = vi1 , . . . , vij−l , ij−l+1 , ij−l+2 , . . . , ij , vij+1 , . . . , vit+1 = v1), is unsequenced

from the j− l + 1th position up to the jth position, we set values θk
U1

h
and θ

k
U1

h
, for j− l + 1 ≤

k < j as follows
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θk
U1

h
= λ

( j−k

∑
a=1

E(ξya) +
it

∑
r=ij+1

E(ξr)
)
, θ

k
U1

h
= λ

( j−k

∑
a=1

E(ξza) +
it

∑
r=ij+1

E(ξr)
)
.

Finally, to compute F̂ij−l(q) using (26), under policy π3, values θmin
U1

h
and θmax

U1
h

are simply set
to

θmin
U1

h
= θmax

U1
h

= λ
(
∑

vue∈U1
h

E(ξvue ) +
it

∑
r=ij+1

E(ξr)
)
.

We have presented the computation of the bounds associated with Θh
α. This compu-

tation is generalized, to both Θh
β and Θh

γ, as these can be viewed as successive α-route
structures.

5 Numerical Result

In this section, we present extensive computational experiments conducted to assess the
effectiveness of the solution method, as well as the quality of the three rule-based recourses
proposed. In the set of instances designed for these numerical experiments both customer
locations and the demand distribution functions are randomly generated. In each instance,
a set of n vertices including the depot and n− 1 customers as {v1, . . . , vn} are scattered in a
square of [0, 100]2 according to a continuous uniform distribution. For each pair vi and vj,
the traveling cost cij is then set to the nearest integer associated to the Euclidean distance
between the two vertices. It should also be noted that the cost value b is defined as the
average distance to the depot when considering all customers (i.e., b = ∑

i=2,...,n
ci1/(n− 1)).

As previously defined, b is incurred whenever a failure occurs when applying a route to
represent the cost associated with the added disturbance from the customer’s perspective
of having its demand serviced on two consecutive visits. Such a cost can be adjusted to
reflect the overall quality of service that a transportation company is interested in offering
to its customers. As for the specific choice of the value b that is considered, the motivation
was to ensure that it scales (i.e., defined on comparable units of measurement) to the overall
costs used in the objective function of the VRPSD, which depends of the travel cost.

Three demand ranges [1, 5], [6, 10], and [11, 15] are selected to present low, medium,
and high demand customers. Each customer vi ∈ {v2, . . . , vn} is then assigned to one of
these three ranges with equiprobability. Next, five demand realizations based on the as-
signed ranges are generated for each customer vi and the probabilities {0.1, 0.2, 0.4, 0.2, 0.1}
are associated to each value within the specific interval. The filling coefficient and vehicle
capacity are defined through the function f̄ = ∑n

i=2 E(ξi)
mQ , where m is the number of homo-

geneous vehicles with capacity Q. Four filling coefficients f̄ = 0.90, 0.92, 0.94, and 0.96 are
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used to compute Q, where m = 2, 3, and 4. The computational study is performed on a set
of 11 possible pairs of (n, m) as indicated in Table (1). For each pair, 10 instances are ran-
domly generated (providing 110 base instances). Considering the four filling coefficients
for each pair of (n, m), a total of 440 instances are thus generated.

Three volume rule-based policies are examined in this paper. As stated in §3.3, let us
recall that policy π1 is based on a preset percentage δ of the capacity of the vehicles, while
policies π2 and π3 are defined according to fixed coefficients (i.e., η and λ for π2 and π3,
respectively) applied to either the expected demand of the subsequent customer along the
considered route (i.e., policy π2), or, the total expected demands of the remaining cus-
tomers sequenced on the considered route (i.e., policy π3). It should be noted that these
policies, more precisely their preset coefficients, need to be tuned and calibrated carefully
by decision makers facing the problems. These threshold policies govern how return trips
to the depot are performed and can be used to formulate varying levels of risk aversion
from the decision maker’s perspective. As an overall principle, by increasing the preset
coefficients under the different policies, vehicles will perform PR trips more often and less
failures are expected to be observed, while a reduction in the coefficient values would have
the reverse effect (i.e., a higher risk of observing failures).

To perform a thorough numerical analysis, three preset values for each policy are se-
lected: δ = 0.02, 0.03, 0.05, η = 0.80, 1.00, 1.25, and λ = 0.80, 0.90, 1.00. These values where
chosen to enable a proper calibration of the policies to be performed and to assess the im-
pact of using different threshold levels. Therefore, for each considered policy, a median
value was first selected: δ = 0.03 for π1, η = 1.00 for π2 and λ = 0.90 for π3, which de-
fines the benchmark in each case. Two alternate values were then defined for each policy
to represent a more risk averse operational rule set with respect to the occurrence of route
failures (i.e., δ = 0.05, η = 1.25 and λ = 1.00) and a less risk averse approach (i.e., δ = 0.02,
η = 0.80 and λ = 0.80). To summarize the numerical experiments conducted, each instance
is solved under the three policies that are applied using each preset value, thus a total of
3, 960 runs are performed.

The Integer L-shaped algorithm was programmed in C++ using ILOG CPLEX 12.6. The
subtour elimination and capacity constraints (4) are generated using the CVRPSEP pack-
age of Lysgaard et al. (2004) and the branching procedure, which is used for the L-shaped
algorithm, is implemented using the OOBB package developed by Gendron et al. (2005).
We use three topologies p ∈ {α, β, γ} for generating general partial route cuts. All experi-
ments were conducted on a cluster of 27 machines each having two Intel(R) Xeon(R) X5675
3.07 GHz processors with 96 GB of RAM running on Linux. Each machine has 12 cores and
each experiment was run using a single thread. An optimality gap of 0.01% was imposed
as well as a maximum CPU run time of 10 hours on all runs. Therefore, if the algorithm
reaches the maximum allotted time without finding a solution within the desired gap, the
best integer feasible solution found is simply reported.
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Table 1: Combinations of parameters to generate instances

n m f̄

20 2 0.90, 0.92, 0.94, 0.96
30 2 0.90, 0.92, 0.94, 0.96
40 2, 3, 4 0.90, 0.92, 0.94, 0.96
50 2, 3, 4 0.90, 0.92, 0.94, 0.96
60 2, 3, 4 0.90, 0.92, 0.94, 0.96

The obtained results are analyzed in the next two subsections. In Subsection 5.1, the
three proposed policies are evaluated in terms of the computational effort needed to solve
the VRPSD when each of them is used to define the recourse cost. While in Subsection 5.2,
a solution cost assessment is conducted for the proposed policies.

5.1 Computational Policy Analysis

The results obtained for all numerical experiments are summarized in Tables 2, 3, and
4, each table corresponds to the results of a single policy. These results are aggregated
according to the pair (n, m) and the filling coefficient f̄ defining the instances, as well as the
preset values associated with the policies (i.e., δ, η and λ for π1, π2 and π3, respectively).
Results are reported as follows: 1) the “Solved” columns presents the number of instances
(out of ten for each aggregated category) that were solved to optimality by the Integer L-
shaped algorithm; 2) the “Time” columns refer to the average running times in seconds that
were needed by the algorithm to solve those instances to optimality; 3) the “Gap” columns
present the average optimality gap obtained by the algorithm over all instances solved (i.e.,
both those solve optimally and those for which only a feasible solution was obtained).

When analyzing the results in Tables 2, 3, and 4, one first observes the general trend
that was previously reported by Gendreau et al. (1995), Laporte et al. (2002), and Jabali et al.
(2014) regarding the overall complexity related to solving the VRPSD. Therefore, regardless
of the specific policy used, the complexity of solving the problem tends to increase as the
number of customers, number of vehicles, and the filling coefficients increase. This trend
is illustrated via both the number of instances solved to optimality that tend to decrease as
the values of the instances parameters (n, m) and f̄ increase, and the running times which
tend to increase as the value f̄ increases for fixed values for the pair (n, m).

Next, we analyze how the algorithm performs when solving the VRPSD under the three
rule-based policies proposed. As reported in Tables 2, 3, and 4, on a total of 1,320 runs
(which were performed using each considered policy), the Integer L-shaped algorithm ob-
tained optimal solutions in 655 runs using π1, 683 runs using π2 and 593 runs using π3.
From these results, it clearly appears that the Integer L-shaped algorithm is most efficient
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Table 2: Result of running the fixed policy π1.

n m δ f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap

20 2 0.02 0.90 10 22.10 0.00% 0.92 10 15.50 0.00% 0.94 10 18.40 0.00% 0.96 9 705.56 0.11%
20 2 0.03 0.90 10 12.20 0.00% 0.92 10 13.50 0.00% 0.94 10 15.10 0.00% 0.96 9 503.11 0.08%
20 2 0.05 0.90 10 13.80 0.00% 0.92 10 14.00 0.00% 0.94 10 15.40 0.00% 0.96 9 539.33 0.08%
30 2 0.02 0.90 10 20.20 0.00% 0.92 9 481.22 0.04% 0.94 10 2405.00 0.00% 0.96 9 2771.22 0.16%
30 2 0.03 0.90 10 23.20 0.00% 0.92 9 407.56 0.13% 0.94 10 5407.10 0.00% 0.96 9 2432.44 0.16%
30 2 0.05 0.90 10 17.90 0.00% 0.92 9 412.89 0.16% 0.94 9 2415.22 0.07% 0.96 7 5183.57 0.40%
40 2 0.02 0.90 10 21.70 0.00% 0.92 10 98.80 0.00% 0.94 10 61.80 0.00% 0.96 7 2516.57 0.10%
40 2 0.03 0.90 10 17.60 0.00% 0.92 10 86.90 0.00% 0.94 10 40.60 0.00% 0.96 7 3391.57 0.09%
40 2 0.05 0.90 10 13.70 0.00% 0.92 10 90.40 0.00% 0.94 10 20.40 0.00% 0.96 8 1026.62 0.09%
40 3 0.02 0.90 6 1258.33 0.27% 0.92 7 8256.43 1.29% 0.94 3 3788.00 1.06% 0.96 2.43%
40 3 0.03 0.90 6 1349.83 0.24% 0.92 6 3011.33 1.15% 0.94 3 5173.00 0.95% 0.96 2.43%
40 3 0.05 0.90 7 7175.29 0.29% 0.92 6 589.00 1.20% 0.94 3 11622.33 0.97% 0.96 2.55%
40 4 0.02 0.90 1 32151.00 2.61% 0.92 6.47% 0.94 4.38% 0.96 7.51%
40 4 0.03 0.90 1 19318.00 2.57% 0.92 6.06% 0.94 4.42% 0.96 7.02%
40 4 0.05 0.90 2.98% 0.92 6.89% 0.94 4.37% 0.96 7.28%
50 2 0.02 0.90 10 13.90 0.00% 0.92 9 2896.11 0.16% 0.94 10 123.00 0.00% 0.96 5 6185.40 0.32%
50 2 0.03 0.90 10 18.30 0.00% 0.92 9 3735.44 0.17% 0.94 10 112.10 0.00% 0.96 5 4966.80 0.33%
50 2 0.05 0.90 10 608.20 0.00% 0.92 8 110.00 0.19% 0.94 10 3282.60 0.00% 0.96 5 2819.20 0.40%
50 3 0.02 0.90 6 4342.17 1.09% 0.92 4 3233.50 0.88% 0.94 3 1926.67 1.02% 0.96 2.24%
50 3 0.03 0.90 6 4729.00 1.07% 0.92 4 3155.00 1.24% 0.94 3 1582.00 1.04% 0.96 2.16%
50 3 0.05 0.90 6 3547.17 1.10% 0.92 3 2296.00 1.07% 0.94 3 1080.00 1.03% 0.96 2.60%
50 4 0.02 0.90 2 2308.00 4.93% 0.92 1 12705.00 3.37% 0.94 2.83% 0.96 5.12%
50 4 0.03 0.90 2 1902.00 4.57% 0.92 1 12989.00 3.44% 0.94 3.16% 0.96 5.04%
50 4 0.05 0.90 2 7105.00 4.89% 0.92 1 15156.00 3.88% 0.94 3.31% 0.96 5.27%
60 2 0.02 0.90 10 1819.40 0.00% 0.92 8 26.38 0.05% 0.94 8 2549.50 0.10% 0.96 6 4313.17 0.12%
60 2 0.03 0.90 10 1558.70 0.00% 0.92 8 71.75 0.03% 0.94 9 4669.67 0.09% 0.96 6 6953.00 0.06%
60 2 0.05 0.90 10 1566.90 0.00% 0.92 8 50.50 0.07% 0.94 9 2291.00 0.09% 0.96 6 888.33 0.16%
60 3 0.02 0.90 3 2592.67 1.05% 0.92 2 6797.00 3.25% 0.94 3 18900.33 2.16% 0.96 1 196.00 2.77%
60 3 0.03 0.90 3 5301.33 1.18% 0.92 2 14896.50 3.14% 0.94 1 168.00 2.23% 0.96 3.40%
60 3 0.05 0.90 2 182.00 1.11% 0.92 1 429.00 3.04% 0.94 1 119.00 2.44% 0.96 3.38%
60 4 0.02 0.90 1 24866.00 2.66% 0.92 3.41% 0.94 4.40% 0.96 5.30%
60 4 0.03 0.90 2.69% 0.92 3.43% 0.94 4.33% 0.96 5.35%
60 4 0.05 0.90 3.14% 0.92 3.70% 0.94 4.14% 0.96 5.02%

Average 1578.80 2.56% 1560.94 3.86% 2097.01 3.24% 2698.15 5.30%

Total 204 175 168 108

Table 3: Result of running the fixed policy π2.

n m η f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap

20 2 0.80 0.90 10 12.50 0.00% 0.92 10 16.00 0.00% 0.94 10 5.40 0.00% 0.96 10 263.20 0.00%
20 2 1.00 0.90 10 10.50 0.00% 0.92 10 12.50 0.00% 0.94 10 2.00 0.00% 0.96 10 13.40 0.00%
20 2 1.25 0.90 10 18.50 0.00% 0.92 10 28.50 0.00% 0.94 10 19.60 0.00% 0.96 10 59.50 0.00%
30 2 0.80 0.90 10 101.40 0.00% 0.92 9 3962.00 0.07% 0.94 10 1973.00 0.00% 0.96 8 646.75 0.22%
30 2 1.00 0.90 10 42.20 0.00% 0.92 9 3565.33 0.05% 0.94 10 890.70 0.00% 0.96 8 248.62 0.18%
30 2 1.25 0.90 10 193.60 0.00% 0.92 8 1.75 0.07% 0.94 9 3965.56 0.01% 0.96 8 1566.62 0.23%
40 2 0.80 0.90 10 32.70 0.00% 0.92 10 71.60 0.00% 0.94 10 26.80 0.00% 0.96 9 1671.78 0.04%
40 2 1.00 0.90 10 23.70 0.00% 0.92 10 34.60 0.00% 0.94 10 14.50 0.00% 0.96 10 1770.90 0.00%
40 2 1.25 0.90 10 41.50 0.00% 0.92 10 88.20 0.00% 0.94 10 55.90 0.00% 0.96 9 3170.89 0.07%
40 3 0.80 0.90 5 447.60 0.50% 0.92 7 3180.86 0.58% 0.94 5 9071.80 0.46% 0.96 1 10428.00 1.78%
40 3 1.00 0.90 6 4727.50 0.41% 0.92 7 908.00 0.49% 0.94 4 1945.25 0.86% 0.96 2 7175.00 1.39%
40 3 1.25 0.90 5 434.60 0.60% 0.92 5 4056.20 0.85% 0.94 3 6334.67 1.10% 0.96 1 1861.00 2.00%
40 4 0.80 0.90 2.47% 0.92 4.28% 0.94 3.81% 0.96 5.71%
40 4 1.00 0.90 2.37% 0.92 4.32% 0.94 3.02% 0.96 4.79%
40 4 1.25 0.90 3.08% 0.92 4.76% 0.94 4.74% 0.96 6.86%
50 2 0.80 0.90 10 113.50 0.00% 0.92 9 2252.00 0.00% 0.94 10 181.40 0.00% 0.96 7 7895.00 0.16%
50 2 1.00 0.90 10 124.40 0.00% 0.92 8 649.50 0.20% 0.94 10 86.40 0.00% 0.96 7 925.71 0.18%
50 2 1.25 0.90 10 84.40 0.00% 0.92 8 1980.50 0.20% 0.94 10 163.40 0.00% 0.96 7 2676.86 0.31%
50 3 0.80 0.90 4 1308.75 1.11% 0.92 4 4384.50 1.03% 0.94 3 1300.33 1.05% 0.96 1 2567.00 1.79%
50 3 1.00 0.90 5 3981.00 1.06% 0.92 5 5882.60 0.57% 0.94 4 8905.00 0.77% 0.96 1 127.00 1.39%
50 3 1.25 0.90 4 3068.00 1.16% 0.92 5 8601.00 0.86% 0.94 4 8774.00 1.13% 0.96 1 349.00 1.84%
50 4 0.80 0.90 2 124.00 4.31% 0.92 2 11846.50 2.77% 0.94 2.27% 0.96 3.89%
50 4 1.00 0.90 2 85.50 3.99% 0.92 2 7662.00 2.89% 0.94 2.01% 0.96 3.53%
50 4 1.25 0.90 2 164.00 4.97% 0.92 2 17078.50 3.33% 0.94 2.76% 0.96 4.46%
60 2 0.80 0.90 10 1561.70 0.00% 0.92 9 1438.22 0.06% 0.94 7 486.71 0.09% 0.96 7 5270.29 0.14%
60 2 1.00 0.90 10 1035.50 0.00% 0.92 9 1047.22 0.02% 0.94 8 3190.88 0.06% 0.96 8 3104.75 0.13%
60 2 1.25 0.90 10 1813.00 0.00% 0.92 9 961.89 0.06% 0.94 8 4489.38 0.10% 0.96 7 3242.14 0.21%
60 3 0.80 0.90 4 5910.00 0.89% 0.92 1 407.00 2.55% 0.94 2 12122.50 2.01% 0.96 1 2326.00 2.59%
60 3 1.00 0.90 3 2109.00 0.89% 0.92 2 597.00 2.29% 0.94 2 4097.00 1.90% 0.96 2 4511.50 2.22%
60 3 1.25 0.90 4 3508.25 0.92% 0.92 1 224.00 2.97% 0.94 1 967.00 2.21% 0.96 1 581.00 2.66%
60 4 0.80 0.90 2.30% 0.92 2.90% 0.94 3.75% 0.96 4.06%
60 4 1.00 0.90 2.21% 0.92 2.41% 0.94 3.38% 0.96 3.75%
60 4 1.25 0.90 2.57% 0.92 2.92% 0.94 4.43% 0.96 4.70%

Average 852.17 2.39% 1969.43 2.90% 1852.34 2.80% 2138.75 4.08%

Total 196 181 170 136
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Table 4: Result of running the fixed policy π3.

n m λ f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap

20 2 0.80 0.90 10 14.80 0.00% 0.92 10 18.40 0.00% 0.94 10 8.30 0.00% 0.96 9 1147.00 0.17%
20 2 0.90 0.90 10 31.30 0.00% 0.92 10 25.50 0.00% 0.94 10 74.90 0.00% 0.96 7 330.14 0.63%
20 2 1.00 0.90 10 195.40 0.00% 0.92 10 35.60 0.00% 0.94 9 260.11 0.00% 0.96 5 8180.20 1.24%
30 2 0.80 0.90 10 19.40 0.00% 0.92 9 508.56 0.04% 0.94 10 1235.90 0.00% 0.96 8 3460.38 0.27%
30 2 0.90 0.90 10 24.00 0.00% 0.92 9 482.00 0.15% 0.94 10 3835.10 0.00% 0.96 5 1732.80 0.79%
30 2 1.00 0.90 10 228.90 0.00% 0.92 9 529.11 0.16% 0.94 9 5148.00 0.05% 0.96 3 1992.67 1.73%
40 2 0.80 0.90 10 11.70 0.00% 0.92 10 202.30 0.00% 0.94 10 66.90 0.00% 0.96 9 4205.78 0.04%
40 2 0.90 0.90 10 26.90 0.00% 0.92 10 269.90 0.00% 0.94 10 106.30 0.00% 0.96 5 11483.60 0.23%
40 2 1.00 0.90 10 584.30 0.00% 0.92 10 703.40 0.00% 0.94 9 727.78 0.00% 0.96 1 2025.00 1.20%
40 3 0.80 0.90 5 2571.60 0.22% 0.92 6 3434.67 1.35% 0.94 2 8629.50 1.75% 0.96 2.96%
40 3 0.90 0.90 6 2744.50 0.31% 0.92 6 3604.50 1.31% 0.94 2 16319.00 2.83% 0.96 4.17%
40 3 1.00 0.90 6 4285.17 0.42% 0.92 6 6498.17 1.69% 0.94 1 5093.00 3.81% 0.96 7.14%
40 4 0.80 0.90 1 14852.00 3.91% 0.92 7.34% 0.94 4.70% 0.96 7.86%
40 4 0.90 0.90 5.09% 0.92 8.99% 0.94 5.67% 0.96 9.64%
40 4 1.00 0.90 6.46% 0.92 10.32% 0.94 7.60% 0.96 11.78%
50 2 0.80 0.90 10 1515.90 0.00% 0.92 8 1761.12 0.17% 0.94 10 312.10 0.00% 0.96 5 4882.80 0.31%
50 2 0.90 0.90 10 935.20 0.00% 0.92 7 135.71 0.19% 0.94 9 554.11 0.04% 0.96 2 781.00 0.53%
50 2 1.00 0.90 10 2957.20 0.00% 0.92 8 3506.00 0.17% 0.94 9 7396.44 0.06% 0.96 1.40%
50 3 0.80 0.90 6 3488.67 1.10% 0.92 4 4239.50 1.38% 0.94 3 2491.33 0.87% 0.96 3.45%
50 3 0.90 0.90 5 6659.20 1.17% 0.92 3 2304.67 1.46% 0.94 3 6620.33 1.43% 0.96 4.66%
50 3 1.00 0.90 6 8170.00 1.18% 0.92 3 9284.33 1.67% 0.94 1 26215.00 1.67% 0.96 7.46%
50 4 0.80 0.90 2 4060.00 4.74% 0.92 1 10983.00 5.94% 0.94 4.28% 0.96 5.59%
50 4 0.90 0.90 2 2043.50 5.41% 0.92 1 16596.00 7.68% 0.94 5.22% 0.96 7.23%
50 4 1.00 0.90 2 1767.00 6.29% 0.92 1 23014.00 8.74% 0.94 7.12% 0.96 10.88%
60 2 0.80 0.90 10 1667.60 0.00% 0.92 9 2333.11 0.05% 0.94 9 3909.44 0.07% 0.96 5 4470.40 0.19%
60 2 0.90 0.90 10 1579.70 0.00% 0.92 8 358.25 0.05% 0.94 9 7823.11 0.10% 0.96 3 6583.33 0.42%
60 2 1.00 0.90 10 2323.80 0.00% 0.92 8 627.25 0.06% 0.94 6 160.83 0.11% 0.96 1.21%
60 3 0.80 0.90 4 4117.50 1.02% 0.92 1 1145.00 3.01% 0.94 2 18532.50 2.60% 0.96 3.50%
60 3 0.90 0.90 4 10966.50 1.22% 0.92 2 17711.00 3.51% 0.94 1 3175.00 3.06% 0.96 4.28%
60 3 1.00 0.90 2 8169.50 1.81% 0.92 1 14206.00 4.84% 0.94 1 14036.00 4.04% 0.96 6.08%
60 4 0.80 0.90 2.68% 0.92 3.49% 0.94 4.78% 0.96 6.01%
60 4 0.90 0.90 3.38% 0.92 4.34% 0.94 6.04% 0.96 7.61%
60 4 1.00 0.90 4.20% 0.92 5.68% 0.94 8.22% 0.96 9.56%

Average 1923.95 3.37% 1955.95 5.59% 2919.66 5.07% 3899.00 8.68%

Total 201 170 155 67

when solving the VRPSD under policy π2. Furthermore, with the exception of the instances
where f̄ = 0.92, the use of policy π2 also enables the smallest weighted average running
times to be obtained when applying the algorithm i.e., 852.17 seconds, 1,852.34 seconds
and 2,138.75 seconds for the instances where f̄ = 0.90, f̄ = 0.94 and f̄ = 0.96, respectively.
In the case of the instances where f̄ = 0.92, policy π1 allows the Integer L-shaped algo-
rithm to be more computationally efficient (i.e., a weighted average of 1 560.94 seconds
was obtained using π1, compared to 1 969.43 seconds using π2). However, when compar-
ing policies using the computation times obtained by the algorithm, it is important to note
that the reported results are not perfectly comparable considering that they are not neces-
sarily based on runs performed on the same instances. For example, the weighted average
obtained for policy π1 on the instances where f̄ = 0.92 is based on less instances solved to
optimality when compared to π2 (i.e., 175 instances in the case of π1 versus 181 instances in
the case of π2). This being said, what these results show is again the trend that the Integer
L-shaped algorithm is most efficient under policy π2 to solve the VRPSD.

Finally, when considering the average gaps obtained when applying the different poli-
cies, the use of π2 provides again the best results. For the different filling coefficient values
defining the considered instances (i.e., f̄ = 0.90, 0.92, 0.94 and 0.96), the average gaps ob-
tained overall runs are respectively: 2.56%, 3.86%, 3.24% and 5.30% when applying π1;
2.39%, 2.90%, 2.80% and 4.08% when applying π2; and 3.37%, 5.59%, 5.07% and 8.68%
when applying π3. Therefore, one can conclude that the overall numerical complexity of
solving the VRPSD using the Integer L-shaped algorithm seems easiest using π2, followed
by π1 and π3. In addition, policy π3 appears as the most challenging to apply when con-
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sidering all previously analyzed metrics.

5.2 Solution Cost Assessment

In this subsection, we analyze how the three proposed policies perform in terms of reduc-
ing the costs associated with the vehicle routes. Given that a company may choose to use
any of the policies based on the specific operational rules that are applied to perform the
routes, it is important to note that our aim here is not necessarily to identify which policy is
best overall. Instead, we will analyze the quality of the solutions obtained using π1, π2 and
π3 by evaluating them under both the classical recourse and the optimal restocking poli-
cies. By doing so, for the solutions obtained, we will assess how π1, π2 and π3 1) reduce
the number of failures when compared to applying the routes using the classical recourse
policy and 2) approximate the optimal restocking cost.

Therefore, when solving the instances using the three proposed policies, we first con-
sider only those runs where optimal solutions were found. The routes associated with
these optimal solutions are then alternatively evaluated using both the classical recourse
and optimal restocking policies, the latter was computed similar to Bertsimas et al. (1995).
Also, results will be grouped according to the filling rate f̄ of the instances, which is a
problem dimension that clearly impacts the numerical challenges involved in solving the
instances. In Table 5, we first report the ratios obtained between the expected number of
BF trips that are performed when the routes are conducted under the classical recourse
policy (i.e., EBFc) with respect to when they are performed under the proposed rule-based
policies (i.e., EBFr).

As shown in Table 5, compared to the classical recourse policy, the use of π1, π2 and
π3 clearly reduces the expected number of BF trips that are performed when applying the
routes. Given the practical high costs that may be associated with the disturbances related
to route failures, the proposed policies offer a clear advantage over the myopic classical
recourse policy. In addition, when analyzing the results obtained for π1 and π2, one sees
how the use of more risk-averse preset values can further reduce the expected number of
performed BF trips. A significant reduction is observed when π2 is applied using η = 1.25
in which case the average ratios increase by an order of magnitude. Regarding policy π3,
the obtained results seem to contradict these observations. However, this can be explained
by the fact that, for a given instance type (i.e., for fixed parameters n, m and f̄ ), the value
to which λ is fixed greatly influences the number of instances solved to optimality. From
Table 4, one observes the trend that the VRPSD becomes significantly harder to solve as
the value λ is increased when applying π3. Therefore, in this case, the average ratios are
computed using the solutions obtained on noticeably different sets of instances which, in
turn, can explain the differing observations.
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Table 5: The ratio EBFc
EBFr

π preset f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96

π1

δ = 0.02 1.63 1.54 1.83 1.44
δ = 0.03 3.75 1.50 1.97 2.03
δ = 0.05 5.04 2.33 3.48 3.28

π2

η = 0.80 2.31 2.27 2.16 2.25
η = 1.00 4.19 4.93 4.53 5.37
η = 1.25 35.55 27.95 40.96 44.76

π3

λ = 0.80 25.97 6.89 10.12 3.56
λ = 0.90 13.95 2.71 7.36 2.58
λ = 1.00 13.75 6.16 6.52 1.35

The final step in our overall analysis is to assess how policies π1, π2 and π3 impact
the solution costs. In Table 6, for those instances solved to optimality, the average relative
differences are reported between the solution costs obtained by using the rule-based poli-
cies and both the classical recourse (i.e., the Savings columns) and the optimal restocking
policies (i.e., the Deviations columns). Therefore, the Savings values indicate the relative
reductions in terms of solution cost that are obtained when the routes are applied using
the proposed rule-based policies, when compared to the classical recourse policy. As for
the Deviations values, they represent the gap between the solution cost evaluated using
the rule-based policies and the optimal restocking policy on the same routes. It should be
noted that, for a given route, the optimal restocking cost defines a lower bound over all
possible policies.

When analyzing these results, one first notices that the values obtained are relatively
small. This can be explained by the fact that the policies are being evaluated on the same
routes coupled with the fact that the value b is not severely penalizing route failures. This
being said, with the exception of π3 on three distinct instance categories (i.e., when solving
the f̄ = 0.90 instances with λ = 1.00 and the f̄ = 0.96 instances with λ = 0.90 and λ =
1.00), all ruled-based policies when applied on the obtained routes provide a cost reduction
(or are equivalent) when compared to the classical recourse policy. The best savings are
obtained for π2 on the f̄ = 0.96 instances. Furthermore, the observed savings tend to
increase as the value of f̄ increases also. This is to be expected given the positive correlation
that exists between the expected number of failures and the overall filling coefficient of
instances. Regarding policy π3, the three observed exceptions may be explained by an
overly risk-averse implementation of the policy which occurs by fixing the preset value to
λ = 0.90 and λ = 1.00. Considering that these runs produce savings that are extremely
small when compared to other policy runs, one can infer that the number of PR trips that
are performed in an effort to reduce the number of failures, in these cases, does not seem
to provide an added overall cost advantage.
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Table 6: Savings and Deviations.

f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96
π preset Savings Deviations Savings Deviations Savings Deviations Savings Deviations

π1

δ = 0.02 0.04% 0.07% 0.06% 0.13% 0.11% 0.34% 0.35% 0.86%
δ = 0.03 0.08% 0.05% 0.04% 0.11% 0.13% 0.34% 0.46% 0.73%
δ = 0.05 0.00% 0.12% 0.05% 0.13% 0.16% 0.38% 0.43% 0.81%

π2

η = 0.80 0.11% 0.04% 0.19% 0.09% 0.35% 0.18% 0.81% 0.45%
η = 1.00 0.18% 0.01% 0.39% 0.01% 0.61% 0.03% 1.29% 0.08%
η = 1.25 0.07% 0.05% 0.09% 0.14% 0.47% 0.25% 1.05% 0.38%

π3

λ = 0.80 0.05% 0.06% 0.08% 0.42% 0.22% 0.25% 0.50% 0.68%
λ = 0.90 0.00% 0.09% 0.00% 0.46% 0.02% 0.34% −0.02% 1.27%
λ = 1.00 −0.04% 0.10% 0.06% 0.48% 0.27% 0.60% −1.57% 3.14%

Finally, when comparing the proposed policies to the optimal restocking one, it can
be observed that the relative differences are quite small. Policy π2 appears as the best to
approximate the optimal restocking cost for the considered solutions. Specifically, when
the policy is applied with its preset value fixed to η = 1.00, the average deviations vary
between 0.01% and 0.08%. Therefore, such a policy provides a very good approximation
for the optimal restocking cost. Furthermore, when compared to both π1 and π3, when π2
is applied on instances for increasing values of f̄ , one observes an increase in the devia-
tion values (i.e., a deterioration of the approximation) but at much less pronounced rate.
Comparatively, π3 appears as the worst policy to approximate the optimal restocking cost.
However, this can again be explained by the overly risk-averse implementations of the
policy.

6 Conclusions

In this paper, we introduce a new type of recourse policies for the VRPSD, that are based
on the use of a set of fixed operational rules, specifying when both PR and BF trips need
to be performed. Given a route, such policies can be expressed as a set of thresholds,
associated with each customer scheduled along the route, that define when PR trips need
to be performed. We also show how the recourse cost of routes can be efficiently computed
using a recursive function based on the obtained thresholds. Finally, we propose an exact
solution method, using the Integer L-shaped algorithm, to solve the considered problem.
With our solution method, problems with up to 60 customers and a fleet of four vehicles
are solved to optimality.

Through our extensive numerical experiments, we show that the defined ruled-based
policies outperform the classical policy in terms of reducing the number of failures occur-
ring when implementing routes and their associated costs. Furthermore, it is also observed
that the overall cost of the routes, when computed using an optimal restocking policy, re-
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main close to the cost originally obtained using the ruled-based policies. Clearly demon-
strating that the proposed policies also define a good approximation to the optimal one.
Finally, the proposed solution method is numerically shown to be efficient to tackle a wide
range of problems of varying size and for different filling rates.

The present paper has defined a series of interesting avenues of research. Namely, other
families of rule-based policies can be defined. These should capture other operational rules
likely to be used in practice.
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