
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Charge Scheduling for Electric 
Freight Vehicles 
 
Samuel Pelletier 
Ola Jabali 
Gilbert Laporte 
 
 
 
July 2017 
 
 
CIRRELT-2017-37 
 
 
 

 
 

  



Charge Scheduling for Electric Freight Vehicles 

Samuel Pelletier1,*, Ola Jabali2, Gilbert Laporte1 

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) and 
Department of Management Sciences, HEC Montréal, 3000 Côte-Sainte-Catherine, Montréal, Canada H3T 
2A7 

2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 
32, Milano 20133, Italy 

 

Abstract. We consider a freet of electric freight vehicles that must deliver goods to a set of 

customers over the course of multiple days. Electric freight vehicles are typically charged at a 

central depot and rarely use public charging stations during delivery routes. The charging schedule 

at the depot must be planned ahead of time so as to ensure chargers are available when required 

and thus allow the vehicles to complete their routes at minimal cost. In addition, high vehicle 

utilization rates can accelerate battery aging, thereby requiring degradation mitigation 

considerations. Several numerical experiments are conducted in order to draw managerial insights 

regarding the impact of battery degradation, grid restrictions, facilities related demand charges, 

and charger related costs on the charging schedules of electric freight vehicles. 
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1. Introduction

Electric freight vehicles (EFVs) are fast becoming a viable alternative for short- and mid-

haul goods distribution (Davis and Figliozzi 2013, Lee et al. 2013, Pelletier et al. 2016, Quak

et al. 2016, Franceschetti et al. 2017). Because they help reduce air and noise pollution they

are often regarded as an attractive option in the context of city logistics. Most recent studies

have dealt with the routing issues associated with EFVs, especially those that result from

their limited range, and have proposed models and algorithms for the optimization of routes

that incorporate en route recharging (e.g., Felipe et al. 2014, Schneider et al. 2014, Bruglieri

et al. 2015, Goeke and Schneider 2015, Hiermann et al. 2016, Montoya et al. 2017). Some

authors have also approached such optimization problems from a more strategic planning

perspective by incorporating both routing and charging infrastructure siting decisions in

their models (e.g., Yang and Sun 2015, Schiffer and Walther 2015, 2016).

The issue of depot charge scheduling for electric vehicles has received less attention

than the routing component, but it raises interesting problems whose solution could facili-

tate the integration of EFVs in goods distribution schemes. Indeed, most companies using

EFVs prefer charging the vehicles at their own facilities because of a combination of factors

(Naberezhnykh et al. 2012, Nesterova et al. 2013, E-Mobility NSR 2013). These include

limited fast charging infrastructures in most regions, as well as long charging times asso-

ciated with slow charging stations that lead to cargo security concerns and an ineffective

use of drivers’ time when charging during delivery routes. In addition, lower energy costs

may be attained through commercial off-peak electricity rates when charging at the depot

during specific periods of the day. Moreover, EFVs are more likely to be used in urban ar-

eas because of low driving speeds and frequent stop-and-starts, where their superior energy

efficiency becomes relatively advantageous compared with that of diesel vehicles, and where

financial incentives are more likely to be available. Typical urban delivery routes are shorter

than the range of currently available EFVs (Feng and Figliozzi 2013), so there is often no

need to consider charging outside the depot. While some studies have focused on charge

scheduling for EFVs (e.g., Sassi and Oulamara 2014a,b), several important issues have not

yet been addressed.

Before the publication of the recent paper by Montoya et al. (2017), charging was either

treated as a fixed time penalty (e.g., Conrad and Figliozzi 2011, Afroditi et al. 2014, Preis

et al. 2014), or was assumed to be linear with respect to time (e.g., Felipe et al. 2014, Schnei-

der et al. 2014, Bruglieri et al. 2015, Lebeau et al. 2015, Goeke and Schneider 2015, Hiermann

et al. 2016), which does not correspond to reality. Indeed, in order to prevent significant
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battery degradation resulting from operating the battery at voltage values beyond a speci-

fied value by the manufacturer, the charging function usually comprises both a linear and

a non-linear component with respect to time. Moreover, certain charging practices of elec-

tric vehicles have been shown to adversely influence the lifespan of their batteries (Bashash

et al. 2011, Lunz et al. 2012). Since the battery still remains a major cost component of

EFVs (Pelletier et al. 2016), it becomes important to take this consideration into account

when making charge scheduling decisions. This is indeed critical since high use rates have

frequently been identified as a means to increase the cost competitiveness of EFVs because

of their high purchase costs and low operational costs (Davis and Figliozzi 2013, Lee et al.

2013). However, recent studies (e.g., Taefi 2016, Taefi et al. 2016) have concluded that this

may not be the case if costly battery replacements result from intensive usage in high uti-

lization scenarios. In addition, such scenarios often involve using the vehicles in multi-shift

contexts, whereby vehicles may need to perform multiple routes throughout day and night

(EFVs are often allowed to perform night-time deliveries in cities because they are silent,

Taefi 2016). In order to allow vehicles to complete their routes or benefit from off-peak elec-

tricity rates, such operational contexts may require expensive chargers at the depot in order

to allow sufficient time to charge the vehicles between consecutive delivery routes during

specific periods of the day. A company would probably own a limited number of chargers,

typically fewer than the fleet size, thus requiring tight charging schedules.

Two relevant studies in this context are those of Sassi and Oulamara (2014a, 2014b). In

the first of these papers, a fleet of electric and conventional vehicles must be assigned to a

set of known tours so as to maximize the usage of the electric vehicles and minimize the cost

of the charging schedule. Charging can only be performed at the depot when vehicles are

not performing routes. The planning horizon is discretized into periods during which the

charging power remains fixed and must be within a certain interval indicating the minimum

and maximum charging power of the homogeneous chargers at the depot. Charging costs

and grid capacities are time-dependent. Sassi and Oulamara (2014b) have extended this

problem by considering different types of chargers at the depot and a limited number of

each type. They also proposed different objective functions depending on whether certain

considerations are taken into account or not. These include being allowed to exceed the

grid capacity by paying certain penalties, the number of chargers of each type at the depot

treated as a decision variables with deployment costs, and the presence of time-dependent

greenhouse gas emissions costs depending on the electricty generation mix at that time.

Our work can be considered as an extension of these two studies. Indeed, as in Sassi and

Oulamara (2014b), we focus on the depot charging schedule rather than on charging vehicles
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in public stations along delivery routes, but we model a more realistic charging process

which avoids overcharging, and hence battery deterioration (Lam 2011). We also propose a

continuous time formulation which may be used to generate more precise solutions than do

discrete models in certain operational contexts. Moreover, we work with planning horizons of

several days rather than with a single day, since the assumption that the vehicles can always

be fully charged overnight between two routes does not hold in certain multi-shift operational

contexts. In addition, we incorporate battery degradation considerations when determining

the optimal charging schedule. Finally, we draw several managerial insights through our

numerical experiments; such insights are relatively absent from the aforementioned related

studies.

Our aim is to analyze charging schedules of EFVs that must deliver goods to a set

of customers over the course of a multiple day planning horizon in a multi-shift operational

context, thereby peforming multiple routes per day, and that can only be charged at a central

depot. With this goal in mind, Section 2 describes the problem at hand and presents its initial

mathematical formulation without battery degradation considerations. Section 3 explains

how certain battery health considerations can be incorporated into the model. Section 4

proposes an alternate formulation that may be more appropriate in some specific operational

contexts. Section 5 provides extensive computational results and derives managerial insights.

The paper closes with conclusions in Section 6. Appendix A contains a glossary of the

abbreviations used in the paper.

2. Problem Description

Our problem is defined over a planning horizon [0, Tmax] of several days which is discretized

into set P = {1, ..., np} of np equidistant periods, each having a duration of δ hours. The

set K = {1, ...,m} represents the fleet of m homogeneous EFVs. Each vehicle has a battery

with a charge capacity of Q ampere-hours and an energy capacity of QE kWh. We define

the state of charge (SOC) of a battery as the amount of charge it contains divided by its

maximum charge capacity Q. The set R contains all delivery routes that must be performed

over the planning horizon and are given as inputs. We assume that the assignment of vehicles

to the delivery routes is also known in advance. Each route r ∈ R is associated with the

following parameters: a departure time DTr in period DPr, an arrival time ATr in period

APr, the vehicle vr that must perform the route, the total SOC variation ∆SOCr incurred

by the vehicle performing it, and the earliest route ηr prior to it with vηr = vr. Let fk be the

earliest route to be performed by vehicle k in the planning horizon, and let set Ak represent all
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periods during which vehicle k returns from one of its routes, i.e., Ak = {APr|r ∈ R, vr = k}.
Assume that APηr = 1 and ATηr = 0 if r = fk for any vehicle k ∈ K.

At the depot, there is an energy cost of cp in $/kWh associated with each period p ∈ P
and a grid capacity G in kilowatts, the latter representing the maximum power that can

be retrieved from the grid to charge the vehicles at any given moment. Indeed, depending

on operational requirements, companies may be offered time-dependent energy costs for

charging electric vehicles which are sometimes subject to maximum power restrictions (e.g.,

see Southern California Edison, 2017). We assume that there are different kinds of chargers

installed at the depot, represented by the set S. A charger of type s = 1 is assumed to be

a level 1 charger that comes with the vehicle upon its purchase; all vehicles can therefore

use charger s = 1 whenever they are at the depot. The other chargers are faster but more

costly. The acquisition, installation, and maintenance costs associated with such charging

equipment are significant cost components of operating electric vehicles for goods distribution

(Lee et al. 2013). It is therefore assumed that there is a limited number κs < m of chargers

of type s ∈ S\{1}. The objective of the problem is to determine a charging schedule allowing

the vehicles to complete all their routes at minimal cost.

2.1 Battery charging process

Electric vehicles are typically charged under a constant current (CC) - constant voltage (CV)

scheme to avoid overcharging degradation (Lam 2011). The charging current (i.e., the rate

of change of the SOC) is held constant during the CC phase and the SOC thus increases

linearly with respect to time. During the CC phase, the terminal voltage of the battery

increases until it reaches a certain maximum value. When it does, the CV phase begins

and the terminal voltage must be maintained at that maximum value to avoid degradation

resulting from overcharging the battery; the charging current then decreases with time.

The process can be quite easily understood through the Tremblay et al. (2007) model

developed to represent battery behaviour. This model essentially states that the terminal

voltage Vterm of a battery is the sum of its open-circuit voltage OCV and the voltage drop

across its internal resistance R, the latter term depending on the charging current i. The

open-circuit voltage is the voltage measured at the battery terminals when it is at rest and is

an increasing function of SOC. The terminal voltage is the voltage measured at the battery

terminals when it is being charged or discharged and is a function of SOC and current. Using

this simple circuit model, the terminal voltage during charging can be approximated as
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Vterm(SOC, i) = OCV (SOC) +R · i. (1)

The terminal voltage is thus larger than the open-circuit voltage during charging. During

the CC phase of a CC-CV charging process, the charging current (which depends on the

charger used) remains constant; the right-hand side of (1) therefore increases according

to the relationship between open-circuit voltage and SOC, and thus so does the terminal

voltage. As previously mentioned, the terminal voltage must never be allowed to go beyond

a certain value VCV specified by the manufacturer in order to avoid damaging the battery

through overcharging. Depending on the charging current used during the CC phase, VCV

can be reached at SOC values well below 100%. In order to continue charging the battery

once VCV is reached, the terminal voltage must be held at that maximum value throughout

the CV phase. Following an infinitesimal time increment after entering the CV phase, the

SOC will then increase according to the current in the CC phase. Since the open-circuit

voltage will increase with the SOC, the current will have to be decreased in order to ensure

that the terminal voltage remains at VCV . The process then repeats itself following other

infinitesimal time increments until the battery is fully charged.

Note that the charging rate used in the CC phase influences both the elapsed time and

the SOC upon entering the CV phase. Indeed, a larger current will shorten the CC phase

but will cause the CV phase to be entered at a lower SOC value, thereby prolonging the

CV phase. Figure 1 illustrates this process by simulating the CC-CV charging scheme for

a 40Ah lithium-ion battery cell with different values for the current iCC used during the

CC phase and a maximum charge voltage VCV of 3.6V. The final time T is the same in all

simulations. As the value of iCC increases, the time ts at which the CV phase is entered

decreases. However, the SOC at time ts is approximately 87%, 85%, 81% and 74% when iCC

is 10A, 11A, 12A, and 13A respectively. It is also interesting to note that the SOC at time

T remains relatively constant regardless of the value of iCC .

In order to model the CC-CV process in discrete time, we use a piecewise linear approx-

imation of the evolution of SOC over time, as in Montoya et al. (2017). Assume that each

charger s ∈ S has a specific CC-CV charging function that is piecewise linear with bs + 1

breakpoints, fitted to the real CC-CV concave function. Let asi be the SOC associated with

breakpoint i ∈ Bs of the charging function of charger s ∈ S, with Bs = {0, ..., bs} (the set

of breakpoints). The approximation therefore assumes that the charging current is constant

between each pair of consecutive breakpoints. Let Isi be the charging current used in the

piecewise approximation between breakpoints i and i − 1 of charger s, for all i ∈ Bs\{0},
with Is1 therefore referring to the CC phase current of charger s.
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Figure 1: Comparison of CC-CV charging profile for a lithium-ion battery cell with
different current values in the CC phase

Source: Pelletier et al. (2017)

Finally, note that the charging power applied to the battery during charging is equal to

the product of its terminal voltage and of the charging current; it therefore increases with

time during the CC phase of charging until it reaches a maximum value upon entering the

CV phase, and then decreases throughout the CV phase. To ensure the respect of potential

grid restrictions, let parameter Ps be the maximum charging power retrieved from the grid

by the battery throughout the CC-CV charging process of charger s.

2.2 Mathematical formulation

Four sets of decision variables are required for the initial formulation of the problem. Real

variables socpk refer to the state of charge of vehicle k at the start of period p, while real

variables ipk refer to the charging current applied to vehicle k during the entirety of period p.

As in Sassi and Oulamara (2014a), we assume that the entire charge consumption of a route

occurs during the last period of that route. For example, if vehicle k = 1 leaves the depot
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during period p = 1 with a SOC of 90%, and returns to the depot during period p = 5 with

a SOC of 50%, the model is designed so that SOC11 = SOC21 = SOC31 = SOC41 = 90%

and SOC51 = 50% (so the values of SOCpk are irrelevant while the vehicle is performing its

route; they remain the same as the departure SOC until the vehicle returns). Each vehicle

starts with an initial SOC value (i.e., SOC1k is a constant for each vehicle). We assume the

SOC must remain between certain minimum and maximum values SOCmin and SOCmax for

battery health reasons.

Binary variables xpksi take value 1 if vehicle k uses a charger of type s during period

p with SOC values at the start and end of p between breakpoints as,i−1 and asi, and take

value 0 otherwise. It is assumed that if a charger is used by a vehicle during a period,

that charger is unavailable to other vehicles for the entirety of the period. Finally, binary

variables zpk take value 1 if vehicle k begins a new charge during period p and 0 otherwise.

To avoid impractical solutions in which vehicles are constantly being moved from one charger

to another, we set a limit of C charging events between each arrival and departure for all

vehicles. We define a charging event as plugging a charger into a vehicle at a given time and

unplugging it at a later time. The following mixed integer linear programming formulation

then represents the problem at hand:

minimize
∑
k∈K

∑
p∈P

ipk · δ
Q
·QE · cp (2)

subject to
APr∑

p=DPr

∑
s∈S

∑
i∈Bs\{0}

xpvrsi = 0 r ∈ R (3)

socAPr,vr = socDPr,vr −∆SOCr r ∈ R (4)∑
k∈K

∑
i∈Bs\{0}

xpksi ≤ κs p ∈ P, s ∈ S\{1} (5)

∑
s∈S

∑
i∈Bs\{0}

xpksi ≤ 1 k ∈ K, p ∈ P (6)

0 ≤ ipk ≤
∑
s∈S

∑
i∈Bs\{0}

xpksi · Isi k ∈ K, p ∈ P (7)

socp+1,k ≤ asi + 1− xpksi k ∈ K, p ∈ P\{np}, s ∈ S, i ∈ Bs\{0} (8)

socpk ≥ as,i−1 − 1 + xpksi k ∈ K, p ∈ P, s ∈ S, i ∈ Bs\{0} (9)

socpk = socp−1,k +
ip−1,k

Q
· δ k ∈ K, p ∈ P\{1}, p /∈ Ak (10)
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SOCmin ≤ socpk ≤ SOCmax k ∈ K, p ∈ P (11)∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

xpksi · Ps ≤ G p ∈ P (12)

zpk ≥
∑

i∈Bs\{0}

xpksi −
∑

i∈Bs\{0}

xp−1,ksi k ∈ K, p ∈ P\{1}, s ∈ S (13)

z1k ≥
∑

i∈Bs\{0}

x1ksi k ∈ K, s ∈ S (14)

DPr−1∑
p=APηr+1

zpvr ≤ C r ∈ R (15)

xpksi ∈ {0, 1} k ∈ K, s ∈ S, i ∈ Bs\{bs} (16)

zpk ∈ {0, 1} k ∈ K, p ∈ P. (17)

The objective function (2) minimizes the total energy costs over the planning horizon.

Our numerical simultations of the CC-CV process with the battery model of Tremblay et al.

(2007) indicate that the cumulative energy (kWh) recharged in the battery is relatively con-

stant regardless of the charging current used in the CC phase, and is linear with respect to

SOC during the CC-CV process. We therefore compute the SOC variation during period p

of vehicle k as the charging current ipk (amperes) multiplied by the period length δ (hours)

divided by the battery charge capacity Q (ampere-hours), and we then determine the corre-

sponding energy recharged in the battery by multiplying the resulting SOC variation by the

energy capacity QE (kWh).

Constraints (3) ensure that no charging takes place while a vehicle performs its route. We

also assume that no charging can occur during departure and arrival periods. Constraints

(4) set the SOC of each vehicle during the arrival period of each route to their SOC during

the departure period of that route, minus the SOC consumption of the route. Constraints

(5) state that for each charger type, at most the number of units installed of that type may

be used by the fleet (not necessary for s = 1). Constraints (6) force each vehicle to use

at most one charger per period. Constraints (7) ensure that the charging current applied

to a vehicle during a period is at most the one associated with the segment of the CC-

CV piecewise linear function (which depends on the charger used) within which it is being

charged. Constraints (8) and (9) appropriately bound the SOC of each vehicle at the start

and end of each period depending on the CC-CV piecewise linear function associated with

the charger it is using. Constraints (10) link the SOC of a vehicle from one period to the
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next according the charging current (as long as it is not a period during which the vehicle

returns from a route). Constraints (11) bound the SOC of each vehicle during each period.

Constraints (12) ensure that the grid restriction is respected at all times. Constraints (13)–

(15) mean that at most C charging events take place between each arrival and departure

(or between the start of the horizon and the first route if r = fk). Finally, constraints (16)–

(17) define the domains of the variables not already appropriately bounded by the other

constraints. Note that variables zpk can also be treated as continuous.

3. Incorporating battery degradation considerations

Degradation occurs in electric vehicle batteries because of chemical and mechanical processes

which ultimately lead to capacity and power fade (Barré et al. 2013). The degradation

that occurs while cycling (i.e.,charging or discharging) the battery is referred to as cycle

aging, while the degradation that occurs during storage is referred to as calendar aging.

Battery degradation can either be estimated by using principles of electrochemistry, thereby

modeling the reactions causing degradation within the battery, or by using a more empirical

approach to predict battery aging according to experimental data (Bashash et al. 2011).

Most transportation scientists would likely prefer a battery degradation model that can be

understood without an expertise in electrochemisty and that can be calibrated with easily

obtainable battery specifications without the need to perform experimental tests. Moreover,

it seems desirable to have a model that translates battery degradation directly to monetary

battery wear costs. For these reasons, we propose using the model of Han et al. (2014) to

take into account cycle aging, followed by a possible second optimization phase to mitigate

calendar aging when necessary. The latter is dicussed in Section 5.4, while the former is

discussed in what follows.

3.1 Cycle aging model

Requiring only the battery’s acquisition cost and cycle life versus depth of discharge (DOD)

data typically provided in the data sheets, Han et al. (2014) proposed a function representing

wear costs per unit of energy going in or out of the battery according to the battery’s

SOC in order to account for different degradation rates occurring at different SOC values.

Manufacturers typically provide what Han et al. (2014) refer to as the ACC-DOD curve

(Achievable Cycle Count as a function of DOD), which indicates how many cycles the battery

will be able to perform at that DOD before it reaches the end of its lifetime, assuming the
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battery is always discharged starting from a SOC of 1. For example, at a DOD of 0.4, the

ACC-DOD curve would indicate the number of times the battery can be discharged from a

SOC of 1 to a SOC of 0.6 and then charged back to 1 before the end of its lifespan. The

problem, however, is that in reality the battery will be cycled over different SOC ranges over

its lifespan and at different SOC points (e.g., a DOD of 0.4 could be from 1 to 0.6, but also

from 0.7 to 0.3, which would cause a different wear on the battery).

Acknowledging this fact, the Han et al. (2014) model attributes a cost per kilowatt-hour

charged or discharged as a function of SOC based on the ACC-DOD data provided by the

manufacturer. The authors propose a method for determining the wear cost function in

both a continuous and discrete manner. The discrete version can be derived as follows. Let

function ACC(D) refer to the ACC-DOD curve, i.e., ACC(D) indicates how many times

the battery can be discharged from a SOC of 1 to a SOC of 1 −D, and then charged back

from a SOC of 1 − D to a SOC of 1. For the discrete version of the model, only a finite

number of points from the ACC-DOD curve are required, and the SOC is discretized into

corresponding intervals of length ∆SOC. The wear cost function W (SOC) then indicates

the cost per kWh charged or discharged in the SOC interval [SOC, SOC + ∆SOC] and

satisfies

Battery price = 2 · ACC(D) ·
1−∆SOC∑
SOC=1−D

(W (SOC) ·∆q), (18)

where ∆q is the quantity of energy (kWh) in each SOC interval. Equation (18) must hold

for each value of D used from the ACC-DOD curve. For example, if the manufacturer’s

ACC-DOD curve only provides points separated by 10% DOD intervals (or if the user wants

the wear cost function for SOC intervals of 10%), the following ten equations (which are

easy to solve) can be used to calibrate the wear cost function:

W (0.9) =
Battery price

ACC(0.1) · 2 ·∆q

W (0.8) +W (0.9) =
Battery price

ACC(0.2) · 2 ·∆q
...

...

W (0) + ...+W (0.9) =
Battery price

ACC(1) · 2 ·∆q
.

In Han et al. (2014), the wear model is applied in a vehicle-to-grid optimization problem

using particle swarm optimization. In what follows we propose methodologies for incorpo-
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rating the battery wear function in a tractable way for commercial solvers. The wear cost

function used in the original paper increases with SOC (i.e., cycling the battery in higher

SOC intervals is more detrimental to the battery than in SOC intervals), but the authors

point out that this should not be considered as a universal characteristic of electric vehicle

batteries.

3.1.1 Monotonic wear cost functions

In the case of monotonic wear costs with respect to SOC, the degradation costs can be

incorporated as follows. Let D = {1, ..., nd} represent the set of nd SOC intervals used to

calibrate the discrete wear cost function, with each interval d ∈ D characterized by a lower

SOC bound Sd and an upper SOC bound Sd. Let Wd be the wear cost per kilowatt-hour

charged and discharged in the SOC interval d, and L be the length of each SOC interval in

D. Define real variables ∆socdr as the quantity of SOC interval d ∈ D charged into vehicle

vr between arriving from route ηr (or the start of the horizon if r = fvr) and leaving for route

r. Binary variables udr are permitted to take a value of 1 if interval d can be used to charge

vehicle vr between arriving from route ηr (or the start of the horizon if r = fvr) and leaving

for route r. Then the following constraints need to be added to the problem regardless of

whether the wear cost function is non-decreasing or non-increasing:

∑
d∈D

∆socdr = socDPr,vr − socAPηr ,vr r ∈ R (19)

0 ≤ ∆socdr ≤ L · udr d ∈ D, r ∈ R. (20)

Constraints (19) ensure that for each vehicle, the sum of all SOC intervals in D between

arriving from a route and leaving for its next route is equal to the total SOC variation

resulting from charging the vehicle between arriving from the first route and leaving for the

next. Constraints (20) state that the amount used in each SOC interval is at most L if that

interval is allowed to be used, and 0 otherwise.

If the wear function is non-decreasing with SOC, then more degradation is incurred by

cycling the battery in higher SOC intervals. Then the following constraints should be added

to the problem in addition to constraints (19)–(20):

∆socdr ≤ Sd − socAPηr ,vr + 1− udr d ∈ D, r ∈ R. (21)

Indeed, (21) ensures that the variables udr can only take a value of 1 for SOC intervals
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with an upper bound that is larger than the SOC of vehicle vr upon arriving from the

previous route (or its SOC at the start of the horizon if it is the vehicle’s first route). Since

the wear costs increase with SOC in this case, the model will always automatically fill out

all lower SOC intervals, with the lowest admissible interval being bounded by the difference

between its upper bound and the SOC of the vehicle upon arriving from its previous route

rather than by the interval length L. Similarly, if the wear cost function is non-increasing

with respect to SOC, then more degradation is incurred by cycling the battery at lower

SOC values. Then the following constraints should be added to the problem in addition to

constraints (19)–(20):

∆socdr ≤ socDPr,vr − Sd + 1− udr d ∈ D, r ∈ R (22)

since in this case the model will always want to fill out all higher SOC intervals first, with

the highest admissible interval being bounded by the difference between its lower bound and

the departure SOC of the upcoming route rather than by the interval length L. Finally, in

both cases, the objective function (2) should be replaced with

minimize
∑
k∈K

∑
p∈P

ipk · δ
Q
·QE · cp +

∑
r∈R

∑
d∈D

QE ·∆socdr ·Wd. (23)

3.1.2 General wear cost functions

If the wear function is not monotonic, then the model cannot be expected to fill out all

lower or upper intervals first with the approaches suggested in the Section 3.1.1. However,

since the wear cost is always constant in a given SOC interval d ∈ D, a cumulative wear

cost function can be represented as a piecewise linear function of SOC. A point at a given

SOC in this cumulative wear cost function would indicate the total wear costs incurred for

charging the battery from 0 to that SOC. We use the approach of Montoya et al. (2017) to

model the cumulative wear cost function. The idea is essentially to determine initial and

final positions on a piecewise linear function by constructing convex combinations of the

function’s breakpoints.

Let ζdr be a binary variable equal to 1 if the SOC of vehicle vr is between Sd−1 and

Sd upon arriving from route ηr or at the start of the horizon if r = fvr , with S0 = S1.

Similarly, let ψdr be a binary variable equal to 1 the SOC of vehicle vr is between Sd−1 and

Sd upon leaving for route r. Let εdr and wdr be the coefficients of breakpoint Sd used in the

convex combinations to determine the position of vehicle vr on the cumulative wear function
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when arriving from ηr (or the start of the horizon if r = fvr) and leaving for r respectively.

Let csr and cer be the starting and ending cost positions of vehicle vr on the cumulative

wear function when arriving from ηr (or the start of the horizon if r = fvr) and leaving

for r respectively. Let Cd be the cummulative wear cost in the piecewise linear function at

breakpoint Sd, for all d ∈ D∪{0}. Then any discrete wear cost function can be incorporated

into the charge scheduling problem with the following constraints:

∑
d∈D∪{0}

εdr =
∑
d∈D

ζdr = 1 r ∈ R (24)

∑
d∈D∪{0}

wdr =
∑
d∈D

ψdr = 1 r ∈ R (25)

socAPηr ,vr =
∑

d∈D∪{0}

εdr · Sd r ∈ R (26)

socDPr,vr =
∑

d∈D∪{0}

wdr · Sd r ∈ R (27)

csr =
∑

d∈D∪{0}

vdr · Cd r ∈ R (28)

cer =
∑

d∈D∪{0}

wdr · Cd r ∈ R (29)

ε0r ≤ ζ1r r ∈ R (30)

εdr ≤ ζdr + ζd+1,r r ∈ R, d ∈ D\{nd} (31)

εnd,r ≤ ζnd,r r ∈ R (32)

w0r ≤ ψ1r r ∈ R (33)

wdr ≤ ψdr + ψd+1,r r ∈ R, d ∈ D\{nd} (34)

wnd,r ≤ ψnd,r r ∈ R (35)

ζdr, ψdr ∈ {0, 1} r ∈ R, d ∈ D (36)

εdr, wdr ≥ 0 r ∈ R, d ∈ D ∪ {0}. (37)

Constraints (24)–(25) force the SOC values upon arriving from a route (or at the start of

the horizon) and leaving for the next route to be between two of the SOC breakpoints of the

cumulative wear function, and force the sum of the breakpoint coefficients to be equal to 1.

Constraints (24)–(27) and (37) together force the SOC values upon arriving from a route (or
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at the start of the horizon) and leaving for the next route to be convex combinations of the

SOC breakpoints of the cumulative wear cost function. Constraints (28)–(29) determine the

costs on the cumulative wear function corresponding to these convex combinations. Con-

straints (30)–(35) force these convex combinations to only use two consecutive breakpoints

of the cumulative wear cost function. Constraints (36)–(37) define the domain of the new

variables. Finally, in this case, the objective function (2) should be replaced with

minimize
∑
k∈K

∑
p∈P

ipk · δ
Q
·QE · cp +

∑
r∈R

(cer − csr). (38)

4. Model extension to continuous time

The formulation in discrete time has the advantage of easily handling time-dependent energy

costs and grid restrictions. However, if energy costs are constant throughout the day and

the grid capacity is non-binding, the problem can be modeled in continuous time, which can

provide more precision in the charging schedule since the discrete time model works with

charger availability on a period to period basis rather than a minute to minute basis.

In order to model charger availability in continuous time, we introduce binary param-

eter Γr1,r2 for all r1, r2 ∈ R|vr1 6= vr2 . Parameter Γr1,r2 takes value 1 if [ATηr1 , DTr1 ] ∪
[ATηr2 , DTr2 ] 6= ∅, i.e., if there exists an interval of time during which vehicles vr1 and vr2 are

both at the depot between arriving from routes ηr1 (or the start of the horizon if r1 = fvr1 )

and ηr2 (or the start of the horizon if r2 = fvr2 ) respectively, and leaving for routes r1 and r2

respectively. We refer to the interval of time [ATηr , DTr] as charging opportunity r, i.e., the

interval of time during which vehicle vr can recharge between routes ηr and r. Consider set

U = {1, ..., C} to represent the charging events that can occur at each charging opportunity.

For each charging opportunity, if u1, u2 ∈ U with u2 > u1, we force charging event u2 to take

place after charging event u1. We also redefine set S to represent each individual charger

that is installed at the depot, rather than to represent the types of charger as in the discrete

time model (i.e., s ∈ S now refers to a specific charger rather than to a type of charger; the

only exception is s = 1, which still represents all level 1 chargers).

Let real variables λur represent the start time of the uth charge of charging opportunity

r. Let real variables ρur represent the end time of the uth charge of charging opportunity r.

Let binary variables xusr take value 1 if the uth charge of charging opportunity r takes place

with charger s. Let real variables socBur and socEur represent the SOC at the start and

at the end of the uth charge of charging opportunity r. The SOC of each vehicle k at the
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start of the horizon, i.e., socB1,fk , is some known constant. Let Lk be the last route of the

horizon to be performed by vehicle k; then variables socBur must also be defined for u = 1

and fictional routes rk ∀k ∈ K, with ηrk = Lk in order to represent the SOC of vehicle

k upon returning from its last route. Let RL contain all such fictional routes. Let binary

variables χutsr1r2 take value 1 if Γr1,r2 = 1 and if the uth charge of charging opportunity r1

and the tth charge of charging opportunity r2 are done with charger s ∈ S\{1}, with the uth

of r1 occuring after the end of the tth of r2.

In this model we use the same approach as Montoya et al. (2017) to model the piecewise

linear approximation of the CC-CV charging process in continuous time, similarly to what

was done for general wear cost functions in Section 3.1.2. As previously mentioned, assume

that each charger s ∈ S has a specific CC-CV charging function that is piecewise linear with

bs + 1 breakpoints, fitted to the real CC-CV concave function. Let asi and hsi be the SOC

and the charging time associated with breakpoint i ∈ Bs of the charging function of charger

s ∈ S, with Bs = {0, ..., bs} (the set of breakpoints). For a given breakpoint i ∈ Bs, hsi thus

indicates the time required to charge the battery from a SOC of 0 to a SOC of asi.

Let θusri be a binary variable equal to 1 if vehicle vr uses charger s for the uth charge

of charging opportunity r and its SOC is between as,i−1 and asi at the start of that charge.

Similarly, let σusri be a binary variable equal to 1 if vr uses charger s for the uth charge of

charging opportunity r, and its SOC is between as,i−1 and asi at the end of that charge. Let

πusri and βusri be the coefficients of breakpoint i ∈ Bs used to determine the initial and final

positions on the charging function of charger s for the uth charge of charging opportunity r,

if this charge is done with charger s. Finally, let stur and enur be the initial and final time

positions on the charging function of charger s for the uth charge of charging opportunity r,

if this charge is done with charger s.

The mixed integer linear programming formulation of the problem in continuous time

with constant energy costs and no grid capacity constraints is then the following:

minimize
∑
r∈R

(socEC,r − socB1r) ·QE · c (39)

subject to

socB1,r2 = socEC,r1 −∆SOCr1 r1 ∈ R, r2 ∈ R ∪RL, ηr2 = r1 (40)

socBur = socEu−1,r r ∈ R, u ∈ U\{1} (41)
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ρtr2 ≤ λur1 +M · (3− xusr1 − xtsr2 − χutsr1r2) u, t ∈ U ; s ∈ S\{1};

r1, r2 ∈ R,Γr1,r2 = 1, vr1 > vr2
(42)

ρur1 ≤ λtr2 +M · (2− xusr1 − xtsr2 + χutsr1r2) u, t ∈ U ; s ∈ S\{1};

r1, r2 ∈ R,Γr1,r2 = 1, vr1 > vr2
(43)

ATηr ≤ λur ≤ ρur ≤ DTr r ∈ R, u ∈ U (44)

λur ≥ ρu−1,r r ∈ R, u ∈ U\{1} (45)∑
s∈S

xusr = 1 r ∈ R, u ∈ U (46)

SOCmin ≤ socBur ≤ socEur ≤ SOCmax r ∈ R, u ∈ U (47)

ρur − λur = enur − stur r ∈ R, u ∈ U (48)∑
i∈Bs

πusri =
∑

i∈Bs\{0}

θusri = xusr r ∈ R, u ∈ U, s ∈ S (49)

∑
i∈Bs

βusri =
∑

i∈Bs\{0}

σusri = xusr ∈ R, u ∈ U, s ∈ S (50)

socBur =
∑
s∈S

∑
i∈Bs

πusri · asi r ∈ R, u ∈ U (51)

socEur =
∑
s∈S

∑
i∈Bs

βusri · asi r ∈ R, u ∈ U (52)

stur =
∑
s∈S

∑
i∈Bs

πusri · hsi r ∈ R, u ∈ U (53)

enur =
∑
s∈S

∑
i∈Bs

βusri · hsi r ∈ R, u ∈ U (54)

πusr0 ≤ θusr1 r ∈ R, u ∈ U, s ∈ S (55)

πusri ≤ θusri + θusr,i+1 r ∈ R, u ∈ U, s ∈ S, i ∈ Bs\{0, bs} (56)

πusr,bs ≤ θusr,bs r ∈ R, u ∈ U, s ∈ S (57)

βusr0 ≤ σusr1 r ∈ R, u ∈ U, s ∈ S (58)

βusri ≤ σusri + σusr,i+1 r ∈ R, u ∈ U, s ∈ S, i ∈ Bs\{0, bs} (59)

βusr,bs ≤ σusr,bs r ∈ R, u ∈ U, s ∈ S (60)

θusri, σusri ∈ {0, 1} r ∈ R, u ∈ U, s ∈ S, i ∈ Bs\{0} (61)
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πusri, βusri ≥ 0 r ∈ R, u ∈ U, s ∈ S, i ∈ Bs (62)

χutsr1r2 ∈ {0, 1} u, v ∈ U ; s ∈ S\{1}, r1, r2 ∈ R,Γr1,r2 = 1, vr1 > vr2 (63)

xusr ∈ {0, 1} r ∈ R, u ∈ U, s ∈ S. (64)

The objective function (39) minimizes the sum of energy costs over the horizon, with

c referring to the constant energy cost. Constraints (40) adjust the SOC of vehicles upon

arriving from a route according to their SOC upon departing for the route and the SOC con-

sumption of the route. Constraints (41) link the SOC at the start of each charge of a charging

opportunity to the one at the end of the previous charge in that charging opportunity. Con-

straints (42) and (43) ensure that two vehicles never use the same charger at the same time,

with M being an appropriate large constant, e.g., M = DTr1 −ATηr1 +DTr2 −ATηr2 . Note

that these constraints are not required for charges done with s = 1 since each vehicle has

a level 1 charger. Constraints (44) set the time interval defining each charging opportunity.

Constraints (45) ensure that during each charging opportunity, the first charge ends before

the second begins, the second ends before the third begins, and so on. Constraints (46) force

one charger to be chosen per charge, but this does not prevent a charge from having a length

of zero and thus being inexistent (so s = 1 can always be chosen without preventing other

vehicles from using any other chargers). Constraints (47) ensure that the starting SOC is

never higher than the ending SOC and bounds these appropriately. Constraints (48) set

the difference between the ending and beginning of each charge according to the initial and

final time positions on the charging function used for that charge. Constraints (49)–(50) link

the πusri, βusri, θusri, σusri to the xusr variables. Constraints (49)–(52) together force the

starting and ending SOC of each charge to be a convex combination of the SOC breakpoints

of whichever charger was chosen for that charge. Constraints (53) and (54) force the starting

and ending times of each charge to be convex combinations of the time breakpoints of the

charging function of whichever charger was chosen for that charge. Constraints (55)–(57)

force the convex combination determining the starting SOC and time of each charge to only

use two consecutive breakpoints of the function of the chosen charger. Constraints (58)–(60)

force the convex combination determining the ending SOC and time of each charge to only

use two consecutive breakpoints of the function of the chosen charger. Finally, constraints

(61)–(64) define the domains of all variables not already appropriately bounded elsewhere

in the model.

Battery wear costs can be added to the continuous time model as was done in the discrete

time model. For monotonic wear functions, it suffices to add variables ∆socdr for SOC
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interval d and charging opportunity r, indicating how much of SOC interval d was charged

into vehicle vr during charging opportunity r, and binary variables udr which can take a

value of 1 only if interval d ∈ D could potentially be charged during charging opportunity

r. The battery degradation costs can then be incorporated in the continuous time models

by adding the constraints

∑
d∈D

∆socdr = socECr − socB1r r ∈ R (65)

0 ≤ ∆socdr ≤ L · udr d ∈ D, r ∈ R. (66)

If the wear cost function is non-decreasing with respect to SOC, then the following

constraints should be added to the problem in addition to constraints (65)–(66):

∆socdr ≤ Sd − socB1r + 1− udr d ∈ D, r ∈ R. (67)

If the wear function is non-increasing with respect to SOC, then the following constraints

should be added to the problem in addition to constraints (65)–(66):

∆socdr ≤ socECr − Sd + 1− udr d ∈ D, r ∈ R. (68)

In both cases of monotonic wear functions, the objective function (39) of the continuous

time models should be replaced with

minimize
∑
d∈D

∑
r∈R

∆socdr ·QE · (c+Wd). (69)

In the case of general wear functions, the same approach as in Section 3.1.2 can be used

by replacing arrival and departing SOC variables for each pair of consecutive routes of each

vehicle by the starting SOC of the first charge and the ending SOC of the last charge of each

charging opportunity.

4.1 Deriving an equivalent solution in continuous time from the

discrete time model

Note that in order to use an equality in constraints (10), we allow the charging current

ipk in constraints (7) of the discrete time model to be less than the value Isi associated
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with the segment of the CC-CV piecewise linear function vehicle k is using during period

p. Therefore, this may result in solutions in which certain charging events do not represent

a CC-CV process in continuous time. In other words, the current could go up and down

from one period to the next even if the SOC remains between the same two breakpoints.

However, we mention here, as a side note, that a feasible solution that respects the CC-CV

process in continuous time can always be constructed from the solution obtained in discrete

time. Indeed, whenever ipk does not take the maximum value it could during any period of a

charging event, the same SOC variation from that charging event could be obtained within

less time with the CC-CV process in continuous time.

Moreover, assuming such a solution (i.e., within which ipk does not always take the

maximum value it could during a charging event), as long as the function representing

energy costs with respect to time during the charging event is quasiconvex or monotonic, the

same energy costs as those in the discrete time solution can be obtained with the CC-CV

process in continuous time for that charging event without having to split it into multiple

events (i.e., disconnect and reconnect the charging chord at some point). If the function

representing energy costs with respect to time over the course of the charging event is not

monotonic but quasiconcave, then the same energy costs can be obtained by disconnecting

and reconnecting the chord at most once (i.e., splitting the charging event in two). Since

time of use energy plans often involve two or three rates over the course of a full day (e.g.,

mid-peak in the morning, peak during the afternoon, mid-peak in the evening, off-peak at

night, with peak rate > mid-peak rate > off-peak rate), it seems unlikely that the function

of energy costs with respect to time would not be monotonic, quasiconvex, or quasiconcave

during a charging event. In addition, some charger manufacturers (e.g., eMotorWerks, 2017)

are even starting to offer products allowing the beginning and termination of charging at

specific times without having to unplug and plug the chord. In this case the same energy

costs can be obtained in continuous time regardless of the shape of the function of energy

costs with respect to time during the charging event.

Finally, since the grid capacity constraints (12) in discrete time are modeled assuming the

maximum charging power of each charger, any modification of a charging event in discrete

time to obtain an equivalent solution in continuous time will also respect the grid restriction

in continuous time.
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5. Numerical experiments and managerial insights

We have performed an extensive numerical study in order to gain numerical and managerial

insights into our models. More precisely, the aims of our experiments are: (1) to validate

the proposed formulations, (2) to investigate the trade-off that exists between energy and

degradation costs, (3) to investigate the impact of grid restrictions on costs, (4) to analyze

the effect of facilities related demand (FRD) charges, which are fees based on the maximum

registered charging power over the planning horizon, (5) to shed light on the importance

of calendar aging considerations in certain contexts, and (6) to examine the effect of costs

related to the depot charging infrastructure.

To this end, we generated several test instances and we solved them under various sce-

narios. All test instances were solved using CPLEX 12.6 with a time limit of five hours and

an optimality gap tolerance of 0.5%. We use a higher optimality gap tolerance than the

default setting for two reasons. First, several parameter approximations are required regard-

ing charging functions, energy recharged in the batteries, and degradation costs. Second,

our goal with these experiments is not to demonstrate the computational prowess of the

models, but rather derive meaningful managerial insights from reasonably good solutions.

Aside from some of the experiments in Sections 5.1.1 and 5.6 that also optimize the charging

infrastructure, as well as a few experiments in Section 5.3 when FRD charges are added to

the problem, all tests generate a solution with an optimality gap under 0.5% within the time

limit.

Davis and Figliozzi (2013) report that scenarios in which the daily distances traveled by

electric trucks approach their maximum range can significantly help their business case. We

therefore assume that the vehicles discharge at least 80% of their battery on a daily basis

as high vehicle utilization scenarios. Two different operational contexts allowing such high

use rates were initially considered. In the first, all vehicles in the fleet must perform one

day-time route and one night-time route during each day of the planning horizon. In the

second, all vehicles in the fleet only perform day-time routes. For each of these contexts, we

worked with a planning horizon of three days, with period lengths of thirty minutes, and we

considered fleets of five, 10 and 15 vehicles.

The fleet vehicles are assumed to be medium-duty electric trucks equiped with 80kWh

batteries, each consisting of several 3.2V-40Ah lithium-ion battery cells. We set SOCmin to

0.05 and SOCmax to 0.99 for battery health reasons. Using some battery modeling consider-

ations detailed in Pelletier et al. (2017) with battery parameters from Marra et al. (2012), we

conducted numerical simulations of the CC-CV charging process for such battery cells with
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a maximum charge voltage of 3.65V and three different charging currents during the CC

phase: 2.5A, 7.5A, and 17.5A. We consider the 2.5A to correspond to level 1 chargers (i.e.,

each vehicle has one). With this charger, the batteries can be fully charged from SOCmin

to SOCmax in approximately 15 hours. The CV process is entered at a SOC of 0.98, so we

simply approximate the entire CC-CV process with two breakpoints: 0.05 and 0.99. With

the 7.5A charger, the batteries can be fully charged from SOCmin to SOCmax in 5.3 hours.

The CV process is entered at a SOC of 0.95 after 4.8 hours, and we approximate the CC-

CV process with three SOC breakpoints: 0.05, 0.95, and 0.99. The charging currents used

in our piecewise approximation for this charger are 7.5A between 0.05 and 0.95, and 3.2A

between 0.95 and 0.99. Finally, with the 17.5A charger, the batteries can be fully charged

from SOCmin to SOCmax in 2.7 hours. The CV process is entered at a SOC of 0.78 and we

approximate the CC-CV process associated with this charger with four breakpoints: 0.05,

0.78, 0.95, and 0.99. The charging currents used in our piecewise approximation for this

charger are 17.5A between 0.05 and 0.78, 13.6A between 0.78 and 0.95, and 3.2A between

0.95 and 0.99. In all tested instances, we let each vehicle perform two charging events (i.e.,

C = 2) between each pair of consecutive routes in order to allow combining the use of the

slow level 1 chargers with a faster charger.

We use time-dependent energy costs offered by Southern California Edison (2017) for

businesses charging electric vehicles on company grounds. Two different plans (TOU-EV-3

and TOU-EV-4) are available depending on the maximum charging power retrieved from the

grid at any given moment. Under the TOU-EV-3 rate plan, the maximum power retrieved

from the grid for charging the vehicles must remain below 20kW, while under the TOU-EV-4

plan, the maximum charging power must remain under 500kW. Our simulations of the CC-

CV charging process indicate that approximately 600 of the considered battery cells would

need to be connected to form the battery pack so that a full charge from SOCmin to SOCmax

corresponds to 80kWh put into the battery, resulting in maximum pack charging powers of

approximately 5kW for 2.5A charger, 15 kW for the 7.5A, and 35kW for the 17.5A. We

therefore assume that grid capacity constraints under these circumstances can be ignored

with the TOU-EV-4 plan.

The energy prices under both plans vary with time of day and season. Peak hours are

from noon to 18:00, mid-peak hours are from 8:00 to noon and from 18:00 to 23:00, and

off-peak hours are from 23:00 to 8:00. Summer rates are in place from the first Saturday of

June to the first Saturday of October, while winter rates apply for the rest of the year. There

are also two different options under the TOU-EV-3 plan: option A has higher energy rates

but no FRD charges, while option B has lower energy rates but FRD charges. FRD charges
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are monthly fees based on the maximum charging power retrieved from the grid throughout

the month. The TOU-EV-4 plan also has FRD charges. We initially disregard this fee and

subsequently study its impact in Section 5.2. The energy rates and FRD charges of each

plan are summarized in Table 1.

Table 1: Rates ($/kWh) and FRD charges ($/kW) for electric vehicle charging on company
grounds

TOU-EV-4 TOU-EV-3-A TOU-EV-3-B
Summer Winter Summer Winter Summer Winter

Peak 0.29 0.11 0.36 0.16 0.33 0.12
Mid-peak 0.12 0.09 0.17 0.14 0.14 0.11
Off-peak 0.05 0.06 0.09 0.10 0.06 0.07
FRD charges 13.20 13.20 N/A N/A 7.23 7.23

Regarding battery degradation, we first consider a battery wear cost function calibrated

with the same cycle life data used in the original paper of Han et al. (2014), resulting in a

non-decreasing wear cost function. It is therefore preferable to avoid cycling such a battery

in high SOC values. We calibrate the degradation costs for SOC intervals of 25% assuming

battery costs of $600/kWh as in Goeke and Schneider (2015) and thus a battery price of

$48,000 (i.e., $600
kWh
· 80kWh). We also multiply the obtained wear costs by two, since they

represent $/kWh charged or discharged in each SOC interval, and anything charged in any

solution to our problem will necessarily be subsequently discharged while performing the

routes. The resulting costs are reported in Table 2.

Table 2: Battery wear cost function

SOC interval Degradation costs

0–0.25 $0.64/kWh
0.25–0.5 $0.71/kWh
0.5–0.75 $0.87/kWh
0.75–1 $1.09/kWh

5.1 Different high-use rate contexts

For each of the two operational contexts allowing high use rates of the vehicles, we generate

five test instances for fleet sizes of five, 10, and 15 vehicles. The planning horizon begins at

6:00 and each vehicle is then assumed to have a SOC of 0.5.

For the high use rate context in which each vehicle in the fleet has one day-time route and

one night-time route to perform each day, it is assumed all day-time routes occur between

10:00 and 18:00, and all night-time routes occur between 22:00 and 6:00. The departure time
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of each route is randomly generated between 10:00 and 13:00 for each day-time route, and

between 22:00 and 1:00 for each night-time route. Similarly, the arrival time of each route is

randomly generated between 15:00 and 18:00 for each day-time route, and between 3:00 and

6:00 for each night-time route. The SOC consumption of each route is randomly generated

between 0.45 and 0.90.

For the operational context in which vehicles only perform routes during the day-time,

we assume vehicles should use at least 80% of the battery capacity each day. We assume

each vehicle performs two short routes per day, with the first route occuring between 8:00

and 13:00, and the second route occuring between 15:00 and 20:00. The departure time of

the first route is randomly generated between 8:00 and 9:30, and between 15:00 and 16:30

for the second. Similarly, the arrival time is randomly generated between 11:30 and 13:00

for the first route of each day, and between 18:30 and 20:00 for the second route of each

day. The SOC consumption of each route is randomly generated between 0.4 and 0.47. The

consideration of shorter routes should allow determining if it can be worthwhile to perform

inter-route charging to keep degradation costs low by having more leeway regarding within

which SOC intervals to cycle the battery at the expense of incurring peak or mid-peak energy

costs.

5.1.1 Calibrating the charging infrastructure

We first solve the instances for the context with both day and night routes with a shorter

planning horizon of two days while simultaneously optimizing the charging infrastructure

in order to identify a reasonable charging infrastructure for subsequent tests. Since the

instances with both day and night routes tend to consume more SOC during each day

of the planning horizon, the charging infrastructures should be sufficient for the instances

representing the other considered high use rate contexts as well. Also, since optimizing the

charging infrastructure simultaneously makes the problem much harder to solve, the goal of

these tests is not to reach near-exact solutions but simply to determine reasonable values for

the number chargers to consider in our other experiments.

To this end, as suggested in Sassi and Oulamara (2014b), we define a fixed costs Cs

representing the cost of acquiring and installing a charger of type s. We redefine parameter

κs from the discrete time model as a non-negative integer variable, and add the term

∑
s∈S\{1}

Cs · κs
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to the objective function, with s = 1 referring to the 2.5A charger which we assume comes

with the vehicle when purchasing it. Lee et al. (2013) conclude that chargers allowing to

fully charge electric trucks with 80kWh batteries between five and eight hours can cost up

to $15,000 including purchase costs and installation. Therefore, we consider purchase and

installation costs of $15,000 for the 7.5A (i.e., 5.3 hours full charge) charger, and $30,000 (i.e.,

2.7 hours full charge) for the 17.5A charger. Lee et al. (2013) also report an approximate

lifetime of six years for such chargers. Assuming 260 working days per year, this yields fixed

costs of approximately $19 for the 7.5A charger and $38 for the 17.5A charger in the context

of a two day planning horizon. We solve the problem with the TOU-EV-4 plan with both

summer and winter rates from Table 1, as well as with and without the degradation costs

from Table 2.

The obtained charging infrastructures are reported in Tables 3 and 4, with S2 referring to

the 7.5A charger and S3 refering to the 17.5A charger. Since the inclusion of degradation costs

significantly increases total costs, both absolute and relative optimality gaps are reported.

However, we reemphasize that the goal here is simply to determine a reasonable charging

infrastructure for different fleet sizes and not to find near optimal solutions. Based on these

results, a reasonable charging infrastructure for a fleet of m vehicles appears simply to be

dm
5
e 17.5A chargers, which is the infrastructure we consider in the next sections whenever

the TOU-EV-4 plan is used. This seems reasonable considering the fact that a company

would most likely want to get by with only a few costly chargers.

Table 3: Best found charging infrastructures when minimizing energy and charger costs

Summer rates Winter rates
Instance Infrastructure Time (s) Abs. Gap ($) Rel. Gap (%) Infrastructure Time (s) Abs. Gap ($) Rel. Gap (%)

1-5V 1XS3 4.98 0.36 0.29 1XS3 20.01 0.54 0.49
2-5V 1XS3 10.79 0.54 0.41 1XS3 66.92 0.49 0.42
3-5V 1XS3 7.83 0.54 0.43 1XS3 347.07 0.28 0.25
4-5V 1XS3 24.89 0.46 0.41 1XS3 19.92 0.06 0.07
5-5V 1XS3 37.38 0.53 0.46 1XS3 90.40 0.42 0.40

1-10V 2XS3 18000.00 20.41 8.56 1XS2+1XS3 18000.00 16.70 8.22
2-10V 2XS3 18000.00 21.70 9.28 1XS2+1XS3 18000.00 16.68 8.41
3-10V 1XS3 16543.90 0.95 0.47 1XS3 5706.21 0.83 0.48
4-10V 1XS2+1XS3 18000.00 13.01 5.99 1XS3 18000.00 0.97 0.55
5-10V 2XS3 18000.00 22.37 9.47 1XS2+1XS3 18000.00 16.80 8.39

1-15V 1XS2+2XS3 18000.00 20.42 6.18 1XS2+2XS3 18000.00 43.95 14.79
2-15V 3XS3 18000.00 23.13 6.39 3XS3 18000.00 55.81 17.02
3-15V 2XS3 10233.70 1.53 0.45 2XS3 18000.00 23.44 7.89
4-15V 1XS2+2XS3 18000.00 21.03 6.29 2XS3 18000.00 26.98 9.54
5-15V 3XS3 18000.00 24.56 6.60 1XS2+2XS3 18000.00 28.19 8.83

It is still interesting to note that for a given instance, regardless or whether degradation

costs are considered, the infrastructure in the best found solution tends to be larger or faster

when optimizing the problem using the summer rates, since energy costs are then larger
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Table 4: Best found charging infrastructures when minimizing energy, charger and
degradation costs

Summer rates Winter rates
Instance Infrastructure Time (s) Abs. Gap ($) Rel. Gap (%) Infrastructure Time (s) Abs. Gap ($) Rel. Gap (%)

1-5V 1XS3 67.24 3.80 0.45 1XS3 15.23 3.30 0.40
2-5V 1XS3 66.17 3.45 0.37 1XS3 39.47 2.45 0.27
3-5V 1XS3 9.48 3.94 0.44 1XS3 4.98 3.58 0.41
4-5V 1XS3 5.95 3.70 0.48 1XS3 29.20 3.81 0.49
5-5V 1XS3 16.41 3.92 0.50 1XS3 2.71 3.15 0.41

1-10V 1XS2+1XS3 18000.00 18.23 1.08 2XS3 18000.00 18.05 1.10
2-10V 2XS3 439.43 7.45 0.46 1XS3 9484.99 7.34 0.47
3-10V 2XS3 16117.80 7.31 0.48 1XS3 14386.70 5.55 0.38
4-10V 2XS3 215.73 7.78 0.50 1XS3 3314.66 7.54 0.50
5-10V 2XS3 212.72 7.99 0.48 1XS3 4934.04 7.59 0.47

1-15V 3XS3 1385.09 11.74 0.50 1XS2+2XS3 18000.00 23.89 1.04
2-15V 1XS2+3XS3 18000.00 22.14 0.87 1XS2+3XS3 18000.00 56.45 2.25
3-15V 3XS3 16230.10 12.63 0.50 2XS2+2XS3 18000.00 41.44 1.65
4-15V 1XS2+3XS3 18000.00 21.02 0.88 1XS2+2XS3 18000.00 23.05 0.99
5-15V 3XS3 11092.80 9.17 0.35 2XS3 2391.48 12.35 0.49

during peak hours and lower during off-peak hours. Therefore, there is more incentive to

have more or quicker chargers to do the bulk of the charging during specific periods of the

day. This would suggest that the available time of use rates should be carefully considered

when determining depot charging infrastructures.

5.1.2 Results under several scenarios

In this section we present results obtained under several scenarios with the charging infras-

tructure identified in the previous section. Results for the context with one day-time route

and one night-time route are reported in Table 5. The average SOC column reports the aver-

age SOC of the vehicles upon departing for their routes. The figures show that total energy

costs for the same instance tend to be higher with the summer rates than with the winter

rates, regardless of whether degradation costs are considered or not. Indeed, the presence of

night-time delivery routes takes away some of the best time periods (i.e., off-peak hours) to

charge the vehicles in terms of energy costs, thereby forcing more charging to be done during

mid-peak and peak hours during which energy costs are higher with the summer rates than

the winter rates. Night-time delivery schemes incorporating EFVs may therefore be more

appropriate during specific periods of the year. The figures also indicate that it may be

worthwhile to incur slight increases in energy costs in order to decrease degradation costs by

avoiding using the battery in the top 25% SOC interval.

The same holds for the scenario with each vehicle performing two short day-time delivery

routes each day, presented in Table 6. However, in this case, the increase in energy costs
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Table 5: Energy and degradation costs for instances with day-time and night-time routes

Summer rates Winter rates
Energy optimized Energy and degradation optimized Energy optimized Energy and degradation optimized

Instance Energy costs Deg. costs Avg. SOC Energy costs Deg. costs Avg. SOC Energy costs Deg. costs Avg. SOC Energy costs Deg. costs Avg. SOC

1-5V 125.35 1174.19 0.82 136.23 1091.90 0.72 108.87 1174.54 0.82 112.13 1094.45 0.73
2-5V 137.05 1238.10 0.82 144.96 1180.79 0.76 117.45 1231.91 0.81 119.51 1183.27 0.76
3-5V 136.42 1255.96 0.83 140.70 1198.48 0.77 117.93 1268.40 0.84 118.80 1200.87 0.77
4-5V 112.98 1059.33 0.76 120.95 994.92 0.68 99.61 1063.04 0.77 101.71 997.31 0.68
5-5V 129.37 1144.85 0.79 132.78 1094.95 0.73 110.61 1136.74 0.78 112.66 1094.03 0.72

1-10V 252.83 2385.39 0.84 262.10 2210.62 0.73 219.68 2344.93 0.82 224.54 2208.62 0.73
2-10V 251.55 2390.75 0.83 262.91 2234.67 0.73 220.06 2396.78 0.83 225.33 2239.08 0.74
3-10V 230.05 2188.93 0.78 240.22 2070.89 0.70 203.93 2228.80 0.80 212.09 2066.65 0.69
4-10V 243.67 2303.34 0.81 247.83 2158.55 0.71 213.67 2264.00 0.78 219.44 2156.80 0.71
5-10V 250.41 2337.30 0.81 259.04 2211.81 0.73 218.52 2371.97 0.82 223.22 2212.37 0.73

1-15V 357.45 3432.27 0.81 369.34 3196.71 0.71 315.51 3395.92 0.79 319.78 3200.80 0.71
2-15V 389.50 3673.00 0.84 403.73 3440.31 0.74 339.21 3635.85 0.82 344.84 3446.84 0.75
3-15V 379.48 3548.12 0.81 393.89 3354.18 0.73 331.68 3534.18 0.81 336.78 3361.71 0.74
4-15V 363.78 3486.57 0.82 381.93 3240.27 0.72 320.12 3480.87 0.81 327.76 3241.86 0.72
5-15V 384.18 3629.02 0.84 400.36 3380.01 0.73 334.36 3581.09 0.82 343.62 3384.37 0.74

between optimizing with and without degradation is more significant than in the day and

night schemes. This is because in order to avoid cycling the battery in high SOC intervals

and thereby keep degradation costs low, the only alternative is to perform more charging

during peak hours between the two day routes. On the other hand, when optimizing solely

energy costs in this context, in order to benefit from off-peak rates overnight, the vehicles

regularly depart for the first route of the day with SOC values well above 0.9, thereby doing

most of the charging overnight and keeping total energy costs much lower.

Table 6: Energy and degradation costs for instances with two short day-time routes

Summer rates Winter rates
Energy optimized Energy and degradation optimized Energy optimized Energy and degradation optimized

Instance Energy costs Deg. costs Avg. SOC Energy costs Deg. costs Avg. SOC Energy costs Deg. costs Avg. SOC Energy costs Deg. costs Avg. SOC

1-5V 54.39 729.89 0.70 102.01 656.93 0.61 55.32 734.38 0.70 77.59 603.02 0.50
2-5V 50.48 709.37 0.69 94.34 637.36 0.60 53.09 705.81 0.69 75.14 580.67 0.49
3-5V 53.38 721.52 0.70 98.63 646.86 0.61 54.46 718.68 0.70 76.85 591.39 0.50
4-5V 55.45 709.57 0.68 96.99 646.06 0.61 54.52 712.45 0.69 76.51 587.90 0.49
5-5V 51.55 716.89 0.70 99.86 642.69 0.60 53.89 716.27 0.70 75.05 592.44 0.51

1-10V 106.92 1447.97 0.70 193.58 1302.13 0.61 109.12 1439.81 0.69 152.51 1188.45 0.50
2-10V 107.43 1417.77 0.69 193.57 1279.63 0.60 108.01 1416.13 0.69 151.79 1170.03 0.49
3-10V 109.78 1465.31 0.70 205.34 1307.55 0.61 110.84 1460.26 0.70 155.48 1199.56 0.50
4-10V 105.63 1434.21 0.70 193.22 1283.68 0.61 108.10 1419.37 0.69 151.67 1174.15 0.50
5-10V 104.18 1449.64 0.70 202.33 1294.75 0.60 108.91 1451.57 0.69 154.06 1185.48 0.50

1-15V 158.59 2131.85 0.69 284.49 1917.31 0.60 161.68 2125.28 0.69 226.79 1751.22 0.49
2-15V 161.51 2170.07 0.70 299.62 1947.53 0.61 164.32 2168.29 0.69 230.22 1779.23 0.50
3-15V 164.23 2183.27 0.70 302.75 1961.12 0.61 165.60 2179.56 0.70 232.69 1790.41 0.50
4-15V 157.96 2150.20 0.69 300.16 1932.43 0.60 162.87 2154.96 0.70 229.45 1769.75 0.49
5-15V 160.35 2156.48 0.70 297.60 1942.29 0.61 163.39 2168.52 0.70 229.91 1775.38 0.50

Table 7 compares the results obtained when optimizing both energy and degradation

costs with the two short day-time routes to a scenario within which the two short routes

are merged into one single longer route. While performing one single longer route certainly
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has its logistical advantages, it also leaves much less leeway regarding which SOC intervals

within which to cycle the battery and thus limits cycle aging mitigation. To generate the

instances with one single long route per day, we simply merge the two routes of each vehicle

into a single route, departing at the time of the earliest route, lasting the sum of the length

of each route, and consuming the sum of the SOC consumption of each route. Therefore, in

the single route per day scenario, all routes consume between 80% and 94% of the battery

(note that 94% is the maximum feasible consumption for a route considering SOCmin and

SOCmax). For the single long route scenario, the initial SOC of the vehicles is set to 0.8 in

order to ensure feasibility, but the energy and degradation costs are adjusted (assuming only

off-peak rates for the energy costs) in order to draw comparisons to the results with the two

shorter day-time routes (for which the initial SOC of the vehicles is 0.5).

The results indicate that even in presence of cheap overnight electricity costs, when

degradation costs are jointly minimized, in terms of total costs it becomes preferable to

split the long route into two parts and incur peak energy rates in order to avoid cycling the

battery in high SOC intervals, rather than benefit more from off-peak rates but be limited

with regards to cycle aging mitigation. Moreover, the two short day-time routes context in

Tables 6 and 7 is somewhat a worst case scenario, since almost all the time available for

charging between the two routes occurs during peak hours.

Table 7: Cost comparison of two short routes with one long route

Summer rates Winter rates
One long route Two short routes One long route Two short routes

Instance Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total

1-5V 45.92 742.58 0.93 788.50 102.01 656.93 0.61 758.94 52.77 742.99 0.93 795.76 77.59 603.02 0.50 680.61
2-5V 45.54 712.06 0.91 757.60 94.34 637.36 0.60 731.70 51.21 712.06 0.91 763.27 75.14 580.67 0.49 655.81
3-5V 44.88 728.17 0.92 773.05 98.63 646.86 0.61 745.49 52.32 729.43 0.92 781.75 76.85 591.39 0.50 668.24
4-5V 43.04 724.27 0.92 767.31 96.99 646.06 0.61 743.05 52.97 725.67 0.92 778.64 76.51 587.90 0.49 664.41
5-5V 44.11 724.60 0.92 768.71 99.86 642.69 0.60 742.55 51.70 724.64 0.92 776.34 75.05 592.44 0.51 667.49

1-10V 93.10 1458.14 0.92 1551.24 193.58 1302.13 0.61 1495.71 108.44 1459.35 0.92 1567.79 152.51 1188.45 0.50 1340.96
2-10V 89.30 1439.02 0.91 1528.32 193.57 1279.63 0.60 1472.20 105.99 1438.08 0.91 1544.07 151.79 1170.03 0.49 1321.82
3-10V 89.39 1479.94 0.93 1569.33 205.34 1307.55 0.61 1512.89 106.26 1480.07 0.93 1586.33 155.48 1199.56 0.50 1355.04
4-10V 86.35 1441.57 0.91 1527.92 193.22 1283.68 0.61 1475.90 104.94 1442.78 0.92 1547.72 151.67 1174.15 0.50 1325.82
5-10V 89.05 1464.75 0.92 1553.80 202.33 1294.75 0.60 1497.08 109.48 1462.63 0.92 1572.11 154.06 1185.48 0.50 1339.54

1-15V 134.21 2148.61 0.91 2282.82 284.49 1917.31 0.60 2201.80 157.42 2149.33 0.91 2306.75 226.79 1751.22 0.49 1978.01
2-15V 136.94 2194.73 0.92 2331.67 299.62 1947.53 0.61 2247.15 160.77 2196.80 0.92 2357.57 230.22 1779.23 0.50 2009.45
3-15V 137.55 2209.44 0.93 2346.99 302.75 1961.12 0.61 2263.87 164.08 2209.44 0.93 2373.52 232.69 1790.41 0.50 2023.10
4-15V 134.36 2180.49 0.92 2314.85 300.16 1932.43 0.60 2232.59 164.36 2176.71 0.92 2341.07 229.45 1769.75 0.49 1999.20
5-15V 131.67 2190.07 0.92 2321.74 297.60 1942.29 0.61 2239.89 157.84 2184.94 0.92 2342.78 229.91 1775.38 0.50 2005.29

A better context for mitigating both energy and degradation costs would therefore most

likely be to have two short day-time routes allowing intermittent charging during mid-peak

hours or off-peak hours. To assess whether this scenario could generate significant savings,

we first modified the instances with two short day-time routes by shifting the second route

of each day by four hours, thereby departing between 19:00 and 20:30. Table 8 compares

the results obtained when optimizing both energy and degradation costs with the single long
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route and with the two short routes further apart from each other. The figures indicate that

the delaying the second routes to the evening allows reducing both energy and degradation

costs compared to the scenario with the two routes closer to each other, especially with the

summer rates, during which peak rates are much higher. Indeed, with the summer rates,

inter-route charging is delayed to the few hours of mid-peak rates prior to the second route

for as many vehicles as possible.

Finally, we also solved the instances with the larger delay between the routes while

simultaneously shifting all routes of half the fleet five hours later, thereby allowing half the

fleet to perform their first route in the early afternoon hours and their second route in the

early portions of the night. The results are reported in Table 9 and show that energy and

degradation costs are further reduced, thereby indicating that this scenario constitutes the

best alternative to the single long daily route. Indeed, in this case, the SOC of the vehicles

is kept even lower and almost all inter-route charging is done outside peak hours.

Table 8: Cost comparison of two short routes further apart from each other with one long
route

Summer rates Winter rates
One long route Two short routes further apart One long route Two short routes further apart

Instance Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total

1-5V 45.92 742.58 0.93 788.50 69.05 649.01 0.59 718.06 52.77 742.99 0.93 795.76 73.41 600.79 0.50 674.20
2-5V 45.54 712.06 0.91 757.60 65.94 618.01 0.56 683.95 51.21 712.06 0.91 763.27 70.20 578.60 0.49 648.80
3-5V 44.88 728.17 0.92 773.05 67.34 631.02 0.58 698.36 52.32 729.43 0.92 781.75 71.95 590.61 0.49 662.56
4-5V 43.04 724.27 0.92 767.31 67.31 628.30 0.57 695.61 52.97 725.67 0.92 778.64 71.74 585.60 0.49 657.34
5-5V 44.11 724.60 0.92 768.71 67.43 636.03 0.59 703.46 51.70 724.64 0.92 776.34 72.41 585.90 0.49 658.31

1-10V 93.10 1458.14 0.92 1551.24 137.09 1269.03 0.58 1406.12 108.44 1459.35 0.92 1567.79 143.72 1182.53 0.49 1326.25
2-10V 89.30 1439.02 0.91 1528.32 134.70 1244.09 0.57 1378.79 105.99 1438.08 0.91 1544.07 142.12 1168.35 0.49 1310.47
3-10V 89.39 1479.94 0.93 1569.33 139.42 1272.81 0.57 1412.23 106.26 1480.07 0.93 1586.33 144.72 1194.71 0.50 1339.43
4-10V 86.35 1441.57 0.91 1527.92 133.54 1255.05 0.58 1388.59 104.94 1442.78 0.92 1547.72 141.72 1171.68 0.49 1313.40
5-10V 89.05 1464.75 0.92 1553.80 142.97 1257.11 0.57 1400.08 109.48 1462.63 0.92 1572.11 142.30 1185.84 0.50 1328.14

1-15V 134.21 2148.61 0.91 2282.82 196.99 1872.98 0.57 2201.80 157.42 2149.33 0.91 2306.75 213.35 1745.58 0.49 1978.01
2-15V 136.94 2194.73 0.92 2331.67 208.66 1888.61 0.57 2097.27 160.77 2196.80 0.92 2357.57 214.67 1777.78 0.49 1992.45
3-15V 137.55 2209.44 0.93 2346.99 213.34 1908.67 0.58 2122.01 164.08 2209.44 0.93 2373.52 217.76 1787.60 0.50 2005.36
4-15V 134.36 2180.49 0.92 2314.85 206.64 1881.25 0.57 2087.89 164.36 2176.71 0.92 2341.07 212.28 1768.89 0.49 1981.17
5-15V 131.67 2190.07 0.92 2321.74 206.95 1892.76 0.57 2099.71 157.84 2184.94 0.92 2342.78 215.10 1767.53 0.49 1982.63

5.2 The impact of grid restrictions

We now investigate the impact of maximum allowed loads on energy and degradation costs

by considering another rate plan offered by Southern California Edison (2017): TOU-EV-3-

A. Under this plan, the maximum power retrieved from the grid must always remain below

20kW. We therefore limit ourselves to a fleet size of five vehicles. Since the 17.5A charger

alone surpasses the maximum allowable charging power, we also consider a different charging

infrastructure. We assume five 2.5A chargers, two 5A charger, and one 7.5A charger. The

5A charger is capable of charging the battery from SOCmin to SOCmax in approximately

7.9 hours and uses a charging power of approximately 10kW. The CV process is entered at
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Table 9: Cost comparison of two short routes further apart from each other and less
clustered with one long route

Summer rates Winter rates
One long route Two short routes further apart and less clustered One long route Two short routes further apart and less clustered

Instance Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total Energy costs Deg. costs Avg. SOC Total

1-5V 45.92 742.58 0.93 788.50 66.06 617.08 0.54 683.14 52.77 742.99 0.93 795.76 65.43 599.90 0.50 665.33
2-5V 45.54 712.06 0.91 757.60 61.39 588.81 0.51 650.20 51.21 712.06 0.91 763.27 62.19 579.22 0.49 641.41
3-5V 44.88 728.17 0.92 773.05 60.23 603.35 0.52 663.58 52.32 729.43 0.92 781.75 63.07 589.57 0.49 652.64
4-5V 43.04 724.27 0.92 767.31 61.25 598.50 0.51 659.75 52.97 725.67 0.92 778.64 62.25 587.08 0.49 649.33
5-5V 44.11 724.60 0.92 768.71 60.48 608.05 0.53 668.53 51.70 724.64 0.92 776.34 64.34 585.48 0.49 649.82

1-10V 93.10 1458.14 0.92 1551.24 123.98 1196.96 0.51 1320.94 108.44 1459.35 0.92 1567.79 123.67 1180.48 0.49 1304.15
2-10V 89.30 1439.02 0.91 1528.32 121.47 1177.17 0.50 1298.64 105.99 1438.08 0.91 1544.07 121.01 1168.20 0.49 1289.21
3-10V 89.39 1479.94 0.93 1569.33 125.47 1205.11 0.51 1330.58 106.26 1480.07 0.93 1586.33 125.09 1193.98 0.50 1319.07
4-10V 86.35 1441.57 0.91 1527.92 120.08 1191.60 0.51 1311.68 104.94 1442.78 0.92 1547.72 123.31 1166.98 0.49 1290.29
5-10V 89.05 1464.75 0.92 1553.80 124.55 1191.19 0.50 1315.74 109.48 1462.63 0.92 1572.11 124.03 1183.96 0.49 1307.99

1-15V 134.21 2148.61 0.91 2282.82 180.55 1771.70 0.51 1952.25 157.42 2149.33 0.91 2306.75 181.79 1748.02 0.49 1929.81
2-15V 136.94 2194.73 0.92 2331.67 183.92 1796.14 0.51 1980.06 160.77 2196.80 0.92 2357.57 184.35 1774.55 0.49 1958.90
3-15V 137.55 2209.44 0.93 2346.99 184.70 1822.39 0.52 2007.09 164.08 2209.44 0.93 2373.52 188.46 1788.72 0.50 1977.18
4-15V 134.36 2180.49 0.92 2314.85 182.91 1790.86 0.51 1973.77 164.36 2176.71 0.92 2341.07 185.22 1757.56 0.49 1942.78
5-15V 131.67 2190.07 0.92 2321.74 181.56 1808.92 0.52 1990.48 157.84 2184.94 0.92 2342.78 187.27 1770.80 0.49 1958.07

a SOC of 0.97 after approximately 7.4 hours, so we approximate the CC-CV process with

two SOC breakpoints: 0.05, 0.97, and 0.99. The charging currents used in our piecewise

approximation for this charger are 5A between 0.05 and 0.97, and 1.6A between 0.97 and

0.99. To ensure that no instances would be infeasible due to the initial SOC of the vehicles,

we set this parameter to 0.99.

All instances with five vehicles for the day and night routes scenario become infeasible

with the grid restriction and the new charging infrastructure. When removing the grid

constraints, these instances become feasible with the charging infrastructure. One of the

instances with five vehicles for the single long day-time route also became infeasible with the

grid restriction and feasible when removing it. This suggests that such grid restrictions can

indeed hinder high EFV utilization in contexts with relatively long routes.

We also solved the instances with two shorter routes per day and the same variations from

the previous section but with the new charging infrastructure, as well as with and without

the grid restriction of 20kW. The results are reported in Table 10, in which G refers to the

presence of the grid restriction and NG refers to no grid restriction during the optimization

process. The number preceding G or NG indicates the scenario considered: 1 refers to

the initial considered scenario with two day-time routes; 2 refers to the two routes with an

additional four hours between the first and second route of each day; and 3 refers to the two

routes with an additional four hours between the first and second route of each day and with

half the fleet’s routes shifted five hours later.

The model still manages to reduce degradation costs significantly when the grid restric-

tion is in place, at the expense of higher energy costs. The most notable impact of the grid

restriction is on energy costs. With the summer rates, energy costs are sometimes nearly
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Table 10: The impact of grid restrictions on energy and degradation costs

Summer rates Winter rates
Energy optimized Energy and degradation optimized Energy optimized Energy and degradation optimized

Instance Energy costs Deg. costs Energy costs Deg. costs Energy costs Deg. costs Energy costs Deg. costs

1-5V-1-G 110.65 554.61 115.14 514.41 83.53 557.51 84.00 514.56
2-5V-1-G 100.57 531.39 110.18 487.61 79.35 551.54 80.59 485.75
3-5V-1-G 108.13 542.64 115.28 495.61 81.83 543.23 82.33 495.67
4-5V-1-G 104.68 539.53 113.07 492.41 80.94 530.28 82.00 492.64
5-5V-1-G 104.03 544.94 109.63 498.62 80.86 553.87 81.21 498.90

1-5V-1-NG 61.48 569.61 105.05 506.18 68.34 569.30 85.39 479.79
2-5V-1-NG 58.82 543.06 96.06 488.03 65.46 548.05 82.77 458.13
3-5V-1-NG 60.37 553.55 97.62 498.16 67.06 554.34 84.62 465.33
4-5V-1-NG 59.83 546.49 95.34 498.04 66.53 547.75 84.81 460.44
5-5V-1-NG 59.69 552.40 97.25 495.07 66.32 552.49 81.44 471.06

1-5V-2-G 122.05 554.46 130.37 480.10 84.71 560.78 86.18 478.84
2-5V-2-G 107.70 551.62 120.39 460.06 80.17 543.07 83.22 452.59
3-5V-2-G 116.53 542.65 126.42 467.49 82.99 552.68 84.92 461.90
4-5V-2-G 112.40 538.97 124.50 464.67 81.94 539.60 83.99 459.41
5-5V-2-G 116.85 548.04 124.32 468.31 81.91 553.25 83.38 464.25

1-5V-2-NG 61.34 567.55 79.74 506.29 68.44 563.61 86.82 465.34
2-5V-2-NG 58.98 541.53 72.48 486.34 65.57 544.31 83.53 447.12
3-5V-2-NG 60.12 553.54 78.52 491.74 67.08 550.48 84.91 455.86
4-5V-2-NG 60.05 545.78 75.53 489.38 66.48 547.03 83.65 454.64
5-5V-2-NG 59.75 553.37 72.55 497.33 66.35 553.37 84.41 452.50

1-5V-3-G 84.87 558.57 105.69 472.94 79.91 551.35 83.86 467.07
2-5V-3-G 80.71 532.47 93.77 459.19 76.30 533.12 81.33 447.30
3-5V-3-G 82.42 545.60 102.74 461.05 77.93 545.60 82.34 456.90
4-5V-3-G 81.42 524.94 100.61 460.88 77.47 533.84 81.26 453.11
5-5V-3-G 81.69 545.26 102.59 460.92 77.29 537.68 81.87 453.23

1-5V-3-NG 61.95 567.43 80.61 482.86 68.61 566.25 82.13 466.17
2-5V-3-NG 58.99 551.14 73.43 465.40 65.43 554.06 78.49 445.81
3-5V-3-NG 60.12 554.60 74.41 475.22 66.80 554.60 79.85 455.18
4-5V-3-NG 59.86 534.80 73.03 472.53 66.56 535.66 79.09 452.77
5-5V-3-NG 59.71 548.37 73.30 477.37 66.64 544.65 79.66 453.16
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doubled when solving the same instance without the grid restriction and with the grid re-

striction of 20kW. Indeed, the grid restriction prevents the model from taking advantage of

significant savings regarding energy costs since it limits the number of vehicles that can be

simultaneously charged at any given moment (e.g., when energy is cheaper). The increase

in energy costs is, however, less significant with the winter rates, since energy costs outside

off-peak hours are smaller. Regardless of the seasonal rate and whether energy costs are

minimized alone or jointly with the degradation costs, the best scenario with the grid re-

striction is the one in which the two routes of each day are further apart from each other

and less clustered (i.e., with half the fleet’s route shifted five hours later).

5.3 The impact of facilities related demand charges

Our numerical experiments have so far disregarded FRD charges that are present in rate

plans TOU-EV-4 and TOU-EV-3B form Table 1. To investigate whether optimizing charging

schedules while ignoring such charges may lead to undesirable solutions, we solved some of

the previous test instances while jointly optimizing the FRD charge. To incorporate this

into the problem, we added the following constraints to the discrete time model:

∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

xpksi · Ps ≤ F p ∈ P (70)

and we changed the objective function to

minimize
∑
k∈K

∑
p∈P

ipk · δ
Q
·QE · cp +

∑
r∈R

∑
d∈D

QE ·∆socdr ·Wd + F · cFRD, (71)

where F is a decision variable indicating the maximum charging power retrieved from the

grid over the planning horizon, and cFRD is the FRD charge under the considered rate plan.

We first solved the instances with relatively long day and night routes as well as the

instances with two short routes per day (under the best scenario, i.e., with routes far apart

and less clustered) with energy costs, degradation costs and the FRD charge under plan

TOU-EV-4. The monthly FRD charge under this plan is $13.20/kW. Assuming 22 working

days per month, this would be equivalent to an FRD charge of $1.8/kW over a planning

horizon of three days. Since the initial SOC of the vehicles in these instances is set to 0.5,

we only start applying the FRD charge several hours after the start of the horizon to allow

the vehicles to reach an appropriate SOC for their first route without incurring the FRD fee.
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The joint optimization of the FRD charge makes the problem significantly harder to solve,

and the solver was unable to find a solution with an optimality gap under 0.5% for only a

few of these instances. For two of the instances with day and night routes, the solver was

unable to find an integer solution within the time limit, and for three other instances, the

best found solution had an optimality gap between 0.5% and 0.7%. For four of the instances

with two shorter routes per day, the best found solution had an optimality gap between 0.5%

and 1.4%. The results are reported in Tables 11 and 12.

Table 11: Day-time and night-time routes: the impact of FRD charges on costs

Summer rates Winter rates
Optimized with FRD charge Optimized without FRD charge Optimized with FRD charge Optimized without FRD charge

Instance Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge

1-5V 141.61 1094.09 81.00 136.23 1091.90 99.00 116.35 1094.60 72.00 112.13 1094.45 99.00
2-5V 150.28 1186.43 81.00 144.96 1180.79 99.00 121.44 1182.60 81.00 119.51 1183.27 99.00
3-5V 147.68 1195.96 81.00 140.70 1198.48 99.00 124.69 1194.97 72.00 118.80 1200.87 99.00
4-5V 126.83 995.85 81.00 120.95 994.92 99.00 104.79 994.47 72.00 101.71 997.31 99.00
5-5V 143.63 1096.20 81.00 132.78 1094.95 99.00 116.09 1097.05 72.00 112.66 1094.03 99.00

1-10V 280.50 2208.41 162.00 262.10 2210.62 198.00 229.21 2201.85 144.00 224.54 2208.62 198.00
2-10V 270.79 2236.77 162.00 262.91 2234.67 198.00 230.64 2231.49 144.00 225.33 2239.08 198.00
3-10V 248.97 2068.84 162.00 240.22 2070.89 198.00 218.67 2062.49 135.00 212.09 2066.65 198.00
4-10V 256.18 2158.38 162.00 247.83 2158.55 198.00 226.18 2155.01 135.00 219.44 2156.80 198.00
5-10V 265.75 2212.31 162.00 259.04 2211.81 198.00 233.35 2206.72 135.00 223.22 2212.37 198.00

1-15V 392.02 3202.97 225.00 369.34 3196.71 297.00 331.24 3188.84 207.00 319.78 3200.80 297.00
2-15V 411.39 3440.71 252.00 403.73 3440.31 297.00 - - - 344.84 3446.84 297.00
3-15V 405.58 3356.61 243.00 393.89 3354.18 297.00 346.51 3349.56 207.00 336.78 3361.71 297.00
4-15V - - - 381.93 3240.27 297.00 341.86 3240.72 207.00 327.76 3241.86 297.00
5-15V 421.24 3383.63 243.00 400.36 3380.01 297.00 349.19 3377.56 216.00 343.62 3384.37 288.00

Table 12: Two short routes far apart and declustered: the impact of FRD charges on costs

Summer rates Winter rates
Optimized with FRD charge Optimized without FRD charge Optimized with FRD charge Optimized without FRD charge

Instance Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge

1-5V 61.43 627.56 63.00 66.06 617.08 81.00 74.41 603.82 36.00 65.43 599.90 81.00
2-5V 59.60 595.51 63.00 61.39 588.81 81.00 71.62 579.98 36.00 62.19 579.22 81.00
3-5V 60.02 608.10 63.00 60.23 603.35 81.00 73.19 591.39 36.00 63.07 589.57 81.00
4-5V 58.39 607.50 63.00 61.25 598.50 90.00 72.72 588.66 36.00 62.25 587.08 81.00
5-5V 62.09 613.03 63.00 60.48 608.05 81.00 72.22 590.50 36.00 64.34 585.48 81.00

1-10V 161.49 1206.71 81.00 123.98 1196.96 153.00 141.90 1178.90 63.00 123.67 1180.48 153.00
2-10V 159.23 1189.01 81.00 121.47 1177.17 171.00 140.16 1164.41 63.00 121.01 1168.20 153.00
3-10V 164.92 1212.77 81.00 125.47 1205.11 153.00 143.85 1194.07 63.00 125.09 1193.98 153.00
4-10V 156.40 1190.85 90.00 120.08 1191.60 153.00 139.71 1168.45 63.00 123.31 1166.98 153.00
5-10V 157.37 1200.96 90.00 124.55 1191.19 153.00 142.66 1180.97 63.00 124.03 1183.96 153.00

1-15V 238.82 1767.50 135.00 180.55 1771.70 234.00 196.98 1738.22 126.00 181.79 1748.02 234.00
2-15V 226.19 1805.93 144.00 183.92 1796.14 234.00 201.19 1768.76 126.00 184.35 1774.55 234.00
3-15V 238.00 1816.49 144.00 184.70 1822.39 234.00 213.51 1779.32 99.00 188.46 1788.72 234.00
4-15V 228.63 1791.48 144.00 182.91 1790.86 234.00 199.21 1757.24 126.00 185.22 1757.56 234.00
5-15V 249.85 1798.31 135.00 181.56 1808.92 234.00 201.97 1762.72 126.00 187.27 1770.8 234.00

The figures of Tables 11 and 12 deserve some comments. First, the FRD charge is higher

when solving a given instance with the summer rates than with the winter rates. For the

instances with two shorter routes, this outcome is a consequence of the necessity to charge
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the vehicles between their routes to keep departing SOC values and thus degradation costs

low. With the winter rates, energy costs during peak hours are sufficiently low for it to be

beneficial to charge vehicles a little bit during peak hours and thus keep FRD charges low

by spreading out the inter-route charging of vehicles over larger time intervals. On the other

hand, with the summer rates, the model waits until mid-peak hours to perform inter-route

charging in order to avoid very high peak rates, thereby requiring one to charge more vehicles

within a shorter time interval or to use faster chargers retrieving more power from the grid,

thus incurring higher FRD charges. A similar phenomenon is identified in the day and night

route instances. When a vehicle returns from its day-time route before 18:00 with the winter

rates, it tends to start being charged as soon as possible despite peak rates still being in

place. With the summer rates, the charging of those vehicles prior to their night-time route

is usually postponed to mid-peak hours or off-peak hours.

Second, the results suggest that optimizing the charging schedule without considering

the FRD charges may lead to solutions in which the decrease in energy costs does not make

up for the higher FRD charge. Indeed, in several of the instances, the reduction in the FRD

fee obtained by jointly optimizing energy, FRD and degradation costs outweighs the increase

in energy costs resulting from having to spread out charging events to more costly periods of

the day, while still generating similar degradation costs. All in all, the results suggest that

disregarding FRD fees when optimizing the charging schedule may lead to solutions with

FRD fees that do not justify the corresponding savings in energy costs.

To assess the impact of degradation costs on FRD charges, we also solved the instances

with two shorter routes by optimizing the charging schedule with energy and FRD costs

but without the degradation costs. Here again, some instances returned optimality gaps

above 0.5% after the five hour time limit, with a value of 3.22% in the worst case. Table 13

compares the results of this experiment to those obtained when energy, FRD and degradation

costs are simultaneously optimized. The results suggest that incurring larger FRD fees can

be well worthwhile in order to lower degradation costs.

Finally, as already mentioned, two options are available for the TOU-EV-3 rate plan

(see Table 1). Option A has higher energy costs but no FRD charge, while option B has

lower energy costs but an FRD charge. Both are subject to the maximum charging power

of 20kW. In order to show how the model may be used to choose among different rate plans

in such contexts, we solved the instances with two short routes with a fleet of five vehicles

and the charging infrastructure of Section 5.2 (because of the 20kW grid restriction) with

both TOU-EV-3 plan options, as well as with and without degradation costs. In this case,

the $7.23/kW monthly FRD fee is equivalent to approximately $0.99/kW for the three day
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Table 13: The cost impact of degradation costs on FRD charges

Summer rates Winter rates
Energy, deg. and FRD optimized Energy and FRD optimized Energy, deg. and FRD optimized Energy and FRD optimized

Instance Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge Energy costs Deg. costs FRD charge

1-5V 61.43 627.56 63.00 51.22 697.18 63.00 74.41 603.82 36.00 70.51 723.52 27.00
2-5V 59.60 595.51 63.00 48.70 678.33 63.00 71.62 579.98 36.00 67.78 707.51 27.00
3-5V 60.02 608.10 63.00 49.48 679.35 63.00 73.19 591.39 36.00 69.33 683.83 27.00
4-5V 58.39 607.50 63.00 48.86 664.64 63.00 72.72 588.66 36.00 68.82 695.08 27.00
5-5V 62.09 613.03 63.00 49.07 683.06 63.00 72.22 590.50 36.00 68.41 704.92 27.00

1-10V 161.49 1206.71 81.00 144.70 1364.48 63.00 141.90 1178.90 63.00 141.33 1418.97 45.00
2-10V 159.23 1189.01 81.00 134.95 1338.71 72.00 140.16 1164.41 63.00 138.60 1395.40 45.00
3-10V 164.92 1212.77 81.00 146.56 1359.00 63.00 143.85 1194.07 63.00 143.90 1431.05 45.00
4-10V 156.40 1190.85 90.00 135.33 1346.95 72.00 139.71 1168.45 63.00 139.73 1426.55 45.00
5-10V 157.37 1200.96 90.00 137.81 1379.60 72.00 142.66 1180.97 63.00 142.52 1410.87 45.00

1-15V 238.82 1767.50 135.00 187.37 1970.71 126.00 196.98 1738.22 126.00 203.48 2055.62 72.00
2-15V 226.19 1805.93 144.00 193.68 2017.09 126.00 201.19 1768.76 126.00 207.87 2110.92 72.00
3-15V 238.00 1816.49 144.00 194.19 2058.27 126.00 213.51 1779.32 99.00 209.33 2108.41 72.00
4-15V 228.63 1791.48 144.00 190.71 2035.51 126.00 199.21 1757.24 126.00 206.35 2085.46 72.00
5-15V 249.85 1798.31 135.00 193.76 2025.95 126.00 201.97 1762.72 126.00 201.26 2108.30 81.00

planning horizon, assuming once again 22 working days per month. The results are reported

in Table 14. A solution with an optimality gap below 0.5% was found for all instances.

In this case, whether degradation costs are jointly optimized or not, both plan options

appear to be equivalent in terms of total cost, i.e., the savings in energy costs with the

TOU-EV-3-B plan are approximately equivalent to the additional FRD fee. Nevertheless,

this experiment demonstrates how the model can be used to compare different plan options

when such alternatives are availalable. Moreover, note that in all solutions with an FRD

charge of $14.85 (corresponding to a maximum charging power of 15kW over the planning

horizon) in Table 14, the two 5A-10kW chargers are never used simultaneously, while this

is not the case in solutions obtained when the same instance is solved with the rate plan

offering higher energy rates but no FRD charge. The same total cost can thus sometimes be

obtained by using a smaller charging infrastructure with the plan including the FRD charge.

Table 14: Cost comparison of the TOU-EV-3 plan options

Summer rates Winter rates
Energy and FRD optimized Energy, FRD and degradation optimized Energy and FRD optimized Energy, FRD and degradation optimized

Instance Energy costs FRD charge Total Energy costs FRD charge Deg. costs Total Energy costs FRD charge Total Energy costs FRD charge Deg. costs Total

1-5V-TOU-EV-3-A 84.87 0.00 84.87 105.69 0.00 472.94 578.63 79.91 0.00 79.91 83.86 0.00 467.07 550.93
2-5V-TOU-EV-3-A 80.71 0.00 80.71 93.77 0.00 459.19 552.96 76.30 0.00 76.30 81.33 0.00 447.30 528.63
3-5V-TOU-EV-3-A 82.42 0.00 82.42 102.74 0.00 461.05 563.79 77.93 0.00 77.93 82.34 0.00 456.90 539.24
4-5V-TOU-EV-3-A 81.42 0.00 81.42 100.61 0.00 460.88 561.49 77.47 0.00 77.47 81.26 0.00 453.11 534.37
5-5V-TOU-EV-3-A 81.69 0.00 81.69 102.59 0.00 460.92 563.51 77.29 0.00 77.29 81.87 0.00 453.23 535.10

1-5V-TOU-EV-3-B 64.30 19.80 84.10 84.52 19.80 473.57 577.89 63.79 14.85 78.64 62.60 19.80 465.34 547.74
2-5V-TOU-EV-3-B 61.10 19.80 80.90 74.99 19.80 458.33 553.12 60.79 14.85 75.64 62.31 14.85 448.29 525.45
3-5V-TOU-EV-3-B 62.66 19.80 82.46 80.58 19.80 462.83 563.21 62.10 14.85 76.95 63.69 14.85 457.68 536.22
4-5V-TOU-EV-3-B 61.73 19.80 81.53 85.59 19.80 455.33 560.72 61.46 14.85 76.31 63.10 14.85 454.84 532.79
5-5V-TOU-EV-3-B 61.85 19.80 81.65 82.36 19.80 461.60 563.76 61.79 14.85 76.64 63.09 14.85 454.16 532.10
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5.4 Calendar aging considerations

Degradation occuring while the battery is stored is always worse at high SOC values. Lunz

et al. (2012) showed that significant lifetime savings can be attained by charging electric vehi-

cles as closely as possible to their departure times in order to avoid spending lengthy periods

of time in higher SOC values. Alghough there exist some calendar aging models translating

storage degradation in monetary terms, these rely on extensive long-term experimental data

(e.g., Hoke et al. 2011) that may not be readily available for any given battery. Nevertheless,

it would be desirable to at least mitigate calendar aging when this can be achieved without

affecting the quality of the solution obtained without calendar aging considerations.

A significant benefit of the non-decreasing wear function used in all previous experiments

is that cycling the battery in lower SOC intervals not only increases cycle life, but also

indirectly helps calendar life. This is, however, not the case when the battery wear function

is non-increasing. Indeed, the cycle life data of some batteries may result in non-increasing

cycling wear functions, meaning that it would be preferable to avoid cycling such batteries in

low SOC values. This would most likely lead to an increase in calendar aging. We illustrate

this by solving the instances with two short delivery routes (further apart from each other

and declustered) with the DOD cycle life data used in Hoke et al. (2011), which results in

the non-increasing wear function reported in Table 15 (note that this battery has a higher

cycle life than the one previously considered and thus lower wear costs).

Table 15: Non-increasing battery degradation costs

SOC interval Degradation costs

0-0.25 $0.57/kWh
0.25-0.5 $0.49/kWh
0.5-0.75 $0.38/kWh
0.75-1 $0.22/kWh

The results are reported in Table 16 with the winter rates of the TOU-EV-4 plan. The

cycle life of the vehicles is estimated by assuming the operating conditions over the planning

horizon of three days would be repeated until cumulative degradation costs reach the battery

price. The calendar life is estimated by weighing the calendar lifetime of SOC intervals of

10% with the frequency of occurence of these SOC intervals in the solution, as in Lunz

et al. (2012). The calendar lifetime of each SOC interval is extrapolated from accelerated

calendar aging tests for electric vehicle lithium-ion cells reported in Lunz et al. (2012). In the

determination of the calendar life of the batteries, it is assumed that their SOC decreases

linearly from period to period while they performs routes. The column “Avg. Cal. Life

NDWF ”reports the average estimated calendar life obtained for the same instance when
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optimizing energy and degradation costs with the non-decreasing wear costs used in all

previous experiments. The average SOC column reports the average SOC of the vehicles

upon departing for their routes.

The results presented in Table 16 show that calendar life is adversely affected when

optimizing the charging schedule with the non-increasing battery wear function. For each

instance, optimizing without the degradation costs yields solutions in which the average

estimated cycle life of the batteries is lower than the average estimated calendar life. On

the other hand, optimizing with the degradation costs increases the average cycle life of the

batteries, but significantly lowers the average calendar life, since the batteries spend much

more time in high SOC intervals. The estimated average calendar life actually falls below

the cycle life when energy and degradation are jointly optimized with the degradation costs

from Table 15, naturally leading one to question whether the cycle life savings and associated

increase in energy costs are really worthwhile. One should therefore carefully use such wear

functions and ensure that the savings in cycle life outweigh the loss of calendar life and

increase in energy costs.

The results also clearly demonstrate the calendar aging benefit of the non-decreasing

battery wear function from Table 2, since jointly optimizing degradation and energy costs

is beneficial to both cycle life (as demonstrated in our previous experiments through the

reduction of degradation costs) and calendar life, which increases for each instance in Table

16 (see column “Avg. Cal. Life NDWF ”) compared to the solution obtained when only

energy costs are minimized.

Table 16: Adverse impact of non-increasing battery degradation costs on calendar life

Energy optimized Energy and degradation optimized
Instance Energy costs Deg. costs Avg. SOC Avg. Cyc. Life Avg. Cal. Life Energy costs Deg. costs Avg. SOC Avg. Cyc. Life Avg. Cal. Life Avg. Cal. Life NDWF

1-5V 53.42 383.18 0.66 5.82 8.55 66.60 263.75 0.89 7.73 6.82 9.92
2-5V 51.34 364.22 0.66 6.05 8.48 63.08 253.72 0.89 7.95 6.80 10.07
3-5V 52.34 378.49 0.65 5.88 8.64 64.65 263.56 0.88 7.74 6.98 10.01
4-5V 52.35 378.90 0.64 5.87 8.78 64.92 263.57 0.87 7.74 6.98 10.13
5-5V 52.06 374.40 0.65 5.94 8.63 64.91 256.73 0.89 7.89 6.87 9.94

1-10V 105.23 770.22 0.64 5.81 8.63 128.73 520.39 0.88 7.81 6.82 10.00
2-10V 103.65 760.63 0.64 5.86 8.70 126.31 510.29 0.89 7.92 6.77 10.04
3-10V 106.18 769.73 0.65 5.80 8.57 129.69 527.12 0.89 7.73 6.83 10.01
4-10V 103.79 762.90 0.64 5.86 8.68 127.52 512.82 0.89 7.89 6.79 10.03
5-10V 104.93 760.64 0.65 5.87 8.58 127.59 522.20 0.89 7.79 6.81 9.98

1-15V 155.09 1136.49 0.64 5.88 8.71 191.43 768.73 0.88 7.90 6.83 10.08
2-15V 157.72 1134.90 0.65 5.89 8.61 191.80 779.56 0.89 7.82 6.83 10.05
3-15V 158.66 1146.47 0.65 5.84 8.59 194.57 782.86 0.89 7.79 6.84 10.01
4-15V 157.00 1133.01 0.65 5.89 8.54 192.36 775.43 0.89 7.85 6.89 10.08
5-15V 157.38 1130.77 0.65 5.89 8.55 192.15 778.34 0.89 7.79 6.83 10.06

One approach to mitigate calendar life losses resulting from non-increasing battery wear

function may be to optimize the charging schedule in two phases: first by minimizing energy
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and degradation costs, and then by minimizing the sum of the periodic SOC variables while

constraining total energy and degradation costs to remain below (or within a maximum

violation of) the values found in the first phase. This should encourage the model to avoid

keeping the batteries in high SOC values for lengthy periods when this can be avoided.

We test this idea with the solutions reported in Table 16 by minimizing the sum of the

periodic SOC variables while ensuring the same degradation costs and a maximum increase

in energy costs of 25%. Table 17 reports the obtained results. The calendar life can indeed

be improved, but to ensure the same cycling degradation costs, the battery must still remain

above 50% almost at all times, so the calendar aging improvement is limited in this case.

Nevertheless, the same approach can be used with any wear function in order to deal

with the time aspect of calendar aging that is not a factor when solely considering cycle

aging. For example, charging as closely as possible to departure times is preferable from a

calendar aging perspective, but makes no difference from a cycle aging perspective. Such

an approach to mitigate calendar aging should, however, include the consideration of FRD

charges, since encouraging the charging of vehicles as closely as possible to departure times

would most likely require several vehicles being charged simultaneously if routes are clustered

during specific portions of the day. The spreading out of routes over the course of the day

would thus probably become crucial to keep both calendar aging and FRD charges as low

as possible.

Table 17: Costs and average battery life after mitigating calendar aging

Instance Energy costs Deg. costs Avg. Cyc. Life Avg. Cal. Life

1-5V 75.56 263.75 7.73 7.39
2-5V 72.18 253.72 7.95 7.36
3-5V 73.08 263.56 7.74 7.45
4-5V 73.21 263.57 7.74 7.36
5-5V 73.64 256.73 7.89 7.32

1-10V 148.89 520.39 7.81 7.38
2-10V 146.16 510.29 7.92 7.31
3-10V 149.50 527.12 7.73 7.35
4-10V 147.89 512.82 7.89 7.34
5-10V 147.80 522.20 7.79 7.36

1-15V 219.86 768.73 7.90 7.36
2-15V 221.99 779.56 7.82 7.37
3-15V 223.04 782.86 7.79 7.35
4-15V 220.49 775.43 7.85 7.37
5-15V 220.39 778.34 7.79 7.36

5.5 Precise charging schedules: continuous time model

Although the resolution of the instances with the continuous time model does not provide

any new managerial insights, we nevertheless report the continuous time model results for
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the day and night route instances assuming a constant energy cost equal to the summer

mid-peak rate of plan TOU-EV-4 and the degradation costs from Table 2. The results are

reported in Table 18.

The continuous time model may come in handy in operational contexts requiring tighter

charge scheduling than what is possible by working in discrete time. In the presence of

time dependent energy costs, constraints (44) could also be modified to force each charging

event to occur during specific time intervals between each consecutive route to ensure taking

advantage of lower energy costs during certain periods of the day.

Table 18: Energy and degradation costs for instances with day-time and night-time routes
solved with the continuous time model

Instance Energy costs Deg. costs Avg. SOC

1-5V 171.17 1090.90 0.72
2-5V 182.02 1185.98 0.76
3-5V 184.51 1201.30 0.77
4-5V 159.07 998.19 0.68
5-5V 171.26 1093.38 0.72

1-10V 344.83 2206.27 0.73
2-10V 348.10 2243.39 0.74
3-10V 327.36 2064.90 0.69
4-10V 338.30 2153.91 0.71
5-10V 345.22 2217.14 0.73

1-15V 502.56 3206.38 0.72
2-15V 533.09 3447.70 0.75
3-15V 522.91 3365.35 0.74
4-15V 508.42 3251.12 0.72
5-15V 525.60 3393.34 0.74

5.6 The impact of charger related costs

Our numerical experiments with the TOU-EV-4 plan have until now always used the charg-

ing infrastructures calibrated in Section 5.1.1 with the instances involving day and night

routes in which each route consumes a SOC between 0.45 and 0.9. While such infrastruc-

tures allow benefiting from otherwise unachievable energy costs when solving the instances

with two shorter routes (i.e., consuming a SOC between 0.40 and 0.47), they are surely not

required from a feasibility perspective for these instances. Moreover, the instances with two

shorter routes are easier to solve when simultaneously optimizing the charging infrastructure.

Therefore, in order to draw some insights regarding the impacts of fixed costs associated with

the charging infrastructure, we solved the instances with two short delivery routes (further

apart from each other and declustered) while simultaneously optimizing the charging infras-

tructure with the methodology described in Section 5.1.1. For the scenario in which energy,
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degradation, charging infrastructure, and FRD costs are all considered simultaneously, the

objective function becomes

minimize
∑
k∈K

∑
p∈P

ipk · δ
Q
·QE ·cp+

∑
r∈R

∑
d∈D

QE ·∆socdr ·Wd+F ·cFRD+
∑

s∈S\{1}

Cs ·κs. (72)

The results are reported in Table 19 for the summer rates of the TOU-EV-4 plan under

several scenarios. The non-decreasing battery wear costs from Table 2 are used whenever

degradation costs are jointly minimized. For eight of the experiments, the best found solution

had an optimality gap above 0.5% after the five hour time limit, with an optimality gap of

1.79% in the worst case. When nothing is reported in the column indicating the obtained

charging infrastructure, no chargers beside the slow level 1 chargers are used in the best

found solution.

Table 19: The impact of charger related costs on charging infrastructures and other costs

Energy, FRD and inf. optimized Energy, deg., FRD and inf. optimized Energy and inf. optimized Energy, deg. and inf. optimized
Instance Energy costs Deg. costs Inf. Energy costs Deg. costs Inf. Energy costs Deg. costs Inf. Energy costs Deg. costs Inf.

1-5V 69.23 411.50 - 71.82 369.16 - 38.78 410.13 1XS2 67.54 370.75 -
2-5V 60.24 390.78 - 63.19 347.56 - 33.38 390.43 1XS2 58.58 350.31 -
3-5V 68.32 405.87 - 71.42 364.55 - 37.37 424.92 1XS2 67.26 365.66 -
4-5V 69.32 417.50 - 70.52 369.71 - 37.56 422.33 1XS2 67.53 369.80 -
5-5V 64.22 397.31 - 67.29 357.87 - 35.79 401.77 1XS2 62.90 360.53 -

1-10V 101.83 832.59 1XS2 120.89 729.73 1XS2 67.76 824.97 1XS3 85.15 738.57 1XS3
2-10V 95.97 809.56 1XS2 132.92 708.21 - 82.90 794.89 1XS2 121.71 709.41 -
3-10V 96.51 832.81 1XS2 121.95 731.90 1XS2 67.58 831.96 1XS3 81.91 740.67 1XS3
4-10V 97.83 822.43 1XS2 117.84 713.31 1XS2 84.41 803.94 1XS2 83.48 719.22 1XS3
5-10V 100.33 819.53 1XS2 131.40 715.04 - 64.70 805.71 1XS3 121.06 721.76 -

1-15V 159.85 1214.38 1XS2 189.49 1069.55 1XS2 110.19 1189.57 1XS3 136.40 1084.71 1XS3
2-15V 159.47 1240.35 1XS2 190.87 1087.11 1XS2 110.34 1198.53 1XS3 135.87 1102.68 1XS3
3-15V 135.53 1232.85 1XS3 194.71 1092.10 1XS2 113.05 1221.10 1XS3 146.92 1103.36 1XS3
4-15V 157.06 1220.96 1XS2 187.03 1075.10 1XS2 109.17 1191.78 1XS3 137.10 1086.26 1XS3
5-15V 163.31 1229.12 1XS2 191.95 1072.22 1XS2 111.37 1195.06 1XS3 138.78 1090.60 1XS3

As expected, the best found charging infrastructures for these instances are smaller than

those obtained in Section 5.1.1. The savings in energy costs obtained by using the faster

infrastructures from Section 5.1.1 therefore do not justify the purchase and installation costs

of the associated charging equipment for these instances. The results also show that the

inclusion of FRD charges when simultaneously optimizing the charging infrastructure usually

results in less or slower chargers purchased. Indeed, in order to keep such charges low, the

model chooses chargers that consume less power from the grid and is forced to perform more

charging during periods of the day with higher electricity rates, thereby demonstrating the
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trade-off that exists between charging equipment, energy and FRD costs.

The impact of degradation costs on the obtained infrastructures also deserves some com-

ments. If the operational context does not allow much time for inter-route charging, one

would expect the inclusion of degradation costs to often result in larger or faster charging

infrastructures in order to gain more leeway regarding within which SOC intervals the bat-

teries are cycled and when the bulk of inter-route charging takes place. This is observed

when comparing some of the obtained charging infrastructures from Tables 3 and 4 for the

instances with long day and night routes. However, when there is ample time for inter-route

charging, this is rarely the case. Indeed, the figures from Table 19 show that the best found

charging infrastructures almost never become larger or faster when solving a same instance

with degradation costs compared to without degradation costs. Finally, it is interesting to

note that in a few results from Tables 3, 4 and 19, the obtained charging infrastructure even

becomes smaller or slower when solving a same instance with degradation costs compared to

without them. This suggests that in some cases, the increase in energy costs that is required

in order to always cycle the battery in specific SOC intervals when considering degradation

costs no longer justifies the purchase of chargers used to keep energy costs low when solving

the problem without degradation costs.

6. Conclusions

The goal of this study was to provide an optimization tool for depot charge scheduling

that would integrate several useful considerations, as well as to derive managerial insights

through numerical experiments. The model uses realistic charging functions in both discrete

and continuous time, with the former also capable of dealing with time-dependent energy

costs, grid restrictions and FRD charges. We have also provided tractable methods for

integrating an existing battery degradation model into the problem that may be handled by

commerical solvers. The tool we have developed can therefore be used to help the business

case of EFVs operated in high use rate contexts by mitigating battery degradation occuring

at a faster rate as a result of higher vehicle utilization.

Our numerical experiments suggest that degradation costs can be significantly mitigated

by incurring slightly higher energy costs. We have also shown that the sum of energy and

degradation costs can be controlled more precisely by splitting long routes into shorter ones

with respect to SOC consumption, and spreading the routes out over the course of the day.

This modification allows more leeway regarding within which SOC intervals the battery is
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cycled, and during which periods of the day inter-route charging is performed. This may be

of interest in operational contexts within which delivery routes stay relatively close to the

depot so that vehicles can return to the depot more frequently, and within which vehicles may

be allowed perform evening or night-time deliveries. Both of these operational characteristics

are more likely to be present in the context of goods distribution with electric vehicles due

to their limited range and silent operations.

We have also shown that ignoring FRD charges that may be present in certain electric

vehicle charging rate plans for businesses can lead to additional fees that do not justify the

associated energy cost savings, but that incurring such fees may be worthwhile in order to

keep degradation costs low. Our results also suggest that both FRD charges and degradation

costs should be considered when making decisions regarding the depot charging infrastruc-

ture. Moreover, we have demonstrated how the model may be used to compare different

plans offering tradeoffs between energy costs and FRD charges, and we have illustrated that

the presence of grid restrictions may significantly increase energy costs in certain contexts.

We have also concluded that depending on the nature of the cycling wear function (i.e.,

depending on battery), the integration of calendar aging considerations becomes more or less

important. If the cycling wear cost function increases with SOC, then even without calendar

aging mitigation, the joint optimization of energy and degradation costs is beneficial to both

the cycle and calendar lifetime of the batteries. However, if the cycling wear cost function

decreases with SOC, our results suggest that additional steps may be required to mitigate

calendar aging in order to avoid spending lengthy periods of time at high SOC values. We

have therefore provided a simple methodology to mitigate calendar aging in such scenarios.

Finally, we believe that interesting research avenues lie in the integration of some of the

methods discussed in this paper into other problem settings. These may include simulta-

neously optimizing the charging schedule and assigning vehicles to routes, or even simul-

taneously routing the vehicles, both of which would require the development of heuristics.

Moreover, the proposed methodology for incorporating cycling wear costs is applicable to

any electric vehicle routing problem with en route partial recharging, and could thus be used

in the future to investigate the impact of such wear costs on solutions of these problems,

e.g., it may cause more frequent stops at charging stations in order to cycle the batteries in

the SOC intervals with the lowest wear costs.
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Appendix A. Glossary of abbreviations

ACC-DOD: Achievable cycle count as a function of DOD.

CC-CV: Constant current-constant voltage.

DOD: Depth of discharge.

EFV : Electric freight vehicle.

FRD charges: Facilities related demand charges.

SOC: State of charge.
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