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Abstract. In this paper we propose a new recourse policy for the vehicle routing problem with 
stochastic demands (VRPSD). In this routing problem customer demands are characterized by 
known probability distributions. The objective of the problem is to plan routes minimizing the travel 
cost and the expect recourse cost. The latter cost is a result of a predetermined recourse policy 
designed to handle route failures. In the relevant literature there are three types of recourse policies 
i) classical, where stock outs at customers are handled by return trips to the depot ii) optimal 
restocking, where preventive restocking trips to the depot are performed based on optimized 
customer-specific thresholds, and stock outs are handled by return trips to the depot iii) rule-based 
policies, where preventive restocking trips are performed based on thresholds established by 
preset rules, and stock outs are handled by performing return trips to the depot. The latter policy 
enables a company to define its recourse policy based on its operational conventions. We first 
propose a taxonomy that groups rules-based policies into three classes. We then propose the first 
hybrid recourse policy, which simultaneously combines two of these classes, namely risk and 
distance. We propose an exact solution algorithm for the VRPSD with this hybrid recourse policy. 
We conduct a broad range of computational experiments. For certain experimental configurations, 
the exact algorithm solves to optimality up to 79% of the instances. Furthermore, the algorithm is 
able to solve instances with up to 60 customers. Compared to the classical recourse policy, on 
average, our hybrid policy results in a lower number of expected failures. Finally, we show that 
when the optimal routes of the hybrid policy are operated under the classical policy they produce 
higher expected recourse costs on average. However, operating the same routes under the optimal 
restocking policy yields an average marginal cost difference with respect to our hybrid policy. 
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1 Introduction.

The extensively-studied vehicle routing problem (VRP) aims to route a set of homogeneous
vehicles with limited capacity to serve the demand of a set of customers. The objective of
the VRP is to minimize the total distance driven by the vehicles such that each vehicle starts
and ends its route at a given depot, each customer must be visited once by a single vehicle,
and the total demand of a route does not exceed the vehicle capacity. In an attempt to cap-
ture more realistic features, a number of variants of the VRP have been proposed (see Toth
and Vigo (2014) for an extensive review). One particular drawback of the VRP lies in the as-
sumption that all problem parameters are deterministic. In reality, several parameters such
as customer demands or travel time are stochastic. Modelling the VRP while using deter-
ministic approximation of stochastic parameters, e.g., using the mean value as an approx-
imation, may result in arbitrarily bad-quality solutions (Louveaux (1998)). Therefore, an
ever growing class of problems, referred to as stochastic vehicle routing problem (SVRP),
has been receiving increasing attention (Gendreau et al. (2016)). Modelling stochasticity
in practice implies that a sufficient amount of data is gathered to describe the probability
distribution of uncertain parameters. The ever growing availability of data enables practi-
tioners to construct and validate such probability distributions, thus the study of SVRP is
rather timely. While different modelling paradigms exist for handling the SVRP, their guid-
ing principle is to capitalize upon the knowledge of the distribution functions that define
stochastic parameters in order to produce solutions that are more suitable for the stochastic
environment.

In this paper we study the vehicle routing with stochastic demands (VRPSD), in which
the demand of each customer follows a customer-specific probability distribution. More-
over, we assume that the precise demand value of a customer is only revealed when it is
first visited by a vehicle. The VRPSD can be observed in a number of realistic applications,
such as in home oil delivery (Chepuri and Homem-De-Mello (2005)), garbage collection
(Yang et al. (2000)) and the collection of money from banks (Lambert et al. (1993)).

Several modelling paradigms have been proposed for the VRPSD, see Gendreau et al.
(2014) for an extensive review. In this paper we use the a priori modelling paradigm, which
was originally put forward by Bertsimas et al. (1990). In the context of VRPSD, the a priori
paradigm decomposes the problem into two stages. The first-stage consists of determin-
ing a set of planned a priori vehicle routes, without the knowledge of the precise demand
values of the customers. These values are revealed in the second-stage when routes are per-
formed. Due to the stochastic nature of the demands, an a priori route may fail at a specific
customer if its revealed demand exceeds the residual vehicle capacity, i.e., the remaining
capacity of the vehicle upon arriving to the customer location. In such cases, a route failure
happens (Dror and Trudeau (1986)) and is handled by recourse actions stemming from a
recourse policy.

Two main recourse actions for the VRPSD are found in the literature. In the first, one
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can recover routing feasibility through the use of a reactive replenishment trip to the depot
after a failure is observed. Namely, in the case that the residual capacity is less than the
observed customer demand, the vehicle performs a back-and-forth (BF) trip to the depot,
where the vehicle is replenished and returns to the customer location where the failure
occurred, and if possible continues visiting customers in the order of the planned route. In
the case that the residual capacity is precisely equal to the observed customer demand, and
this customer is not the last customer on the planned route, the vehicle performs a restocking
trip (RT) to the depot and then proceeds to unvisited customers in the order of the planned
route, see Gendreau et al. (1995), Hjorring and Holt (1999). In the second type of recourse
action, one anticipates route failures and may execute a proactive replenishment trip to the
depot before an actual route failure occurs. In this case, the vehicle executes a preventive
restocking (PR) trip, i.e., returns to the depot with residual capacity and once replenished
continues visiting customers in the order of the planned route. PR helps in avoiding costly
failures as shown by Yee and Golden (1980) and Yang et al. (2000). Both these recourse
actions operate on each route independently, implying that a vehicle designated to serving
a route in the first-stage is exclusively serving the customers included in the route during
the second-stage. Thus, these recourse actions preserve person-oriented consistency, which
entails that customers are served by a specific driver whenever service is required (Kovacs
et al. (2014)).

The a priori formulation for the VRPSD works with a predetermined recourse policy,
which dictates when recourse actions are performed. There are three types of recourse
policies used in this context. The classical recourse, according to which a route failure or an
exact stock out trigger a BF or RT (when needed), respectively. This purely reactive policy
is the most studied version of the VRPSD (Gendreau et al. (2014)). Several exact algorithms
have been proposed for the VRPSD with the classical recourse. Gendreau et al. (1995), La-
porte et al. (2002), and Jabali et al. (2014) use the L-shaped algorithm while, Christiansen
and Lysgaard (2007) and Gauvin et al. (2014) use column generation approaches. Heuris-
tic algorithms were also proposed for this problem, e.g., Gendreau et al. (1996), Rei et al.
(2010), and Mendoza et al. (2015).

The second type of recourse policy is the optimal restocking policy, which employs PR
and BF actions. Given a planned route, this policy computes optimal customer-specific
thresholds based on which a vehicle performs PR trips. Specifically, when the residual ca-
pacity is less than the customer’s threshold but greater or equal to the customer’s demand,
a PR trip is performed. In the case that the customer’s demand exceeds vehicle residual ca-
pacity a BF trip is performed. The optimal restocking policy was first proposed by Yee and
Golden (1980). Several heuristic algorithms are proposed for this policy. A cyclic heuristic
(Bertsimas et al. (1995)), a local search heuristic (Yang et al. (2000)), and a metaheuristic
(Bianchi et al. (2004)).

The third recourse policy is the rule-based recourse policy, which was recently coined
by Salavati-Khoshghalb et al. (2017). Similar to the optimal restocking policy, PR and BF
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actions are performed. However, the former is governed by a family of restocking rules
based on volume related measures. Within this family, three rule-based restocking poli-
cies are introduced: residual vehicle capacity, expected demand of the next customer, and
expected demands of unvisited customers. These policies operate with preset rules that de-
termine the customer thresholds for performing PR trips. For example, the first rule-based
restocking policy requires a PR trip to be preformed whenever the residual capacity of the
vehicle falls below a certain percentage of its total capacity. An exact algorithm capable of
handling the three rule-based policies was developed.

It is worth noting that more intricate recourse policies such as route reoptimization (Sec-
omandi and Margot (2009)) have been proposed in the literature. From a cost perspective,
reoptimizing routing decisions as stochastic information is revealed is a better theoretical
alternative to the three previously discussed policies. However, solving the VRPSD with
reoptimization is challenging. The heuristic described in Secomandi and Margot (2009) has
been implemented for the single vehicle case only. Moreover, reoptimizing routing implies
that customers are not served by the same drivers consistently, the actual arrival time at a
customer location may be very variable. To this end, we argue that the a priori paradigm
fits practical contexts where one seeks to design a tactical set of fixed routes, which are
minimally altered on a daily basis. Such tactical routes are suitable when preserving con-
sistency in routing operations is desired (see Salavati-Khoshghalb et al. (2017) for further
motivation).

Transportation companies often use operational conventions when dealing with un-
certainty. Rule-based policies facilitate in reflecting such conventions in a routing envi-
ronment, which is not necessarily the case in the optimal restocking policy (see Salavati-
Khoshghalb et al. (2017) for a general motivation for rule-based policies). Furthermore,
rule-based policies allow companies to control the risk of encountering failures, and thus
better tailor recourse actions to customer service conventions.

We first propose a taxonomy that groups rule-based policies into three classes. We
then introduce a hybrid recourse policy, which combines rules from two of these classes. In
particular, this hybrid policy triggers replenishment decisions based on risk and distance
measures. For a given route, the risk measure computes the risk of failure at the next
customer. This is compared with predetermined thresholds corresponding to a minimum
restocking threshold and a maximum proceeding threshold. If the risk of failure is greater than
the former threshold, then the vehicle executes a PR trip, and if the risk of failure is less
than the latter threshold, then the vehicle proceeds with the planned route. In all other
cases, (i.e., where the risk of failure is between the maximum proceeding threshold and
the minimum restocking threshold) we employ a distance measure, which compares the
cost of a PR trip at the current customer with the average cost of future failures resulting
from BF trips. For simplicity, in what follows we refer to the hybrid risk-and-distance
policy as the hybrid policy. We develop an exact algorithm to solve the VRPSD with the
hybrid recourse policy. Furthermore, extensive numerical experiments are performed, in
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which we demonstrate the effectiveness of the solution algorithm and compare the hybrid
recourse policy with other recourse policies.

The remainder of this paper is organized as follows. In Section §2 we present the VRPSD
model, provide a taxonomy for rule-based recourse policies, and present our hybrid re-
course policy. We elaborate the exact solution algorithm in Section §3. Numerical experi-
ments are presented in Section §4. Finally, we present our conclusions and future research
directions in Section §5.

2 The vehicle routing problem with stochastic demands and
a hybrid recourse policy

In section §2.1, we present the two-stage stochastic programming formulation for the VRPSD,
initially proposed by Laporte et al. (2002). We then present a concise taxonomy for the rule-
based policies in Section §2.2. Based on this taxonomy we elaborate the proposed hybrid
recourse policy in Section §2.3.

2.1 The a priori model for the VRPSD

In this section we present the a priori model for the VRPSD using the original notation
defined by Laporte et al. (2002). Let G = (V , E) be a complete undirected graph, where
V = {v1, v2, . . . , vn} is the set of vertices and E = {(vi, vj)|vi, vj ∈ V , i < j} is the edge
set. The cost of travelling along edge (vi, vj) is denoted by cij. The depot is denoted by
v1 and the set of customers is V \ {v1}. There are m vehicles at the depot, each of which
has a capacity of Q. The demand of a customer vi is ξi and is assumed to follow a discrete
probability distribution with a finite support defined as {ξ1

i , ξ2
i , . . . , ξsi

i }, where values are
indicated by increasing order, ξ1

i > 0 and ξsi

i < Q. Let pl
i denote the probability that the

realized demand at customer vi is ξ l
i .

The decision variable xij (i < j) is an integer equal to the number of times edge (vi, vj)
appears in the first-stage solution, i.e., xij must be interpreted as xji for i > j. The variable
x1j may take the values {0, 1, 2}, where x1j = 2 expresses a route visiting a single customer.
The variable xij is binary when i, j > 1. As in Laporte et al. (2002) and Jabali et al. (2014), we
assume that the expected demand of an a priori route does not exceed the vehicle capacity.
This assumption forbids the generation of routes that are likely to systematically fail. Fur-
thermore, let Q(x) denote the expected second stage cost of solution x. The a priori model
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for the VRPSD can be formulated as follows:

minimize
x ∑

i<j
cijxij +Q(x) (1)

subject to
n

∑
j=2

x1j = 2m, (2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (3)

∑
vi,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2) (4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (6)

x = (xij), integer (7)

The objective function (1) consists of minimizing the first-stage cost and the second-
stage cost. The former is the cost of the a priori routes, while the latter is their associated
recourse cost. Constraints (2) and (3) establish the degree of the vertices. Constraints (4)
eliminate subtours, and ensure that the total expected demand of each route is less or equal
to Q. Finally, constraints (5), (6) and (7) define the domains of the decision variables.

Given that the considered recourse actions are performed independently by the vehicle
performing the a priori route, Q(x) is separable with respect to the routes. The expected
recourse cost of a route varies according to its orientation. Therefore, for each route in the a
priori solution a specific orientation must be determined. LetQr,δ be the expected recourse
cost of the rth vehicle-route when performed in orientation δ (δ = 1, 2). Thus,

Q(x) =
m

∑
r=1

min{Qr,1,Qr,2}. (8)

The computation of Qr,δ is elaborated in section §2.3.

2.2 A taxonomy for rule based policies

The use of rule-based policies in VRPSD implies that recourse actions are taken based on
a set of preset rules. These rules establish customer specific thresholds that govern when
a PR trip is executed. We now describe how such policies can be derived on the basis of
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a set of fixed operational rules that are prescribed by the company tasked with solving
the VRPSD. To do so, we present a concise taxonomy for the considered policies and then
clearly define the hybrid policy considered in the present paper.

We propose a taxonomy that groups the possible policies in three general classes: (i)
volume-based policies, (ii) risk-based policies and (iii) distance-based policies. Volume-based poli-
cies define the thresholds as a function of the demands of the customers or the capacity of
the vehicles performing the routes. For a given route, such policies can implement straight-
forward operational rules that set the thresholds as a percentage of either the capacity of the
vehicle, or, estimates obtained for the demands of the customers scheduled on the route.
Alternatively, risk-based policies derive the thresholds on the basis of the probability of
failure at the next or at the following customers along the considered route. In this case, a
company can use the available knowledge regarding the distributions of the demands of its
customers to evaluate the risk of observing failures when performing a route. Risk-based
policies can then apply operational rules that express varying levels of risk aversion with
regards to route failures. Such rules would call for a PR trip to be performed whenever
the probability of failure exceeds a predetermined level. Distance-based policies consider
the distance between the customers and the depot to obtain the thresholds. The general
principle being applied here is that it is preferable to carry out a PR trip from a customer
located close to the depot than to risk a failure at a more distant one. Finally, hybrid policies
can also be defined by combining the previous ones.

In this paper, we employ a hybrid risk-and-distance-based policy to govern recourse
actions. Therefore, we propose the first hybrid recourse policy that combines two classes
of policies. Our policy uses post-realization information, i.e., the residual capacity after
serving a customer, to determine recourse actions which, in return are used to compute the
expected recourse cost. In what follows, we present our hybrid rule-based recourse policy
and the exact computation of its expected recourse cost.

2.3 A Hybrid Recourse Policy for the VRPSD

Given a route one can measure the risk of route failure at the next customer. In this context,
we identify three categories of action. If the risk is too high, the vehicle executes a PR trip,
and respectively if the failure risk is too low, then the vehicle proceeds to the unvisited
customers. For intermediate cases, we combine the defined risk measure with a distance-
based measure, according to which a PR trip is performed if deemed beneficial.

We now formulate the risk and distance based measures. We recall that the recourse
cost Q(x) is computed independently for each given route. Given an a priori route r =
(v1 = vr1 , vr2 , . . . , vrl−1 , vrl = v1), let the vehicle residual capacity upon arrival at the jth

customer be q and let ξrj be the observed demand. The post realization residual capacity is
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q̃ = q− ξrj , given that ξrj follows a discrete probability distribution, two cases may occur
q̃ = q− ξrj ≤ 0, or q̃ ≥ 1. If vrj+1 6= v1 and q̃ = 0, a RT trip is performed, where the vehicle
replenishes at the depot and goes to vrj+1 . When q̃ < 0 the vehicle performs a BF trip to the
jth. In this situation, the service of the customer is split, and the overhead of the unloading
process is duplicated causing delays and disruptions at the customer location. Therefore,
similar to Yang et al. (2000), we attribute a penalty cost b to a BF trip. For the case where
q̃ ≥ 1, a decision pertaining to whether a PR trip should be performed, or not, is taken.
To take this decision, we defined a risk measure, which is the probability of failure at the
subsequent customer and is computed as follows,

P[ξrj+1 > q̃] = ∑
l:ξ l

rj+1
>q̃

pl
rj+1

(9)

where, the right-hand-side of equation (9) computes the total probability of failure events
at the next customer vrj+1 .

Recourse actions are taken based on a comparison of the resulting risk measure in equa-
tion (9) with thresholds θ and θ̄. Where θ is the maximum proceeding threshold, and θ̄ is
the minimum restocking threshold. If P[ξrj+1 > q̃] ≤ θ we with proceed with the planned
route, and if vrj+1 6= v1 and P[ξrj+1 > q̃] ≥ θ̄ we perform a PR trip. The former case
corresponds to having high residual capacity, thus yielding low probability of failure at
the next customer, whereas the latter corresponds to the situation of low residual capacity
thus yielding high probability of failure at the next customer. If θ < P[ξrj+1 > q̃] < θ̄ the
risk of failure is neither too low nor too high. In this case, we employ a distance-based
measure in order to determine whether to perform a PR trip. The distance-based measure
is based on the expected failure cost at all subsequent customers in the route. Let urj be the
set of subsequent customers to the jth customer in route r, i.e., urj = {vrj+1, . . . , vrl−1}. The
distance-based measure is defined as p∗rj

(q̃)(2c̄rj + b), and is computed as follows,

c̄rj =

∑
k∈urj

c1k

|urj |

and
p∗rj

(q̃) = P[ ∑
k∈urj

ξk > q̃].

The value 2c̄rj + b is the average failure cost incurred by unvisited customers in urj , and
p∗rj

(q̃) is the probability of failure, while serving customers in urj with q̃ units of the residual
capacity.

Given the residual capacity q̃ at the jth customer in route r, we introduce the Boolean
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variable DPrj(q̃) as follows,

DPrj(q̃) :=

{
True if c1rj + c1rj+1 < crjrj+1 + (2c̄rj + b)p∗rj

(q̃)

False otherwise
(10)

In the case that DPrj(q̃) is True a PR trip is performed, otherwise the vehicle proceeds to
the subsequent customer. Let QR

rj
denote the set of residual capacities at the jth customer in

route r for which a PR trip is performed. Furthermore, let QP
rj

denote the set of residual ca-

pacities at the jth customer in route r for which the vehicle proceeds with the planned route.
We now define the hybrid policy, which establishes the decision of whether to perform a
PR trip or proceed to with the planned route. The hybrid policy is defined as follows,

QR
rj
=
{

q̃ ∈ {0, 1, . . . , Q}|P[ξrj+1 > q̃] ≥ θ̄
}⋃

(11){
q̃ ∈ {0, 1, . . . , Q}|θ < P[ξrj+1 > q̃] < θ̄ ∧DPrj(q̃)

}
and

QP
rj
=
{

q̃ ∈ {1, . . . , Q}|P[ξrj+1 > q̃] ≤ θ
}⋃

(12){
q̃ ∈ {1, . . . , Q}|θ < P[ξrj+1 > q̃] < θ̄ ∧DPrj(q̃)

}
.

Where DPrj(q̃) is defined as the complement of DPrj(q̃). Therefore, QR
rj

and QP
rj

are two
mutually exclusive subsets.

The expected recourse cost upon arrival at the jth customer in route r with q units of
residual capacity is Frj(q). Fpost

rj (q̃) is the recourse cost after the demand realization at rj.
Therefore,

Frj(q) = Eξrj

[
Fpost

rj (q̃)
]
∀q̃ = q− ξrj , (13)

where ξrj ∈ {ξ1
rj

, ξ2
rj

, . . . , ξ l
rj

, . . . , ξsrj
rj
}. Following the definition of our hybrid recourse pol-

icy, Fpost
rj (q̃) can be expressed as follows.

Fpost
rj (q̃) =


b + 2c1rj + Frj+1(Q + q̃) if q̃ < 0 (14a)

c1rj + c1rj+1 − crjrj+1 + Frj+1(Q) if q̃ ∈ QR
rj

(14b)

Frj+1(q̃) if q̃ ∈ QP
rj

(14c)
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Using the equations (13), (14a), (14b), and (14c), the expected recourse cost in the first
direction (i.e., δ = 1) is as follows,

Qr,1 = Fr1(Q). (15)

Where Fr1(Q) is the expected recourse cost of route r, in which the vehicle starts from
depot with a full capacity Q, and is computed recursively. Finally, to evaluate the expected
recourse cost of the route for the second orientation (i.e.,Qr,2), one simply needs to reverse
the order of the vertices of the route and reapply the logic of equation (15).

3 The Integer L-shaped Algorithm

We use the integer L-shaped algorithm for solving the vehicle routing problem with stochas-
tic demands under the hybrid recourse policy, which was described in the previous section.
The integer L-shaped algorithm was first proposed by Laporte and Louveaux (1993) to
solve stochastic programs with binary first-stage variables. This algorithm is an extension
of the L-shaped algorithm proposed by Van Slyke and Wets (1969) for continues stochastic
programs, which itself was based on the application of Benders decomposition to stochastic
programming, see Benders (1962). In Section §3.1 we briefly present the integer L-shaped
algorithm. Similar to Jabali et al. (2014), we use a series of lower bounding functionals
(LBFs) based on general partial routes. In section §3.2 we present the concept of general
partial routes and we present the structure of the LBFs. We note that section §3.2 is largely
based on Jabali et al. (2014), and is presented in this paper for the sake of completeness. In
section §3.3 we develop bounds specific to our hybrid recourse policy, which are used in
the LBFs.

3.1 A Brief Description of Integer L-shaped Algorithm

The integer L-shaped algorithm for the VRPSD uses a branch-and-cut scheme, according to
which constraints (4) and (7) are relaxed, the recourse function Q(x) is replaced by variable
Θ, and a general lower bounding constraint (16) is applied. Let L denote a general lower-
bound value for Q(x), and x is a feasible solution. Then, the initial current problem at
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iteration ν = 0 is as follows,

CP0 : min
x,Θ

∑
i<j

cijxij + Θ (1)

subject to
n

∑
j=2

x1j = 2m, (2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (3)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (6)

L ≤ Θ. (16)

The algorithm proceeds by adding three types of constraints until optimality is guaranteed:
(i) violated constraints (4) are gradually added when detected; (ii) valid inequalities

L + (Θp − L)W(x) ≤ Θ, ∀p = {α, β}, x is a partial solution (17)

which are elaborated in Section §3.3, are added when encountered; and (iii) optimality cuts

∑
1≤i≤j
xν

ij=1

xij ≤ ∑
1≤i≤j

xν
ij − 1, (18)

are added when a feasible integer solution is found to eliminate it from further considera-
tion. We note that the integrality constraints are guaranteed via the branching process. We
provide a detailed description of the algorithm in the Appendix (5).

The integer L-shaped algorithm was first used by Gendreau et al. (1995) to solve the
VRP with stochastic demands and customers. Generating all optimality cuts may result in
an enumerative process, because each optimality cut solely excludes an integer solution.
To counter this effect researchers, have proposed LBF cuts that operate on a large portion of
the solution space. Hjorring and Holt (1999) proposed LBFs based on partial routes for the
single-vehicle routing problem with stochastic demand. LBFs for the multi-VRPSD were
proposed by Laporte et al. (2002). Jabali et al. (2014) generalized the structure of partial
routes to generate several families of LBFs. It is worth noting that since Laporte et al.
(2002) and Jabali et al. (2014) used LBFs for the VRPSD with classical recourse, the bound
Θp was computed in all cases as defined in Hjorring and Holt (1999). In this paper, we
use the LBFs of Jabali et al. (2014) for the VRPSD and develop a specific bound Θp that is
applicable for the proposed hybrid policy.
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3.2 General Partial Routes

LBFs (17) are generated based on partial routes stemming from fractional solutions. In
what follows, we define the LBFs using the notation proposed by Jabali et al. (2014). An
illustration of a general partial route can be found in Figure (1), where the depot is du-
plicated for presentation convenience. We define Ḡν as the induced graph by the nonzero
variables in the solution of the current problem. We detect partial routes using the exact
separation procedure proposed by Jabali et al. (2014). A general partial route is an alternat-
ing sequence of the following two components:

1. Chains whose vertex set is called chain vertex sets (CVSs). The vertices of a chain are
connected to each other by edges (vi, vj), for which xij = 1 in Ḡν.

2. Unstructured components whose vertex set are called unstructured vertex sets (UVSs).

Chain
Unstructured
Component Chain

Unstructured
Component Chain

Figure 1: A general partial route h composed of sequenced and unsequenced sets.

Each UVS is preceded by a chain and proceeded by another. Each chain is connected to
at least one UVS via an articulation vertex. In a partial route h, we define ρ as the number of
chains and ρ− 1 as the number of UVSs. Let St

h = {vt
h1

, . . . , vt
hl
} be the tth chain in partial

route h. Therefore, ∑(vi,vj)∈St
h

xij = |St
h| − 1, ∀t = 1, . . . , ρ. Let Ut

h be the tth UVS in partial

route h, then ∑vi,vj∈Ut
h

xij = |Ut
h| − 1, ∀t = 1, . . . , ρ − 1. Ensuring the connectivity of a

UVS to the preceding and subsequent chain implies that ∑vj∈Ut
h

xht
l j = 1, ∀t ≤ ρ− 1 and

∑vj∈Ut−1
h

xht
1 j = 1, ∀t ≥ 2, respectively.

We use two types of partial routes, these are shown Figure (2). These types are emerging
from the original partial route shown in Figure (1), they are denoted by α and β and they
are depicted in Figures (2a) and (2b), respectively. An α-route corresponds to the initial
partial route proposed by Hjorring and Holt (1999). The β-route was proposed by Jabali
et al. (2014). This type of partial route maintains the exact alternation of CVSs and UVSs.
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(a) α-routes

(b) β-routes

Figure 2: Generalized partial routes redefined by different views from Figure (1).

The functional Wh(x) in LBFs (17) was introduced by Jabali et al. (2014) for generalized
partial routes shown in Figure (2), and is defined as follows,

Wh(x) =
b

∑
t=1

∑
(vi,vj)∈St

h
vi 6=v1

3xij + ∑
(v1,vj)∈S1

h

x1j + ∑
(v1,vj)∈Sb

h

x1j +
b−1

∑
t=1

∑
vi,vj∈Ut

h

3xij (19)

+
b−1

∑
t=1

∑
vj∈Ut

h
vt

hl
6=v1

3xht
l j +

b

∑
t=2

∑
vj∈Ut−1

h
vt

h1
6=v1

3xht
1 j + ∑

vj∈U1
h

v1
hl
=v1

xh1
l j + ∑

vj∈Ub−1
h

vb
h1
=v1

vb−1
h1
6=v1

xhb
1 j

− (3|Rh| − 5)

The proof of validity of equation (17) can be found in Jabali et al. (2014). In the coming
section we develop the bound Θp for the VRPSD with the hybrid policy.

3.3 Bounding the Recourse Cost

We now describe the computation of Θh
p, which is the lower bound associated with partial

route h of type p ∈ {α, β}. In what follows, we derive the bound for Θh
α. This derivation

can then be generalized to the computation of Θh
β, since this follows a topology containing

successive α-route structures.

Let h be a partial route that follows the α topology. Then, one can define h in the follow-
ing way

h = (v1 = v1
h1

, . . . , v1
h|S1

h |
, U1

h , v2
h1

, . . . , v2
h|S2

h |
= v1),
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where U1
h = {vu1 , vu2 , . . . , vul} and v1

h|S1
h |

and v2
h1

are the articulation vertices that connect

chains S1
h and S2

h to U1
h . For the sake of simplicity, we redefine the partial route h as

h = (v1 = vr1 , . . . , vrj−l , {vu1 , vu2 , . . . , vul}, vrj+1 , . . . , vrt+1 = v1),

where the articulation vertices are relabeled as vrj−l and vrj+1 . Based on partial route h, we
define an artificial route h̃ as follows,

h̃ = (v1 = vr1 , . . . , vrj−l , rj−l+1 , rj−l+2 , . . . , rj , vrj+1 , . . . , vrt+1 = v1), (20)

where rj is the jth position in the artificial route h̃. Positions rj−l+1 , . . . , rj could contain
any possible permutation of customers in U1

h . We develop a bounding procedure for the
artificial route h̃ which bounds for all possible assignment of customers in U1

h .

We recall that the expected recourse cost upon arrival at the kth customer in r with q
units of residual capacity is computed as follows,

Frk(q) = Eξrk

[
Fpost

rk (q− ξrj)
]
= Eξrk

[
Fpost

rk (q̃)
]
, ∀q̃ = q− ξrk . (13)

For the sake of simplicity, we use the notation Frk(.) as defined in (14) whenever it can
be exactly applied (namely in the chain the positions of h̃). Therefore, Frt+1(q),. . . ,Frj+1(q)
for all q can be exactly computed by recourse function (14). Considering positions k =

j− l + 1 and k = j, we denote by F̃rk(q) as the lower bound on the expected recourse cost
at the kth position in artificial route h with q units of residual capacity. In Lemma 3.1 we
bound the onward recourse cost from the jth customer, which can potentially be any of
the unsequenced customers in U1

h . In Lemma 3.2 we then bound the onward recourse cost
from the j− l + 1th customer. We recall that

Frj(q) = Eξrj

[
Fpost

rj (q− ξrj)
]
= Eξrj

[
Fpost

rj (q̃)
]
, ∀q̃ = q− ξrj . (13)

Lemma 3.1. A lower bound on the expected recourse cost at the jth customer for each q follows:

F̃rj(q) = min
vue∈U1

h

Frj(q)|rj :=ue
, (21)

where Frj(q)|rj :=ue
can be computed by accounting for vue as the jth customer in the recourse func-

tion (13).

Proof. Since the jth customer is unsequenced, it can potentially be any vue ∈ U1
h . We bound

the onward expected recourse cost at the jth customer by minimizing the recourse cost over
the unsequenced set for each q. Then, F̃rj(.) ≤ Frj(.)|rj :=ue

by definition.
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Lemma 3.2. The lower bound on F̃rj−l+1(.) for each q can be directly obtained as follows

F̃rj−l+1(q) = min
U⊂U1

h :|U|=|U1
h |−1

∏
vue∈U

plmin

ue . F̃rj(q), (22)

where, plmin

i = min{p1
i , . . . , pξsi

i
i }.

Proof. By definition, min
U⊂U1

h :|U|=|U1
h |−1

∏
vue∈U

plmin

ue is a lower bound on the probability of the

stochastic events that occur at the j− 1th customer. Since F̃rj(q) is lower bound on the
expected recourse cost at the jth customer (as shown in Lemma 3.1), Equation (22) is a
lower bound on the excepted recourse cost of the j− l + 1th.

Using the bounds specified in Lemma 3.1 and Lemma 3.2, the recourse function (14)
can be slightly modified to compute Fpost

rj−l (q̃) can be expressed as follows.

Fpost
rj−l (q̃) =


b + 2c1rj−l + F̃rj−l+1(Q + q̃) if q̃ < 0

c̃rj−l + F̃rj−l+1(Q) if q̃ ∈ QR
rj

F̃rj−l+1(q̃) if q̃ ∈ QP
rj

,

where, c̃rj−l = minimum
vue∈U1

h

{c1,rj−l + c1,ue − crj−l ,ue}. The above computation enables the

computation of Frj−l(.) by equation (13). The excepted recourse cost of the remaining posi-
tions can therefore be successively computed as Frj−l−2(.), . . . , Fr1(.) using recourse function
(14). Ultimately Fr1(Q) bounds the expected recourse cost of artificial route h. This bound
is computed for both orientations of the partial route and the minimum value is assumed
to be the lower bound Θh

α. We recall that the mechanism for computing Θh
α is reapplied to

compute Θh
β, where the latter is treated as a succession of α-route structures. In the LBF

cuts (17) the bound Θp is decomposed by partial routes (or routes) as Θp =
m

∑
r=1

Θr
p, where

p = {α, β}.

4 Numerical Experiments

The first aim of this section is to demonstrate the effectiveness of the solution algorithm
on a large set of experiments. The second aim is to verify the added value of using the
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proposed hybrid policy when compared to other polices. In what follows, we detail the
instance generation, the performance of the algorithm is verified in Section 4.1, while a
comparison with the other policies is performed in Section 4.2.

We use the instances of Salavati-Khoshghalb et al. (2017), for completeness we briefly
describe the instance generation procedure. For each instance, a set of V = {v1, . . . , vn}
(where v1 is the depot) is generated in a [0, 100]2 square following a continuous uniform
distribution. The travel costs are then set to the nearest integer associated to the Euclidean
distance between two vertices. Each customer is randomly (with equal probability) se-
lected to have low, medium, or high demand. These three classifications correspond to
ranges [1, 5], [6, 10], and [11, 15], respectively. For the selected range, the demand realiza-
tions are randomly generated for each customer with probabilities {0.1, 0.2, 0.4, 0.2, 0.1},
corresponding to the five values in the range. We consider 11 pairs of (n, m) as indicated in
Table 1, we recall that m denotes the number of vehicles. Four fill rate coefficients are con-
sidered for each of the 11 combinations, where the fill rate is computed as f̄ = ∑n

i=2 E(ξi)
mQ .

The capacity of each vehicle Q is inferred from f̄ . The cost b is set to ∑
i=2,...,n

ci1/(n − 1),

which is the average distance to the depot when considering all customers. Furthermore, L
is set to zero. For each combination in Table 1, ten instances were generated, thus yielding
a total of 440 instances.

Table 1: Combinations of parameters to generate instances.

n m f̄

20 2 0.90, 0.92, 0.94, 0.96
30 2 0.90, 0.92, 0.94, 0.96
40 2, 3, 4 0.90, 0.92, 0.94, 0.96
50 2, 3, 4 0.90, 0.92, 0.94, 0.96
60 2, 3, 4 0.90, 0.92, 0.94, 0.96

We chose five pairs of values for the maximum proceeding threshold θ and the min-
imum restocking threshold θ̄. Each pair {θ, θ̄} is chosen as {0.5 − λ, 0.5 + λ}, where λ
takes one of the following values {0.05, 0.15, 0.25, 0.35, 0.45}. Thus, the following five pairs
are used {θ, θ̄}: {0.45, 0.55}, {0.35, 0.65}, {0.25, 0.75}, {0.15, 0.85}, and {0.05, 0.95}. Each
instance is solved considering each of the five pairs, thus yielding a total of 2200 experi-
ments.

The algorithm is coded in C++ using ILOG CPLEX 12.6. All experiments were per-
formed, using a single thread, on a cluster of 27 computers, each of which having 12 cores,
two Intel(R) Xeon(R) X5675 3.07 GHz processors and 96 GB of RAM. The branching was
managed by the OOBB package of Gendron et al. (2005). The separation problem of con-
straints (4) is solved using the CVRPSEP package of Lysgaard et al. (2004). The maximum
CPU time limit is set to 10 hours and the optimality gap was set to 0.01%.
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4.1 Results for the hybrid recourse policy

The performance of the exact algorithm for the hybrid policy is presented in Tables 2-6 with
the five pairs of values {θ, θ̄}, each corresponding to a table. Column “solved” expresses
the number of optimally solved instances (out of ten), column “Run (sec)” reports the av-
erage run time of those solved instances and column “Gap” reports the average gap on all
instances.

The total number of optimally solved instances for each of the five pairs of {θ, θ̄} are 281,
283, 282, 279 and 279, out of 440. Overall our algorithm solved between 60.2% and 64.3% of
the instances to optimality. These results are rather competitive for the SVRP literature, see
Gendreau et al. (2014) for further details. The weighted average time (in seconds) to solve
an instance to optimality for the four f̄ values are: 1332.29, 1274.63, 1549.79, and 1205.95.
The total average gaps over the four f̄ values are computed for each pair of {θ,θ̄} are 0.50%,
0.50%, 0.53%, 0.55% and 0.55%.

Considering a fill rate of 0.90 and the five pairs of {θ, θ̄}, Tables 2-6 show that our algo-
rithm was able to solve between 84 and 87 instances (from the total of 110). Instances with
up to 60 nodes are solved to optimality. Considering a fill rate of 0.96 and the five pairs of
{θ, θ̄}, our algorithm was able to solve between 37 and 42 instances. However, the overall
obtained gaps are relatively small, with the largest average gap being %1.38, as reported in
Table 6 .

The results in Tables 2-6 also indicate that the problems become harder to solve with the
increase in fill rate, number of vehicle and number of nodes. These results are consistent
with the findings of both Laporte et al. (2002) and Jabali et al. (2014). Finally, the number of
solved instances to optimality varies only slightly over the pairs of {θ, θ̄}. Thus, indicating
that the proposed algorithm remains robust even when the values defining the policy vary.

Table 2: Hybrid policy with {θ, θ̄} = {0.45, 0.55}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 0.80 0.00% 0.92 10 1.40 0.00% 0.94 10 0.50 0.00% 0.96 10 52.10 0.00%
30 2 0.90 10 0.10 0.00% 0.92 10 19.90 0.00% 0.94 10 60.60 0.00% 0.96 8 3065.00 0.12%
40 2 0.90 10 1.20 0.00% 0.92 10 2.60 0.00% 0.94 10 5.60 0.00% 0.96 6 90.17 0.13%
40 3 0.90 10 2023.80 0.01% 0.92 8 216.38 0.20% 0.94 8 2416.38 0.06% 0.96 5 14046.40 1.10%
40 4 0.90 5 1434.20 0.70% 0.92 2 15054.50 2.08% 0.94 1 2600.00 1.63% 0.96 4.28%
50 2 0.90 10 3.40 0.00% 0.92 10 78.20 0.00% 0.94 10 11.00 0.01% 0.96 4 222.25 0.11%
50 3 0.90 9 2998.56 0.22% 0.92 7 5886.29 0.56% 0.94 10 1501.30 0.01% 0.96 1 5.00 2.10%
50 4 0.90 2 1.00 0.63% 0.92 2 16666.50 1.02% 0.94 2 3369.50 1.80% 0.96 3.00%
60 2 0.90 10 488.40 0.00% 0.92 10 8.80 0.00% 0.94 9 701.78 0.02% 0.96 7 427.14 0.02%
60 3 0.90 7 707.71 0.35% 0.92 7 700.29 0.57% 0.94 5 3051.60 0.63% 0.96 1 19738.00 0.57%
60 4 0.90 2 345.00 1.30% 0.92 1 6554.00 1.36% 0.94 2 2491.00 1.30% 0.96 3.99%

Average 764.48 0.21% 1544.70 0.39% 922.29 0.36% 2843.71 1.03%

Total 85 77 77 42
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Table 3: Hybrid hybrid policy with {θ, θ̄} = {0.35, 0.65}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 0.70 0.00% 0.92 10 1.20 0.00% 0.94 10 0.50 0.00% 0.96 10 47.50 0.00%
30 2 0.90 10 0.10 0.00% 0.92 10 16.10 0.00% 0.94 10 48.40 0.00% 0.96 8 2994.00 0.11%
40 2 0.90 10 1.20 0.00% 0.92 10 2.20 0.00% 0.94 10 4.70 0.00% 0.96 6 81.00 0.12%
40 3 0.90 10 1918.50 0.01% 0.92 8 172.88 0.19% 0.94 8 2015.62 0.06% 0.96 5 10656.40 1.07%
40 4 0.90 5 1594.80 0.68% 0.92 2 10777.50 1.97% 0.94 1 1714.00 1.58% 0.96 4.20%
50 2 0.90 10 3.10 0.00% 0.92 10 65.70 0.00% 0.94 10 10.20 0.01% 0.96 4 195.75 0.09%
50 3 0.90 9 1785.67 0.21% 0.92 7 4983.00 0.53% 0.94 10 1253.00 0.01% 0.96 1 5.00 2.02%
50 4 0.90 3 8875.33 0.59% 0.92 2 14213.00 1.01% 0.94 2 3069.50 1.76% 0.96 2.99%
60 2 0.90 10 355.40 0.00% 0.92 10 8.20 0.00% 0.94 9 701.67 0.01% 0.96 7 363.29 0.01%
60 3 0.90 8 4653.50 0.27% 0.92 7 589.86 0.48% 0.94 5 2505.40 1.19% 0.96 1 11834.00 0.54%
60 4 0.90 2 321.00 1.20% 0.92 1 4914.00 1.30% 0.94 2 1909.50 1.29% 0.96 4.03%

Average 1279.67 0.20% 1249.64 0.37% 776.71 0.39% 2222.86 1.01%

Total 87 77 77 42

Table 4: Hybrid hybrid policy with {θ, θ̄} = {0.25, 0.75}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 0.90 0.00% 0.92 10 2.40 0.00% 0.94 10 0.60 0.00% 0.96 10 83.30 0.01%
30 2 0.90 10 0.10 0.00% 0.92 10 16.40 0.00% 0.94 10 106.10 0.00% 0.96 8 3101.12 0.14%
40 2 0.90 10 1.00 0.00% 0.92 10 2.50 0.00% 0.94 10 5.20 0.00% 0.96 6 69.33 0.11%
40 3 0.90 10 2429.60 0.01% 0.92 8 219.88 0.21% 0.94 8 2437.38 0.06% 0.96 5 11274.80 1.14%
40 4 0.90 5 1965.80 0.86% 0.92 1 28952.00 2.29% 0.94 1 10841.00 1.77% 0.96 4.63%
50 2 0.90 10 2.90 0.00% 0.92 10 124.20 0.00% 0.94 10 11.40 0.01% 0.96 5 6864.60 0.06%
50 3 0.90 9 2404.11 0.18% 0.92 7 4533.00 0.47% 0.94 10 1114.60 0.01% 0.96 1 3.00 2.04%
50 4 0.90 3 11876.67 0.68% 0.92 1 405.00 1.10% 0.94 2 6434.50 1.90% 0.96 3.28%
60 2 0.90 10 363.30 0.00% 0.92 10 7.40 0.00% 0.94 9 703.11 0.01% 0.96 7 305.71 0.02%
60 3 0.90 8 4368.12 0.27% 0.92 7 625.29 0.50% 0.94 5 7206.20 1.20% 0.96 1 13311.00 0.51%
60 4 0.90 2 293.00 1.46% 0.92 1 4882.00 1.41% 0.94 2 1322.00 1.35% 0.96 4.27%

Average 1501.21 0.23% 981.80 0.40% 1306.38 0.42% 3074.63 1.08%

Total 87 75 77 43

Table 5: Hybrid policy with {θ, θ̄} = {0.15, 0.85}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 1.00 0.00% 0.92 10 2.40 0.00% 0.94 10 0.60 0.00% 0.96 10 77.40 0.01%
30 2 0.90 10 0.10 0.00% 0.92 10 15.80 0.00% 0.94 10 96.40 0.00% 0.96 8 2707.62 0.14%
40 2 0.90 10 1.10 0.00% 0.92 10 2.60 0.00% 0.94 10 5.20 0.00% 0.96 6 67.83 0.11%
40 3 0.90 10 2176.10 0.01% 0.92 8 208.75 0.22% 0.94 8 2210.50 0.06% 0.96 5 11499.40 1.14%
40 4 0.90 5 1898.60 0.87% 0.92 1 25147.00 2.31% 0.94 1 11220.00 1.79% 0.96 4.66%
50 2 0.90 10 3.20 0.00% 0.92 10 103.60 0.00% 0.94 10 11.30 0.01% 0.96 4 227.00 0.09%
50 3 0.90 9 2711.22 0.22% 0.92 7 4878.43 0.47% 0.94 10 1194.90 0.01% 0.96 1 4.00 2.09%
50 4 0.90 3 10126.33 0.61% 0.92 1 388.00 1.12% 0.94 2 7366.50 1.92% 0.96 3.29%
60 2 0.90 10 364.50 0.00% 0.92 10 7.80 0.00% 0.94 9 592.78 0.02% 0.96 7 270.43 0.02%
60 3 0.90 7 448.14 0.29% 0.92 7 589.00 0.58% 0.94 4 2182.00 1.21% 0.96 1 14918.00 0.53%
60 4 0.90 2 297.50 1.53% 0.92 1 5012.00 1.71% 0.94 2 1168.50 1.38% 0.96 4.46%

Average 1086.80 0.24% 957.48 0.43% 962.12 0.43% 2334.81 1.10%

Total 86 75 76 42

Table 6: Hybrid policy with {θ, θ̄} = {0.05, 0.95}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 1.70 0.00% 0.92 10 10.00 0.00% 0.94 10 2.70 0.00% 0.96 10 895.00 0.01%
30 2 0.90 10 0.30 0.00% 0.92 10 16.50 0.00% 0.94 10 3397.10 0.00% 0.96 7 2708.00 0.26%
40 2 0.90 10 1.90 0.00% 0.92 10 3.20 0.00% 0.94 10 7.20 0.00% 0.96 6 126.67 0.18%
40 3 0.90 9 2530.44 0.05% 0.92 8 920.62 0.32% 0.94 6 7261.67 0.17% 0.96 2 14351.50 1.73%
40 4 0.90 5 11628.40 1.22% 0.92 1 16149.00 3.36% 0.94 2.84% 0.96 5.85%
50 2 0.90 10 2.90 0.00% 0.92 10 559.50 0.00% 0.94 10 16.00 0.00% 0.96 4 2173.25 0.17%
50 3 0.90 9 2998.11 0.22% 0.92 6 4342.33 0.53% 0.94 9 2128.78 0.04% 0.96 1 6.00 2.42%
50 4 0.90 2 2.00 1.03% 0.92 1 4991.00 1.54% 0.94 2.50% 0.96 4.18%
60 2 0.90 10 422.80 0.00% 0.92 10 8.40 0.00% 0.94 9 571.89 0.02% 0.96 7 380.71 0.06%
60 3 0.90 7 1149.00 0.32% 0.92 7 1277.00 0.56% 0.94 4 5015.25 1.40% 0.96 0.72%
60 4 0.90 2 778.50 1.54% 0.92 1 12358.00 2.17% 0.94 2 16931.50 1.65% 0.96 5.16%

Average 1449.99 0.29% 1105.84 0.57% 2229.00 0.58% 1857.65 1.38%

Total 84 74 70 37
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4.2 Recourse cost analysis

The objective of this section is to analyze the hybrid risk-and-distance-based policy with
respect to other policies. To do so, we focus the analyses on the instances solved to op-
timality. We initially compare our policy with the classical one by evaluating the routes
associated with the solutions obtained using the hybrid policy under the classical policy.

We first compare the expected number of recourse actions taken in the classical recourse
policy when compared with its counterpart (i.e., the hybrid policy). We recall that the re-
course actions in the classical recourse policy are back-and-forth trips and restocking trips.
Based on the results obtained when applying the classical policy, we computed the ex-
pected number of back-and-forth trips EBFc and the expected number of restocking trips
ERc. Thus, the total expected number of recourse actions when applying the classical re-
course policy to the considered routes is expressed as EBFc + ERc. As for the hybrid policy,
the recourse actions are back-and-forth trips and preventive restocking trips. As previ-
ously mentioned, in this policy, an exact stock out triggering a restocking trip is considered
as a preventive restocking trip. Therefore, for the hybrid policy, we computed the expected
number of back-and-forth trips EBFh and the expected number of preventive restocking
trips EPRh. Thus, the total expected number of recourse actions in the hybrid recourse
policy is expressed as EBFh + EPRh.

In Table 7, we report the average ratio between expected number of recourse actions
between the hybrid policy and the classical policy. We observe that the expected number
of recourse actions is higher for the hybrid policy, when compared to the classical policy.
This tendency increases with {θ, θ̄} and is relatively consistent through the varying values
of f̄ . These results could be interpreted by the hybrid policy being more risk averse than
the classical one, and thus prescribes more recourse actions. However, as we will see next,
the expected number of BF trips are reduced when using the hybrid policy. Moreover, the
final analysis of this section shows that the hybrid policy yields less costly solutions, when
compared to the classical policy.

Table 7: The ratio
EBFc + EPRc

EBFh + ERh

f̄

(θ-θ̄) 0.90 0.92 0.94 0.96

0.45− 0.55 88.45% 88.31% 88.29% 88.86%
0.35− 0.65 88.74% 88.31% 88.29% 88.86%
0.25− 0.75 65.23% 65.07% 65.87% 68.87%
0.15− 0.85 65.24% 65.07% 65.87% 68.75%
0.05− 0.95 43.25% 42.90% 45.30% 50.18%
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We now focus on the expected number of back-and-forth trips performed by the hybrid
policy and the classical policy, i.e., EBFh and EBFc. This analysis is important since back-
and-forth trips imply a disruption at the customer location, thus EBFh and EBFc reflect a
measure of customer service. In Table 8, we report the ratio between EBFc and EBFh. We
clearly observe that this ratio is largely impacted by the values defining the hybrid policy
{θ, θ̄}. We note that the last line of the table is empty since no BF trips are preformed under
the hybrid policy with {θ, θ̄} = {0.05, 0.95}. This large interval implies that resulting policy
is rather conservative.

Table 8: The ratio EBFc
EBFh

θ-θ̄ f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96

0.45− 0.55 3.49 3.72 3.85 4.54
0.35− 0.65 3.50 3.72 3.85 4.54
0.25− 0.75 10.46 11.43 11.78 14.47
0.15− 0.85 10.47 11.43 11.79 14.37
0.05− 0.95 — — — —

As observed from the previous analysis, preventive returns in the hybrid recourse poli-
cies hedge the occurrence of route failures. However, this could result in extra recourse
cost being incurred. In order to evaluate the quality of the rule-based policies presented
in this paper in terms of the incurred recourse cost, the optimal solutions obtained with
the hybrid policy are priced under both the classical and optimal restocking policies. Let
x denote the optimal solution obtained with the hybrid policy, the first stage cost is cx, let
Qh(x), Qc(x), and Qo(x) express the expected recourse cost of x with the hybrid, classical
and optimal restocking policies, respectively. Where Qo(x) was computed using a similar
approach as the one presented in Bertsimas et al. (1995). Two cost measures are used to

assess the results obtained, “Savings” = Qc(x)−Qh(x)
cx+Qc(x) and “Deviations” = Qh(x)−Qo(x)

cx+Qo(x) .

Table 9 summarizes the average results on the savings and the deviations. The values
in this table are generally low. This is to be expected since, in the VRPSD, the first stage
cost tends to dominate the recourse cost. Such observations are consistent with the findings
reported in the VRPSD literature (e.g., Bianchi (2006) and Rei et al. (2010)). We note that the
hybrid policy yields a positive average savings on all entries of the table. The maximum
average saving is 1.19% for the combination of {θ, θ̄} = {0.25, 0.75} with f̄ = 0.96. The
savings tend to increase with the fill rate, this can be explained by the reduction of the
expected number of failures observed in Table 8.

Comparing the costs of the hybrid policy with those of the optimal restocking policy we
observe that the deviations are rather small. Thus implying that for the considered routes,
the use of the hybrid policy scales well compared to the optimal restocking one. Overall,
for the considered routes, one can conclude that the opportunity loss of not implementing

19

A Hybrid Recourse Policy for the Vehicle Routing Problem with Stochastic Demands

CIRRELT-2017-42



the optimal policy is very low. Furthermore, the hybrid policy seems to provide a very
good approximation of the optimal one.

Table 9: Savings and Deviations.

f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96
θ-θ̄ Savings Deviations Savings Deviations Savings Deviations Savings Deviations

0.45− 0.55 0.13% 0.01% 0.19% 0.01% 0.39% 0.02% 0.47% 0.02%
0.35− 0.65 0.13% 0.01% 0.19% 0.01% 0.39% 0.02% 0.47% 0.02%
0.25− 0.75 0.11% 0.02% 0.18% 0.02% 0.37% 0.04% 1.19% 0.07%
0.15− 0.85 0.11% 0.02% 0.18% 0.02% 0.37% 0.04% 1.19% 0.07%
0.05− 0.95 0.03% 0.08% 0.08% 0.09% 0.22% 0.20% 0.95% 0.35%

5 Conclusions

In this paper, we have defined a general taxonomy to classify rule-based recourse policies
for the VRPSD. According to this taxonomy, rule-based polices are cast into three gen-
eral classes. We introduced the first hybrid policy, which simultaneously combines two
of these classes, namely risk and distance. We modelled the VRPSD with the hybrid risk-
and-distance-based policy and derived the computations of the resulting recourse cost.
Furthermore, we proposed an exact solution algorithm, for which we developed bounds
that are used in the LBFs.

The exact algorithm was able to solve a large number of instances to optimality, espe-
cially for low fill rates. For example, considering a fill rate of 0.90 with {θ, θ̄} = {0.35, 0.65},
up to 79% of the instances were solved to optimality. The algorithm also scales well in
terms of the sizes of the instances, it solved to optimality instances with up to 60 nodes.
Furthermore, the average observed optimality gaps are rather low.

Through our experimental study, we observed that the expected number of failures are
noticeably lower when applying the hybrid policy compared to the classical policy. These
results indicate the superiority of the hybrid policy in terms of customer service. We further
observed that the optimal solutions of the hybrid policy yield cost savings when compared
to the classical policy. Finally, we also showed that the cost offset of the optimal restocking
policy compared to the hybrid one is rather small.
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Appendix

The L-shaped Algorithm

We briefly describe here the integer L-shaped algorithm (1). As a branch-and-cut algo-
rithm, first, we state the initial current problem (CP) with relaxing the capacity / subtour-
elimination constraints (4), and integrality constraints (7).

The integer L-shaped algorithm (1) in Step 0 sets the iteration index, the overall upper
bound, and pushes the initial CP as the first pendant node. In Step 1, the algorithm checks
pendant list for any pendant node available, if not applicable then stop. In Step 2, the
algorithm solves the pendant CP optimally. The algorithm checks for any violation of
capacity constraints (4) in Step 3, and generates in case associated constraints, and adds
the updated subproblem to the pendant list. In addition, the associated LBFs will be added
to improve the lower bound of expected recourse cost.

Also, the algorithm checks integrality constraints (7) in Step 4. If the optimal solution
is non-integer, then branching procedure adds new updated CPs to the pendant list. Oth-
erwise, an integer solution is obtained, and the algorithm computes the expected recourse
cost of optimal routing solution. Since an integer solution is obtained, the algorithm checks
to update the overall upper bound in Step 5. Then, the algorithm checks for an excessive
expected recourse cost to add optimality cuts in in Step 6.
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Algorithm 1 L-Shaped Algorithm
1: . state initial CP with the constraints: 2, 3, 5, 6, and L ≤ Θ.
2: . Step 0: set iteration index and initial upper bound
3: ν← 0
4: z̄← +∞
5: push the initial CP in the list of pendant nodes, listPN .
6: . Step 1: check search tree for a pendant node
7: if listPN is empty then
8: STOP
9: end if

10: . Step 2: increase iteration index, and solve CP optimally
11: ν← ν + 1
12: let (xν, Θν) is the optimal solution of CP
13: . Step 3: check for any violation of (4).
14: if There are any such violated constraint then
15: generate associated cuts and LBFs and add them to CP
16: go to Step 2
17: else if cxν + Θν ≥ z̄ then
18: fathom the current node
19: go to Step 1
20: end if
21: . Step 4: check for any integrity violation.
22: if there are any such violated constraints then
23: generate the branching subproblems and append to pendant list listPN
24: go to Step 2
25: end if
26: . Step 5: check for a new integer incumbent.
27: compute Q(xν)
28: zν ← cxν +Q(xν)
29: if zν < z̄ then
30: z̄← zν

31: end if
32: . Step 6: check for optimality cuts.
33: if Θν ≥ Q(xν) then
34: fathom the current node
35: go to Step 1
36: else
37: add an optimality cut

∑
1≤i≤j
xν

ij=1

xij ≤ ∑
1≤i≤j

xν
ij − 1 (24)

38: end if
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