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1 Introduction

1.1 Contribution of this paper

While the literature concerning discrete facility location is vast, few studies have focused on
user choice, where the latter frequently involves congestion, either along the paths leading
to a facility, or at the facility itself. The aim of this paper is to provide a model that
captures the key features of congestion and competition within a user choice environment,
yielding a bilevel program where the leader firm’s objective function integrates the stochastic
equilibrium resulting from the choice of locations and the associated service levels. Beyond
the analysis of the model’s theoretical properties, the main part of the paper is devoted to the
design and analysis of efficient algorithms, whose nature is either based on approximations
(‘semi-exact’) or heuristic.

Our work is closely related to that of [Marianov et al., 2008], who analyze a location
model where queueing (and balking) is explicitly taken into account, while users are assigned
to facilities according to a logit discrete choice model, yielding a mathematical program
involving user-equilibrium constraints. The model is well suited to a variety of applications,
such as location of shops, restaurants, walk-in clinics, etc., where user flows are not in direct
control of the optimizer, but are dictated by utility maximization principles. One aim of
this paper is to extend and improve the model, both from the modelling and algorithmic
standpoints. Its main contributions are the following:

• The introduction of service rate as endogenous variables, as well as the correct modelling
of the balking process, by integrating within a user’s utility the probability of service
denial.

• The explicit consideration of competition.

• The embedding of a discrete choice model of user behaviour, as well as the study of the
deterministic (Wardrop) limiting case.

• The reformulation of the model as a standard bilevel model, thus allowing an approxi-
mate reformulation as a mixed integer linear program.

• The design of a heuristic algorithm and its validation against the MILP solution.

The remainder of this paper is organized as follows. Section 1.2 is devoted to the literature
review, and Section 2 to a description of the model, together with a study of its theoretical
properties. Section 3 is dedicated to algorithms: a linear approximation algorithm in Subsec-
tion 3.1, and a user-driven heuristic in Subsection 3.2. Numerical experiments, discussion of
our results, as well as an illustrative case are detailed in Section 4. Extensions of the current
framework are mentioned in the concluding Section 5.

1.2 Literature review

Location problems have been widely studied, due to their simple structure and numerous
real-life applications. Most literature is concerned with versions of the problem where users
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are simply assigned to shortest paths, and thus sidesteps the nonlinearities associated with
the important issue of user behaviour, including congestion. In our model, customers select
their own path and whenever congestion occurs, customers leaving from the same origin may
travel along different paths or patronize different facilities. This user behavior principle fits
the framework of a Wardrop equilibrium in the deterministic case, and of stochastic user
equilibrium when a random utility model of delay is assumed. The overallbilevel model
belongs to the class of mathematical programs with equilibrium constraints (MPEC), where
the equilibrium can be expressed as a variational inequality. It can be reformulated as an
NP-hard discrete nonlinear bilevel program which, it goes without saying, poses formidable
challenges from the computational point of view.

Competitive location models were introduced by [Hotelling, 1929]. In his seminal paper,
the author addresses the simple situation where two firms engage in spatial competition,
with the purpose of maximizing individual profit through the location of a point along a
segment located at respective distances a and b from the endpoints. It is assumed that de-
mand is uniformly distributed along the line segment, and customers patronize the closest
facility. This work represents the cornerstone for a plethora of articles concerned with the
topic of competitive facility location. The environment considered therein was generalized to
a network by [Hakimi, 1983], who studied variants of the weighted p-median problem involv-
ing competition. [Labbé and Hakimi, 1991] address a two-stage location-allocation game,
where location is decided at the first stage while, at the second stage, two firms engage
in a Cournot game with respect to quantities. An interesting development is considered by
[Küçükaydin et al., 2011], where one firm decides the sites and attractiveness for new facilities
in order to maximize its profit. In this Stackelberg (leader-follower) setting, the competitor
responds to the leader’s action and adjusts its attractiveness level to maximize its profit,
while user behavior is characterized by Huff’s gravity law. In the work of [Beresnev, 2013],
two competing firms strive to maximize profit as well, but user preferences are provided
by a linear order relation. The model is then solved by branch-and-bound techniques.
[Drezner et al., 2015] address a leader-follower competitive coverage model, where the at-
tractiveness of a facility is related to an attraction radius, and customers are spread evenly
among facilities that fall within this radius. The leader can open new facilities or adjust
the attractiveness of existing ones, while the competitor responds accordingly. Both firms
compete for market share within budget limits.

Congestion occurs naturally in an environment with limited resources. It can arise either
at facilities, or along the road. Although basic models are content to incorporate conges-
tion in the form of maximum capacity, more elaborate models capture congestion through
functional forms derived or not from queueing theory. Within this framework we note the
work of [Desrochers et al., 1995] who consider an extension of a deterministic facility location
problem, where individual delays (travel time) increase with traffic. The model is centralized,
namely, users are assigned as to minimize the sum of opening cost, waiting delays, and travel
times experienced by the users. Although the authors mention a user-choice version of their
model that fits the bilevel programming paradigm, they do not suggest solution algorithms
for its solution. A related formulation, where service rates are endogenous, is considered by
[Castillo et al., 2009]. Users are assigned to facilities as to minimize the sum of the num-
ber of waiting customers and the total opening and service costs. Within the framework
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of centralized systems, [Marianov, 2003] formulates a model for locating facilities subject to
congestion where demand is elastic with respect to travel time and queue length. Customers
are assigned to centers in order to maximize total demand. Location of congested facilities
when demand is elastic has also been investigated by [Berman and Drezner, 2006]. Similar
to [Marianov, 2003], the objective is to maximize total demand, subject to constraints on the
waiting time at facilities. Heuristic procedures are proposed for its solution.

Another work worth mentioning is that of [Zhang et al., 2010] who propose a methodol-
ogy for addressing a congested facility network design, with the aim of improving healthcare
accessibility, i.e., maximize the participation rate. The environment is user-choice, and users
patronize the facility minimizing the sum of waiting and travel time, while demand is elastic
with respect to total expected time experienced by clients. The authors illustrate the perfor-
mance of a metaheuristic procedure on data issued from a network of mammography centers
in Montreal, Canada. Congestion has also been considered by [Abouee-Mehrizi et al., 2011]
in the context of simultaneous decision-making over the location, service rate and price, for
facilities located on vertices of a network. They assumed that demand be elastic with respect
to price, and clients spread among facilities based on proximity only, according to a multi-
nomial logit random utility model. Congestion, which arises at facilities, is characterized
by queueing equations. For a more elaborate review of congestion models in the context of
facility location, the reader is referred to [Boffey et al., 2007].

Although congestion and competition have been previously combined, few papers have
tackled both within a user-choice environment. Actually, most papers that incorporate con-
gestion do not account for competition. On the other hand, when competition is present,
users select facilities based on congestion-free traits such as distance or attractiveness. To
the best of our knowledge, the only paper to address congestion in a competitive user-choice
environment is that of [Marianov et al., 2008]. A taxonomy of the models most relevant to
our research is provided in the e-companion to this article.

2 The model

2.1 Preliminaries

Let us consider the problem faced by a firm (a service center, for instance) that makes location
and service level decisions, with the aim of maximizing the number of customers to attract
with respect to its competitors, under a budget constraint. A salient feature of the model is
that user behavior is explicitly taken into account. Precisely, users patronize the facility that
maximizes their individual utility, i.e., minimizes their disutility. The latter is estimated as
the sum of travel time to the facility, queueing at the facility, plus the actual probability of
accessing a server (facilities are modeled as finite-length queues).

Since our model is closely related to that of [Marianov et al., 2008], we provide a detailed
description of the latter. In that work, the authors consider an oligopoly scenario in which
firm A locates p new facilities in a market where competitors already operate. The ‘game’
takes place over a bipartite graph V = I × J , where a vertex v may correspond to either a
location (v ∈ J) or a demand node (v ∈ I), the latter endowed with demand dv. We denote
by J1 ⊆ J the set of candidate locations for firm A, and by Jc the set of locations of its
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competitors. A customer leaving vertex i ∈ I for facility j ∈ J incurs a fixed travel time tij .
At facility j, this customer enters an M/M/s/K queue that involves s servers with identical
mean service time µ, and an associated waiting time wj . Whenever the queue reaches length
K − s (which corresponds to K customers in the system), any arriving customer is denied
access and leaves the system as a lost customer. The disutility uij of a customer is defined
as a linear (convex) combination of travel time tij and queueing delay wj , and ignores the
actual constant service time, i.e.,

uij = αtij + (1− α)wj , (1)

for some scalar α between 0 and 1.
The arrival and service processes are governed by Poisson (memoryless) processes. If the

arrival rate at facility j is λj , the probability that n customers are in the queue (or are served)
is

pnj =


(ρnj /n!)p0j if n ≤ s,
(ρnj /(s!s

n− s))p0j if s < n ≤ K,
0 if n > K,

(2)

where ρj = λj/µ is the intensity of the queueing process and

p0j =

[
1 +

s∑
n=1

ρnj
n!

+
ρsj
s!

K∑
n=s+1

(ρj
s

)n− s]−1

. (3)

The demand side is cast within the framework of a random utility model, where flows
between vertices i and j are determined according to the logit formula

xij =
yje
−θuij∑

k∈J1

yke
−θuik +

∑
k∈Jc

e−θuik
, (4)

where yj is a binary variable set to 1 if a facility is open at vertex j ∈ J1, and to 0 otherwise.
Competitor’s facilities are already open, thus the absence of term yk in Eq. (4). Parameter θ
is set to π/(σ

√
6), where σ is the standard deviation of the Gumbel randon variable yielding

the probabilities (or proportions) xij . The y variables are needed solely for the leader, as
the competitors facilities are already open. If one denotes by λj the arrival rate at node j,
and by λj the throughput rate, the model of [Marianov et al., 2008] takes the form of the
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mathematical program

max
y

∑
j∈J1

λj

s.t. λj =
∑
i∈I

dixij , ∀j ∈ J1 ∪ Jc

xij =
yje
−θuij∑

k∈J1

yke
−θuik +

∑
k∈Jc

e−θuik
, ∀i ∈ I, ∀j ∈ J1 ∪ Jc

uij = αtij + (1− α)wj , ∀i ∈ I, ∀j ∈ J
wj = Lj/λj , ∀j ∈ J

Lj =

K∑
n=s

(n− s)pnj , ∀j ∈ J

λj = λj(1− pKj), ∀j ∈ J
xij ≤ yj , ∀i ∈ I, ∀j ∈ J1∑
j∈J

xij = 1, ∀i ∈ I

∑
j∈J1

yj = p,

0 ≤ xij ≤ 1, ∀i ∈ I, ∀j ∈ J
λj ≥ 0, ∀j ∈ J
yj ∈ {0, 1}, ∀j ∈ J1,

where the only decision variables are the binary location variables yj . Once these are set,
the remaining quantities are determined through the solution of a nonlinear fixed point
problem, where the probabilities xij of choosing a facility j depend on waiting times, which
are themselves functions of the demand rate vector λ, while demand rates depend on the
probabilities xij . This yields a mathematical program with equilibrium constraints that can
be formulated in the compact form

max
y

∑
j∈J1

fj(λ, y)

s.t.
∑
j∈J1

yj = p,

yj ∈ {0, 1}, ∀j ∈ J1,

where the arrival rate vector λ satisfies the fixed point equation fj(λ, y) = λj ,∀j ∈ J . The
authors show that this equation admits a unique solution, and propose a variant of Newton-
Raphson algorithm for its determination. The model is then addressed by a two-phase meta-
heuristic procedure that combines GRASP (Greedy Randomized Adaptive Search Procedure)
and Tabu Search. In the initial phase, facility locations are selected and a nonlinear assign-

Competitive Facility Location with Selfish Users and Queues

CIRRELT-2017-46 5



ment problem is solved. In the second phase, Tabu Search is used to improve upon the initial
location decisions.

A key feature of the model is the possible occurrence of balking, due to a fixed buffer
of size K − s. Besides its practical important, balking allows the arrival rate at a facility
to actually exceed the service rate, without the queues growing unbounded. However, this
has two important consequences. First, note that the objective is to maximize the number
of clients

∑
j∈J1 λj showing up at the facilities and not the number of clients

∑
j∈J1 λ̄j that

actually access service. It follows that a solution with a low rate of served clients might be
preferred to one with a high rate, if both its arrival and rejection rates are very high. This
situation is illustrated in Figure 1. In this example, facilities can be set up at three sites
(A,B and D), coinciding with two demand vertices. The competitor’s facility is located at
C. Demand d1 is 200 at vertex 1 and d2 = 10 at vertex 2, while distances between vertices
are shown next to the edges of the network. On the supply side, the common service rate at
all facilities is equal to 100. Facilities are modelled as M/M/1/99 queues. For simplicity, we
assume θ = ∞, the limiting case of the random utility model. Accordingly, at equilibrium,
clients issued from a common origin will experience identical delays (travel time plus queueing
delay).

B 1 A 2

D

C

50

50

50

10

50

Figure 1: Paradox when maximizing λ instead of λ̄.

Assuming that the leader’s budget only allows two facilities to be opened, the options
are to open sites A and B, or sites A and D (B–D is equivalent to A–D). In the first case,
demand d1 is assigned to sites A and B, while d2 patronize the competitor’s facility. Basic
arithmetic shows that the total arrival rate at the leader’s facilities is λ = λ1 +λ2 = 200, and
that the number being serviced is λ̄ = λ̄1 + λ̄2 = 198. If facilities are opened at sites A and
D, d1 is assigned to site A, and d2 to site D, with no client assigned to the competitor. The
total arrival rate at the leader’s facilities is λ = λ1 + λ2 = 210 and the amount of customers
receiving service is λ̄ = λ̄1 + λ̄2 = 101. In either case, the maximum λ corresponds to a
much smaller value of λ̄. In other words, the solution that attracts more customers is less
profitable, as roughly half of the clients will balk, due to no vacancies in the queue, and thus
experience low delays at the facility.

The issue is also due to the definition of customer utility, which embeds travel and queue-
ing delays, but ignores balking. Returning to the example of Figure 1, when sites A and
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D are open, demand d1 originating in 1 patronizes site A, notwithstanding a probability of
balking close to 50%. This situation is not realistic, given that facilities located at site D
and C are relatively close and have low waiting times and probability of rejection. Since the
queueing delay is directly related to the buffer capacity K − 1, facilities with small buffers
(or none at all!) will turn down most arriving customers, in contrast with facilities equipped
with large buffer zones. This leads to the paradoxical situation where customers will favour
facilities where the probability of balking is high, since it will minimize the overall time spent
in the system! This effect is exacerbated by the maximization of the arrival rate (rather than
the throughput rate) and will only disappear if buffers have infinite capacities.

2.2 A new model

We now consider a variant of the model of [Marianov et al., 2008] that differs in three sig-
nificant ways: the objective is the throughput rate (rather than the arrival rate), service
rates are decision variables, and users integrate within their utility function the probability
of accessing the service. Additionally, the leader has a limited budget B that can be spent on
building facilities or improving service rate. The fixed cost of locating a new facility f is set
to cf , while the cost of improving the service rate of an M/M/1/K queue (K − 1 available
places in the queue, and 1 place at the server) by one unit is cµ. A customer observes the
queue upon arrival, and opts for balking if there are more than K − 1 customers already
waiting. In this context, the probability pnj of having n customers in the queue (or being
served) at facility j is given by

pnj =


ρnj

1− ρj

1− ρK + 1
j

, n ≤ K, ρj 6= 1

ρj
K + 1

, n ≤ K, ρj = 1

0, n > K,

(5)

where ρj = λj/µj is the intensity of the process. At facility j, the expected number Lj of
customers in the system is

Lj =
K∑
n=0

npnj . (6)

The effective arrival rate, i.e., the number of customers that access the service, is denoted by
λ, i.e.,

λj = λj(1− pKj), ∀j ∈ J. (7)

The average waiting time wj in the system (including service time) is a function of the service
and arrival rates. According to Little’s formula, we have that

wj =
Lj

λj
, ∀j ∈ J. (8)
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Basic algebra yields the expression of the waiting time at open facilities:

wj(λj , µj) =


1

µj

K +
K

ρKj − 1
− 1

ρj − 1

 , ρj 6= 1

K + 1

2µj
, ρj = 1.

(9)

2.2.1 Stochastic assignment

In a random utility model, clients patronize the facility that minimizes their individual disu-
tility, expressed as a linear combination of travel time, queueing, and probability of accessing
service. In this framework, the disutility of facility j for a customer issued from demand node
i is given by

ũij = −uij + εij

= −(tij + αwj + βpKj) + εij ,

where εij are independant Gumbel variates with comon scale parameter θ and variance
π2/(6·θ2). In this multinomial logit framework (see [McFadden, 1974]), the demand generated
at node i that patronizse an open facility j is given by the expression

xij = di
e−θ (tij + αwj + βpKj)∑

l∈J∗

e−θ (til + αwl + βpKl)
, (10)

where J∗ represents the set of open facilities. For small values of θ, users are spread more
or less evenly between facilities while, when θ is large, the assignment approaches that of
a Wardrop equilibrium (see [Fisk, 1980]). According to our assumptions, the problem can
be formulated as the equilibrium-constrained nonlinear mixed integer program involving a
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leader and a follower (users):

(P) LEADER: max
y, µ

∑
j∈J1

λj (11)

∑
j∈J1

cfyj +
∑
j∈J1

cµµj ≤ B, (12)

µj ≤Myj , ∀j ∈ J1 (13)

λj = λj(1− pKj), ∀j ∈ J (14)
yj ∈ {0, 1}, µj ≥ 0, ∀j ∈ J1 (15)

USERS: xij = di
yj · e−θ (tij + αwj + βpKj)∑
l∈J∗ e

−θ (til + αwl + βpKl)
, ∀i ∈ I; ∀j ∈ J (16)

λj =
∑
i∈I

xij , ∀j ∈ J (17)

wj =
1

µj

K +
K

ρKj − 1

− 1

ρj − 1

, ∀j ∈ J (18)

pKj = ρKj
1− ρj

1− ρK + 1
j

, ∀j ∈ J. (19)

The decision variables are the vectors µ and y, while the user assignment x is the solution
of a fixed point problem. In Eq. (13), M is a sufficiently large constant that can be set to
M = (B − cf )/cµ.

The limiting case θ =∞ yields a deterministic version of (P) where customers are assigned
to facilities according to Wardrop’s equilibrium principle. If ci(µ) denotes the minimum
disutility (travel + waiting time and probability of balking) for users originating from node
i, the optimal solution x∗ isthen characterized by the complementarity system

tij + αwj(x
∗, µ) + βpKj(x

∗, µ)

{
= ci(µ), if x∗ij > 0

≥ ci(µ), if x∗ij = 0,
(20)

and the deterministic version of (P) takes the form

(P*) LEADER: max
y, µ

∑
j∈J1

λj (21)

s.t. constraints (12), (13), (14) and (15) (22)
USERS: tij + αwj(x

∗, µ) + βpKj(x
∗, µ)− ci(µ) ≥ 0, ∀i ∈ I; ∀j ∈ J (23)

xij (tij + αwj(x
∗, µ) + βpKj(x

∗, µ)− ci(µ)) = 0, ∀i ∈ I; ∀j ∈ J (24)
xij ≥ 0, ∀i ∈ I; ∀j ∈ J (25)
constraints (17), (18), (19). (26)

In (P), the solution of the lower level equilibrium problem can be obtained by solving a
convex optimization problem akin to [Fisk, 1980]. In our framework, this program takes the

Competitive Facility Location with Selfish Users and Queues

CIRRELT-2017-46 9



form

(P2) min
x

∑
i∈I

∑
j∈J∗

[
1

θ
xij lnxij + xijtij

]
+ α

∑
j∈J∗

∫ λj

0
wj(q, µj)dq + β

∑
j∈J∗

∫ λj

0
pKj(q, µj)dq

(27)

s.t.
∑
j∈J∗

xij = di, ∀i ∈ I (28)

xij ≥ 0, ∀i ∈ I; ∀j ∈ J∗ (29)

λj =
∑
i∈I

xij , ∀j ∈ J∗. (30)

Indeed, it is easy to check that, if θ is finite, xij cannot be zero at the solution, which implies
that the Lagrange multiplier associated with Eq. (29) is 0, thus useless. If we let ai, and cj be
the Lagrange multipliers associated with Equations (28) and (30), respectively, the first-order
necessary and sufficient optimality conditions are given by

∂L

∂xij
= 0 ⇒ 1

θ
(lnxij + 1 ) + tij − ai + cj = 0 (31)

∂L

∂λj
= 0 ⇒ αwj(λj , µj) + βpKj(λj , µj)− cj = 0. (32)

It follows that cj = αwj(λj , µj) + βpKj(λj , µj), and Equation (31) yields

xij =
e−θuij

e−θai + 1
.

By substituting xij into (28) we obtain

xij = di
e−θuij∑

l∈J∗

e−θuil
.

Now, replacing the fixed point problem by its optimization counterpart, the original
model can be formulated as a bilevel program. At the upper level, the firm maximizes total
market capture, subject to some budget constraints, while, at the lower level, the follower
solves Problem (P2). The main advantage of this reformulation is that we can adapt for its
solution methods and algorithms from convex bilevel programming, as we will detail further
in Section 3.

2.3 Properties of the model

This subsection is devoted to the properties and features of our model. First, let us con-
sider the indefinite integrals of the waiting time and probability of balking, Wj(q, µj) and
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PKj(q, µj) respectively, that enter the lower level’s objective function. We have

Wj(q, µj) =

∫
wj(q, µj)dq =



∫
1

µj

K +
K

ρKj − 1

− 1

ρj − 1

 dλ, if q 6= µj

∫
K + 1

2µj
dq, if q = µj .

PKj(q, µj) =

∫
pKj(q, µj)dq =


∫
ρK − ρK + 1

1− ρK + 1
dq, if q 6= µj∫

1

K + 1
dq, if q = µj .

where ρj = q/µj . Let lw =
1

µj

∫
−1

ρj − 1
dq, and lp =

∫
ρKj

1− ρK + 1
j

dq. Then

lw =

{
− ln(ρj − 1), if q > µj
− ln(1− ρj), if q < µj

and lp =


− ln(ρK + 1 − 1)

K + 1
µj , if q > µj

− ln(1− ρK + 1)

K + 1
µj , if q < µj ,

(33)

which yields the following expression for the integral of the waiting time:

Wj(q, µj) =


Kρ+ lw +K

∫
1

ρK − 1
dρ, if q 6= µj

K + 1

2
ρ, if q = µj

(34)

and for the integral of the balking probability:

PKj(q, µj) =


q + lp + µj

∫
1

ρK − 1
dρ, if q 6= µj

q

K + 1
, if q = µj .

(35)

Note that
∫

1

ρK − 1
dρ = −ρF 2

1 (1, 1/K; 1 + 1/K; ρK ), where F 2
1 stands for the hypergeo-

metric function, and does not have a closed-form expression for general K, although it can
be evaluated for any fixed value of K. We have that∫ λj

0
wj(q, µj)dq = Wj(λj , µj)−Wj(0, µj).

Since Wj(0, µj) is constant at the lower level, it can be removed from the objective function.
Applying a similar operation to PKj , the lower level objective takes the form∑

i∈I

∑
j∈J∗

[
1

θ
xij lnxij + xijtij

]
+ α

∑
j∈J∗

Wj(λj , µj) + β
∑
j∈J∗

PKj(λj , µj). (36)
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Figure 2: Integrals of probability of balking (PKj) and waiting time (Wj) for K = 10.
Although convex in λj , neither of them are convex overall, especially in the vicinity of the
origin.

Proposition 1. The waiting time wj is increasing in λj.

Proposition 2. The probability of balking pKj is increasing in λj.

From the convexity of the function xij lnxij , and Propositions 1 and 2 it follows that:

Proposition 3. The lower level objective function (36) is convex in x, hence Problem (P2)
is convex.

Proposition 4. When K =∞, i.e., balking does not occur (in this case, the model admits a
solution only if the total service rate exceeds the total demand rate), the lower level objective
function is convex jointly in λ and µ.

Although the integral of the waiting time and probability of balking are convex in xij
and λj , they are not jointly convex in λj and µj . Figure 2 illustrates the situation.

Proposition 5. The integral of the waiting time, Wj(λj , µj) is pseudoconvex.

The proofs of Propositions 1, 2, 4 and 5 are provided in the e-companion to this paper.

3 Algorithms

This section is concerned with the design of algorithms, both ‘semi-exact’ and heuristic,
for addressing the bilevel location problem. Our ‘semi-exact’ approach is related to that
of [Gilbert et al., 2015] for solving a bilevel toll problem involving logit user assignment. It is
based on mixed integer linear programming (MILP) approximations of the original problem.
Whenever the approximation is fine-grained, we expect its solution to be nearly optimal,
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hence the term ‘semi-exact’. In contrast, the heuristic algorithm is based on a surrogate
problem, and is akin to the approach of [Marcotte, 1986] for addressing a network design
problem involving user-optimized (Wardrop) flows, where the issue of enforcing equilibrium
constraints is sidestepped.

3.1 A semi-exact method

By linearizing the upper level nonlinear terms λ̄j and the lower-level objective of the bilevel
program, it is possible to reformulate (P) as a mixed integer linear bilevel program, which
can be further reduced to a MILP. This is achived through the following five operations:

1. Approximate the lower-level objective function by a piecewise linear approximation.

2. Write the KKT optimality conditions of the lower-level linear program to obtain a
single-level mathematical program involving complementarity constraints (MPEC).

3. Formulate the MPEC as an MILP, through the introduction of binary variables and
‘big-M’ constants.

4. Solve the resulting MILP for optimum values of µ and y.

5. Solve the original nonlinear lower-level problem to recover the true values of the assign-
ment vector x associated with µ and y.

We now provide a detailed description of the linear approximation used at the first step
of the algorithm. We let

d̃ = max
i ∈ I

{di}, µ̄ = (B − cf )/cµ, and µ̃ = max

{
µ̄, max
j ∈ Jc

{µj}

}
,

and sample the interval (0, d̃] using N points xn, n = 1, .., N such that xi < xj for all i < j,
and consider the linearization

fn(x) = x(lnxn + 1)− xn = anfx+ bnf . (37)

Similarly, let λ̃ =
∑
i∈I

di be the maximum arrival rate. We sample the interval (0, λ̃] using

R points λr, r = 1, . . . , R such that λi < λj for i < j. We also generate P samples of
µ over (0, µ̃] over the same interval. Let λr and µp be the samples hence obtained. We
linearize Wj(λj , µj) and PKj(λj , µj) using tangent plane at points (λr, µp) for r = 1, . . . ,M ,
p = 1, . . . , P such that λr 6= µp. Based on the gradients

∇Wj(λj , µj) = (wj(λj , µj),−wj(λj , µj)ρj) (38)

∇PKj(λj , µj) =

(
pkj(λj , µj),

1

µj
PKj(λj , µj)− pkj(λj , µj)ρj

)
, (39)
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we write the first-order Taylor approximations of Wj(λj , µj) and PKj(λj , µj), respectively:

grp(λ, µ) = Wj(λ
r, µp) +∇Wj(λ

r, µp)

(
λ− λr
µ− µp

)
= arpg λ+ brpg µ+ crpg ,

hrp(λ, µ) = PKj(λ
r, µp) +∇PKj(λr, µp)

(
λ− λr
µ− µp

)
= arph λ+ brph µ+ crph .

Next, we convexify Wj , PKj and x lnx by setting them to the maximum of their linear
approximations:

xij lnxij ≈ max
n ∈ N

{fn(xij)} (40)

Wj(λj , µj) ≈ max
r ∈ R, p ∈ P

{grp(λj , µj)} (41)

PKj(λj , µj) ≈ max
r ∈ R, p ∈ P

{hrp(λj , µj)} (42)

Upon the introduction of additional variables, the linear approximation of (P2) takes the
form

(P2-lin) min
x, v, u, z

∑
i∈I

∑
j∈J∗

[
1

θ
vij + xijtij

]
+ α

∑
j∈J∗

uj + β
∑
j∈J∗

zj (43)

s.t.
∑
j∈J∗

xij = di, ∀i ∈ I (44)

λj =
∑
i∈I

xij , ∀j ∈ J∗ (45)

vij − anfxij ≥ bnf , ∀i ∈ I;∀j ∈ J∗;∀n ∈ N (46)

uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J∗;∀r ∈ R; ∀p ∈ P (47)

zj − arph λj − b
rp
h µj ≥ c

rp
h , ∀j ∈ J∗;∀r ∈ R; ∀p ∈ P (48)

xij ≥ 0, ∀i ∈ I;∀j ∈ J∗. (49)

We close this section by noting that (P2-lin) is an entirely linear formulation, and thus the
variables xij could assume the value 0, although this cannot occur in the initial formulation
(P2), due to the presence of the logarithmic barrier term lnxij .

To achieve a MILP formulation, we first perform a linear approximation of constraint (14)
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using the triangle technique described in [D’Ambrosio et al., 2010]. This yields the equalities

R−1∑
r=1

P−1∑
p=1

(
ljrp + ljrp

)
= 1, ∀j ∈ J1 (50)

sjrp ≤ ljrp + ljrp + ljrp−1 + ljr−1p−1 + ljr−1p−1 + ljr−1p, ∀j ∈ J1;∀r ∈ R; ∀p ∈ P (51)
R∑
r=1

P∑
p=1

sjrp = 1, ∀j ∈ J1 (52)

λj =

R∑
r=1

P∑
p=1

sjrpλ
r, ∀j ∈ J1 (53)

µj =

R∑
r=1

P∑
p=1

sjrpµ
p, ∀j ∈ J1 (54)

ej =
R∑
r=1

P∑
p=1

sjrp (λr(1− pKj(λr, µp))) , ∀j ∈ J1. (55)

Next, we write the optimality conditions of (P2-lin). Let γi, δj , νnij , π
rp
j and ηrpj denote

the dual variables associated with constraints (44), (45), (46), (47) and (48), respectively.
We replace constraints (16), (17), (18) and (19) in (P) with the optimality conditions of
(P2-lin), which yields a nonlinear program involving complementarity constraints. The stan-
dard method of dealing with this nonlinearity is to linearize these constraints through the
introduction of binary variables and ‘big-M’ constants. Alternatively, one can substitute to
the complementarity constraints the equality of the lower level primal and dual objectives.
The latter involves bilinear terms that can be further linearized. Technical details, together
with the corresponding MILP formulation, can be found in the e-companion. The MILP
can be solved by an off-the-shelf software such as CPLEX. For given location variables y
and service rates µ, a feasible assignment matrix x is then recovered by solving a convex
assignment program that involves a simple structure. The corresponding running time is
negligible. Note that, due to approximation errors in the MILP, the recovered solution is not
necessarily identical to the one yielded by the MILP.

Bound on the linearization error for the M/M/1/∞ case

If facilities are modeled asM/M/1/∞ (infinite capacity) queues, the waiting time at a facility
j is wj(λj , µj) = 1/(µj − λj), and its indefinite integral Wj(λj , µj) = − log(µj − λj), which
is convex. We have the following underlying hypotheses:

i. The total service rate in the network can satisfy the entire demand.

ii. In all open facilities, µj ≥ ψ + λj , where ψ > 0.

The latter condition ensures that waiting time at facilities is finite. In practice, ψ can
be as as small as desired, and we have that wj ≤ 1/ψ = wMAX . Let tMIN and tMAX
represent the minimum and maximum travel time in the network, respectively. Furthermore,
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wMIN = 1/µMAX, diam(t)= tMAX − tMIN and diam(w)= wMAX − wMIN. We define µMAX as
the maximum service rate possible in the network, either allowed by the budget at leader’s
facilities, or at competitor’s facilities.

If both conditions are satisfied, we obtain:

xij =
e−θ (tij + αwj)∑

k∈J∗

e−θ (ti,k + αwk)
≥ e−θ (tMAX + αwMAX)∑

k∈J∗

e−θ (tMIN + αwMIN)
=
e−θ (diam(t) + α diam(w))

|J∗|
= rmin,

(56)
Now, let g(µ, x) be the lower-level objective function, i.e.

g(µ, x) =
∑
i∈I

∑
j∈J∗

[
1

θ
xij log xij + tijxij

]
︸ ︷︷ ︸

g1(µ, x)

+α
∑
j∈J∗

Wj(µj , x)︸ ︷︷ ︸
g2(µ, x)

. (57)

The lower-level problem can be written as:

(P∞) min
x

g(µ, x) = g1(µ, x) + αg2(µ, x) (58)

s.t.
∑
j∈J∗

xij = di ∀i ∈ I (59)

xij ≥ 0 ∀i ∈ I, ∀j ∈ J∗. (60)

Next, we define the compact set D =
{
x ∈ R|I| · |J | |

∑
j∈J∗

xij = di,∀i ∈ I; xij ≥ 0,∀i ∈

I, ∀j ∈ J∗
}
, and the function G(µ, x) : D → R, G(µ, x) = ∇xg(µ, x) = ∇xg1(µ, x) +

α∇xg2(µ, x) = G1(µ, x) + αG2(µx). Note that D is a compact set. Note that (P∞) can be
written simply as min

x ∈ D
g(µ, x), and we have the following results, whose proofs are provided

in the e-companion to this paper.

Proposition 6. G1 is strongly monotone in x of modulus θ · dMAX.

Proposition 7. G2 is monotone in x.

It follows directly that

Proposition 8. G is strongly monotone in x, with modulus θ · dMAX.

Theorem 1. The approximation error of the upper-level objective function is at most O(1/N1+
1/N2), where N1 and N2 are the number of samples for the linearization of g1 and g2, re-
spectively.

We now illustrate Theorem 1 for the instance based on the network illustrated in Figure 3.
It involves two demand nodes, which are potential locations as well. Demand rates in 1 and
2 are set to 5.5 and 15.0, respectively. The fixed cost of opening a facility is set to 5 and the
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Figure 3: A three-node network.

unit service cost to 1, for a total budget of 25. The competition owns a facility with service
rate 25.1. On the demand side, parameter α is set to 10 and parameter θ to 0.2.

For each set of open locations, the problem can be approximately solved by sampling a
very large number of values of the parameter µ. This yields an optimal solution with objective
10.197, where both facilities are open, with respective service rates 5.325 and 9.675.

The semi-exact algorithm was then run for different sample sizes, and we report the
optimal of the approximation MILP, as well as the true objective values corresponding to
these solutions. The results are displayed in Figure 4, where we observe that

• The approximated objective mostly overestimates the true objective.

• The true objective obtained by solving for the actual equilibrium with respect to the
service levels quickly reaches a near-optimal solution, and actually does so for a sample
size as small as 4.

• The true objective does not increase in a monotone fashion, but stabilizes fairly quickly
close to the optimum.

3.2 A surrogate-based heuristic

In this section we present a parameterized heuristic based on replacing the original model
by a single-level model involving a surrogate objective, whose optimal solution automatically
satisfies the fixed point constraint. This strategy is akin to that proposed by [Marcotte, 1986]
for addressing a bilevel network design problem involving user-optimized flow patterns.

The rationale behind this strategy is that both the leader and the users have a shared
interest in minimizing delays. We therefore expect that, if the lower level is given full control,
the resulting design should favor access to the leader’s facilities, and therefore yield a high
throughput. Incorporating the budget constraint to ensure feasibility, we obtain the single-
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Figure 4: Evolution of the semi-exact MILP objective value with respect to sample size. We
use the same number of samples on x, and λ. Legend: the ‘approximated’ line corresponds
to the optimal objective of the approximate MILP. The ‘true’ line is the true objective value
corresponding to the MILP solution.

level mixed nonlinear program

(PH) min
y, µ, x

∑
i∈I

∑
j∈J∗

[
1

θ
xij lnxij + xijtij

]
+ α
∑
j∈J∗

∫ λj

0
wj(q, µj)dq + β

∑
j∈J∗

∫ λj

0
pKj(q, µj)dq

(61)

s.t.
∑
j∈J

xij = di, ∀i ∈ I (62)

∑
j∈J1

yjcf +
∑
j∈J1

cµµj ≤ B, (63)

λj =
∑
i∈I

xij , ∀j ∈ J (64)

yj ∈ {0, 1}, ∀j ∈ J (65)
xij ≥ 0, ∀i ∈ I;∀j ∈ J, (66)

whose x-solution is a logit flow assignment with respect to the design variables y and µ.
For θ = ∞, the limiting case (PH*) is a mathematical program involving user-equilibrium
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(Wardropian with respect to queueing delays) flows, and is expressed as

(PH*) min
y, µ, x

∑
i∈I

∑
j∈J∗

xijtij + α
∑
j∈J∗

∫ λj

0
wj(q, µj)dq + β

∑
j∈J∗

∫ λj

0
pKj(q, µj)dq

s.t. constraints (62) –(66).

Properties of the surrogate model

The surrogate model always yields feasible solutions for the original model, and inherits some
of its properties, such as nonconvexity of its objective. However, some properties may help
to understand why it is computationally tractable, as will be confirmed in Section 4. Proofs
are provided in the e-companion.

Proposition 9. If K =∞ and there are no fixed costs, the surrogate model is convex.

Proposition 10. At the optimum of (PH*), if K =∞, queue waiting times are equal for all
leader’s facilities.

We close this section with an example that shows that, in the worst case, the difference
between the heuristic optimum and the true optimum can be arbitrarily large. Let us consider
the network shown in Figure 5, with sites A and B being potential opening nodes for the
leader, with null fixed cost. LetD1 > 1 and nD1 be the demand in nodes 1 and 2, respectively.
The total service rate available to the leader is µ̄ = (2n + 4)D1. The service rate at the
competitor’s facility is set to µc = 2nD1. From proposition 10, waiting times at facilities A
and B must be equal. Since t2,2 = t2,c, half of population issued from 2 chooses facility C,
while the other half chooses facility B. It is easy to check that the solution of (PH*) is
µ1 = µ2 = (n+ 2)D1, with each leader’s facility capturing D1 customers, for a total of 2D1

number of served customers. On the other hand, if we set µ1 = 2D1 and µ2 = (2n + 2)D1,
the leader captures D1 customers at facility A, and D1(n + 2)/2 at facility B, for a total
number of customers of D1(n + 4)/2. Since K is infinite, no customers are lost. The ratio
between the better option (described above) and the one found by the heuristic is (n+ 4)/4,
which can be arbitrarily large.

A parameterized surrogate heuristic

One drawback of the heuristic solution presented in the previous section is that, for K =∞
and θ =∞, queueing delays are equal, a property that might not hold at the true optimum.
Actually, in order to maximize efficiency, one expects the leader to adapt its service rates to
arrival rates. This can be achieved by incorporating a service-dependent linear term into the
objective. This term depends on a set of positive parameters ξj , to be tuned, one for each
facility. The resulting mathematical program is

(PH(ξ)) min
y, µ, x

∑
i∈I

∑
j∈J∗

[
1

θ
xij lnxij + xijtij

]
+α

∑
j∈J∗

Wj(x, µj) +β
∑
j∈J∗

PKj(x, µj)+
∑
j∈J1

ξjµj

s.t. constraints (62), (63), (65), (66).
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Figure 5: An instance where the gap between the heuristic and optimal value of the objective
function can be as large as desired.

This program is transformed and solved as a MILP where the linearization is based on the
techniques presented in Section 3.1. As before, a feasible flow assignment x compatible with
the location vector y and the service rate vector µ is retrieved by solving a convex program.
We now focus on the case K =∞ and θ =∞, when there are no fixed costs:

(PHY*(ξ)) min
y, µ, x

∑
i∈I

∑
j∈J∗

xijtij −α
∑
j∈J∗

ln(µj−(
∑
i∈I

xij))+
∑
j∈J1

ξjµj

s.t. constraints (62), (65), (66), (70),

for which we provide a theoretical result, whose proof is provided in the e-companion.

Proposition 11. There exists a value of ξ∗ for which (PHY*(ξ∗)) yields an optimal solution
for (P*).

While the complexity of determining an optimal ξ vector is equivalent to that of solving
the initial problem, educated guesses may yield good values, as will be observed later.

4 Experimental setup and results

The MILP formulation was solved by IBM ILOG CPLEX Optimizer version 12.5. All tests,
either using the semi-exact method or heuristics, were performed on a 16 core Xeon(R) In-
tel(R) processor running at 2.4GHz frequency. For the semi-exact method, we opted for the
MILP formulation based on the equality between the primal and dual lower level objectives.
Surprisingly, while approximate, this formulation outperformed that based on complemen-
tarity constraints.

An initial set of experiments was intended to compare the linear approximation-based
method and the parameterized heuristic described in Sections 3.1 and 3.2, respectively, that
involve the parameterized model (PH(ξ)). The latter is solved for different values of the
parameter ξ. For each facility j, ξj is set to the negative of a scalar that increases with
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demand and decreases with distance:

ξj = −c
∑
i∈I

di
tij + 1

, (67)

for some nonnegative parameter c. This is motivated by the fact that it makes sense, from
the leader’s perspective, to assign high service rates to facilities located close to high demand
nodes: the lower ξj , the larger µj in the optimal solution. The term 1 in the denominator
was added to tij to avoid dividing by a small number. The linear approximations involve 7,
5 and 5 uniformly distributed samples for x, λ and µ, respectively. The parameter α was
set to 10, while the algorithms were run for different combinations of parameters θ and β.
Travel times were varied between 0 and 100 for nodes belonging to a common cluster. Two
sensible choices for the parameter β are 50 or 100, as previously explained in Section 2.2.1.

In CPLEX branching rules, priority was given to the strategic location variables over the
binary variables required in the linearization process. The algorithm was stopped as soon
as the optimality gap dropped below 1%, CPLEX ran out of memory (4GB), or that CPU
exceeded 2,000 seconds.

heuristic over semi-exact semi-exact
semi-exact ratio relative gap(%) CPU(seconds) gap ≤0.1%

θ β c = 0 c = 1 best min average max semi-exact c = 0 c = 1 PI(%) CPU(s)
0.2 50 0.99 0.93 1.01 0.99 11.3 25.4 1,778 110 11 −0.66 31,239
0.5 50 1.00 0.95 1.01 0.98 12.1 25.6 1,834 17 8 0.08 14,375
2.0 50 0.99 0.93 1.00 0.88 11.5 25.6 1,833 9 7 1.20 44,832
0.2 100 0.99 0.98 1.00 0.98 11.8 26.0 1,930 101 10 1.14 13,852
0.5 100 0.98 0.97 0.99 0.98 11.1 26.1 1,836 18 9 0.00 13,888
2.0 100 1.03 1.01 1.04 0.99 11.9 26.0 1,929 9 8 3.46 13,874

Table 1: Comparison between the semi-exact method and two heuristics. Budget set to 500.
Averages taken over 10 instances.

Tables 1 and 2 report mean CPU times (in seconds), the optimality gap when the stopping
criteria is met, and the average ratio between the objective value found by the heuristics
and by the semi-exact method (as described in Section 3.1), for two values of the available
budget. Heuristics are run for different values of parameter c, as in Eq. (67). We also report
the best solutions found across these runs in the best column. Additionally, we let CPLEX
run to optimality (gap<0.1%), regardless of the execution time, comparing the objective
value obtained within 2,000 seconds and the one obtained with no time limit; we report the
percentage increase (the PI column).

In most cases, CPLEX could not reach a gap less than 1% in the allotted CPU. As shown
in Tables 1 and 2, the average optimality gap lies in the [11,14] interval, when time is limited.
However, as illustrated in Figure 6, the optimal solutions are frequently found in the early
stages of the Branch-and-Bound process, while the remaining iterations are merely used to
prove optimality. The above observation is supported by the numbers in the PI column.
The percentage increase in objective value when running to optimality is not significant (less
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heuristic over semi-exact semi-exact
semi-exact ratio relative gap(%) CPU(seconds) gap ≤0.1%

θ β c = 0 c = 1 c = 10 best min average max semi-exact c = 0 c = 1 c = 10 PI(%) CPU(s)
0.2 50 0.86 0.86 0.62 0.94 0.93 12.0 24.2 1,862 20 12 5 0.14 56,616
0.5 50 0.83 0.86 0.62 0.93 2.22 13.7 21.6 2,011 10 9 5 1.40 22,871
2.0 50 0.83 0.86 0.63 0.94 2.25 12.8 21.3 2,010 9 8 5 0.10 39,029
0.2 100 0.84 0.86 0.58 0.88 0.99 11.3 20.7 1,826 15 10 6 −0.60 23,990
0.5 100 0.83 0.84 0.62 0.90 1.92 12.4 21.7 2,009 9 9 6 0.30 22,850
2.0 100 0.82 0.84 0.59 0.87 0.99 10.9 19.3 1,903 8 8 6 0.25 11,089

Table 2: Comparison between the semi-exact method and three heuristics. Budget set to 250.
Averages taken over 10 instances.

Figure 6: Lower and upper bounds throughout the branch-and-bound process for an instance
of (P-lin).

than 1.5%, in most cases, and 3.5% when the budget is 500, θ = 2.0 and β = 100), despite
a large increase in CPU. In some cases we observe a small decrease in the objective value,
which is explained as follows: when running to optimality, there can be a small increase in
the approximate objective value (the one found by solving the MILP), however the optimal
solution corresponds to a slightly small true objective. We remind you that the MILP is only
an approximated version of a highly nonlinear program.

Table 1 shows that, for a high budget, heuristics perform well, managing to attract and
serve, on average, the same number of customers as the semi-exact method, and in some
cases, outperforms it. This inconsistency is made possible due to approximation errors in the
various linearizations performed at both the lower level and in the objective function of the
semi-exact method.
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Table 2 tells a similar story. In this case (budget = 250), taken individually, heuristics for
c = 0, c = 1 and c = 10 do not perform very well, capturing as little as 58% of the semi-exact
value in one case. However, when retaining the best out of the three, the objective value
is around 87 − 94% of the semi-exact objective, at a much lower computational cost. For
instance, for budget = 250, the CPU required by the semi-exact method exceeds by a factor
of 50 (θ = 0.2, β = 50) up to 91 (θ = 2.0, β = 50) the combined CPU of the three heuristics.
This illustrates the limitations of the semi-exact method, which, although superior in terms of
solution quality, does not scale well. We also observed that, in the heuristic case, for identical
values of the parameter β, CPU is a decreasing function of θ. We recall that this parameter
is inversely proportional to the standard deviation of the Gumbel random variable embedded
into the logit process. When θ is small, users are spread over the facilities, regardless of their
disutility, making for highly nonlinear instances that are difficult to linearize. In contrast,
when θ is large, variance is small, and users focus on a limited number of destination facilities.

Within the same experimental setup, it is interesting to compare the number of facilities
opened by the various algorithms. As displayed in Table 3 and Table 4, the semi-exact
method opens between 4 and 6 facilities, and on average 5.6− 5.8 for a budget of 500. When
the budget is set to 250, the number of facilities opened by the semi-exact method is reduced
by more than one, on average. For both values of the budget, the leader opens less facilities
for β = 100 than for β = 50. Indeed, as β increases, users require a higher service rate to
make for the higher probability of balking. The budget is thus spent more on service rate
and a little less on opening new facilities.

number of open facilities fraction of common facilities
θ β exact c = 0 c = 1 c = 0 c = 1

0.2 50 5.9 8.3 6.8 0.52 0.54
0.5 50 6.0 8.4 6.8 0.56 0.45
2.0 50 5.9 8.4 6.8 0.66 0.55
0.2 100 5.7 8.2 7.4 0.62 0.55
0.5 100 5.7 8.2 7.6 0.54 0.48
2.0 100 5.6 8.2 7.3 0.48 0.51

Table 3: Number of open facilities. Budget set to 500. Averages over 10 different runs.

For the high budget and low values of c (0 or 1) the heuristics open on average 6.8− 8.4
facilities. Only half of the facilities opened by the semi-exact method are among them.
Nevertheless, the heuristic facilities yield large values of the objective function. For low
budget, a similar situation occurs although all methods open, on average, less facilities.
Overall, we notice a trend among heuristics: the average number of open facilities decreases
with c. The larger values of c yield smaller values of ξ, therefore, larger values of µ, and the
heuristics put more emphasis on providing high service rates, versus opening several facilities.
These results highlight the fact that determining the optimal facility locations is hard, and
that solutions of similar values can vastly differ in their topologies.

Although Table 2 suggests that heuristics do not perform very well when budget is small,
a closer inspection reveals that for some values of c, they yield results close to those of the
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number of open facilities fraction of common facilities
θ β exact c = 0 c = 1 c = 10 c = 0 c = 1 c = 10

0.2 50 3.8 5.7 5.7 2.7 0.54 0.54 0.28
0.5 50 4.1 5.9 5.7 2.8 0.45 0.40 0.21
2.0 50 3.8 5.9 5.6 2.7 0.51 0.50 0.26
0.2 100 3.5 5.7 5.5 3.0 0.50 0.50 0.40
0.5 100 3.7 5.7 5.6 2.8 0.54 0.55 0.35
2.0 100 3.7 5.7 5.5 3.0 0.54 0.54 0.33

Table 4: Number of open facilities. Budget set to 250. Averages over 10 different runs.

semi-exact method, as shown in Table 5, where the best results among those run for values
of c ranging from 0 to 10 are displayed. The best results were usually related to low values
of c. In this setting, heuristics manage to capture from 90% up to 95% of the number of
customers obtained by the semi-exact method, at a much lower computational cost.

heuristic over total
θ β semi-exact ratio CPU (sec.)

0.2 50 0.95 133
0.5 50 0.96 86
2.0 50 0.95 69
0.2 100 0.90 132
0.5 100 0.92 95
2.0 100 0.88 75

Table 5: Parameter c runs from 0 to 10. Budget set to 250.

In Table 6, we report the impact of c on the number of facilities opened, as well as on
the number of served customers, for 3 randomly chosen tests in our dataset. We vary the c
from 0 to 10, and report the best solution found for each test. We then compute the average
ratio between the latter and the optimum found by the semi-exact method. As c increases,
more importance is given to µ, and less budget is available for opening facilities. A second
trend is the concave-like behaviour (increasing, levelling, decreasing) of the number of served
customers with respect to c, shown in Table 6.

Finally, we decided to assess the performance of the heuristics, given an optimal set
of open facilities provided by the semi-exact method. Restricted to the determination of
service levels, the problem remains a hard nonlinear bilevel program. All tests have been
performed on the same aforementioned dataset, using 10 samples for x and 9 for λ and µ.
The results are displayed in Table 7, where we observe a sharp improvement. Actually, due
to the approximation errors in the semi-exact method, the latter was outperformed by the
theoretically suboptimal heuristics.
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# of open facilities served customers
c test 1 test 2 test 3 test 1 test 2 test 3
0 6 6 6 113.92 124.70 122.57
1 6 6 6 113.92 124.88 122.64
2 6 6 6 114.82 124.95 123.29
3 6 6 6 115.94 122.55 123.33
4 4 5 7 99.39 119.54 123.75
5 3 4 6 84.42 98.82 124.07
6 3 1 6 84.42 45.70 123.99
7 2 1 5 74.21 45.70 116.87
8 1 1 4 53.64 45.70 106.71
9 1 1 3 53.64 45.70 90.48

10 1 1 1 53.64 45.70 62.30

Table 6: Sensitivity of analysis with respect to c in formula (67).

heuristic over semi-exact ratio
θ β c = 0 c = 1 c = 10 best

0.2 50 1.02 (5) 1.02 (4) 0.84 (1) 1.02
0.5 50 1.02 (6) 1.01 (2) 0.86 (2) 1.02
2.0 50 1.02 (6) 1.00 (4) 0.83 (1) 1.02
0.2 100 1.01 (7) 1.00 (3) 0.88 (1) 1.02
0.5 100 1.02 (5) 1.00 (5) 0.89 (0) 1.02
2.0 100 1.02 (8) 1.00 (3) 0.89 (3) 1.02

Table 7: Heuristics run from facility locations provided by the semi-exact method. Budget
set to 250. Within parentheses: number of instances for which the corresponding value of c
yielded the best result. The sum of values exceed in some cases the total number of tests, as
sometimes, different heuristics yield the same optimum.

Accuracy of linearization

In order to measure the impact of the number of sample points involved in the approximation
of the nonlinear functions W̃ and P̃K (K was set to 10), we vary λ and µ for values ranging
from 1 to 10, for a step of 0.1. We then compute the absolute difference between W and
PK , and their linearized counterparts across this fine-grained domain. Note that, due to
nonconvexity in the vicinity of the origin (see Figure 2), the tangents in this area can be
very steep and thus wildly overestimate the true value of the function. For this reason,
linearization sample points were not selected close to 0. As observed in Table 8, increasing
the number of sample points can actually worsen the approximation, due to non-convexity
of the original functions. The way around this issue would be to make nonconvex piecewise
linear approximations, the drawback being the addition of a significant number of binary
variables, and thus a sharp increase in the running time of the algorithm. When selecting
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a number of samples, one has to achieve a trade-off between the error on W , on PK , the
running time and the quality of the solution.

# of samples Error (average) # of samples Error (average)
R (on λ) P (on µ) W PK R (on λ) P (on µ) W PK

3 3 1.34 0.29 7 3 2.10 0.20
3 5 1.33 0.36 7 5 2.00 0.42
3 7 1.77 0.38 7 7 2.17 0.42
3 10 2.94 0.41 7 10 5.51 0.42
5 3 1.13 0.38 10 3 2.05 0.26
5 5 1.24 0.41 10 5 2.00 0.43
5 7 2.67 0.41 10 7 3.36 0.43
5 10 4.37 0.42 10 10 3.18 0.43

Table 8: Linearization error for the waiting time and probability of balking, for different
number of samples, when K = 10.

# of samples CPLEX true no of estimated no of
N (on x) R (on λ) P (on µ) CPU limit(s) CPU(s) gap(%) served customers served customers

2 2 2 1,000 562 9.71 88.15 80.35
5 3 3 2,000 829 0.92 97.89 100.65
7 3 3 5,000 1,057 0.97 98.33 100.65
7 5 5 7,000 5,752 0.94 102.24 103.42

10 5 5 10,000 8,856 7.78 100.66 103.81
10 7 7 15,000 12,478 1.14 104.91 106.80
12 7 7 20,000 16,921 16.56 94.13 93.69

Table 9: Number of attracted and served customers for different number of samples (K = 10),
θ = 0.2, β = 50.

Finally, we investigate the impact of sample size on the quality of the optimal solution
of the generated MILP. Surprisingly, as observed in Table 9 this impact is almost negligible,
and the objective can actually decrease when the sample size increases. A similar behaviour
has been observed in [Marcotte, 1986] for a bilevel pricing model where a probability density
function was approximated by a coarse-grained histogram. This behaviour can also be ex-
plained by factors such as travel time. For instance, if a facility is located far from a demand
point, a small error in the waiting time will not significantly impact the number of arriving
customers.

According to the results displayed in Table 9, we observe that the value of the objective
function estimated by the approximate model does not correlate well with the actual optimal
value obtained by performing an assignment of users with respect to the service rate vector
µ. Note that for 10, 7, 7 and 12, 7, 7 CPLEX was not able to find a feasible solution in the
alloted time, for 3 out of 10 tests. Since the true number of attracted and served customers
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is quite insensitive to the number of samples, it is clearly advantageous to set those number
to values as small as possible, but yet not too small.

An illustrative case

In this section we illustrate our methods on a fictitious case study that fits well the model de-
scribed in Section 2.2. We consider the construction of walk-in clinics in the Mont-Tremblant,
Canada area. Walk-in clinics provide professional assessment and treatment for minor ill-
nesses or injuries, for people who do not have a family doctor, and often function without
an appointment, on a first-come first-served basis. According to Statistics Canada (2017)
Health Fact Sheets, in 2014 25.2% of Quebec residents were without a regular doctor. Hav-
ing a regular doctor plays a key role in the early screening and treatment of various diseases.
The problem is to decide the location and service rate of new facilities as to maximize the
number of patients served by the clinics.

Number of open facilities
Budget=15 Budget=20 Budget=25

θ β = 10 β = 50 β = 100 β = 10 β = 50 β = 100 β = 10 β = 50 β = 100

0.01 2 2 2 2 3 3 3 3 3
0.1 2 2 2 2 2 2 3 3 2
0.2 2 2 2 2 2 2 2 2 2
0.5 2 2 2 2 2 2 2 2 2

Table 10: Parametric analysis on θ, β and the budget.

Mont-Tremblant has 17 population zones, to which we assign demand nodes, which we
assume to be spatially located in the center of each zone. The population count per de-
mand node is generated as follows. The initial population data is taken from Statistics
Canada [Census, 2016], out of which only 25.2% would be interested to visit a walk-in clinic.
Considering 250 days a year, 8 hours a day, and an average of 4 doctor visits per year, per
person, the hourly demand count represents only 0.05% of the initial population.

There are already 4 medical clinics in Mont-Tremblant that we consider serving on average
between 1 and 3 clients per hour. Assuming the balking threshold at 10 (people balk if there
are 10 or more people waiting in line), and a fixed cost/variable cost ratio of 5:1, we perform
a parametric analysis on β, θ and the budget. We show the results in Table 10.

Note that for small values of θ, the number of open facilities increases with the budget,
which is expected. For higher values of θ, only two facilities are open, regardless of the
increase in the budget. When θ is close to 0, clients choose facilities with almost no respect
to their disutility. When θ is higher, the clinic must ensure low waiting time and probability
of balking. For instance, when θ = 0.1 it opens 3 facilities for β = 10 and only 2 when
β = 100, for a budget of 25. This happens due to β (the balking coefficient in the disutility
formula). When clients place a low importance on the probability of balking (e.g. β = 10),
more money can be spent in opening new clinics. On the other hand, when θ = 100, we open
only two facilities and we invest more in a higher service rate.
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Figure 7: Population Map of Mont-Tremblant, Qc, Canada

In Figure 7 we illustrate the spatial repartition of the facilities, for the cases mentioned
above. The main observation is that the facilities are opened adjacent to the highly populated
areas, but not within them. This demonstrates the complexity of the problem, showing that
the most populated areas are not always the best choice for an optimal location. We also
note that the emerging facilities seem to be close to the competitor’s facilities.

5 Conclusion and extensions

In this paper, we have addressed a complex location problem that, beyond the combinatorial
nature of location decisions, involves two sources of nonlinearity, one related to queueing at
the facilities, and the second to the random utility model that characterizes user behaviour.
Cast within a bilevel setting, we proposed for its solution a semi-exact algorithm, as well as
a parameterized heuristic. We also provided an illustrative case of a real-life application.

While the results are more than encouraging, our findings raise a number of issues, from
either the modelling, theoretical or algorithmic viewpoints. For instance, the surprising
result that the standard linearization of the lower level complementarity constraints proved
less efficient, numerically, than an approach based on a triangular approximation involving a
larger number of binary variables, is certainly worth investigating.

On the modelling side, future work will integrate features such as variable demand and
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the possibility of either increasing or decreasing the service rates of existing facilities. This
will involve a piecewise affine investment function whose two slopes reflect the fact that
economies resulting from lowering service are less than those of increasing it. More realistic
models where the price of service depends on location should also be considered.

On the algorithmic side, three avenues can be pursued: (i) the design of improved ap-
proximations for the nonlinear terms involved in the semi-exact method, and (ii) the design
of fast heuristics for determining good sets of facility locations, from which efficient methods
for determining optimal service rates can be initiated and, finally (iii) the investigation of ap-
proximations based on the exact mixed integer formulation of the logit-based location models
proposed by [Haase, 2009], [Benati and Hansen, 2002], [Zhang et al., 2012], and numerically
analyzed by [Haase and Müller, 2014].
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A Notation and proofs

In this e-companion we present the notation used throughout this paper, and we complete
the proofs of some propositions.

B Notation
Sets

I: set of demand nodes;
J : set of candidate facility locations (leader and competition);
Jc: set of competition’s facilities;
J1: set of leader’s candidate sites;
J∗1 ⊆ J1: set of leader’s open facilities
J∗ ⊆ J : set of open facilities (leader and competitor).
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Parameters
di: demand originating from node i ∈ I;
tij : travel time between nodes i ∈ I and j ∈ J ;
α: coefficient of the waiting time in the disutility formula;
β: coefficient of the balking probability in the disutility formula;
B: available budget (for opening new facilities and associated service rates);
cf : fixed cost associated with opening a new facility;
cµ : cost per unit of service;
µ̄ : maximum service rate allowed by the budget;
p: number of facilities to open.

Basic decision variables
yj : binary variable set to 1 if a facility is open at site j, and to 0 otherwise;
µj : service rate at open facilities.

Additional variables
xij : arrival rate at at facility j ∈ J originating from demand node i ∈ I;
λj : arrival rate at node j ∈ J ;
ρj : utilization rate of facility j ∈ J ;
λ̄j : throughput rate (customers accessing service) at node j ∈ J ;
wj : mean queueing time at facility j.

C Proofs of Propositions 1, 2, 4, 5, 6, 7, 9, 10, 11 and Theo-
rem 1

Proposition 1. The waiting time wj is increasing in λj.

Proof. Proof. The derivative of wj with respect to λj (see Equation (9)) is

∂wj
∂λj

=
∂wj
∂ρj

∂ρj
∂λj

=
∂wj
∂ρj

1

µj
.

To show that ∂wj/∂ρj is nonnegative for all ρj 6= 1, let us consider

∂wj
∂ρj

=
1

µj

− K2ρK − 1
j(

ρKj − 1
)2

+
1

(ρj − 1)2

 .

Basic algebraic manipulation yields

1

(ρj − 1)2
≥

K2ρK − 1
j(

ρKj − 1
)2
⇐⇒

K − 1∑
i = 0

ρij ≥ Kρ
(K − 1)/2
j . (68)

To prove that the right-hand inequality holds true, we consider two cases.
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If K is odd:

K − 1∑
i = 0

ρij =

(K − 1)/2− 1∑
i = 0

(
ρij + ρK − 1− i

j

)
+ ρ

(K − 1)/2
j

≥ 2

(K − 1)/2− 1∑
i = 0

ρ
(K − 1)/2
j + ρ

(K − 1)/2
j = Kρ

(K − 1)/2
j .

If K is even:

K − 1∑
i = 0

ρij =

(K − 2)/2∑
i = 0

(
ρij + ρK − 1− i

j

)
≥ 2

(K − 2)/2∑
i = 0

ρ
(K − 1)/2
j = Kρ

(K − 1)/2
j .

It follows that wj is an increasing function of λj .

Proposition 2.

Proposition 2. The probability of balking pKj is increasing in λj.

Proof. Proof. The derivative of pKj with respect to λj is

p′Kj =
λK − 1
j µj(

λK + 1
j − µK + 1

j

)2

[
λK + 1
j − (K + 1)λjµ

K
j +KµK + 1

j

]

= σ[xK + 1 − (K + 1)x+K],

where σ is a positive number and x = λj/µj . By differentiating with respect to x, we find that
the right-hand-side achieves its minimum value 0 at x = 1, which concludes the proof.

Proposition 4.

Proposition 4. When K =∞, i.e., balking does not occur (in this case, the model admits a
solution only if the total service rate exceeds the total demand rate), the lower level objective
function is convex jointly in λ and µ.

Proof. Proof. If K =∞, the probability of balking can be removed from the objective, since
it is equal to 0. Moreover, wj = 1/(µj − λj), and the lower level objective takes the form

∑
i ∈ I

∑
j ∈ J∗

[
1

θ
xij lnxij + xijtij

]
− α

∑
j ∈ J∗

ln(µj − λj).

Basic algebra shows that its Hessian is positive semidefinite, hence the function is convex.

Proposition 5.
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Proposition 5. The integral of the waiting time, Wj(λj , µj) is pseudoconvex.

Proof. Proof. Let x = (λx, µx) and y = (λy, µy). Assume that ∇W (x)(y − x) ≥ 0. Then we
have: (

wj(x),−λx
µx
wj(x)

)
(λy − λx, µy − µx) ≥ 0

⇒ (ρy − ρx)wj(x) ≥ 0

⇒ ρy ≥ ρx, (69)

since wj is nonnegative. On the other hand, ∂Wj/∂ρ = µjwj is nonnegative, we have that
Wj is increasing in ρ, so ρy ≥ ρx ⇒ Wj(y) ≥ Wj(x). From Eq (69) it follows that if
∇W (x)(y − x) ≥ 0 then Wj(y) ≥Wj(x), hence Wj is pseudoconvex.

Proposition 6.

Proposition 6. G1 is strongly monotone in x of modulus θ · dMAX.

Proof. Proof. [Gilbert et al., 2015] have already argued that G1 is strongly monotone. In-
deed, the associated Jacobian is a positive definite diagonal matrix over D, with the smallest
possible eigenvalue 1/(θ · dMAX). It follows that G1 is strongly monotone with modulus
θ · dMAX.

Proposition 7.

Proposition 7. G2 is monotone in x.

Proof. Proof.

〈G2(µ, x)−G2(µ, y), x− y〉 =
∑
i ∈ I

∑
j ∈ J∗

 1

µj −
∑
l ∈ I

xl,j
− 1

µj −
∑
l ∈ I

yl,j

 · (xij − yij)

=
∑

j ∈ J∗


µj −

∑
l ∈ I

yl,j − µj +
∑
l ∈ I

xl,jµj − ∑
l ∈ I

xl,j

 ·
µj − ∑

l ∈ I
yl,j

 ·
∑
i ∈ I

(xij − yij)



=
∑

j ∈ J∗


∑
l ∈ I

(xl,j − yl,j)
∑
l ∈ I

(xl,j − yl,j)µj − ∑
l ∈ I

xl,j

 ·
µj − ∑

l ∈ I
yl,j




≥ 0
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Proposition 9.

Proposition 9. If K =∞ and there are no fixed costs, the surrogate model is convex.

Proof. Proof. According to Proposition 4, the objective is jointly convex in µ and λ. Moreover
one can, without loss of generality, open all facilities and hence dispense with the binary vector
y. Notwithstanding, a facility can be closed by setting its service level to zero.

Proposition 10.

Proposition 10. At the optimum of (PH*), if K =∞, queue waiting times are equal for all
leader’s facilities.

Proof. Proof. For fixed y variables, Equation (63) can be rewritten as∑
j∈J∗

µj ≤ µ̄, (70)

where µ̄ is the maximum possible total service rate allowed by the budget. But K = ∞, so
wj(λj , µj) = 1/ (µj − λj) and pKj(λj , µj) = 0, which yields the mathematical program

(PHY*) min
µ, x

∑
i ∈ I

∑
j ∈ J∗

xijtij − α
∑

j ∈ J∗
ln(µj − (

∑
i ∈ I

xij))

s.t. constraints (62), (65), (66), (70)

Let δi, πij and γ be the Lagrange multipliers associated with Equations (62), (66) and (70),
respectively. Variables δi are free, while γ and πij are restricted to be nonnegative. The
stationarity conditions of the above program are:

∂L

∂xij
= 0 ⇒ tij + αwj(λj , µj)− δi − πij = 0, ∀i ∈ I, ∀j ∈ J∗ (71)

∂L

∂µj
= 0 ⇒ −αwj(λj , µj) + γ = 0, ∀j ∈ J∗ ∩ J1, (72)

and the conclusion follows from Equation (72).

We observe, after plugging αwj(λj , µj) from Equation (72) into Equation (71) for a given
demand node i, that only one flow xij is nonzero, provided that transportation times to the
leader’s facilities are distinct.

Proposition 11.

Proposition 11. There exists a value of ξ∗ for which (PHY*(ξ∗)) yields an optimal solution
for (P*).

Proof. Proof. Let y∗ and µ∗ be optimal for (P*). Without loss of generality (there are
no fixed costs) we assume that all facilities are open. At equilibrium, let c∗i be the cost
associated with demand node i and optimal service rate µ∗. Let x∗, wj(x∗, µ∗j ) and c

∗
i satisfy

Equation (23) and (24). If xij is positive, we have:

tij + αwj(x
∗, µ∗) = c∗i , ∀j ∈ J, ∀i ∈ I. (73)
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Let C = maxi∈I {c∗i } in the initial formulation. For j ∈ J , we let ξj = c∗i − tij −C and select
and index i corresponding to a positive flow x∗ij . If no such i exists, then µ∗j = 0, otherwise
the leader would waste monetary resources. We then set ξj = −C.

Now, let δi, πij and γ be the Lagrange multipliers associated with Equations (62), (66)
and (70), respectively. Variables δi and γ are free, while πij are restricted to be nonnegative.
The stationarity conditions of the program above take the form

∂ L
∂xij

= 0 ⇒ tij + αwj(x, µj)− δi = 0, if xij > 0, ∀i ∈ I, ∀j ∈ J (74)

∂ L
∂µj

= 0 ⇒ −αwj(x, µj) + γ + ξj = 0, ∀j ∈ J1. (75)

Note that the derivative of the Lagrangian with respect to xij is left unchanged, i.e., Equa-
tion (74) is equivalent to Equation (71). If γ = C, we derive from Equation (75) that
αwj(x, µj) = c∗i − tij , which is equivalent to Equation (74). This completes the proof, since
for the given values of ξ, variables x and µ match the optimal solution of (P*).

Theorem 1.

Theorem 1. The approximation error of the upper-level objective function is at most O(1/N1+
1/N2), where N1 and N2 are the number of samples for the linearization of g1 and g2, re-
spectively.

Proof. Proof. Let Ḡ be an approximation of G. We note x̄ = solution of IV(Ḡ(µ, ·), D), and
x = solution of IV(G(µ, ·), D). Then the following inequalities hold:

〈G(µ, x), x̄− x〉 ≥ 0〈
Ḡ(µ, x̄), x− x̄

〉
≥ 0

⇒
〈
Ḡ(µ, x̄)−G(µ, x), x− x̄

〉
≥ 0 (76)

From the strong monotonicity of G and Eq. (76) it follows that〈
Ḡ(µ, x̄)−G(µ, x̄), x− x̄

〉
≥ 1

θ · dMAX
||x− x̄||2. (77)

We write the norm, and we obtain

θ · dMAX · ||Ḡ(µ, x̄)−G(µ, x̄)|| ≥ ||x− x̄||. (78)

It follows that

|f(x)− f(x̄)| = |
∑
i ∈ I

∑
j ∈ J∗1

(xij − x̄ij) | ≤
√
|I| · |J |||x− x̄|| (Cauchy-Schwarz inequality)

≤
√
|I| · |J | θ · dMAX · ||Ḡ(µ, x̄)−G(µ, x̄)||. (79)

We perform two separate linear approximations on g1 and g2, respectively. Then the
vector functions Ḡ1(x) and Ḡ2(x) are piecewise constant approximations, that we detail
separately.
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A. Ḡ1 : Each component (i, j) of this vector is a constant approximation of log(xij),
satisfying:

i) there are N1 total samples on xij , starting from rmin to dMAX.

ii) the sampling points are chosen so that the slopes are equidistant

iii) the slopes are tangents of x log(x), evaluated in the sampling points.

We note with ∆1 the difference between two consecutive slopes: ∆1 =
log(dMAX)− log(rmin)

N1 − 1
.

Then |Ḡ1(i,j) −G1(i,j)| ≤ ∆1, which yields:

||Ḡ1(x)−G1(x)|| =
√∑
i ∈ I

∑
j∈J∗

|Ḡ1(i,j) −G1(i,j)|2 ≤
(log(dMAX)− log(rmin))

√
|I| · |J |

N1 − 1

(80)

B. Ḡ2 : This is a vector function whose component corresponding to a pair (i, j) is a
constant piecewise approximation of 1/qj , where = µj −

∑
i ∈ I

xij . Similar to Ḡ1, this

linearization satisfies the following:

i) there are N2 total samples, starting from ψ to µMAX.

ii) the sampling points are chosen so that the slopes are equidistant

iii) the slopes are tangents of − log(q), evaluated in the sampling points.

We note with ∆2 the difference between two consecutive slopes: ∆2 =

1

ψ
− 1

µMAX
N2 − 1

.

Then |Ḡ2(i,j) −G2(i,j)| ≤ ∆2, which yields

||Ḡ2(x)−G2(x)|| =
√√√√∑
i ∈ I

∑
j ∈ J∗

|Ḡ2(xij)−G2(xij)|2 ≤

(
1

ψ
− 1

µMAX

)√
|I| · |J |

N2 − 1

(81)

From Eq. (79) it follows that, given y and µ:

|f(x)− f(x̄)| ≤ θ · dMAX|I| · |J |

(log(dMAX)− log(rmin))

N1 − 1
+ α

1

ψ
− 1

µMAX
N2 − 1

 ∈ O(
1

N1
+

1

N2
).

(82)

Theorem 1 has several implications.
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• For a given set of open facilities, the absolute difference between the optimal and the
approximated objective value is bounded by the right-hand-side of inequality (82). For
large values of N1 and N2, the two values are very close.

• If the optimal solution is unique in terms of the location vector y, and the absolute
difference between the objective and other solutions objectives are lower than the right
hand side of inequality (82), the approximation algorithm will find the optimum loca-
tions.

D Linearization of optimality conditions

D.1 Complementarity constraints for Program (P2-lin)

Let γi, δj , νnij , π
rp
j , ηrpj , and φij be the dual variables associated with constraints (44), (45),

(46), (47), (48) and (49), respectively. Then the complementarity constraints for program
(P2-lin) can be written as:

γi

∑
j∈J∗

xij − di

 = 0 ∀i ∈ I (83)

δj

(
λj −

∑
i∈I

xij

)
= 0 ∀j ∈ J∗ (84)

νnij
(
vij − anfxij − bnf

)
= 0 ∀i ∈ I; ∀j ∈ J∗; ∀n ∈ N (85)

πrpj
(
uj − arpg λj − brpg µj − crpg

)
= 0 ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (86)

ηrpj
(
zj − arph λj − b

rp
h µj − c

rp
h

)
= 0 ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (87)

φijxij = 0 ∀i ∈ I; ∀j ∈ J∗, (88)

and can be linearized in the standard fashion, through the introduction of binary variables
and big-M constants. For instance, the last constraint is replaced by the inequalities

φij ≤ Muij

xij ≤ M(1− uij),

where uij ∈ {0, 1}. It is possible to find a valid upper bound for the variable φij however, a
large value of M is required, which leads to a poor relaxation and consequently a ill-behaved
branch-and-bound algorithm.

D.2 Equality between primal and dual objectives

Alternatively, constraints (83) – (88) can be replaced with constraint (89), which represents
the equality between between the primal and dual objective of (P2-lin). Then the optimality
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constraints of (P2-lin) are∑
i ∈ I

γidi +
∑
n ∈ N

∑
i ∈ I

∑
j ∈ J

νnijb
n
f +

∑
r ∈ R

∑
p ∈ P

∑
j ∈ J

(
brpg µjπ

rp
j + brph µjη

rp
j + crpg π

rp
j + crph η

rp
j

)
=
∑
i ∈ I

∑
j ∈ J

[
1

θ
vij + xijtij

]
+ α

∑
j ∈ J

uj + β
∑
j ∈ J

zj , (89)

∑
j ∈ J

xij = di, ∀i ∈ I

λj =
∑
i ∈ I

xij , ∀j ∈ J

vij − anfxij ≥ bnf , ∀i ∈ I;∀j ∈ J ;∀n ∈ N
uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J ; ∀r ∈ R;∀p ∈ P
zj − arph λj − b

rp
h µj ≥ c

rp
h , ∀j ∈ J ;∀r ∈ R; ∀p ∈ P

γi + δj −
∑
n ∈ N

anfν
n
ij ≤ tij , ∀i ∈ I; ∀j ∈ J

− δj −
∑
r ∈ R

∑
p ∈ P

(
arpg π

rp
j + arph η

rp
j

)
= 0, ∀j ∈ J

∑
n ∈ N

νnij =
1

θ
, ∀i ∈ I; ∀j ∈ J

∑
r ∈ R

∑
p ∈ P

πrpj = α, ∀j ∈ J

∑
r ∈ R

∑
p ∈ P

ηrpj = β, ∀j ∈ J

πrpj , η
rp
j ≥ 0, ∀j ∈ J ; ∀r ∈ R;∀p ∈ P

xij ≥ 0, νnij ≥ 0, ∀i ∈ I;∀j ∈ J ;∀n ∈ N.

To obtain a MILP formulation, we linearize the nonlinear terms µjπ
rp
j and µjη

rp
j via the

triangle method described in [D’Ambrosio et al., 2010]. For each term µjπ
kq
j we introduce

2(R − 1)(P − 1) binary variables lπjrpkq and lπjrpkq associated with the upper and lower tri-
angles, respectively, of the rectangle defined by the intervals [πr, πr+1) and [µp, µp+1). Note
that the values of π and η are upper bounded by α and β, respectively. Additionally, µ is
bounded by the maximum value allowed by the leader’s budget, µ̄. Next, we introduce J1RP
continuous variables sjrpkq ∈ [0, 1] which will be used to express the couple (πkqj , µj) as a
convex combination of triangle vertices. We introduce a similar linearization for the term
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µjη
kh
j . The approximation of µjπ

kq
j and µjη

kq
j is then

R− 1∑
r = 1

P − 1∑
p = 1

(
l
π
jrpkq + lπjrpkq

)
= 1, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (90)

sπjrpkq ≤ l
π
jrpkq + lπjrpkq + l

π
jrp−1kq + lπjr−1p−1kq + l

π
jr−1p−1kq + lπjr−1pkq,

∀j ∈ J1;∀r ∈ R; ∀p ∈ P ; ∀k ∈ R;∀q ∈ P
(91)

R∑
r = 1

P∑
p = 1

sπjrpkq = 1, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (92)

πkqj =

R∑
r = 1

P∑
p = 1

sπjrpkqπ
r, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (93)

µj =
R∑
r=1

P∑
p=1

sπjrpkqµ
p, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (94)

eπjkq =
R∑

r = 1

P∑
p = 1

sπjrpkqπ
rµp, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (95)

R− 1∑
r = 1

P − 1∑
p = 1

(
l
η
jrpkq + lηjrpkq

)
= 1, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (96)

sηjrpkq ≤ l
η
jrpkq + lηjrpkq + l

η
jrp−1kq + lηjr−1p−1kq + l

η
jr−1p−1kq + lηjr−1pkq,

∀j ∈ J1;∀r ∈ R; ∀p ∈ P ; ∀k ∈ R;∀h ∈ P
(97)

R∑
r = 1

P∑
p = 1

sηjrpkq = 1, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (98)

ηkqj =
R∑

r = 1

P∑
p = 1

sηjrpkqη
r, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (99)

µj =

R∑
r = 1

P∑
p = 1

sηjrpkqµ
p, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (100)

eηjkq =
R∑

r = 1

P∑
p = 1

sηjrpkqη
rµp, ∀j ∈ J1;∀k ∈ R; ∀q ∈ P (101)

The complete MILP formulation is presented below. It involves variables associated with the
original fixed point (or bilevel) formulation (y, µ, x), together with variables issued from the
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linearizations and primal-dual optimality conditions.

(P-lin) max
∑
j ∈ J1

ej

∑
j ∈ J1

yjcf +
∑
j ∈ J1

cµµj ≤ B,

µj ≤ µ̄yj , ∀j ∈ J1∑
r ∈ R

∑
p ∈ P

∑
j ∈ Jc

(
brpg π

rp
j µj + brph η

rp
j µj + crpg π

rp
j + crph η

rp
j

)
+

∑
n ∈ N

∑
i ∈ I

∑
j ∈ J

νnijb
n
f

+
∑
r ∈ R

∑
p ∈ P

∑
j ∈ J1

(
brpg e

π
jrp + brph e

η
jrp + cmpg πrpj + crph η

rp
j

)
+
∑
i ∈ I

γidi

=
∑
i ∈ I

∑
j ∈ J

[
1

θ
vij + xijtij

]
+ α

∑
j ∈ J

uj + β
∑
j ∈ J

zj ,

∑
j ∈ J

xij = di, ∀i ∈ I

λj =
∑
i ∈ I

xij , ∀j ∈ J

vij − anfxij ≥ bnf , ∀i ∈ I; ∀j ∈ J ; ∀n ∈ N
uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J ;∀r ∈ R; ∀p ∈ P
zj − arph λj − b

rp
h µj ≥ c

rp
h , ∀j ∈ J ;∀r ∈ R; ∀p ∈ P

γi + δj −
∑
n ∈ N

anfν
n
ij ≤ tij , ∀i ∈ I; ∀j ∈ J

− δj −
∑
r ∈ R

∑
p ∈ P

(
arpg π

rp
j + arph η

rp
j

)
= 0, ∀j ∈ J

∑
n ∈ N

νnij =
1

θ
, ∀i ∈ I; ∀j ∈ J

∑
r ∈ R

∑
p ∈ P

πrpj = α, ∀j ∈ J

∑
r ∈ R

∑
p ∈ P

ηrpj = β, ∀j ∈ J

constraints (90) – (101) and (50) – (55),
yj ∈ {0, 1}, µj , πrpj , η

rp
j ≥ 0, ∀j ∈ J ; ∀r ∈ R;∀p ∈ P

xij ≥ 0, νnij ≥ 0, ∀i ∈ I;∀j ∈ J ; ∀n ∈ N.
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D.3 Example of lower level linearization when K =∞

Recall that, according to Proposition 4, the function is convex if the buffer zone is infinite
(no balking). In that situation, the maximum of the linear approximations is consistent with
the original function, give or take the approximation error.

Proceeding as before, we obtain

grp(λ, µ) = arpg λ+ brpg µ+ crpg =
α

µp − λr
λ− α

µp − λr
µ− α(ln(µp − λr)− 1). (102)

This yields the linearized lower level program

(P2∞) min
x, v, u

∑
i ∈ I

∑
j ∈ J∗

[
1

θ
vij + xijtij

]
+ α

∑
j ∈ J∗

uj (103)

s.t.
∑

j ∈ J∗
xij = di, ∀i ∈ I (104)

λj =
∑
i ∈ I

xij , ∀j ∈ J∗ (105)

vij − anfxij ≥ bnf , ∀i ∈ I;∀j ∈ J∗;∀n ∈ N (106)

uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J∗;∀r ∈ R; ∀p ∈ P (107)

xij ≥ 0, ∀i ∈ I;∀j ∈ J∗. (108)

D.4 Taxonomy

We now provide a taxonomy of the models most relevant to our research, with respect to four
features: (i) user choice environment (yes or no), (ii) stochastic (or not), (iii) inclusion of con-
gestion (or not) at facilities, (iv) inclusion (or not) of competition. The relevant information
is displayed in Table 11.
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Authors user choice stochastic congestion competition

[Abouee-Mehrizi et al., 2011] × × ×
[Averbakh et al., 2007] ×
[Berman and Drezner, 2006] × ×
[Camacho-Vallejo et al., 2014] ×
[Castillo et al., 2009] × ×
[Desrochers et al., 1995] ×
[Kim, 2013] ×
[Küçükaydin et al., 2011] × × ×
[Labbé and Hakimi, 1991] ×
[Marianov and Serra, 2001] ×
[Marianov, 2003] × ×
[Marianov et al., 2008] × × × ×
[Marić et al., 2012] ×
[Rahmati et al., 2014] × ×
[Vidyarthi and Jayaswal, 2014] × ×
[Zhang et al., 2010] × ×

Table 11: Taxonomy of congested facility location models
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