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1. Introduction

Server-to-Customer systems represent an important class of spatially distributed queuing systems

due to their strong presence in modern urban settings ranging from Emergency Service Systems

(ESS) including ambulance, fire, police, and repair to non-emergency applications such as non-

scheduled home visits, demand-responsive delivery operations, and dial-a-ride transport systems.

The nature of ESSs, which involves risks to human lives, has made them a focal point of study

by the operations research community over the past few decades as evidenced by the substantial

research effort targeted at modelling, designing, and analyzing such systems in different application

settings.

An important aspect of the strategic or operational design of ESSs is the ability to accurately

predict the equilibrium behavior and hence the expected performance of the system with a given

configuration. Discrete-event simulation can be used for this purpose and offers great flexibility

in detailed modelling of the system at hand; however, its computational cost can be prohibitive

in many practical applications. Fortunately, there exist analytical alternatives to simulation, with

reduced computational overhead and reasonable accuracy.

Larson (1974) was the first to view ESS in urban settings as spatially distributed queues, and

developed the hypercube queuing model as a descriptive tool for evaluating their performance.

For an ESS with N servers, the model sets up a system of 2N linear equations the solution of

which gives the equilibrium probabilities of system states and makes it possible to compute a

host of region-wide and server-specific performance measures, such as individual server workloads

and the rates at which each server is dispatched to different demand locations. However, the

exponential growth of the computational expense of the hypercube model with the fleet size may

hinder its application to real life systems with large numbers of response units. This has motivated

researchers to develop more tractable approximate alternatives. Larson (1975) was also the first

to propose such an approximate procedure where an iterative algorithm is used to solve a system

of N nonlinear equations for the individual server workloads (instead of the 2N state probabilities

of the exact model). The development is based on approximating the spatially distributed system

with an M/M/N queue or an M/M/N/N loss system (depending on whether queues are allowed

or not), and unlike the exact model, assumes identical mean service rates. Server dependency has

also been approximately taken into account through a set of correction factors.

In this paper, we develop approximation algorithms for both loss and queuing ESSs with two

main features. First, we allow multiple call types and priority processing of the waiting requests

for the case where queues are allowed. Second, we relax the assumption of full backups, in which

any server can travel to any demand location; instead, we allow arbitrary partial backups where
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each server can only be dispatched to calls from its own predetermined and priority-specific subset

of demand locations. The service times in our models can depend on the customer and server

locations and also on the priority level of the request for service. We believe the relaxation of these

restricting assumptions represents important steps toward increased realism and applicability of

such approximation algorithms.

The assumption of full or total backups, rarely reflects the complex dispatching protocols of the

real systems and hence can substantially limit the realism of the descriptive modelling, and as

shown by our experiments, may lead to unreliable performance approximations. The paramount

importance of the quickness of service delivery in ESSs naturally imposes an upper limit on the

customer proximity to the responding server beyond which the quality or outcome of the service

delivered can be severely degraded. This is reflected in the notion of coverage thresholds in loca-

tion science literature and also in the behaviour of real systems where the distance between the

customers and servers is a crucial factor in making dispatching decisions. Iannoni and Morabito

(2007) present an example of an Emergency Medical Services (EMS) system deployed on highways

where only the first and second closest ambulances are allowed to be dispatched to a call, and

the request will be transferred to a private service if these two ambulances are busy at the arrival

moment even if there are other available servers. Their work is also the only paper incorporating

partial backups in the exact hypercube queuing model. To the best of our knowledge, there exists

no published approximate method to deal with partial backups in server-to-customer systems or

priorities in the waiting lines.

The original hypercube model and its approximation can handle a specific type of priority

through the procedure of layering, in which demand zones are split into separate sub-nodes each

generating a certain type of request and with their own list of preferred servers. However, this

basic scheme only considers immediate dispatches and cannot be used to adequately represent the

real life ESSs where the waiting customers are processed according to their priority levels. While

a recent paper by de Souza et al. (2015) extends the exact hypercube model to account for priori-

ties in the queue of waiting customers, our work is the first to provide the same extension in the

approximate model.

The concurrent relaxation of the full backup and FCFS queue discipline assumptions in the

approximate hypercube context, not only provides unique analytical and computational challenges,

but also paves the way for more sophisticated and realistic modelling and analysis of ESSs for which

these simplifying assumptions clearly do not hold. A typical EMS operation with a heterogeneous

fleet, consisting of basic life support vehicles and advanced life support ambulances reserved for

higher priority patients, is an example of such a system and in fact has been the primary motivation

for this work.
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The paper is organized as follows: Section 2 gives a brief review of the relevant literature followed

by the formulation of our approximation model in Section 3. The approximation algorithm is

outlined in Section 4 and in Section 5, we describe our experimental setup and observations.

Concluding remarks are given in Section 6 along with possible directions for future development.

2. Literature Review

We first review the notable assumptions underlying Larson’s hypercube queuing model and its

approximate alternative. Both procedures assume that the demand for service is distributed over a

given region broken down into a number of geographic atoms from which requests for service arrive

at known mean rates following a Poisson process and independently of any other atom. There are N

response units that can be dispatched to calls coming from any atom (full backup assumption). The

waiting locations of the servers (when they are idle) as well as the mean travel times between each

waiting location and atom are assumed to be, at least probabilistically, known. In response to each

incoming call for service, exactly one server is dispatched according to a fixed-preference dispatch

procedure, where the first available server in a given atom-specific ordered list of all response units

is dispatched. If there are no free units, the call is assumed to be added to a waiting line of infinite

capacity, which in case of the exact model is depleted according to a queue discipline that does

not depend on the expected service time or the call origin, for example First-Come, First-Served

(FCFS), Last-Come-First-Served (LCFS), or random. The approximate model is more restricting

in this regard as it only allows for a FCFS queue discipline. Negative exponential service times

with known average values are assumed that include the travel time, the on-scene time, and the

follow-up time. It is also assumed that the service time variation is mostly caused by on-scene

and follow-up times rather than travel times. The exact hypercube model allows for server-specific

mean service rates whereas the approximate procedure assumes identical mean service rates for all

response units, although the contribution of travel times to the service rates can be accounted for

through an iterative process called mean service time calibration.

Both the exact and approximate hypercube models have been employed, modified, and extended

in various ways. Reviews of the relevant developments can be found in Larson (2013) and Galvao

and Morabito (2008). Here we briefly mention the notable extensions upon the original approximate

procedure. Larson and Mcknew (1982) developed extensions of the original exact and approximate

hypercube queuing models in a police patrol context and allowed three server states: patrol, busy

with patrol-initiated activity, and busy with a call for service. They allowed the mean service times

to depend on both servers and customer types in their exact model and only on customer types in

their approximate version. Jarvis (1985) proposed an extended model for loss systems where the

mean service times were allowed to depend on the server and customer locations. His formulation
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also allowed general service time distributions since these loss systems with distinguishable servers

were shown to be relatively insensitive to the shape of the service time distribution beyond its

mean. Birge and Pollock (1989) proposed a decomposition procedure in which the large linear

system of equations corresponding to state probabilities of service systems is replaced by a set of

non-linear equations and then solved iteratively. Their approach is approximate in that the servers

are assumed independent. Goldberg and Szidarovszky (1991) presented detailed convergence results

for two fixed-point iteration methods assuming independent servers; they considered loss systems

with server and customer dependent service times and showed that the independence assumption

can lead to biased performance measures especially in high system utilization.

As for the dispatch preference ties, which most often happen in case of co-located servers sharing

a waiting station, there are two works to note: the work of Burwell et al. (1993) who explicitly incor-

porated dispatch ties in Jarvis (1985) and Larson (1975) approximations of loss systems, through

their internal stacking method and its slightly modified alternative; these algorithms were aimed to

alleviate the storage and coding complexity issues involved in the so-called stacking procedure of

accommodating dispatch ties in the hypercube models through software. Their formulation is based

on individual servers and hence employs Larson correction factors to approximate server depen-

dency. The other work by Budge et al. (2009), however, extends the Jarvis (1985) loss model to

allow for co-located servers through a formulation organized around stations rather than individual

servers and hence a modified set of correction factors that they derived for this purpose.

3. Formulation

In this section, we present our approximation model and the necessary formulation. The problem

definition and preliminary assumptions are given first followed by the approximation of the distri-

bution of the number of busy servers and the effects of cooperation and dependency among them.

We then estimate the immediate and delayed dispatch rates of servers to demand locations.

We assume that the area of interest is partitioned into M distinct demand zones, each generating

calls that can be classified into K priority levels. Requests for service with priority p from demand

zone i arrive as Poisson streams with known average rates λip. There are N mobile servers which

respond to calls according to a fixed dispatch policy. For any given priority level p and demand

zone i, there is a predetermined subset of servers which can be considered for dispatch. Binary

variables bijp specify whether server j can be dispatched to priority p calls from demand zone i

(bijp = 1) or not (bijp = 0). If bijp = 1, we may say server j p-covers demand zone i, or equivalently,

server j covers sub-queue (i, p). Letting I, J , and P respectively be the set of demand locations,

servers, and priority classes, and denoting the number of servers covering sub-queue (i, p) by cip

(≤N) we have

cip =
∑
j∈J

bijp i∈ I, p∈P .
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We assume that in response to an incoming call, the dispatcher considers the covering servers

according to a fixed preference order and assigns the first available unit. The k-th preferred server

to dispatch to a priority p call from demand zone i is denoted by l(i, k, p) with k = 1, ..., cip.

Auxiliary variables r(i, j, p) are defined to denote the dispatch preference order of the j-th server

when responding to a priority p call coming from demand zone i. By convention, we set r(i, j, p) = 0

if server j does not p-cover demand zone i, that is bijp = 0. Similarly, we set l(i, k, p) = 0 for k > cip.

Thus, we will have l(i, k, p) = j⇔ r(i, j, p) = k for k ≤ cip. As an example, consider a system with

three demand zones (M = 3), three servers (N = 3), and two priority levels (K = 2). If the dispatch

preference lists for the priority one calls coming from demand zones 1, 2, and 3 are respectively given

as {2,3,1}, {3,2} and {1}, then we will have l(1,1,1) = 2, l(1,2,1) = 3, l(1,3,1) = 1, l(2,1,1) =

3, l(2,2,1) = 2, l(2,3,1) = 0, l(3,1,1) = 1, l(3,2,1) = 0, and l(3,3,1) = 0, whereas r(1,1,1) = 3,

r(1,2,1) = 1, r(1,3,1) = 2, r(2,1,1) = 0, r(2,2,1) = 2, r(2,3,1) = 1, r(3,1,1) = 1, r(3,2,1) = 0, and

r(3,3,1) = 0.

We consider both loss and queuing systems; in the former case, calls arriving while all the

covering servers are occupied will be lost, and in the latter case, they will join the queue of waiting

customers. Because of partial backups, overtaking can happen in this queue when considered as

one single line; however, the service discipline within each sub-queue will be strictly FCFS. Upon

finishing its current job, a server will be dispatched to the longest waiting among the highest

priority queued customers covered by that server, if one exists.

The rates at which priority p calls from demand location i are immediately assigned to a server

or queued (lost in the loss system) are respectively denoted by λIip and λDip, with aIijp and aDijp the

corresponding immediate and delayed dispatch rates to server j. We then have λip = λIip + λDip,

aijp = aIijp + aDijp, and λIip =
∑

j∈J a
I
ijp. For the system with queues, we also have λDip =

∑
j∈J a

D
ijp

and λip =
∑

j∈J aijp, whereas for loss systems, we interpret λDip as the mean rate at which calls are

lost (rather than queued) and we set aDijp = 0 since no customers will be dispatched from the queue.

3.1. Distribution of the Number of Busy Servers

The approximation will rely on the distribution of the number of busy servers Pn = Pr{Sn}, n=

0, · · · ,N , with Sn the event of exactly n servers being busy. In the literature, a simplified queuing

model with identical servers, that is M/M/N or M/M/N/N is usually employed to approximate

the Pn of the spatially distributed system. Our experiments, however, show that these models

are not adequate enough to approximate a system with partial backups operating at moderate to

high workloads. To overcome this issue, we introduce queuing (or loss) systems with partial service

defined below to act as a more accurate proxy to the EMS with partial backups.
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Definition 1. The queuing (loss) system with partial service, denoted by M/M/[N]/∞

(M/M/[N]/LOSS) has N identical servers with i.i.d exponential service times with rate µ and N

customer classes arriving as Poisson streams with rates λc, c= 1,2, · · · ,N , where each class c cus-

tomer can receive service from exactly c servers randomly selected upon arrival, independently of

other arrivals or properties of the system.

We give the distribution of the number of busy servers of the queuing and loss systems with partial

service in the following theorems which form the basis of our subsequent analysis.

Theorem 1. The queuing system with partial service (M/M/[N]/∞) will reach steady state if

Nµ>
∑N

c=1 λc with the distribution of the number of busy servers given by

Pn = P0

N !

(N −n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N +h− c− j)!(j−h)!(c−h)!h!

×
∏
j∈J

j!(N − j)!
N !jµ− j!

∑j

c=1 λc
N−c
j−c

n= 1, · · · ,N , (1)

where

P0 =

1 +
N∑
n=1

N !

(N −n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N +h− c− j)!(j−h)!(c−h)!h!

×
∏
j∈J

j!(N − j)!
N !jµ− j!

∑j

c=1 λc
N−c
j−c

]−1

. (2)

Theorem 2. The steady state distribution of the number of busy servers in the loss system with

partial service is given by

Pn = P0

n∏
k=1

∑k

c=1 λc(1−
k!(N−c)!
N !(k−c)!) +

∑N

c=k+1 λc

kµ
, n= 1, · · · ,N (3)

with

P0 =

[
1 +

N∑
n=1

n∏
k=1

∑k

c=1 λc(1−
k!(N−c)!
N !(k−c)!) +

∑N

c=k+1 λc

kµ

]−1

. (4)

The Proofs of Theorems 1 and 2 will be given in Appendix A.

We approximate the distribution of the number of busy servers in our priority EMS with partial

backups using an M/M/[N] model with input parameters

λc =
∑
i∈I

∑
p∈P
cip=c

λip, c= 1, · · · ,N , (5)
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and

µ=

∑
i∈I
∑

j∈J
∑

p∈P aijp∑
i∈I
∑

j∈J
∑

p∈P aijptijp
, (6)

whenever known or estimated values for the total dispatch rates aijp and individual service times

tijp are available.

Unlike the M/M/N queue, the state probabilities of the prioritized M/M/[N] can differ from the

non-priority version; the difference, however, is negligible and does not affect the accuracy of our

calculations in any practical way. To illustrate this, in Figure 1, we compare the state probabilities

of a large set of randomly generated M/M/[N] queues obtained by simulation with those of the

equivalent non-priority M/M/N and M/M/[N] models. Noting an order of magnitude difference

in the vertical axes, it is clear that the non-priority M/M/[N] model approximates the priority

M/M/[N] significantly better than the non-priority M/M/N model with average errors often around

0.5% and rarely exceeding 1% which we deem quite negligible. This allows us to confidently use

the state probabilities obtained from the M/M/[N] model as an approximation to the distribution

of the number of busy servers in the ESS.

Similar to the original approximate hypercube model, the accuracy of Pn estimation decreases

when the individual server workloads

ρj =
∑
i∈I

∑
p∈P

aijptijp, j ∈J ,

are not close enough to the average server workload

ρ=
1

N

∑
j∈J

ρj =
∑
i∈I

∑
j∈J

∑
p∈P

aijptijp ;

therefore, we propose an empirical approach detailed in Appendix B to further improve the accuracy

of the estimation by correcting the λc and µc values obtained from (5) and (6) based on a measure

of discrepancy between server workloads.

3.2. Immediate Dispatches

In this section, we consider the calls who find at least one available covering server upon arrival,

and hence do not experience any queuing delays. We are interested in the steady-state rates at

which these immediately serviced calls are assigned to each of their covering servers.

To approximately account for the effects of server cooperation, we adopt an approach similar

to Larson (1975) where Pn is now obtained from an M/M/[N] model. First, assume we randomly

sample servers without replacement from the system operating at steady state until we find an idle
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Figure 1 Comparison of errors in approximating the state probabilities of a priority partial service queue by the

corresponding non-priority version (M/M/[N]) and an M/M/N queue. Reported are the mean absolute

errors for a system with three priority levels and different numbers of servers.

one. Letting Bj and Fj be the events of the j-th sampled server being respectively busy and free,

we write the probability of the j+ 1-th sampled server being the first available one as

Pr{B1B2 · · ·BjFj+1}=
N∑
n=j

Pr{Sn}Pr{B1B2 · · ·BjFj+1|Sn} ;

moreover,

Pr{B1B2 · · ·BjFj+1|Sn}= Pr{Fj+1|B1B2 · · ·BjSk}Pr{Bj|B1B2 · · ·Bj−1Sk} · · ·Pr{B1|Sn} .

The probabilities on the right-hand side can be expressed as

Pr{Bi|B1B2 · · ·Bi−1Sn}= [n− (i− 1)]/[N − (i− 1)] , i= 1,2, · · · , n+ 1 ,

and

Pr{Fj+1|B1B2 · · ·BjSn}= (N −n)/(N − j) , j = 0,1, · · · , n .

Combining the results above we have the desired probability

Pr{B1B2 · · ·BjFj+1}=
N−1∑
n=j

n

N

n− 1

N − 1
· · · n− (j− 1)

N − (j− 1)

N −n
N − j

Pn , j = 0,1, · · · ,N − 1 ,

or

Pr{B1B2 · · ·BjFj+1}=
N−1∑
n=j

N −n
N − j

Pn

j−1∏
k=0

n− k
N − k

, j = 0,1, · · · ,N − 1 .
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Re-writing the above expression as

Pr{B1B2 · · ·BjFj+1}=Z(N,µ, [λc], j)
′ρ
j
(1− ρ) ,

we obtain our correction factors as

Z(N,µ, [λc], j) =
N−1∑
n=j

n!(N − j− 1)!(N −n)

(n− j)!N !(1− ρ)ρj
Pn , j = 0,1, · · · ,N − 1 .

For the M/M/[N]/∞ system, we have ρ= λ/(Nµ) with λ=
∑N

c=1 λc and thus the Z factors will be

given as

Z(N,µ, [λc], j) =
N−1∑
n=j

n!(N − j− 1)!(N −n)

(n− j)!N !( λ
Nµ

)j(1− λ
Nµ

)
Pn , j = 0,1, · · · ,N − 1 , (7)

with Pn given by (1). Class c customers arriving to the loss system in state Sn will be lost at an

average rate of

qc(n) =

(
n
c

)(
N
c

) =
n!(N − c)!
N !(n− c)!

, (8)

resulting in an average server workload of

ρ=

∑N

c=1 λc(1−
∑N

n=0 qc(n)Pn)

Nµ
,

leading to the loss system Z factors of the form

Z(N,µ, [λc], j) =

[
1

Nµ

N∑
c=1

λc

(
1−

N∑
n=0

n!(N − c)!
N !(n− c)!

Pn

)]j [
1− 1

Nµ

N∑
c=1

λc

(
1−

N∑
n=0

n!(N − c)!
N !(n− c)!

Pn

)]

×
N−1∑
n=j

n!(N − j− 1)!(N −n)

(n− j)!N !
Pn , j = 0,1, · · · ,N − 1 ,

with Pn given by (3).

Similar to the Q factors derived by Larson (1975) for M/M/N queues, our Z factors represent

the extent to which the term ρj(1− ρ), which assumes independent servers, should be corrected

to reflect the probability of sampling exactly j servers before finding an available server in an

M/M/[N] queue operating at steady state.

Values of Pn and Z(·, j) for the queue and loss versions of an M/M/[10] system with different [λc]

but identical total demand are plotted in Figure 2, which clearly shows the strong dependence of

both quantities on the distribution of total demand into the customer classes. We note that scenario

A in this example is equivalent to a regular M/M/N queue and therefore the corresponding Z factors

are identical to the Q factors of Larson (1975). It is particularly interesting to observe how shifting

the concentration of the demand intensity towards the more openly received customer classes

(higher c) increases the effects of server cooperation; this is highlighted by the most aggressive
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Figure 2 Distribution of the number of busy servers and the Z correction factors for an example queuing system

with N = 10, µ= 1.4 and different arrival rate scenarios given by: A) [λc] = [0,0,0,0,0,0,0,0,0,10], B)

[λc] = [10,0,0,0,0,0,0,0,0,0], C) [λc] = [1,1,1,1,1,1,1,1,1,1], D) [λc] = [2,2,2,2,2,0,0,0,0,0], and E)

[λc] = [0,0,0,0,0,2,2,2,2,2].

correction factors associated with scenario A which represents the extreme case with the highest

server cooperation. Case B is the other extreme where each arrival is covered by a single server

and hence we have zero cooperation and perfect independence reflected in correction factors equal

to unity.

We also need an expression for λDip the rate at which priority p calls from location i get queued or

lost. Denoting the event of having no free servers to cover a priority p call from demand location i

by Bip, we have Bip ≡
⋂cip
j=1Bl(i,p,j). Conditioning on the system state Sn we have λDip = λipPr{Bip}

with

Pr{Bip}= λip

N∑
n=0

PnPr{Bip | Sn} .
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We see that Pr{Bip | Sn}= 0 for n< cip and

Pr{Bip | Sn}=

(
N − cip
n− cip

)
(
N

n

) =
(N − cip)!n!

(n− cip)!N !
,

for n≥ cip. Thus

λDip = λip

N∑
n=cip

Pn
(N − cip)!n!

(n− cip)!N !
. (9)

Given a set of steady-state server workloads ρj, j ∈ J , one can obtain a set of tentative values

for the immediate dispatch rates aIijp as

aIijp = bijpλipZ(N,µ, [λc], r(i, j, p)− 1)(1− ρj)
r(i,j,p)−1∏
k=1

ρl(i,k,p) , (10)

which can then be normalized using any of the normalization schemes discussed in Section 4 to

satisfy the balance equation ∑
j∈J

aIijp = λip−λDip . (11)

We can also approximate aIijp and λDip using an alternative two-pass scheme where we make a

better use of the individual server workloads ρj; in the first pass, values for the dispatch rates

assuming full backups denoted by âIijp are calculated as

âIijp = λipZ(N,µ, [λc], r(i, j, p)− 1)(1− ρj)
r(i,j,p)−1∏
k=1

ρl(i,k,p) , (12)

and normalized according to the balance equation∑
j∈J

âIijp = λip (1−PN) , (13)

where PN is given by (1) or (3). In the second pass, the aIijp values are obtained by recognizing

that the normalized full-backup dispatches to non-covering servers would indeed be queued or lost

in the actual partial-backup system; that is

aIijp = bijpâ
I
ijp . (14)

Finally, the rate of calls being queued (or lost) is given by

λDip = λipPN +
∑
j∈J

(1− bijp) âIijp , (15)

where the first part of the right-hand side represents the customers who arrive when all servers of

the hypothetical full-backup system are busy and the second term adds the contribution of partial
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backups by summing up the hypothetical dispatches to the non-covering servers. Our numerical

tests show that, on average, using the two-pass scheme defined by (12), (13), (14) and (15) instead

of (11), (9) and (10), indeed leads to around 50% reduction in server workload and immediate

dispatch estimation errors with an even higher 80% improvement in the estimation of delayed

dispatch rates and waiting times discussed in the next section. We hence use this method in our

experiments.

3.3. Delayed dispatches

The delayed dispatches in a system with full backups will be uniformly distributed among the N

servers when service times are identical; that is aDijp = λDijp/N if tijp = 1/µ, i ∈ I, j ∈ J , p ∈ P.

With location or priority dependent service times, some unevenness will be introduced in this

distribution proportional in magnitude to the extent of differences in tijp values. This, however,

will generally be of secondary importance compared to the asymmetry of the case with partial

backups where servers covering a given sub-queue will have to finish work on different subsets of

waiting customers before being able to receive the next delayed customer from that sub-queue. In

this section, we are interested in quantifying this asymmetry and deriving approximate expressions

for the steady-state dispatch rates of waiting customers and the average delays incurred in the

queue.

Let BD
jp be the event of server j being busy with a delayed priority p call and ρDijp the probability

of server j being busy with a delayed call from demand location i with priority p or higher (that

is with priority p′ ≤ p) given that all servers p-covering the demand location i are also busy (the

event B̃ip); that is ρDijp = Pr
{
∪pp′=1B

D
jp′ | B̃ip

}
. Although obtaining exact expressions for ρDijp for the

general case is mathematically intractable, we propose the following approximation

ρDijp =

p∑
p′=1

∑
i′∈I

κipi′p′λipā
D
i′jp′ti′jp′ , (16)

with āDi′jp′ = aDi′jp′/λ
D
ip and the coupling factor κipi′p′ defined as the probability of all servers p′-

covering demand location i′ being simultaneously busy given that all servers p-covering demand

location i are busy; or

κipi′p′ = Pr{B̃i′p′ | B̃ip} , i, i′ ∈ I, p, p′ ∈P .

The coupling factors can be approximated assuming either indistinguishable or independent servers.

With the assumption of indistinguishable dependent servers, we readily observe that

κipi′p′ = Pr{B̃i′p′ | B̃ip}=
Pr{B̃i′p′ ∩ B̃ip}

Pr{B̃ip}
,
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and also that, conditioning on the system state Sn

Pr{B̃i′p′ ∩ B̃ip}=
N∑
n=0

PnPr{B̃i′p′ ∩ B̃ip | Sn} .

Defining hipi′p′ as the number of servers that either p-cover demand location i or p′-cover demand

location i′, that is hipi′p′ =
∑

j∈J 1− (1− bijp)(1− bi′jp′), we have

Pr{B̃i′p′ ∩ B̃ip | Sn}=

(
N −hipi′p′
n−hipi′p′

)(
N

n

)−1

,

if hipi′p′ ≤ n and Pr{B̃i′p′ ∩ B̃ip | Sn}= 0 otherwise. The coupling factors are then obtained as

κipi′p′ =

∑N

n=h
ip

i′p′
Pn(N −n)!−1

N∏
k=n+1

(k−hipi′p′)∑N

n=cip
Pn(N −n)!−1

N∏
k=n+1

(k− cip)
. (17)

Equation (17) implies indistinguishable servers assumption as no individual server workloads are

used. However, server dependency is taken into account through the conditioning on the system

state Sn.

We can also assume independent distinguishable servers and approximate κipi′p′ as

κipi′p′ =
∏
j∈J

bi′jp′=1, bijp=0

ρj . (18)

As discussed in Section EC.4 of the electronic companion, this approach can be a viable alternative

to (17) and depending on the problem size and the implementation, may result in better or worse

performance in terms of accuracy or efficiency.

Finally, we define residual service rates µDijp as the service rate delivered by server j to the end

of the waiting line of priority p customers from demand location i and write the approximating

expression

µDijp = bijpµj
(
1− ρDijp

) (
1− ρDij(p−1)

)
, (19)

with µj the average service rate of server j defined as

µj =

∑
p∈P

∑
i∈I aijp∑

p∈P
∑

i∈I aijptijp
.

With µDijp known, we compute the normalized delayed dispatch rates as

āDijp =
µDijp∑N

k=1 µ
D
ikp
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and the average time spent in queue by the delayed customers from sub-queue (i, p) as

wDip =

(∑
j∈J

µDijp

)−1

. (20)

The delayed dispatch rates and the waiting times of all arrivals from sub-queue (i, p) then follow

from

aDijp = λDijpā
D
ijp , (21)

and

wip =
λDip
λip

wDip . (22)

Expression (19) has an intuitive interpretation. Imagine a priority p customer from demand location

i enters the queue. A covering server j will finish its current task (possibly with an immediately

dispatched customer) at rate µj; with probability 1−ρDijp no other customer will be waiting before

this newly arrived one in gaining access to server j; and with probability 1− ρDij(p−1) no higher

priority customer covered by server j will push this customer back while he is waiting. It can

be verified that for the special case with full backups (bijp = 1, i ∈ I, j ∈ J , p ∈ P), all coupling

factors κipi′p′ will be equal to unity. If we also have identical service times (that is tijp = 1/µ for all

i ∈ I, j ∈ J , and p ∈ P), then relations (16), (19), (21) and (20) will hold exactly and yield the

well-known expression for the waiting time of the prioritized M/M/N/∞ queue.

We now have all the ingredients to derive an iterative algorithm to approximate the steady-state

values of the desired performance measures, namely the average server workloads, immediate and

delayed dispatch rates, and waiting times.

4. Algorithm

In this section, we provide the layout of our approximation algorithm. All the assignments are

assumed to be carried out for i, i′ ∈ I, j ∈ J , and p, p′ ∈ P . Here are the steps to follow:

1. Initialization

(a) Set the iteration counter: g= 0;

(b) Initialize the problem definition parameters N , M , K, λip, tijp, l(i, j, p), r(i, j, p), cip, bijp,

and hipi′p′ ≤ n;

(c) Starting from an empty system, initialize the dispatch rate and server workload variables

to zero: ρ
(g)
j = 0, a

(g)
ijp = 0, and ρ(g) = 0;

2. Pre-processing

(a) Compute the state probabilities of the underlying M/M/[N] queue, P0, P1, · · · , PN from

(1) and (2) for the system with queues and from (3) and (4) for the loss system;

(b) Compute Z correction factors from (7);
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3. Immediate Dispatches

(a) Compute the full-backup immediate dispatch rates âIijp from (12);

(b) Normalize âIijp values obtained above so that
∑

j∈J â
I
ijp = λip(1−PN) ;

(c) Update the immediate dispatch rates as aIijp = bijpâ
I
ijp ;

(d) Compute the rates of delayed or lost calls from (15);

4. Delayed Dispatches

(a) Compute the coupling factors κipi′p′ either from (17) or (18);

(b) Compute updated values for ρDijp from (16);

(c) Compute updated values for the residual service rates µDijp from (19);

(d) Obtain the delayed dispatch rates as in (21): aDijp = λDijpµ
D
ijp/

∑N

k=1 µikp;

(e) Compute the expected waiting times from (22): wip =
(
λDip/λip

)∑N

j=1 µ
D
ijp;

5. Global Update and Termination

(a) Define and set auxiliary variables Vj as

Vj =

∑N

i=1

∑
p∈P aijptijp

1− ρ(g)
j

;

(b) Update server workloads as ρ
(g+1)
j = Vj/(1 + Vj). This update rule ensures that server

workloads remain between 0 and 1 and helps with the stability of the algorithm. For details see

Larson (1975), Budge et al. (2009) and Goldberg and Szidarovszky (1991).

(c) Terminate the algorithm if a given convergence condition is satisfied such as

max
j∈J
|ρ(g+1)
j − ρ(g)

j | ≤ ε ,

with ε a predefined convergence threshold; otherwise, set g← g+ 1 and start a new iteration from

Step 2.

The normalization procedure in step 3b can be carried out in different ways. The simplest method

is to scale all âIijp for j ∈ J and a given sub-queue (i, p) by a single factor so that the balance

equation is satisfied. Alternatively, we can retain the element corresponding to the primary (the

most preferred) server (that is âIi1p) and scale all the remaining values. In our experience this

method slightly improves the approximation and is thus employed in our numerical experiments.

We found more complicated approaches, such as the third normalization method in Larson (1975),

to be generally too computationally costly for the systems and scales we consider here.

Finally, although the algorithm presented above starts from an empty system, based on our

experiments, the method performs equally well with arbitrary initial conditions. An illustration of

the algorithm is given in Appendix C.
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Table 1 Components of the service time (in minutes).

Priority 1 Priority 2 Priority 3

Dispatch Time 2 3 3
Chute Time 0.5 0.5 0.5
Scene Time (Patient Transported) 19 19 19
Scene Time (Patient not Transported) 22 22 22
Turnaround Time 40 50 50

5. Numerical Experiments

We have conducted comprehensive numerical experiments to asses the efficacy of the proposed

approximation algorithm and also to answer a few questions that may arise while applying the

model to practical cases. A model representing the downtown area of the city of Montreal, Canada

and its main EMS provider, has been developed and employed in our tests as a realistic example

of a typical ESS in an urban setting. This model comprises 447 uniformly distributed demand

zones from which requests for service arrive with varying intensities at three different priority levels

corresponding to urgent (priority 1), less urgent (priority 2) and non-urgent (priority 3) calls. We

used a regular rectangular grid and approximated the total demand intensity of each grid cell based

on the population densities of the census dissemination areas intersecting that cell obtained from

the latest census data provided by Statistics Canada (2016a,b). Figure 3 shows the distribution of

the demand intensity and locations of the hospitals serving the area.

We assume the service times to include six components: (1) Dispatch Time: from the moment

the dispatcher received the call until a decision is made to assign an ambulance to the call or

put it in the waiting queue; (2) Chute Time: from the moment the ambulance crew is notified of

the dispatch until they become en route to the scene; (3) Travel Time: ambulance traveling time

from the current location to the scene; (4) Scene Time: time spent on scene; (5) Transport Time:

traveling time from the scene to the care center; (6) Turnaround Time: from the arrival of the

ambulance to the care center until it is back in service which typically consists of transferring the

patient to the care center and possibly ambulance clean-up or replenishing any depleted resources.

Based on data we had on ambulance operations in Montreal and other Canadian metropolitan

areas we estimated the values of the non-traveling components of the service time as in Table 1.

For the travel and transport times, we use the log-normally distributed stochastic model in

Budge et al. (2010) to approximate the random time t to travel a given distance d, that is

t=m(d)ec(d)z ,

m(d) =

{
2
√
d/a if d≤ 2dc

vc/a+ d/vc if d> 2dc
,
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Table 2 Values of the travel time model parameters.

Parameter Priority 1 Priority 2 Priority 3

a (acceleration, km/h/min) 41 25 25
vc (cruising speed, km/hr) 100 70 70
b0 0.336 0.336 0.336
b1 0.000058 0.000116 0.000116
b2 0.0388 0.0776 0.0776

Table 3 Coverage threshold scenarios

considered in the experiments. In each scenario,

the maximum coverage threshold for each
priority level is given in kilometers.

Scenario Priority1 Priority 2 Priority 3

C1* ∞ ∞ ∞
C2 6 6 6
C3 4 4 4
C4 6 4 2
C5 2 4 6
C6 2 2 2

* Full backups

c(d) =

√
b0(b2 + 1) + b1(b2 + 1)m(d) + b2m(d)2

m(d)
,

where m(d) and c(d) are respectively the median and coefficient of variation (CV) of the travel time

distribution with z a random variable with a standard normal distribution. The values we selected

for the parameters of the model are given in Table 2 for each priority level. For the urgent calls, we

used the values reported in Budge et al. (2010) for the Calgary EMS, and for the non-urgent calls,

we simply modified some of the parameters to reflect the lower cruising speeds and accelerations

and higher variability associated with driving in normal mode and abiding by all traffic laws. Values

of d were computed as Manhattan norms tilted at 45 degrees to match the street layout in the

region. Finally, the corresponding mean travel times needed by the approximation model can be

obtained as

t̄=m(d)ec(d)2/2 .

We have conducted tests using six different coverage threshold scenarios given in Table 3 with

C1 representing the full backup scenario. For a given fleet size (N), we generated 100 random

ambulance location sets where no ambulance is located farther than 500 meters from its closest

demand zone (to exclude unrealistic deployment patterns). We considered a given test location set

in both queuing and loss situations (designated by Queue and Loss in the tables) and in each case

compared the outputs of the approximation model with those of a discrete event simulation which
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Figure 3 Demand distribution and hospital locations.
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we developed to benchmark the performance of our algorithm. We have run the tests for N=20,

30, 40, and 50, but only report the results for N=20 for ease of the exposition.

Denoting simulation outputs by hatted symbols, we use Eρ =
∑N

j=1 |ρj − ρ̂j|/ρ̂j as the

measure of error in the estimation of server workloads for a given test problem. For

total, immediate, and delayed dispatch rates, we take the average errors per dispatch given

by Ea =
∑

i∈I
∑

j∈J
∑

p∈P |aijp − âijp|/λ, EI
a =

∑
i∈I
∑

j∈J
∑

p∈P |aIijp − âIijp|/λ and ED
a =∑

i∈I
∑

j∈J
∑

p∈P |aDijp − âDijp|/λ as error measures, respectively. We capture waiting time estima-

tion errors by Ew =
∑

i∈I
∑

p∈P |wip − ŵip|/λ and also report the average waiting times from the

simulation ŵ=
∑

i∈I
∑

p∈P ŵip/λ as a reference for Ew. We emphasize that λ=
∑

i∈I,p∈P
cip>0

λip is the

total covered demand and hence will be different for each test problem in scenarios with finite

coverage threshold. The measures computed for a specific priority p are denoted by Eap , E
I
ap , E

D
ap ,

Ewp and ŵp and of course normalized with the total priority p covered demand. Finally, we report

in the subsequent tables the error measures averaged over all test problems in percentage format;

that is, for instance Ēρ = (1/T )
∑T

m=1E
m
ρ /100% where Em

ρ is Eρ corresponding to the m-th out of

the T number of test cases (here T = 100).

In this section, we test the validity of the full-backup assumption, assess the general efficacy of

the algorithm and give a summary of the rest of our computational experiments presented in the

electronic companion.
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Table 4 Estimation errors assuming full-backups*.

Loss Queue

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Ēρ 1.68 4.67 17.98 22.64 38.53 111.30 1.69 2.08 9.54 10.60 20.09 78.84
Ēa 5.43 8.95 23.87 26.31 40.10 65.68 5.42 11.97 31.75 31.21 50.15 87.35
Ēw — — — — — — 0.00 0.79 6.70 6.24 13.20 44.97

*Ēρ and Ēa in percentages, Ēw in minutes

5.1. Validity of the Full-backup Assumption

This paper is focused on the approximation of ESSs with partial backups. It is then naturally

interesting to see whether an approximation based on a full-backup assumption will be adequate

or not in practical settings. In Table 4 we compare the performance measures obtained from

the simulation model for different coverage threshold scenarios with the values predicted by the

approximation algorithm assuming full-backups (that is the coverage scenario C1). It is readily

observed that as the coverage thresholds become more stringent, the approximation model with

a full-backup assumption becomes increasingly incapable of predicting any of the performance

measures with reasonable accuracy, with estimation errors up to 100% and 90% for the server

workload and dispatch rates. We note that the full-backup assumption yields an average waiting

time of nearly zero resulting in 100% waiting time estimation errors for all coverage scenarios

except C1. We also observed in our experiments that the discrepancy between the simulation and

the full backup model, not surprisingly, grows with increasing system workloads and decreasing

fleet sizes.

As mentioned earlier, in systems with partial backups, the values of performance measures

corresponding to each server can be largely different and the assumption of full backups will not

reveal these imbalances. However, there is another major drawback associated with assuming full

backups in applications where the demand that is not covered by any server is considered lost. In

these cases, each candidate positioning of the response units will lead to a different total covered

demand, λ, and thus a different average server workload. The full backup assumption will also fail

to reveal these effects. Therefore, we can conclude that assuming full backups may result in highly

inaccurate approximations in many practical applications, especially with fairly moderate to high

congestion levels and dispatch protocols not compatible with this assumption.

5.2. Accuracy of the Approximation

Having established the importance of relaxing the full-backup assumption, we now evaluate the

predictive accuracy of the algorithm. The average total and priority-specific estimation errors in

each performance measure for different coverage scenarios and queue disciplines are given in Tables
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Table 5 Estimation errors for the loss

system (in %).

C1 C2 C3 C4 C5 C6

Ēρ 1.68 1.51 1.50 1.31 1.09 0.70
Ēa1 5.41 4.28 3.30 3.98 1.36 0.96
Ēa2 5.43 4.31 3.30 3.04 2.85 0.94
Ēa3 5.53 4.40 3.36 1.54 3.78 1.02
Ēa 5.43 4.31 3.32 3.23 2.47 0.96

5, 6, and 7. The error margins in prediction of server workloads and dispatch rates are capped

at around 1.7% and 5.5% respectively, with considerably lower averages across the test scenarios.

The average error in the estimation of waiting times in cases with significant average waiting time

values is observed to be at most 10%. The server workload estimation errors are in agreement

with the values reported by Larson (1975) and Budge et al. (2009). Overall, we deem the accuracy

of the approximation well within the acceptable range in most practical applications. Comparing

the error margins with those obtained with a full backup assumption in the previous subsection

shows the effectiveness of the method in handling partial backups in the presence of priorities in

the queues.

We envisioned to use the example application presented here in developing equitable emergency

response models; therefore, we have used a regular grid for demand distribution so that geograph-

ical locations are equally represented regardless of the call volumes they generate. This, however,

comes at the cost of impractically long simulation run times as the convergence rate of simulation

outputs corresponding to demand locations with very low intensities will be extremely slow. This

issue is further aggravated by the relatively large scale of the model considered here (M = 447), and

is naturally more pronounced with larger numbers of non-zero elements of bijp, that is less strin-

gent coverage threshold scenarios. We consider this a major drawback of using simulation models

in studying problems with hugely varying arrival rates; moreover, we assume the reported error

margins to be, to some extent, overestimated because of this issue, particularly in less stringent

coverage threshold scenarios. The noticeable increase in the error margins with increasing coverage

thresholds can be attributed in part to this issue, and in part to the fact that in this application, the

total demand faced by the system (λ) increases with increasing coverage thresholds, thus leading

to bigger error magnitudes.

5.3. Complementary Computational Results

We now briefly summarize the extra computational experiments presented in the electronic com-

panion to investigate important aspects of the algorithm.

We examine the sensitivity of the algorithm to the service time distribution in section EC.1

and conclude that while the approximations of server workloads and dispatch rates remain fairly
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Table 6 Estimation errors for the

queuing system (in %).

C1 C2 C3 C4 C5 C6

Ēρ 1.69 1.59 1.26 1.34 1.14 0.46
ĒI
a1 5.38 5.16 4.29 5.24 1.59 1.35

ĒI
a2 5.40 5.16 4.29 3.64 3.83 1.38

ĒI
a3 5.50 5.22 4.38 1.63 5.37 1.43

ĒD
a1 0.09 1.16 2.25 0.91 1.27 1.13

ĒD
a2 0.09 1.15 2.37 1.81 1.82 1.17

ĒD
a3 0.13 1.17 2.47 1.31 0.83 1.29

Ēa 5.42 5.19 4.01 3.97 3.19 1.20

Table 7 Waiting time estimation errors with actual values from simulation in parentheses (in

minutes).

C1 C2 C3 C4 C5 C6

Ēw1 0.00 (0.014) 0.13 (0.69) 0.46 (5.07) 0.10 (0.54) 0.67 (27.22) 0.56 (24.84)
Ēw2 0.00 (0.024) 0.17 (0.85) 0.72 (7.16) 0.46 (4.81) 0.45 (6.03) 1.27 (44.59)
Ēw3 0.01 (0.037) 0.21 (1.03) 1.43 (9.58) 2.33 (30.44) 0.15 (0.83) 2.47 (61.10)
Ēw 0.00 (0.021) 0.16 (0.80) 0.69 (6.72) 0.58 (6.26) 0.49 (13.22) 1.18 (40.35)

insensitive to the service time distribution, the waiting time estimations remain valid only if the

service time distribution has a CV close to unity.

In Section EC.2, we verify the importance of modeling location and priority dependent service

times through test cases in which service times are identical or depend only on location or priority.

It is then clearly seen that letting the service times simultaneously depend on customer and server

locations and call priority, significantly improves the approximation accuracy and hence is worth

the extra modeling effort.

Repeating the numerical tests for varying load factors, we show in Section EC.3 that regardless

of the system workload, the approximations provided by the algorithm remain accurate in all

performance measures and across all tested scenarios.

Finally, in Section EC.4 we consider the computational expense of the algorithm and suggest

optimal intervals to repeat time-consuming calculations so that the computational overhead is

reduced without significantly affecting the accuracy.

6. Conclusions

We extended the EMS approximation procedure of Larson (1975) by letting each server be respon-

sible for an arbitrary subset of the demand locations (partial backups) and allowing priorities in

the queues. We considered queuing and loss systems and let service times depend on the locations

of the customer and server and the call priority. The approximation is based on the queue or loss

systems with partial service which we defined and analyzed in steady-state.
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We conducted numerical experiments to validate the approximation model and demonstrated

that it can accurately predict the performance measures of typical EMS systems with real scales

and different operational scenarios.

The proposed method facilitates the more realistic description of emergency response systems

where the assumptions of full backups and no priorities in the queues are often too simplistic to

represent the dispatching policies of the actual system. In particular, the algorithm paves the way

to efficient and reliable analysis and design of systems with multi-tier customers and heterogeneous

fleet where dispatch decisions are made based on the customer and server types and only if an

accordingly determined minimum response time is not expected to be exceeded.

An interesting line of research to follow will be to extend the current approximation procedure

to model EMS systems that intentionally queue or reject lower priority requests to maintain a

strategic reserve of available servers for upcoming higher priority calls. A similar extension to the

exact hypercube model has been given by Iannoni et al. (2015).

Appendix A: Proof of Theorems

Proof of Theorem 1 We first briefly summarize the results obtained by Visschers et al. (2012)

for a class of queues with skill based service and exploit them to derive our expressions of interest.

In a skill based queue with a set of servers M = {m1, · · · ,mN}, and a set of customer classes

C = {κ1, κ2, · · · }, each server mk ∈ M has the skills to only serve a subset C(mk) ⊂ C of cus-

tomer types. Servers are memory-less with service rates µm, m ∈M and customers of class κ ∈ C

arrive in a Poisson stream with rate λκ. The set of customer classes only compatible with servers

{M1, · · · ,Mn} ∈Mn is denoted by U({M1, · · · ,Mn}) whereMn is the set of all subsets of size n of

M. We readily observe that U({M1, · · · ,Mn}) = C \
⋃
m∈M\{M1,··· ,Mn} C(m). For a subset C′ ⊂ C of

customer types, we denote λC′ =
∑

κ∈C′ λc′ ; similarly µM′⊂M =
∑

m∈M′ µm.

A state of the system, given by the sequence (M1, l1,M2, l2, · · · ,Mn, ln), represents a snapshot

of the waiting customers and the relative positions of the busy servers in the queue: there are

l1 + · · ·+ li (li = 0,1, · · · ) customers waiting between the sequence of busy servers (M1, · · · ,Mn),

plus n customers currently in service. Arriving customers start service immediately if they find

a compatible server among the set of idle servers {Mn+1, · · · ,MN}, and push the system to state

(M1, l1,M2, l2, · · · ,Mn, li,Mn+1,0); otherwise, they join the right end of the queue, pushing the

system into state (M1, l1,M2, l2, · · · ,Mn, ln + 1). Customers who find several available and com-

patible servers upon arrival, choose the receiving server randomly according to given assignment

probability distributions. Upon finishing their current job, servers will scan the queue from the left

and start servicing the first customer they can handle, if one exists. This results in a new system

state with the hosting server relocated to the position of the received customer. If no compatible
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customers are found, the newly released servers will join the set of other idle servers, transitioning

the system to state (M1, l1, · · · ,Mk−1, lk−1 + lk,Mk+1, · · · ,Mn, ln) where Mk is the newly idle server

(k≤ n). We therefore have that the lk customers waiting between servers Mk and Mk+1 must belong

to U({M1, · · · ,Mk}). For a detailed description of this system and its transitions see the original

paper.

Within the setup summarized above and with Pr(∅) the probability of an empty system, Visschers

et al. (2012) consider the product form distribution

Pr(M1, l1,M2, l2, · · · ,Mn, ln) = Pr(∅)Πλ({M1, · · · ,Mn})
Πµ(M1, · · · ,Mn)

n∏
j=1

α
lj
j , (23)

where

αj =
λU({M1,··· ,Mj})

µ{M1,··· ,Mj}
, for j = 1,2, · · · , n ,

and

Πλ({M1, · · · ,Mn}) =
n∏
j=1

λMj
({M1, · · · ,Mj−1}) , (24)

for every subset {M1, · · · ,Mn} ∈M of servers and

Πµ(M1, · · · ,Mn) =
n∏
j=1

µ{M1,··· ,Mj} ,

for every sequence (M1, · · · ,Mn) ∈ Pn with Pn the set of all permutations of all subsets of size n

of M. While Πµ(M1, · · · ,Mn) may depend on the order of servers in the sequence (M1, · · · ,Mn),

for the product form solution to exist, Visschers et al. (2012) show that Πλ({M1, · · · ,Mn} must be

independent of the order of servers. It is then shown that there exist unique values for the activation

rates λMj
({M1, · · · ,Mj−1}) which satisfy this assignment condition and that these unique values

can be calculated recursively. The assignment probability distributions leading to these activation

rates are often not unique and can be obtained by solving a maximal flow problem for each set

{M1, · · · ,Mj−1}. Finally, the product form (23) implies the probability of having the sequence of

busy servers (M1, · · · ,Mn) as

Pr(M1, · · · ,Mn) = Pr(∅)Πλ({M1, · · · ,Mn})
Πµ(M1, · · · ,Mn)

n∏
j=1

1

1−αj
. (25)

The assignment condition is trivially satisfied for the queue with partial service where servers are

indistinguishable and hence the assignment of available compatible servers to incoming customers

is purely random. This allows us to derive the distribution of the number of busy servers of the

queue with partial service (not to be confused with class κ in the skill based queue) by evaluating

(25). Distinguishing the expressions obtained for the queue with partial service with tildes we write

λ̃U{M1,··· ,Mj} =

j∑
c=1

λc

(
j
c

)(
N
c

) ,
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and

µ̃{M1,··· ,Mj} = jµ ,

which immediately follow from servers being indistinguishable. We then have

α̃j =
λ̃U({M1,··· ,Mj})

µ̃{M1,··· ,Mj}
= (jµ)−1

j∑
c=1

λc

(
j
c

)(
N
c

) ,
and

Π̃µ(M1, · · · ,Mn) =
n∏
j=1

jµ= n!µn .

To derive an expression for Π̃λ({M1, · · · ,Mn}), we consider the situation with j−1 busy servers

and designate one of the idle servers to act as Mj. We then recognize the probability of a class c

customer being simultaneously compatible with the designated server as well as exactly h of the

busy servers as

φc(h, j) =

(
j−1
h

)(
N−j
c−h−1

)(
N
c

) ,
j ∈M
h= max{0, c+ j−N − 1} , · · · ,min{c− 1, j− 1} ,

and the probability of such a customer being assigned to the designated server as 1/(c−h). Con-

ditioning on h and interpreting λ̃Mj
({M1, · · · ,Mj−1}) as the total activation rate of a designated

idle server given the set of busy servers {M1, · · · ,Mj−1} we get

λ̃Mj
({M1, · · · ,Mj−1}) =

N∑
c=1

λc

min{c−1,
j−1}∑

h=max{0,
c−(N−(j−1))}

φc(h, j)

c−h
,

and then from (24)

Π̃λ({M1, · · · ,Mn}) =
n∏
j=1

N∑
c=1

λc

min{c−1,j−1}∑
h=max{0,c−(N−(j−1))}

(
j−1
h

)(
N−j
c−h−1

)(
N
c

) 1

c−h
,

which of course satisfies the assignment condition. Substituting the above expressions into (25),

summing over all members of Pn for n= 0, · · · ,N , and simplifying we obtain

Pn = P0

N !

(N −n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N +h− c− j)!(j−h)!(c−h)!h!

×
n∏
j=1

j!(N − j)!
N !jµ− j!

∑j

c=1 λc
N−c
j−c

, n= 0, · · · ,N , (26)

with the normalizing factor P0 = (1 +
∑N

j=1Pj)
−1. �
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Figure 4 The birth-death model to compute state probabilities

S0 S1 S2 · · · SN

λ(0) λ(1)

µ(1)

λ(2)

µ(2)

λ(N − 1)

µ(3) µ(N)

Remark 1. Adan and Weiss (2014) showed that this product form is also valid for the case where

the random assignment policy is replaced with the Assign to the Longest Idle Server (ALIS).

Consequently, one can derive (26) assuming an FCFS-ALIS queue discipline; however, we find the

presented approach more direct and intuitive.

Proof of Theorem 2 A class c customer arriving to the loss system with partial service in state

Sn will be lost with probability qc(n) =
(
n
c

)
/
(
N
c

)
and will enter service immediately with probability

1 − qc(n). The system then can be modeled as a birth-death process shown in Figure 4 with

µ(n) = nµ for n= 1, · · · ,N , and

λ(n) =
N∑
c=1

λcqc(n) =
N∑
c=1

λc
n!(N − c)!
N !(n− c)!

, n= 0, · · · ,N − 1 .

It is then easy to verify that the steady state distribution will be

Pn = P0

n∏
k=1

∑k

c=1 λc(1−
k!(N−c)!
N !(k−c)!) +

∑N

c=k+1 λc

kµ
, n= 1, · · · ,N ,

with the probability of the empty system P0 = (1 +
∑N

n=1Pn)−1 as the normalizing factor. �

Remark 2. This result also follows from the product form given in Adan et al. (2010) for the loss

version of the skill based systems considered in Visschers et al. (2012); the derivation presented

here, however, is simpler.

Appendix B: Correction of State Probability Approximations

The accuracy of the distribution of the number of busy servers obtained from the M/M/[N] model

with the demand vector [λc] and service rate µ given by (5) and (6) as parameters can be further

improved through the empirical scheme outlined here. We emphasize that although we considered

some analytical alternatives which proved to be less effective, the procedure described here is purely

empirical and obtained by analyzing a large set of test cases and comparing the outputs of the

M/M/[N] and simulation models. The key observation here is that by shifting the distribution of

the arrival intensities in the nominal input vector [λc] towards the lower admission classes (smaller

c), we can always find an alternative distribution [λ̂c] for which the state probabilities of the

M/M/[N] model will more closely match those of the spatially distributed system. Furthermore,
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and as one would expect, the magnitude of the required shift seems to be proportional to the

variation of server workloads across the fleet. Therefore, in this method, we capture the variation

in the server workloads and construct a suitably altered demand vector [λ̂c] which can then be

input to the M/M/[N] model to arrive at a more accurate approximation of the state probabilities

of the original spatially distributed system.

We use Algorithm 1 to map any given partial service demand vector [λc] to a reshaped vector

[λ̂c] by moving the demand concentration towards the lower admission classes while keeping the

total arrival rate λ=
∑N

c=1 λc =
∑N

c=1 λ̂c intact. The parameter ζ ∈ [0,1] controls the intensity of

the operation; with ζ = 0, we will have [λ̂c] = [λc] and with ζ = 1, all demand will be moved into

the admission class c= 1, that is λ̂1 = λ and λ̂c = 0 for c= 2,3, · · · ,N .

input : ζ ∈ [0,1] and λc for c= 1,2, · · · ,N

output: λ̂c for c= 1,2, · · · ,N

λ̂c← λc, c= 1,2, · · · ,N ;

for i←N to 2 do

∆← ζλ̂i;

for j← 1 to i− 1 do

λ̂j← λ̂j + ∆
i−1

;
end

λ̂i← λ̂i−∆;
end

Algorithm 1: Reshaping λc with a factor ζ

To measure the variation among server workloads ρ1, ρ2, ..., ρN , we define

η=

∑
j∈J |ρj − ρ|
ρN 1.3

,

where ρ= 1
N

∑
j∈J ρj is the mean server workload. We have observed through extensive testing that

this specific expression for η, makes the formulas proposed here effectively independent of the fleet

size N . For a given η, suitable values of ζ can be best predicted using a two-part approximation

curve given by

ζ =

{
b0η

3 if η≤ ηs√
η−a0
a2

if η≥ ηs
,

and plotted in Figure 5 where b0, a0, a2, ηs, and ζs are shaping parameters that depend on the

nominal loading %= λ/Nµ through the following relations:

a0 =

{
0.0454%3 + 0.0510%2− 0.3140%+ 0.2173 for systems with queues

0.1567%3− 0.1043%2− 0.2442%+ 0.2071 for loss systems
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Figure 5 The ζ − η curve

ζs =

{
0.7262%2− 1.761%+ 1.341 for systems with queues

1.006%2− 2.191%+ 1.3592 for loss systems

a2 =

{
0.18 for systems with queues

−0.4419%3 + 0.3262%2− 0.0889%+ 0.1878 for loss systems

ηs = a2ζ
2
s + a0

b0 = ζsη
−3
s .

For systems where queues are allowed, this reshaping procedure does not affect the average server

utilization ρ as the total demand λ is kept unchanged; however, for loss systems, any alteration

of [λc] through the reshaping algorithm may also change ρ. Therefore, we need to perform a

normalization step along with the reshaping procedure to make sure the resulting average server

workload matches the current iteration value ρ. This can be achieved by replacing the nominal

service rate µ with an adjusted version µ̂ through the following relation

µ̂=

{
µ for systems with queues

(ρN)−1
∑N

n=0Pn
∑N

c=1 λc(1− qc(n)) for loss systems
,

where qc(n) is given by (8). This normalization step is equivalent to multiplying the input vector

[λc] by a factor of µ/µ̂.

Finally, the corrected state probabilities are obtained from an M/M/[N] model with the reshaped

input vector [λ̂c] and the normalized service rate µ̂ as parameters. Figure 6 shows the average

improvement of Pn estimations for queuing and loss systems at varying workloads.
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Figure 6 Comparison of the state probability estimation errors with and without the correction scheme averaged

over randomly generated cases with 20 servers (N = 20) and varying workloads. The estimation error

is computed as
∑N
n=1 |P

mod
n −P simn |.
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Figure 7 Illustrative Example

Appendix C: Illustrative Example

In this section, we apply the presented algorithm to a simple example consisting of five demand

zones (M = 5) and three servers (N = 3) located as shown in Figure 7.a. We assume two priority

levels (K = 2) with arrival rates and dispatch preference orders given as
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[λip] =


1.0 1.0

0.225 0.075
0.075 0.1
0.05 0.2
0.2 0.05

 , [bij1] =


1 0 0
1 1 0
1 0 1
0 1 1
1 1 1

 , [bij2] =


1 1 0
0 1 1
1 0 1
0 1 0
0 1 1

 , [rij1] =


1 3 2
2 1 3
2 3 1
3 2 1
1 2 3

 , [rij2] =


1 2 3
3 2 1
2 3 1
3 1 2
3 2 1

 ,
with the matrix [cip] implied from [bijp] as

[cip] =


1 2
2 2
2 2
2 1
3 2

 .
We assume exponentially distributed service times with three components: travel time from the

server location to the scene, on-scene time, and follow-up time. We set on-scene and follow-up times

respectively to 20 and 30 minutes regardless of the call priority, and use the procedure detailed in

Section 5 to approximate the mean travel times between each server and customer location and for

each priority. Euclidean norms were used to measure travel distances. The resulting mean service

times are

[tserij1 ] =


58.0 61.1 60.8
61.4 60.2 62.2
60.1 60.5 58.2
62.2 59.8 60.4
56.9 56.2 56.4

 , [tserij2 ] =


61.6 66.1 65.7
66.6 64.8 67.8
64.7 65.3 61.9
67.8 64.3 65.2
59.9 59.0 59.3

 .
The plots in Figure 7.b show how server workloads converge to their final values as the algorithm

progresses when applied to the loss and queuing versions of this example problem. As typically

observed, the algorithm takes fewer iterations in the case of a loss system.

The outputs of the model when applied to the example problem as a queuing or loss system are

compared with the corresponding values obtained from the simulation model in Tables 8, 9, 10

and 11. We observe accurate approximations to all performance measures in each priority and for

both queuing and loss systems. We note the significant asymmetry in the distribution of immediate

and delayed dispatches. This is caused by differing dispatch preference orders and partial backups

in case of the immediate dispatches, and for the delayed dispatches, can be attributed mainly to

partial backups and, probably to a much less degree, to varying service times.
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Table 8 Comparison of server workloads estimated by the model and

simulation.

Loss Queue

Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

Simulation 0.2589 0.4513 0.2486 0.3323 0.5453 0.2922
Model 0.2574 0.4512 0.2482 0.3309 0.5467 0.2927

Table 9 Comparison of immediate dispatch rates estimated by the model and simulation.

Priority 1 Priority 2

Demand Zone Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

1 1 (1) — — .8462 (.8543) .1538 (.1457) —
2 .4187 (.4179) .5813 (.5821) — — .5674 (.5634) .4326 (.4366)
3 .1797 (.1892) — .8203 (.8108) .1797 (.1891) — .8203 (.8109)
4 — .5674 (.5659) .4326 (.4341) — 1 (1) —
5 .1105 (.1097) .5047 (.5018) .3848 (.3885) — .5674 (.5634) .4326 (.4366)

Table 10 Comparison of delayed dispatch rates estimated by the model and simulation.

Priority 1 Priority 2

Demand Zone Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

1 1 (1) — — .5297 (.5436) .4703 (.4564) —
2 .4800 (.4821) .5200 (.5179) — — .4090 (.4109) .5910 (.5891)
3 .4667 (.4681) — .5333 (.5319) .4331 (.4460) — .5669 (.5540)
4 — 0.4862 (.4877) .5138 (.5123) — 1 (1) —
5 .3032 (.3043) .3317 (.3297) .3652 (.3660) — .4090 (.4116) .5910 (.5884)

Table 11 Comparison of average waiting times (in minutes) and fractions of

calls queued estimated by the model and simulation for the system with queues.

Waiting Times Fraction of Calls Queued

Demand Zone Priority 1 Priority 2 Priority 1 Priority 2

1 23.5 (22.8) 12.9 (12.4) .3309 (.3323) .2093 (.2192)
2 8.3 (8.0) 9.6 (9.0) .2201 (.2182) .2010 (.1939)
3 4.8 (4.5) 6.3 (5.9) .1378 (.1281) .1378 (.1271)
4 6.7 (6.4) 54.6 (49.6) .2010 (.1951) .5467 (.5446)
5 2.6 (2.4) 9.6 (8.9) .1017 (.0950) .2010 (.1929)
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de Souza, Regiane Máximo, Reinaldo Morabito, Fernando Y Chiyoshi, Ana Paula Iannoni. 2015. Incorporat-

ing priorities for waiting customers in the hypercube queuing model with application to an emergency

medical service system in Brazil. European Journal of Operational Research 242(1) 274–285.

Galvao, Roberto D, Reinaldo Morabito. 2008. Emergency service systems: The use of the hypercube queueing

model in the solution of probabilistic location problems. International Transactions in Operational

Research 15(5) 525–549.

Goldberg, Jeffrey, Ferenc Szidarovszky. 1991. Methods for solving nonlinear equations used in evaluating

emergency vehicle busy probabilities. Operations research 39(6) 903–916.

Iannoni, Ana Paula, Fernando Chiyoshi, Reinaldo Morabito. 2015. A spatially distributed queuing model

considering dispatching policies with server reservation. Transportation Research Part E: Logistics and

Transportation Review 75 49–66.

Iannoni, Ana Paula, Reinaldo Morabito. 2007. A multiple dispatch and partial backup hypercube queuing

model to analyze emergency medical systems on highways. Transportation research part E: logistics

and transportation review 43(6) 755–771.

Jarvis, James P. 1985. Approximating the equilibrium behavior of multi-server loss systems. Management

Science 31(2) 235–239.

Larson, Richard C. 1974. A hypercube queuing model for facility location and redistricting in urban emer-

gency services. Computers & Operations Research 1(1) 67–95.

Larson, Richard C. 1975. Approximating the performance of urban emergency service systems. Operations

Research 23(5) 845–868.

Larson, Richard C. 2013. Hypercube queueing model. Encyclopedia of Operations Research and Management

Science. Springer, 733–739.

Larson, Richard C, Mark A Mcknew. 1982. Police patrol-initiated activities within a systems queueing model.

Management Science 28(7) 759–774.

Statistics Canada. 2016a. Census profile of dissemination areas for the 2011 census. http://www12.statcan.

gc.ca/census-recensement/2011/dp-pd/prof/index.cfm?Lang=E accessed on July 4, 2017.

Performance Approximation of Emergency Service Systems with Priorities and Partial Backups

CIRRELT-2017-49 31



Statistics Canada. 2016b. Dissemination areas cartographic boundary file for the 2011 census. http://

www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2011-eng.cfm

accessed on July 4, 2017.

Visschers, Jeremy, Ivo Adan, Gideon Weiss. 2012. A product form solution to a system with multi-type jobs

and multi-type servers. Queueing Systems 70(3) 269–298.

Performance Approximation of Emergency Service Systems with Priorities and Partial Backups

32 CIRRELT-2017-49


	CIRRELT-2017-49-abstract.pdf
	Bibliothèque et Archives Canada, 2017




